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�e research reported in this paper focuses on the modeling of Local Binary Patterns (LBPs) and presents an a priori model where
LBPs are considered as combinations of permutations. �e aim is to increase the understanding of the mechanisms related to the
formation of uniform LBPs. Uniform patterns are known to exhibit high discriminative capability; however, so far the reasons for
this have not been fully explored. We report an observation that although the overall a priori probability of uniform LBPs is high,
it is mostly due to the high probability of only certain classes of patterns, while the a priori probability of other patterns is very
low. In order to examine this behavior, the relationship between the runs up and down test for randomness of permutations and
the uniform LBPs was studied. Quantitative experiments were then carried out to show that the relative e�ect of uniform patterns
to the LBP histogram is strengthened with deterministic data, in comparison with the i.i.d. model. �is was veri
ed by using an
a priori model as well as through experiments with natural image data. It was further illustrated that speci
c uniform LBP codes
can also provide responses to salient shapes, that is, to monotonically changing intensity functions and edges within the image
microstructure.

1. Introduction

�e Local Binary Pattern (LBP) methodology [1] was 
rst
proposed as a texture descriptor, but it has later been applied
to various other 
elds of computer vision: for example, face
recognition, facial expression recognition, modeling motion
and actions, as well as medical image analysis. Numerous
modi
cations and improvements have been suggested to the
original LBPmethodology for various applications, while the
LBPs have also been proposed for signal processing tasks
beyond image processing (e.g., [2]). A detailed list of various
applications and papers related to the LBP methodology is
available in CMV Oulu pages [3].

Before the introduction of Local Binary Patterns, co-
occurrence statistics descriptors based on binary features and�-tuples [4], as well as the texture unit and texture spectrum
(TUTS) method [5], have been studied. �-tuples have been
studied in, for example, [4, 6] for texture retrieval. It was
discovered that the distribution of individual �-tuples could
not reach the classi
cation accuracy of quantized binary
features such as BTCS [4].

�e possibility of using only uniform and rotation invari-
ant binary patterns distinguishes the Local Binary Pattern
methodology from its predecessors, because it enables amore
compact image representation. It has been widely accepted
that uniform LBPs, which contain at most two circular 0-1
or 1-0 transitions, are highly applicable and thus have been
frequently used in various applications—not only in texture
analysis. While many modi
cations to the original LBP have
been proposed, most image analysis applications still take
advantage of a combination of LBP and uniform patterns,
despite other modi
cations in sampling, such as applying
Gabor 
ltering as a preprocessing step [7]. However, it
has been unclear how these particular uniform patterns
contribute to increasing the discriminative capabilities of the
LBPs. It was shown in [8] that uniform patterns are a priori
very frequent even with random data.�e observations from
the existing research raise naturally the question “Why are
uniform patterns so discriminative?”. It was also shown in [8]
that the percentage of uniformpatterns further increases with
natural image data compared to a priori model. In this paper,
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some of themechanisms related to this increase in occurrence
probability will be addressed.

LBPs are represented in this paper as compositions of
individual �-tuples, that is, permutations. We denote the set
of all possible permutations as the “permutation space.” �e
permutation model represents a middle ground in terms of
the complexity between the image intensity representation
and the binary pattern feature representation. �e total
number of permutations in the permutation space is smaller
than the number of instances in the intensity space but
higher than the amount of instances in the binary pattern
space. �e permutation based approach is applied here
both through an a priori model and through experiments
with natural images to examine the particularly discrimi-
native quality of uniform LBPs. �e aim of this study is
also to better understand the relationship between uniform
LBPs and the properties of deterministic nonrandom image
data.

�is paper is composed of eight sections. Section 2 con-
tains an introduction to LBP methodology as well as back-
ground and related work. Section 3 de
nes the permutation
space used and a priori probabilitymodel for the uniformpat-
terns. In Section 4, amodi
cation to the original permutation
space is de
ned for modeling purposes, while in Section 5
the previously de
ned concepts are used to analyze the
uniformity of Local Binary Patterns. In Section 6 qualitative
and quantitative experiments with a priori model and natural
image data are performed. Sections 7 and 8 provide further
discussion and conclusions.

2. Background and Related Work

2.1. Derivation of Local Binary Patterns. A Local Binary
Pattern is derived for a speci
c pixel neighborhood radius� by comparing the intensities of� discrete circular sample
points to the intensity of the center pixel (clockwise or coun-
terclockwise), starting from a certain angle. �e comparison
determines whether the corresponding location in the Local
Binary Pattern of length � is 1 or 0. A value 1 is assigned
if the center pixel intensity is smaller than the sample pixel
intensity and 0 otherwise. Sample number � = 8 is the
most commonly used, with circle radius � = 1; however,
also other values for the radius and sample numbers can be
used. If a sample point is located between pixels, the intensity
value used for the comparison can be determined by bilinear
interpolation (see Figure 1). Using this sampling procedure,
sweeping over the whole image is denoted by LBP(�, �)
[9, 10].

A�er the LBP extraction, each pixel in an image is
replaced by a binary pattern, except at the borders of the
image where all of the neighbour values do not exist. �e
feature vector of an image then consists of a histogram of the

pixel LBPs.�e initial length of the histogram is 2� since each
possible LBP is assigned a separate bin. If there are� regions
in an image (e.g., a normalized face image could be divided
into 7 × 7 blocks for enhancing the spatial accuracy of the
histograms [9]), the histograms can be combined into a single

histogram with a length of� ⋅ 2�.
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Figure 1: Derivation of Local Binary Patterns.

2.2. Uniform LBPs. Uniform Local Binary Patterns are pat-
terns with at most two circular 0-1 and 1-0 transitions. For
example, patterns 00111000, 11111111, 00000000, and 11011111
are uniform, and patterns 01010000, 01001110, or 10101100
are not uniform. Selecting only uniform patterns contributes
to both reducing the length of the feature vector (LBP
histogram) and improving the performance of classi
ers
using the LBP features (see [1, 9–11]). Uniform LBPs can also
be applied to obtain rotation invariance [10]. In [12–14] global
rotation invariance for the LBPs was achieved by applying a
Discrete Fourier Transform to the uniform bins of the LBP
histograms. In [13], the rotation invariance of LBP variants
was also analyzed.

�ere are several methods for performing LBP histo-
gram comparison.�ese include histogram intersection, log-
likelihood statistics, and Chi-square statistics [9]. It is also
possible to use multiple LBPs simultaneously, also with
di�erent radiuses, to describe a certain image location. �e
natural disadvantage of this is the further increase in the
length of the feature vector.

2.3. Related Research. �e use of uniform Local Binary Pat-
terns was proposed in [15] as a way to reduce the high dimen-
sion of the original LBP feature vector. �e use of uniform
patterns can be seen as a �lter type feature selection method
[16], since it is related directly to the image data. Also, a beam
search method was proposed in [15] using feedback from a
classi
er (for texture images), extending to awrapper type fea-
ture selection [16]. Later, numerous other 
lter and wrapper
type methods have been proposed for LBP feature selection,
including Fisher separation criterion (FSC) based learning,
Boosting (AdaBoost), LDA, and PCA; see [1] for a complete
description. Face recognition has typically been used as a
benchmark application. In [11] a machine learning approach
was chosen to study which individual LBP bins were
most discriminative in facial expression recognition.A boost-
ing classi
er was used, and 91.9% of the most discriminative
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patterns turned out to be uniform. However, it has been
unclear how these particular uniform patterns contribute
to increasing the discriminative capabilities of the LBP
methodology.

In this paper, the space of all �! possible �-tuples is con-
structed, and its relation to individual uniform and nonuni-
form LBP codes and to the class of all uniform LBP codes is
modeled. Hence, we propose forming the LBPs as a result of
an intermediate nonlinear rank ordering operation in order
to facilitate the understanding of the Local Binary Patterns.
Rank ordering and the census transform were introduced in
[17] as nonparametric descriptors. Since then, many variants
of descriptors based on ordinal intensity representation have
been proposed. Recently, the local intensity order pattern
(LIOP) descriptor showed excellent performance [18] in
keypoint matching. It was further developed in [19]. In LIOP
the numbers of occurrences of �-tuples among local patches
are selected as histogram bins in a rotation invariant manner.
�e methods proposed in this paper can also support the
design of new descriptors and promote understanding of the
existing descriptors based on �-tuple processing, for example,
[18, 19].

LBPs have also been described as vector quantized
responses to linear 
lters [20]. �is allows the analysis of
the properties of the LBP operator and the modeling of its
relationship to other 
lter bank based descriptors. �e focus
of this paper is also to provide an alternative approach to the

lter bank based LBP decomposition [20] and to suggest an
alternative approach to the previous work in [8] for analyzing
the formation of uniform patterns.

In [8] the a priori distribution of uniform LBPs was stud-
ied, and it was observed that their a priori probability is rather
high also with independent identically distributed (i.i.d) data.
�is indicates that these patterns do not necessarily relate
only to image structures such as small edges, corners, and
line-ends, as was previously thought, but also to the LBP
sampling process itself. �e percentage of uniform patterns
has been also shown to further increase from the estimated a
priori probability [8] in applications using natural image data.
�e exact distribution of LBPs was studied by calculating
the volume of multidimensional polytopes in [8]. It has also
been shown that the minimum between the total number of
zeros and ones in a LBP can be used to uniquely characterize
the occurrence probability of the LBPs with i.i.d. data [21].
However, in [21] the a priori probabilities were not linked
to the occurrence frequencies of uniform patterns. In both
studies [8, 21], a link between information theory and a priori
occurrence probabilities of the LBPs was speculated.

In [8] the LBPs were modeled using a space partitioning
approach, where the pixel intensities (see De
nition 1) were
mapped into LBP binary pattern space. In practice thismeans
that, for example, for the LBP(8, 1) operator the dimension
of the intensity space is 2569, for 8-bit pixels, and a certain
location of an image (consisting of a set of intensities) would
represent an individual point in this space. �is particular
intensity set could then be further mapped into the LBP
space.

De�nition 1. �e intensity space I used in derivation of Local
Binary Patterns consists of sets of instances in space {�1, �2,�3, . . . , ��} ordered circularly around the center in addition

to the center point {��}. Its dimension is �(�+1)RANGE, where �RANGE
represents the range of the intensities.

�e a priori probabilities of LBPs in the case of continu-
ously distributed i.i.d variables (as intensities) were consid-
ered already in [21]. �e a priori probability of individual
LBPs (for i.i.d data distribution without interpolation) is
completely determined by its descriptor � (see De
nition 2)
according to (1), following the binomial distribution [8, 21].

De�nition 2. �e descriptor � [8, 21, 22] for a Local Binary
Pattern is calculated as the minimum between the cardinali-
ties of the sets consisting of 1 bits and 0 bits.

For example, the descriptor � for pattern 00110011 is four,
for pattern 00000000 zero, and for pattern 01010100 three.

�eorem3. �eprobability of an LBPwithM contour samples
(� ≥ 3) to occur with continuously distributed i.i.d. data [8,
21], without considering interpolation, given descriptor � is


LBP (�, �) = �! (� − �)!
(� + 1)! . (1)

3. Constructing the Permutation Space

3.1. De�nition of the Permutation Space. We propose adding
a “mid-space” between the intensity space and the LBP
space, the permutation space illustrated in Figure 2. �e
concepts of root permutations and child LBPs in Figure 2
will be explained in the later sections. �is provides an
alternative approach to [8] in modeling the uniform patterns
and allows modeling some of the fundamental di�erences
between �-tuple and LBP based approaches for low level
image representation [1, 18, 19]. An LBP is here modeled
to consist of multiple instances of unit permutations located
among the permutation space.�e a priori probability of each
unit permutation is equal with i.i.d. data, which is readily well
known within nonparametric statistics [23].

De�nition 4. Let the intensity space I be de
ned as sets
consisting of intensities {�1, �2, �3, . . . , ��} around the center
in addition to the center point {��} within a local LBP
neighborhood. A unit permutation is de
ned as an individual
permutation {�1, �2, �3, . . . , ��} around the center in addi-
tion to the center point rank {��} formed by rank ordering
the intensity samples �� as �� so that the smallest intensity is
assigned a rank of 1. In the case of tied intensities, the ranks
of the tied intensities are taken from an i.i.d distribution.�e
length of the unit permutation is then (� + 1), where the
number of contour samples in the corresponding LBP is equal
to�.

�e permutation space P contains all possible unit per-
mutations for the circular neighborhood. It can be derived
from the intensity space so that the number of instances is
reduced (since, in practice � ≪ �RANGE). �e number of
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Figure 2: �e concept of intensity space, permutation space, and binary pattern space.

instances in the permutation space is (� + 1)!. �e binary
pattern space b consists of instances of sets composed of
bits {1, 2, 3, . . . �} excluding the center, for � being the
number of contour samples among the LBP, respectively.

�e dimension of the binary pattern space is 2�. �e
binary pattern space b can be produced directly from the
high-dimensional intensity space as in [8]. It can also be
derived indirectly through the permutation space consisting
of reduced number of instances. Each individual LBP can
also be projected back to the permutation space from the
binary pattern space into a collection of unit permutations
(see Figure 2).

In this paper, when considering the a priori probabilities,
interpolation is not used. However, its e�ect to the 
nal LBP
distribution is evaluated in the experimental section using
natural image data. Interpolation in the context of studying
the uniform patterns has been considered more in depth in
[8]. In general, the number of uniform patterns has shown
to grow with interpolation [8], due to increased dependency
and correlation between the neighboring sample points as
they are averaged using bilinear weighting from their four
neighbors.

3.2. Local Binary Pattern Operator for Permutations and
Reverse Mapping. �e mapping operator �MAP between the
intensity space and the LBP space and between the permuta-
tion space and the LBP space is de
ned in the following. �e
mapping operator �MAP can be used for both permutation
space and intensity space to derive an LBP. In the case of the
permutation space, instead of intensities, the magnitudes of
the ranks are considered. �e mapping from an instance of
the LBP space (a particular LBP code) into the permutation
space (�−1MAP) is de
ned indirectly as forming the set of all unit
permutations which result in this particular LBP according to
the �MAP operator.

De�nition 5. (a) �e LBP mapping operator �MAP is de
ned
between the instances of spaces In ⇒ bn, or Pn ⇒ bn
as 1 for instances which have a magnitude greater or equal
than the center and 0 for instances which have magnitude
smaller than the center. In the case of mapping Pn ⇒
bn and ties between the center intensity {��} and contour
intensities In, the rank of the center {��} is assigned the
minimum within the combined set of the tied ranks {��, ��}.
�is preserves the uniformity of the LBP also when the
intermediate permutation space is used. �e resulting LBP
code is a concatenation {1, 2, 3, . . . �} of the individual
bits.

(b) A mapping from intensity space to binary pattern
space is de
ned by applying the LBP mapping operator �MAP

for intensity set In resulting in binary pattern bn.
(c) Amapping from an instance of intensity space In to an

instance of permutation space Pn is de
ned as R(In), where
an operator R extracts the rank ordering of intensity samples
among the intensity set In so that the smallest element will be
assigned to value 1.

(d) A mapping from the permutation space into the
binary pattern space is de
ned by applying the LBP mapping
operator �MAP to the set of ranks Pn resulting in a binary
pattern bn among the binary pattern space.

(e) A reverse mapping �−1MAP from an instance of binary
pattern space bn into permutation space Pn is de
ned indi-

rectly as forming all the Pn elements according to the criteria�MAP results in a match (from all elements of Pn ⇒ bn).

As an example, consider an arbitrary Local Binary Pat-
tern, for example, � = 8 pattern 00110011. It is a result of
applying the �MAP operator to a unit permutation, where the
rank of the center pixel (ordinal value) is always 5 (rank of
smallest being 1). An example of a permutation which could
produce this particular LBP could be {5} for center pixel and
{1, 2, 9, 8, 3, 4, 6, 7} for the other pixels.
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�is is not the only possible unit permutation for this
particular LBP. �e degree of freedom related to the unit
permutations for a given LBP is determined by the following
elements: the rank of the center pixel, the number of bits
above the center pixel, that is, number of 1s in LBP code,
and number of bits below the center, that is, number of 0’s.
�e a priori probability of occurrence for an individual unit
permutation is then constant 1/(�+1)!, with i.i.d. data, where� + 1 is the length of the unit permutation and � is the
number of contour samples in an LBP. Hence, the intensity
space is divided into larger fractions of equal unit probability,
still allowing the derivation of Local Binary Patterns.

In the case of LBP 00110011, the number of unit permu-
tations invoked by the restriction “four locations above the
center” is 4!, and the number of unit permutations invoked
by the restriction “four locations below the center” is also4!. As a consequence, the total occurrence probability of the
LBP under consideration becomes 4! ∗ 4!/[(8 + 1)!], from
which 1/[8+1]! is assigned for each of the unit permutations.
As another example, consider the LBP with � = 5, 01000,
containing, for example, the unit permutation {5} center
(since four zeros are below it), {1, 6, 2, 3, 4} contour, which
results in a total cumulative probability of 1! ∗ 4!/[(5 + 1)!]
for all the unit permutations.

3.3. Modeling a Priori Distribution of Uniform Patterns Only
with i.i.d. Data. Next we consider the total occurrence
probability of all uniform patterns with i.i.d. data with respect
to all LBPs. �e number of uniform patterns with respect
to descriptor � is described completely in (2) and (3) with
respect to � and descriptor �. For (2) (even �) � varies
between 0 and �/2, and for (3) (odd �) � varies between0 and (� − 1)/2.

#uniform, even � = {{{{{
2 � = 0,
2 ∗� 0 < � < �/2,
� � = �/2.

(2)

#uniform, odd � = {2 � = 0,
2 ∗� 0 < � <= (� − 1) /2. (3)

For example, consider an arbitrary LBP with � = 4.
�e case of � = 0 consists of uniform patterns 0000 and
1111. When � = 1, the uniform patterns are 0001, 0010, 0100,
1000, and the inversions of these patterns. In these cases all
patterns are uniform. Descriptor value � = 2 (i.e.�/2) leads
to the uniform patterns of 1100, 0110, 0011, and 1001. �e
other nonuniform patterns for the highest possible � value
for� = 4 are 0101 and 1010.

With LBPs having� ≥ 4 the total occurrence probability
of the set of all uniform patterns, for i.i.d. data distribution
and even� is,
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Figure 3: �e total a priori probability of all uniform patterns with
LBP sample number� according to (4) (for odd� the summation
in (4) was adjusted according to (3)).

�e
rst termof (4) includes the a priori probability of all-
zero and all-one uniform LBPs, the second term is the sum of
probabilities of patterns where � varies between 1 and�/2−1
for even�, and the third term includes the highest descriptor� uniform patterns.

According to the permutation concept proposed here,
the number of all unit permutations for uniform patterns

becomes then (� + 1)! ∗ 
All
�2 , while the total number of

all permutations for modeling LBPs with sample number�
becomes (�+1)!. In Figure 3 the total occurrence probability
of uniform patterns is plotted with respect to the LBP sample
number � using the (4) (for odd � the summation in (4)
was adjusted according to (3)).

4. Modified Permutation Space

To analyze the formation of LBPs and uniform patterns in
particular, we propose a modi
cation to the permutation
space by removing the center rank of a unit permutation.�is
requires the de
nitions of an intermediate unit permutation,
a root permutation, and an intermediate root permutation.

A certain LBP can be composed of multiple unit permu-
tations, but if an instance of the intensity space set is mapped
to the LBP binary pattern space, a single unique intermediate
unit permutation can be assigned to the permutation space
and it can be uniquely used for determining the resulting LBP
(neglecting ties).

De�nition 6. An intermediate unit permutation is de
ned as
a unit permutation �� ⇒ 
� ⇒ � as the permutation 
�. �e
directions of the arrows describe the order in which the rank
ordering (�) and mapping (�MAP) are performed.
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Table 1: Root permutations.

Case (A) (B) (C)

Permutations

Center 9 4 9

Contour
3, 8, 2, 5, 4, 7,

1, 6
5, 8, 6, 9, 1, 2,

3, 7
2, 3, 4, 5, 6, 7,

8, 1

Root permutations

Contour
3, 8, 2, 5, 4, 7,

1, 6
4, 7, 5, 8, 1, 2,

3, 6
2, 3, 4, 5, 6, 7,

8, 1

Child LBPs (Bias)

0.5 11111111 11111111 11111111

1.5 11111101 11110111 11111110

2.5 11011101 11110011 01111110

3.5 01011101 11110001 00111110

4.5 01010101 01110001 00011110

5.5 01000101 01010001 00001110

6.5 01000100 01010000 00000110

7.5 01000000 00010000 00000010

8.5 00000000 00000000 00000000

Total uniform 4 6 9

Depending on the context, a root permutation may be
derived from an intermediate unit permutation, which is
simply extracted by rank ordering the intensity set without
the center, or in more abstract case it may refer to a normal
unit permutation from which the rank of the center pixel is
removed (see De
nition 7 and Table 1).

De�nition 7. A root permutation is a unit permutation pro-
duced by removing the rank of the center.�e rank of the cen-
ter pixel is 
rst removed from the unit permutation, and the
rank ordering (R(Pn)) is applied again for the magnitudes
of the remaining ranks. An intermediate root permutation
refers simply to an �-tuple formed by rank ordering the LBP
contour sample intensities (without considering the center).
�e total length of the root permutation or the intermediate
root permutation is then Card(
�) − 1, that is, equal to�.

Two di�erent LBPs or unit permutations can produce the
same root permutation. For example, LBPs with� = 4, 0000
and 1111 could be composed of instances of permutations {5}
center, {1, 2, 3, 4} contour, and 1 center, {2, 3, 4, 5} contour,
respectively, the root permutation for both being {1, 2, 3,
4}. Given an arbitrary LBP, only if the full intensity set or
the intermediate unit permutation is known, a certain root
permutation can be used to describe that particular LBP.
However, it will not be unique, since the information from
the center intensity value or rank is missing.

Given a root permutation or an intermediate root per-
mutation, multiple child LBPs can be generated if a new
center pixel (called bias) is assigned. A root permutation
is allowed to generate child LBPs by setting up a new bias
level (instead of the center pixel). In practice, any bias value
between or above the magnitudes of the ranks could be
used, but for clarity we use threshold values in the middle
of the integer ranks (0.5, 1.5, 2.5, 3.5, etc.). In Table 1, three
root permutations are shown, and the child LBPs which can
be generated by these root permutations are described by
changing the center bias. One of the child LBPs will always
represent the original LBP.
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De�nition 8. A child LBP is an LBP generated from the root
permutation or from the intermediate root permutation by
comparing successively the bias level to the magnitude of
the root permutation ranks (one by one) and assigning bit 1
if the magnitude of the bias level is below the magnitude of
the rank permutation and 0 otherwise (in the corresponding
location). �at is, the LBP mapping operator �MAP is applied
to the root permutation by using the set bias as a center.

In Section 6, when performing the experiments, we will
use an approach where all possible �! root permutations
(corresponding to contour samples of the LBPs) are pre-
generated and the bias is then adjusted to each of its� + 1
possible locations for each root permutation.

4.1. Monotonicity of the Root Permutation. Consider fully
ordered (with respect to some circular shi�) root permu-
tations of length � containing only one long increasing
or decreasing run, in addition to the transitions from the
smallest to the largest or from largest to the smallest. We
describe next that for these root permutations, all of the
child LBPs (generated by changing the center pixel bias) are
uniform (See Table 1).

For the lowest and the highest bias value, the resulting
child LBPs derived from the root permutation are all uniform
since they consist of only all-zero and all-one LBPs. For the
second lowest bias and the second highest bias, the resulting
patterns are uniform since they include only one instance of
one or zero (the descriptor � being one). �e remaining bias
values (between 2.5 to � − 1.5) for � ≥ 4 are considered
next.

�e 
rst observation is that each fully ordered permu-
tation can be circularly shi�ed le� or right � times in
order to make it a monotonically increasing (or decreasing)
permutation starting with the lowest (highest) element. It can
also be shi�ed back so that the generated child LBP is not
altered. Let us focus only on the length � (longest) up (or
down) run while also omitting the circularity. Let {B} be the
set of the root permutation instances below the bias value and{A} the set of the root permutation instances above the bias
value. It is evident that for the set {B}, if the ordering of the
permutations is monotonically increasing, then they are fully
ordered in increasing order also in {A}. �e same applies for
the decreasing permutations.

When changing the bias by one (increasing or decreas-
ing), the instance where the bit transition occurs, generated
by the bias, also shi�s by one to the right or to the le�.
While acknowledging the initial conditions which hold for
descriptor � values 0 and 1 (as described before), it is evident
that only one bit right next to the transition point can
change and it will change to the direction which preserves
the uniformity. See, for example, Table 1 Case C.�e ordered
root permutations are likely to be common with natural
image data as pointed out in [4]. Also, statistically their
likeliness to occur with random data should be lower than
with deterministic data, which will be considered in the next
section.

5. On the Relation between Runs Test for
Permutations and Uniform Patterns

�e simplest tests of randomness for two-valued data (e.g.,
coin-toss data) are based on estimating the total number of
instances of each value or to count the number of successive
instances of each [23]. For example, the sequence (T T T T
T T T T) is not likely to be generated randomly, while the
sequence (T F T T F F T T) would be more likely to result
from a random process. If there are too many or too few
instances of each value, the generating process is not likely
to be random (i.i.d.).

�e runs up and down test can be applied for numeric
data, such as intensities or ranks, to examine the number
of monotonically increasing (decreasing) sequences (runs).
According to the runs test, monotonicity is the strongest
indication of nonrandomness. If the length of the runs is
high (few runs within the data), the data is not likely to
be generated by a random process. In other words, the
hypothesis of randomness is rejected.

Given a root permutation, if the changes from the smallest
towards the largest element, or vice versa, occur always
next to the set of elements which have previously been
changed, all of the child LBPs will be uniform. We denote
these root permutations as complete uniform root permu-
tations (see Table 1 case C as an example). Fully ordered
root permutations described in the previous section form a
subset of complete uniform root permutations. For instance,
permutations {6, 4, 1, 2, 3, 5}, {1, 2, 3, 4}, and {1, 2, 3, 4,
8, 7, 6, 5} are complete uniform root permutations (see also
Figure 4).

De�nition 9. Complete uniform root permutations are root
permutations for which all of the child LBPs are uniform.
�e number of complete uniform root permutations is given

by � ∗ 2�−2, (� ≥ 3), where� is the number of contour
samples in LBP and the length of a root permutation.

�e total number of complete uniform root permutations
can be examined through the following example: consider
the bias changing from its lowest level towards the highest
(Figure 4). For the lowest level, only one uniform LBP can
be found (of all ones, e.g., 11111 in the case of � = 5).
For the second lowest bias level, all the child LBPs are also
uniform, since only one bit is changed in comparison with
the previous bias, and the other bits are 1s. For the following
bias levels, uniform patterns will be generated if and only if
the successive change among the child LBPs is always next to
previous changed bits (either circularly to the le� or to the
right). For example, for an LBP of 11000111 (indexes 1, . . ., 8)
the next change to zero could occur only on index location 2
(to the le�) or location 6 (to the right) in a circular manner.

�e changing bit will also indicate the successive value
of the root permutation formed among the path of the
permutation tree (see Figure 4).�e number of leaf nodes for
this tree is then equal to the total number of complete uniform
root permutations, which is� ∗ 2�−2, (� ≥ 3). It consists
of� patterns for the second lowest bias and for each of these
patterns, a perfect binary tree of height�− 2.
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De�nition 10. Runs up and down test result for the root
permutations is de
ned as the total number of successive
increasing or decreasing circular runs within a certain root
permutation.

It was observed that all of the complete uniform root
permutations with� ≤ 10matched to category two patterns
(�-tuples) according to the circular runs test. However, in
this paper the proof of the equivalence of the runs level
2 patterns and the complete uniform root permutations is
omitted for� > 10. We emphasize that the number of runs
according to the runs up and down test for permutations
is not the same as the uniformity level of the pattern. �e
runs test for permutations is a more �exible and general test
of randomness, and it can only be applied if the rank order
statistics of the successive samples in a pattern are known,
since a 
xed threshold (bias) is not used as in LBP. �e
derivation of the rank order statistics is not necessary for
extracting the LBPs, since the thresholding according to the
center pixel’s intensity value determines the pattern uniquely.
However, the LBP can still be uniquely determined from
the rank permutations. Hence, changing the bias level for
generating the child LBPs from root permutations can be seen
as a unifying approach between the LBPs and permutation
space, where the contribution of the center pixel is adjusted
by using the bias.

6. Experiments

6.1. Qualitative Tests on �-Tuples and LBPs. In this subsection,
the distribution of the �-tuples (intermediate root permu-
tations) is studied with natural image data. �e objective is
to characterize which individual �-tuples are most common
with natural image data and to make implications on their
role in the formation of uniform patterns. Also, the spatial
response of the �-tuples to di�erent image structures is
studied with di�erent kind of images. �e runs level 2
intermediate root permutations described in the previous
section will be shown to be among the most common �-
tuples with natural image data.�is observation can promote
the understanding of the uniform patterns and their high
occurrence probability with natural images in particular.

In Figures 6, 7, 8, and 9 the most common intermediate
root permutations are shown for di�erent test images of
Figure 5. �e total number of occurrences of each permuta-
tion is also shown. For each instance of a certain permutation
in the corresponding test image, a neighborhood of 35 ×35 pixels was extracted and all of the local intensity blocks
for the given permutation were combined, that is, added
together. �e intensity scale was then normalized based on
the minimum and maximum values within the sum of the
permutation blocks. In order to better distinguish between
the true monotonic runs level 2 �-tuples in non�at image
areas, only patterns which did not contain ties were extracted.

When comparing the responses in Figures 6 and 9,
it can be observed that with small neighborhood radius
(� = 6 with � = 2) the �-tuples appear to correspond
to edges in various orientations. It can also be observed

Test image 2: 1728 × 2304

Test image 3: 2448 × 3264 Test image 4: 1728 × 2304

Test image 1: 2448 × 3264

Figure 5: Test images used in the experiments. Test image 1 was
chosen due to its 
ne texturewithin the leafs and the �owers in order
to compare it with the Test images 2 and 3, which contain areas of
monotonic changing intensity (representing the sky and the water).
Test image 4was chosen in order to study the e�ect of edge gradients
to the �-tuples and LBPs.

that the most common intermediate root permutations are
typically of runs level 2. Hence, the theoretical analysis
in the previous sections is also supported by occurrence
statistics of the natural images. It should be noted that the
property described in the previous sections, stating that
the runs level 2 root permutations will always produce a
uniform pattern independently of the bias chosen, holds for
the intermediate root permutations as well. Independently
of the center chosen, these intermediate root permutations
will always produce a uniform LBP (to the direction �� ⇒
� ⇒ �). �e orientations of the detected edges follow
the direction of the most common gradients among the
test images (see e.g., Figure 9 and the corresponding test
image 4). In Figure 7, the local neighborhood is extended
to � of 8 and radius of 8 using test image 2. It can
be observed that now the monotonically changing image
structures speci
c to the sky and to the water dominate the
average intensity blocks. In Figure 8, � of 6 and radius of
6 are used. It can be observed that the intensity structures
corresponding to the �-tuples become smoother compared to
the lower radius. In this case the �-tuples capture larger scale
changes.

Tests with repeated textures were also performed. �e
images shown in Figure 10, from the Outex [24] dataset,
were used. In Figure 11, the response of the most common �-
tupleswithin (8, 2) neighborhoodwith interpolation is shown
using the Outex images. �e most common permutations in
Figure 11 correspond to the structures present in wood 012
texture sample. It consists of a gradually changingmonotonic
texture pattern. According to this experiment it would seem
that especially monotonic changes contribute to the forma-
tion of runs level 2 patterns.
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(1  2  4  6  5  3), no. 63490 (2  1  3  5  6  4), no. 60352 (1  3  5  6  4  2), no. 58128 (3  1  2  4  6  5), no. 55039

(6  4  2  1  3  5), no. 51441 (6  5  3  1  2  4), no. 50924 (2  4  6  5  3  1), no. 46950 (1  2  3  5  6  4), no. 46685

(5  3  1  2  4  6), no. 45848 (2  1  3  6  5  4), no. 45273 (4  2  1  3  5  6), no. 44985 (1  2  4  5  6  3), no. 43962

Figure 6: Average intensity patch of the 12 most common intermediate root permutations in (6, 2) neighborhood (with interpolation)
using test image 1 of Figure 5. �e 
rst rank from the le� corresponds to the Eastern direction, and the following ranks are formed to the
counterclockwise direction (North-East, North, etc.).

(4  2  1  3  5  7  8  6), no. 7333 (5  7  8  6  4  2  1  3), no. 5982 (4  3  1  2  5  7  8  6), no. 4920 (5  7  8  6  4  3  1  2), no. 4169

(4  2  1  3  5  6  8  7), no. 3922 (4  1  2  3  5  7  8  6), no. 3794 (4  7  8  6  5  2  1  3), no. 3767 (5  2  1  3  4  7  8  6), no. 3709

(5  7  6  8  4  2  1  3), no. 3349 (4  1  3  2  5  7  8  6), no. 3276 (4  2  1  3  5  7  6  8), no. 3272 (5  7  8  6  4  1  2  3), no. 3260

Figure 7: Average intensity patch of the 12 most common intermediate root permutations in (8, 8) neighborhood (with interpolation)
using test image 2 of Figure 5. �e 
rst rank from the le� corresponds to the Eastern direction, and the following ranks are formed to the
counterclockwise direction (North-East, North, etc.) It can be observed that the most common intermediate root permutations with this
radius correspond to monotonically changing edge functions characterizing the horizontal gradients of the input image.
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(4  6  5  3  1  2), no. 39441 (5  6  4  2  1  3), no. 37321 (3  5  6  4  2  1), no. 33305 (3  1  2  4  6  5), no. 32317

(4  2  1  3  5  6), no. 31062 (2  1  3  5  6  4), no. 29417 (6  5  3  1  2  4), no. 28955 (5  6  4  3  1  2), no. 28255

(1  2  4  6  5  3), no. 28031 (4  5  6  3  1  2), no. 27834 (4  6  5  2  1  3), no. 27674 (4  6  5  3  2  1), no. 27537

Figure 8: Average intensity patch of the 12 most common intermediate root permutations in (6, 6) neighborhood (with interpolation)
using test image 3 of Figure 5. �e 
rst rank from the le� corresponds to the Eastern direction, and the following ranks are formed to the
counterclockwise direction (North-East, North, etc.).

(6  4  2  1  3  5), no. 33211 (6  5  3  1  2  4), no. 30451 (3  5  6  4  2  1), no. 28286 (4  6  5  3  1  2), no. 26691

(1  3  5  6  4  2), no. 25565 (2  4  6  5  3  1), no. 24725 (4  2  1  3  5  6), no. 24655 (6  5  2  1  3  4), no. 24259

(1  4  6  5  3  2), no. 23153 (6  4  3  1  2  5), no. 23066 (5  6  4  2  1  3), no. 22975 (1  2  4  6  5  3), no. 22622

Figure 9: Average intensity patch of the 12 most common intermediate root permutations in (6, 2) neighborhood (with interpolation)
using test image 4 of Figure 5. �e 
rst rank from the le� corresponds to the Eastern direction, and the following ranks are formed to the
counterclockwise direction (North-East, North, etc.) It can be observed that the most common intermediate root permutations correspond
now to the main edge directions speci
c to the test image.
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Figure 10: Outex [24] test images.

(4  2  1  3  5  7  8  6), no. 44992 (5  7  8  6  4  2  1  3), no. 39898 (5  3  1  2  4  6  8  7), no. 28548 (4  6  8  7  5  3  1  2), no. 23430

(1  2  4  6  8  7  5  3), no. 23305 (8  7  5  3  1  2  4  6), no. 20090 (4  2  1  3  5  6  8  7), no. 16483 (4  3  1  2  5  7  8  6), no. 16395

(1  3  5  7  8  6  4  2), no. 12693 (5  2  1  3  4  6  8  7), no. 12675 (5  3  1  2  4  7  8  6), no. 12433 (2  1  3  5  7  8  6  4), no. 11817

Figure 11: Average intensity patch of the 12 most common intermediate root permutations in (8, 2) neighborhood (with interpolation) using
all of the selected Outex test images. �e 
rst rank from the le� corresponds to the Eastern direction, and the following ranks are formed
to the counterclockwise direction (North-East, North, etc.) It can be observed that the most common intermediate root permutations (�-
tuples) seem to capture intensity patches corresponding to wood 012. �e selected (�, �) combination might be too sensitive to noise. See,
for example, similar intensity patches related to permutations (4 2 1 3 5 7 8 6) and (4 2 1 3 5 6 8 7).

Figure 12 shows the average intensity blocks of the LBPs
in (6, 2) neighborhood related to the most common interme-
diate root permutation of test image 4, that is, permutation
{6, 4, 2, 1, 3, 5}. �e shown LBPs correspond to situation
where the bias is changed gradually from its minimum

value to the maximum value. It can be noted that as the
descriptor � of the LBPs grows, the spatial support for the
edges becomes stronger. With small �, the detected structure
becomes limited to the proximity of the center pixel. If the
permutation tree representation of Figure 4 is used (in this
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(1 1 1 1 1 1) (1 1 1 0 1 1) (1 1 0 0 1 1) (1 1 0 0 0 1)

(1 0 0 0 0 1) (1 0 0 0 0 0) (0 0 0 0 0 0)

Figure 12: Average intensity patches of uniform LBPs in (6, 2) neighborhood corresponding to the most common intermediate root
permutation in Figure 9, that is, permutation (6 4 2 1 3 5). Test image 4 was used. �e 
rst bit from the le� corresponds to the Eastern
direction, and the following bits are formed to the counterclockwise direction.

(1 0 1 0 1 0) (1 0 1 0 1 1) (1 0 1 0 0 1) (0 1 0 0 1 1)

(0 0 1 0 0 1) (0 1 0 1 0 0) (0 1 1 1 0 1) (0 1 0 1 0 1)

Figure 13: Average intensity patches of certain nonuniform LBPs. Test image 4 is used. �e 
rst bit from the le� corresponds to the Eastern
direction, and the following bits are formed to the counterclockwise direction.

case � = 6), the corresponding path for this runs level 2
permutation is {��� , ��"� , ��� , ��"� } in a circular
manner. With similar tests using nonuniform patterns, the
response becomes partly limited to the area of the pattern
itself, without signi
cant edge support (see Figure 13).

6.2. Tests with a Priori Model. In this subsection, the a priori
distribution of LBPs is further studied. �e objective is to
better understand which factors contribute to the formation
of uniform patterns in particular.�e proposed approach can
also give new perspectives on the previous studies in [8, 21].
Based on the examples in Section 4 (e.g., Table 1), we hypoth-
esize that root permutations which include monotonically
ordered subsets would produce more uniform patterns than
permutations of arbitrary order. �is is analyzed 
rst.

�e total number of unit permutations (and 
nal LBPs)
was (�+1)!, corresponding to the number of instances in the
constructed permutation space. �e following experimental
procedure was then applied.

(1) A table containing all possible �! intermediate root
permutations was constructed.

(2) Using these permutations as root permutations, the
center bias was changed for each permutation � +1 times in order to generate all the child LBPs
for the permutation space corresponding to all unit
permutations in given LBP neighborhood�.

In Figure 14, the length of the longest monotonic run
among the root permutations is plotted, along with the total
share of permutations resulting in uniform child LBPs. For
example, in the case of � = 10, if the length of the longest
monotonic run among the root permutations is 3, roughly
40% of the resulting LBPs are uniform, and if the length of
the longest monotonic run is 7, roughly 70% of the resulting
LBPs are uniform. �ese results would seem to support the
given hypothesis.

Next, we studied the correspondence between the runs
test and the relative share of uniform Local Binary Patterns.
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Figure 14: Length of the longest monotonic consecutive run among the permutations with respect to the total share of uniform child LBPs
while going through all unit permutations.

In Figure 15, the setup was the same as previously used.
�e percentage of permutations resulting in a uniform child
LBP is plotted, with respect to the total number of LBPs
within the current category. �e result of the circular up and
down runs test for randomness is indexed on the #-axis. It
can be observed that as the result of the runs up and down
test for permutations decreases, the share of uniform patterns
increases. It can also be observed that for the runs test result
2, all the LBPs are uniform.

In Figure 16 the data corresponding to the previous
experimental setup is plotted with � = 10 and also
with respect to descriptor �. It can be observed that, as �
decreases, the share of permutations resulting in uniform
LBP increases. Also, as the result of the circular up and
down runs test for randomness decreases, the relative share of

uniform permutations (frequency of permutations resulting
in uniform patterns) increases. �is implies that uniform
patterns become more frequent with a stronger hypothesis
of nonrandomness according to the runs test. According to
Figure 16, for the descriptor � values 0 and 1, all of the root
permutations result in uniform patterns, since all patterns (of
all-zero LBP, all-one LBP, all-zero LBP including a single 1,
and all-one LBP including a single 0) are then uniform.When
the result of runs up and down test is 2, the patterns remain
uniform despite the increase in �.

We also examined the relationship between the runs test
and individual LBPs by considering their root permutations.
It is clear that, for example, LBP 01010101must contain at least
8 runs. However, LBP 10000 could contain various numbers
of runs according to runs up and down test for randomness,
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Figure 15: Number of root permutations resulting in uniform child LBPs with respect to total amount of permutations. �e runs up and
down test result for the randomness of the permutation is plotted on the #-axis.

since now the le�most LBP bit (or the bit change next to it)
alone restricts the degree of freedom of the underlying root
permutations.�e remaining long sequence of all zeros allow
a large number of combinations considered as possible root
permutations.

In the following, a reverse mapping �−1MAP of
De
nition 5(e) is used. For LBPs with � = 6, 000101,
101110 the number of all circular runs among the root
permutations varied between 4 and 6, with a mean of 4.667
and variance 0.908. For uniform� = 6 patterns 011100 and
111000 the runs test result varied between 2 and 6 with amean
of 3.33 and variance 1.829. �e rotation of the patterns did
not seem to a�ect the result, as was expected. For uniform
pattern 00000000 the number of runs varied between 2 and
8 with a mean of 5.333 and variance 1.4223 (in this case,

the total number of root permutations was 8!). For uniform� = 8 pattern 01100000 the result of the runs test varied
between 2 and 6 with a mean of 4.667 and variance 1.245.�e
results from the �−1MAP test indicate that nonuniform patterns,
in average, contain more runs than the uniform patterns, as
can be expected.

In Figure 17, the number of uniform patterns (permuta-
tions resulting into uniform patterns) is shown, with respect
to the length of the longest monotonic run and descriptor�, while using the same approach as in the previous 
gures
of this subsection. It can be observed that maximum run
lengths around 3, 4, and 5 provide most of the contribution
to uniform Local Binary Patterns with LBP neighborhood of� = 8 in the case of the a priori model. As expected, as
the descriptor � grows, the number of permutations resulting
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Figure 16: Number of runs among the root permutations, plotted
with respect to descriptor �. $-axis represents the probability of
permutations resulting in uniform child LBP.
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Figure 17: �e longest monotonic run among root permutations,
plotted with respect to descriptor � and only considering permuta-
tions resulting in uniform child LBPs.

in uniform LBPs also decreases due to reduced number of
binomial combinations. In general, the number of particular
unit permutations related to high descriptor � LBPs is smaller
(see (1)), emphasizing the relative e�ect of these particular
unit permutations on the 
nal LBP histogram.

6.3. Experiments with Natural Image Data. �e experiments
of the previous subsection with the a priori model are next
considered in the case of natural image data, by using the
test images of Figure 5. In the following, the e�ect of ties
and the e�ect of runs level 2 permutations are considered
separately. �is allows studying the role of these two in the
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Figure 18: Percentage of uniform patterns with respect to the runs
up and down test result and descriptor �. Natural images in LBP(10,
2) neighborhood with interpolation are used.
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Figure 19: Number of intermediate root permutations resulting
in uniform patterns with respect to the longest monotonic subrun
and descriptor �. Natural images in LBP(8, 2) neighborhood with
interpolation are used.

formation of uniform patterns in particular. �e grayscale
range of all test images is 8 bits. Figures 18 and 19 correspond
to the experiments with the a priori model shown in Figures
16 and 17, respectively. In Figure 18, the percentage of uniform
patterns with respect to runs up and down test and descriptor� is shown. An increased percentage of uniform patterns with
larger � values, in comparison with the a priori model, can
be observed. �ese patterns correspond to monotonic edge
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Figure 20: �e e�ect of ties (neighboring pixels being of equal magnitude) to the formation of uniform patterns. It can be observed that on
average, uniform patterns tend to contain less ties than nonuniform patterns.

structures in the images. In Figure 19 the number of uniform
patterns is increased, especially for larger descriptor � values
and longer run lengths.While being a priori is extremely rare,
the high � patterns are actually among the most common
ones with natural image data when only uniform patterns
are considered. �e results of Figures 17 and 19 also indicate
that natural image data increases themonotonicity of the root
permutations for the uniform patterns. As a consequence, the
number of uniform patterns is increased.

�e e�ect of ties is considered next. In Figure 20, the
percentages of local neighborhoods containing at least one
tie are shown with respect to neighborhood radius and the
possible usage of interpolation using all of the test images
of Figure 5. For uniform patterns, the percentage share of
patterns containing at least one tie is also shown. It can be
observed that ties are not, on average, more common among
uniform patterns than with the other patterns. Similar results
were obtained with the Outex textures of Figure 10. �is
implies that although ties could cause some minor increase
in certain LBP bins (e.g., all-one bin or all-zero bin) within
�at image areas, as could be predicted from the a priori
model used in [8], it seems that they cannot explain most of
the increase related to the occurrence frequency of uniform
patterns, when using natural images. A possible explanation
to this could be that ties tend to occur within �at image areas
where the relative amount of i.i.d. noise is more signi
cant.

In Figure 21, the percentage share of runs level 2 patterns
is shown for each of the test images of Figure 5. A minor

increase in the number of these patterns can be observed for
test images 2 and 3. �is could be related to the large mono-
tonic areas of the sky and the water present in these images.
�e a priori estimate of the number of runs level 2 permuta-
tions (corresponding to� ∗ 2�−2/(�!), see De
nition 9) is
also shown in Figure 21. Natural images seem to increase the
share of the runs level 2 permutations signi
cantly, compared
to the a priori estimate. �e percentage share of runs level 2
permutations among uniform patterns is further shown for
all of the test images in Figure 21 (as an overall average for
test images 1–4). It can be observed that also with natural
image data, the occurrence frequency of these permutations
increases further among uniform patterns.

When studying Figure 21, it can be observed in the case
of� = 8 that interpolation increases the share of runs level 2
permutations in each of the test images.�e share of uniform
patterns naturally increases also when using interpolation. It
can be observed that while the number of runs level 2 patterns
is signi
cantly larger with the test images than with the a
priori model, increasing the neighborhood radius decreases
the number of runs level 2 patterns (see e.g., the results in (8,
1) and (8, 2) neighborhoodswith interpolation).�is could be
explained by reduced correlation among the pixel intensities
within the local neighborhood, as the radius increases.

6.4. Quantitative Tests. We also performed initial exper-
iments with the FERET facial recognition database [25]
(FAFB, FAFC,DUP1, andDUP2) sets andOutex TC 0012 [24]



ISRNMachine Vision 17

0

10

20

30

40

50

60

70

80

90

100
R

u
n

s 
le

ve
l 2

 p
at

te
rn

s 
(%

)
Only patterns which do not include ties (including the center) considered

Test image 1

Test image 2

Test image 3

Test image 4

Uniform patterns (average for all test images)
A priori model (without interpolation)

M = 4 r = 1
(no interp.)

M = 8 r = 1
(no interp.)

M = 8 r = 1
(interp.)

M = 8 r = 2
(interp.)

M = 10 r = 2
(interp.)

M = 12 r = 3
(interp.)

M = 16 r = 4
(interp.)

Figure 21: Percentage share of runs level 2 permutations among images 1–4 in various permutation neighborhoods. �e bar corresponding
to uniform patterns indicates the occurrence frequency of runs level 2 patterns among uniform patterns only. It can be observed that the
average frequency of runs level 2 permutations increases compared to the a priori model in all neighborhoods and even further when the
uniform patterns are considered.

rotation invariant texture categorization set to test whether
the intermediate root permutations of runs level 2 would
perform better in classi
cation than traditional LBP with
uniform patterns. In all of the following tests, if not explicitly
noted, ties were coded in an increasing order of the rank
magnitudes among the �-tuples, so that a neighborhood
containing only tied intensities was assigned to the increasing
permutation {1, 2, 3, . . .,M}.

In Figure 22, the recognition rates for the FERET sets are
shown.�e length of the feature vector in� = 6was 720 (i.e.,
factorial of 6). It can be observed, that using only runs level 2�-tuples (total of 96 out of 720), the recognition rate was not
signi
cantly lower than with the full permutation histogram.
Increasing the permutation neighborhood to (8, 2) with
interpolation and using runs level 2 patterns only (total of
512 patterns out of 40320) an average recognition accuracy
close to the reported LBP(8, 2) accuracy [9] was obtained.
However, it appears that for larger � (say 8 or more) and
small radiuses the number of runs level 2 permutations drops
even with natural image data.�is can be related to the e�ect
of noise, the high dimension of the permutation histogram,
and the substantially low a priori probability of the runs level
2 patterns. �e a priori probability of runs level 2 patterns
in� = 8 neighborhood (without considering interpolation)
is as low as 1.27%, emphasizing the signi
cant role of these

Table 2: Outex TC 0012 rotation invariant texture classi
cation
experiment.

Outex TC 0012 Recognition rate (%) FV length

�-tuples (6, 2) ROT-INV
interp. (runs 2 only)

47.6 16 bins

�-tuples (6, 2) ROT-INV
interp. (all)

55.5 120 bins

�-tuples (8, 2) ROT-INV
interp. (runs 2 only)

58.8 64 bins

LBP (8, 1) ROT-INV interp. 64.6 10 bins

permutation bins in the overall permutation histogram. To
increase the number of runs level 2 patterns, we used a 4 × 4
averaging 
lter as a preprocessing step with� of 8.

�e e�ect of ties to the performance of �-tuples can also
be estimated from the results of Figure 22 with � = 6. It
can be observed that neglecting ties reduces the recognition
performance for radius of 2, but with larger radiuses the
recognition accuracy is not signi
cantly altered. �e length
of the individual block histogram in [9] for the LBPs was 59,
which is smaller than for the permutations.
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Figure 22: FERET face recognition results with �-tuples are shown in comparison with LBP. Test sets FAFB, FAFC, DUP1, and DUP2 are
considered (from the le� to the right). It can be observed that LBP outperforms �-tuples. Also for LBP the length of the feature vector is
smaller.

In tests on rotation invariant texture classi
cation (see the
results of Table 2) with the Outex TC 0012 set [24], a rotation
invariant mapping of intermediate root permutations (�-
tuples) was used. For each available permutation pattern,� possible rotations were assigned, and these were then
combined in a rotation invariant manner [10]. In the case
of runs level 2 patterns only, a similar procedure was also
performed. Using (6, 2) neighborhood the total number of
runs level 2 patterns was 96, and for each rotation invariant
bin, 6 rotated bins were assigned. �e 
nal length of the
feature vector was then 16 bins. All rotation invariant �-
tuples (i.e., not only runs level 2) in the (6, 2) neighborhood
resulted in a feature vector length of 120 bins. In the (8,
2) neighborhood with interpolation using only runs level 2
patterns, by always assigning 8 patterns into the same rotation
invariant category the 
nal length of the feature vector
became 64 bins for the �-tuples. �e highest recognition rate
for the �-tuples was obtained with these parameters using
the runs level 2 patterns only. Also the feature vector length
in the (8, 2) neighborhood was shorter than with the (6,
2), which would seem to indicate that the runs 2 �-tuples
are among the most salient ones, if the �-tuples alone are
considered. However, traditional rotation invariant LBP in a
(8, 1) neighborhood with interpolation resulted in a better
recognition rate (64.6% accuracy) in [14] with the same
test set. Also, the length of the feature vector for the LBPs
was shorter (10 bins). Log-likelihood distance metric with 1-
nearest neighbor classi
cationwas used in these experiments.

�e previous results raise naturally the question, why are
LBPsmore discriminative than �-tuples, despite the usage of a
similar feature vector length reductionmethod (i.e. the usage
of runs level 2 patterns) than the uniform patterns. According

to the previous qualitative and quantitative analysis (see also
Figure 22), it appears that the performance of the �-tuples is
decreased in comparison with LBPs for two reasons. First,
their performance is decreased due to large number of ties
among small local radiuses. However, this is changed if a
larger radius is used. Second, a small change in the intensity
order (i.e., on the permutation) for larger � (e.g., more
than 6) changes the bin placement of the histograms and
increases susceptibility to noise, which is not the case in
LBP. Above-mentioned issues should be considered carefully
when designing descriptors based on �-tuple processing. As
a rule of thumb for selecting the number of samples in an�-tuple, the radius of the local neighborhood should be at
least equal to the number of circular sample points � (see
Figure 22). In the recently proposed LOCP descriptor [26] a
binary representation of successive circular pairs in a local
neighborhood was used. �is approach avoids the negative
e�ect of ties by changing the following circular bit only if the
intensity is changed, that is, the bin placement of the per-
mutation histogram does not change due to possible minor
intensity order di�erences. As a consequence, robustness to
noise could be achieved in [26] by only considering the
neighboring circular pairs when deriving the binary pattern.

7. Discussion

In this work, the observation that Local Binary Patterns can
be modeled as compositions of rank permutations was used
to study some of the mechanisms related to the formation of
uniform patterns. As previously observed, uniform patterns
are a priori very frequent (with i.i.d. data), but this seems
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to be mostly explained by how they are located according
to the descriptor � (see (1)–(4)). For most � values there
are exactly 2 ∗ � instances of uniform LBP rotations and
inversions, while the number of all LBPs increases rapidly
with descriptor �. As a consequence the relative contribution
of uniformLBPs is larger at low � values.�erefore, according
to a priori model, uniform LBPs contain a larger share of unit
permutations compared to other LBPs and are very frequent.

According to our investigation, the contribution of uni-
form patterns seems to get even stronger with a stronger
evidence of nonrandomness among the underlying data.
�is issue was quantitatively analyzed in this paper using
the runs up and down test for permutations. Monotonicity
among the root permutations would be a strong indicator of
nonrandomness. In tests with natural images, the majority
of the most common circular permutations belonged to
category 2 according to the runs test, corresponding to
monotonically changing intensity structures. Using natural
image data also increased the length of monotonic runs
among the permutations, compared to the a priori model.

With real-world images occurrence percentages of uni-
form patterns of 70–90% and beyond are typical [10]. For
example, with � = 16 the percentage of uniform patterns
in textures was in the range of 57.6–79.6% in [10], while the
a priori probability that we estimated in this paper was less
than 30% (see Figure 3) for i.i.d. data without interpolation.
A considerable portion of this increase can be explained by
the bilinear subsampling (interpolation when deriving the
LBP code) as described in [8], but we also propose that a
portion of this increase could be explained by the capability of
the uniform patterns to respond to deterministic properties
within the image microstructure.

�e relatively high occurrence probability of uniform
patterns a priori, and even higher occurrence probability with
natural images, could be compared also with the relative
occurrence probabilities of individual �-tuples [4], since we
showed that LBPs could be seen as compositions of �-tuples.
Monotonic �-tuples dominate the occurrence statistics of
natural images [4], which tends to increase the share of
uniform patterns. �is behavior was modeled quantitatively
in this paper (see Figure 14).

Permutationswith runs test result 2 can be used to capture
monotonic edges and monotonic spatial image features, as
was shown in Section 6. By increasing the radius of the local
neighborhood, also the extent of the detected change could be
increased. �e formation of these patterns was examined in
Figure 4. �e understanding of this behavior could facilitate
the development of new image descriptors inspired by the
uniformity principle of Local Binary Patterns. Initial tests
on the performance of runs level 2 permutation histograms
were performed in Section 6, and it appeared that their
performance did not exceed the original LBP. However, since
the formation of the runs level 2 permutations can also be
modeled as a tree structure, a graph basedmatching approach
for the permutations could also be possible.

�e use of only certain permutations inspired by the uni-
form pattern principle would seem to enhance the properties
of �-tuples (see the quantitative experiments in Section 6).
However, for larger� the feature extraction cost is higher for

the �-tuples and the required feature vector becomes longer.
�erefore, in these cases the traditional LBP with uniformity
is preferable. Futurework includes examining the possibilities
to enhance the performance of �-tuple based descriptors,
for example, [18, 19] based on the principles proposed. We
showed that the uniform pattern principle can be at least
partly extended to �-tuples as well. �is could provide a
variety of alternatives for increasing the performance of �-
tuple based descriptors. For example, the pooling scheme
in [18, 19] could be adjusted, not only to take into account
rotation but also to select �-tuples according to their runs
test score. �is could also allow increasing the number
of neighborhood samples among pooled �-tuples without
increasing the descriptor length signi
cantly.

8. Conclusions

We proposed the modeling of LBPs through nonlinear
intermediate mapping into permutations. �e permutation
set was further modi
ed in order to gain a more �exible
LBP model by removing the e�ect of the center pixel on
the actual permutations and by modulating the e�ect of
the center pixel by introducing an adjustable bias term. �e
approach proposed in this paper was intended to provide
further understanding of the LBPs and of the uniform LBPs
in particular.�enotion of root permutationswas introduced
in order to model the formation process of uniform patterns.
Monotonicity among the root permutations was shown to be
in an important role in the increased share of uniform pat-
terns with natural images. �e possible relationship between
the runs up and down test for randomness for permutations
and the selection of uniform patterns for LBP histograms was
also considered. According to our investigation, the response
of uniform patterns is enhanced when the result of the runs
test is low, that is, indicating nonrandomness and correlation.

�e a priori occurrence probability of uniform LBPs is
high. �is has been previously observed to be a result from
the sampling process itself as well as from the use of bilinear
interpolation. In addition to this, we provided quantitative
analysis on how the Local Binary Pattern methodology,
together with selecting only the uniformpatterns, can be seen
as a process which further enhances the response of such
deterministic underlying image intensity structures, which
are not likely to be formedby statistically randomdistribution
or phenomena. Being also shape primitives, the uniform
Local Binary Patterns naturally embody response to various
microshapes.
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invariant image and video description with local binary pattern
features,” IEEE Transactions on Image Processing, vol. 21, no. 4,
pp. 1465–1477, 2012.

[15] T. Maenpaa, T. Ojala, and M. Pietikainen, “Robust texture
classi
cation by subsets of Local Binary Patterns,” inProceedings
of the 15th International Conference on Pattern Recognition, vol.
3, pp. 947–950, Barcelona, Spain, 2000.

[16] I. Guyon and A. Elissee�, “An introduction to variable and
feature selection,” Journal of Machine Learning Research, vol. 3,
pp. 1157–1182, 2003.

[17] R. Zabih and J. Wood
ll, “Non-parametric local transforms for
computing visual correspondence,” in Proceedings of European
Conference on Computer Vision, pp. 151–158, Stockholm, Swe-
den, 1994.

[18] Z. Wang, B. Fan, and F. Wu, “Local intensity order pattern for
feature description,” in Proceedings of IEEE International Con-
ference on Computer Vision (ICCV ’11), pp. 603–610, November
2011.

[19] B. Fan, F. Wu, and Z. Hu, “Rotationally invariant descriptors
using intensity order pooling,” IEEE Transactions on Pattern
Analysis andMachine Intelligence, vol. 34, no. 10, pp. 2031–2045,
2012.

[20] T. Ahonen and M. Pietikäinen, “Image description using joint
distribution of 
lter bank responses,” Pattern Recognition Let-
ters, vol. 30, no. 4, pp. 368–376, 2009.

[21] O. Lahdenoja, “A statistical approach for characterizing local
binary patterns,” TUCS Technical Report 795, 2006.

[22] O. Lahdenoja, M. Laiho, and A. Paasio, “Reducing the feature
vector length in local binary pattern based face recognition,”
in Proceedings of IEEE International Conference on Image
Processing (ICIP ’05), pp. 914–917, Genova, Italy, September
2005.

[23] J. D. Gibbons, Nonparametric Statistical Inference, McGraw-
Hill, New York, NY, USA, 1975.

[24] T. Ojala, T.Maenpaa,M. Pietikainen et al., “Outex—new frame-
work for empirical evaluation of texture analysis algorithms,”
in Proceedings of the 16th International Conference on Pattern
Recognition, vol. 1, pp. 701–706, 2002.

[25] P. J. Phillips, H. Wechsler, J. Huang, and P. J. Rauss, “�e
FERET database and evaluation procedure for face-recognition
algorithms,” Image andVision Computing, vol. 16, no. 5, pp. 295–
306, 1998.

[26] C. H. Chan, B. Goswami, J. Kittler, and W. Christmas, “Local
ordinal contrast pattern histograms for spatiotemporal, lip-
based speaker authentication,” IEEE Transactions on Informa-
tion Forensics and Security, vol. 7, no. 2, pp. 602–612, 2012.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014
Hindawi Publishing Corporation 

http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at

http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in

OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


