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Abstract

Significant attention in recent years has been given towards ingtarbetter understanding of
human joint ranges, measurement, and functionality, espeuiatignjunction with commands
issued by the central nervous system. Studies of those commands often inciygeco
algorithms to describe path trajectories. These are typically in “operi-fauith specific
descriptions of motions, but not “closed form” mathematicdlt®ons of the full range of
possibilities. This paper proposes a rigorous “closed form” kinenfatmulation to model
human limbs, understand their workspace, and delineate barriers thberm a path becomes
difficult or impossible owing to physical constraints. The novelitglib visualize barriers in the
workspace emphasizes the power of these closed form equations. Moreovemnthlation
takes into account joint limits in terms of ranges of motion. Exasnipclude the workspaces of
a typical forearm, a typical finger, and is used to illustrate the visualizatide progress in the
functionality of a wrist undergoing rehabilitation.

Keywords. Limb workspace, ergonomics, ranges of motion, shoulder, wrist, arm,

anthropometry.



Introduction

The ability to define specific work limitations, physical impairmeng thanges in limitations
with injury or disease, and the improvements with therapy have abesgys problematic in part
owing to their subjective nature. Various authors proposed moeete] measures including
specific limitations of motions (Van Thiel, et al. 1999, Kawato 1996, Kawato arplevwd 998,
Uno, et al 1989, Cruse and Bruwer 1987 and Bruwer and Cruse 1990) on which impairment is
often largely based (e.g., AMA Guides to the Evaluation aimBeent Impairment [AMA
1997]). The reader is also referred to the recent comparison of commercailgble
measuring systems (Richards 1998). However, in a given patientphtmese approaches can
identify the entire range of limitations given specific coesitis in particular directions.
Consider tracking of point on a finger in space. The volume generated by essilyi@point
touched by this finger is called the workspace of that limb. Completefidatibn of workspace
of that finger is important to:
(1) Understand neural strategies allowing the positioning and orientingpeohand during
voluntary reaching movements, especially that of the human upper extremity.
(2) Quantify the full functional potential of a joint.

(3) Select ergonomic postures reducing stresses induced in adjacent joints

The process of moving the hand to a target in space involves a series of sensorimoto
transformations that converts sensory signal of visual data abolesicdten and orientation of
the target object (and the arm) into a set of motor commairdsah bring the hand to the
desired position. The CNS learns and maintains internal modeldhesk tsensorimotor

transformations such as plane or curved trajectories (Klein-Breler, #9%8) and horizontal



plane trajectories (Suzuki, et al. 1997). While various models simblatiask (for example the
commercial code JACK [Badler, 1997]), most of these models rely uponiragpéal data, or
incomplete (i.e., “open-form”) numerical simulations. These kitlans describe specific
situations, but owing to lack of formal description (i.e., “closedmfosimulations) cannot

simulate the entire range of possibilities.

Impaired arms exhibit well-defined workspace deficits (Reinkensmeyer, et al. 1998). T
suggests range of motion and constraint forces may prove useful f@eepneanitoring of arm
impairment and the effects of treatment techniques targeted at abnomeaiss and
workspace deficits (Yu and Donaldson 1999, Johnson, et al. 1999, Kirstukas, et al. 1992).
These results were consistent with the standard flexion and extension isgheescribed in

the clinical literature. Indeed, this type of approach has been usedefavaltuation of arm
impairment after brain injury (Reinkensmeyer, et al. 1999). Studies dftioms of joint
rotation on the independence of hand rotation (Kamper and ZewiR{999 and Schillings, et

al. 1998), while contributing to the discussion of limb workspace and ergosidrave been
limited by the number of degrees of freedom modeled and by the amggorithms used to

generate the workspace.

A comprehensive human model using the Visible Human Dataset (VHD) for tbpezun

project CHARM demonstrates the need for a better understanding of the workspace mf huma
limbs (Kalra, et al. 1995, Maurel and Thalamann 1999, Maurel and Thalamann 2000wef Ma

et al. 1996). Although this research group has addressed the topological asfietis ahd

joints, the generation of the workspace has not been demonstrated.



The understanding of trajectory formations inside the workspace of humanimto a great
extent, dependent upon the identification of control barriers that a&xishpediments to motion
and that may hinder the execution of a planned trajectory. A rigorous mathéfoatedation
based on kinematics will first be introduced. Because of this formulationyilvehow that
barriers inside the workspace are identified. More importantly, closed éguations of the
workspace will be established. As a result, a method for quantifying theitsn@iihctionality)
of a joint will be demonstrated to the wrist. Furthermore, it b8 shown that visualization of

the internal of the workspace provides a powerful tool for grasping the longat

Modeling and Formulation

Whereas the anatomy of limbs and their joints are indeed very complexidasoced by the
debate in the literature on the correct method for modeling jootion), we will employ a
kinematic pair (or combination thereof) as used in the field of roboticg. example, if the
resultant motion is rotational, the joint will be modeled aswlute joint. The effect of a
spherical joint is modeled as three revolute joints whose axes intersexttantar of the sphere.
Indeed, all anatomical joints can be modeled using basic kinemasc(@ay joint). The elbow

joint is modeled as a revolute joint, wheygds the joint variable (Figure 1).



Links

Revolute
joint

Fig. 1 Definition of a kinematic pair (e.g., an elbow is modeled as a reyoiote
In order to obtain a systematic representation of any serial kireerohtin, we define
g =[g, ... q,]" €R" as the vector afi-generalized coordinates defining the motion of a limb
with respect to another, whege are the individual joint variables. The position vector function
(shown in Fig. 2) generated by a point of interest written rasileiplication of rotation matrices

and position vectors is expressed by

x(q) i=n j=i-l .
X:é:(q*): y(q*) :Z[H ]—1Rj]l—lpi (1)
2q)| 7

wherex=[x y 7' and both'p, and'R; are defined using the Denavit-Hartenberg (D-H)
representation method (Denavit and Hartenberg 1955, Paul 1981, enal FLB87) such that

Ocog - cog, sing  sina,sing, O

HRFS stp  cas, cos, —simiCOSqiSa”d “Up =[acom asim d]  (2)
g 0 sin, coso;  H



where g, is the joint angle fronx,_, axis to thex; axis, d. is the shortest distance between

and x; axes,a, is the offset distance betweenandz_, axes, andz, is the offset angle from

z_, andz axes.

Point of interest

Fig. 2 Definition of the position vector functigi{q’)

The vector functior¥(q’) characterizes the set of all points touched by the point of interest. The
aim is to determine the envelope of this set (also sometimes called the “reaahpenvel
Molenbroek 1998 and Li and Xi 1990) At a specified position in space givgr, by, ,z,), Eq.

1 can be written as a constraint function as

X(q*) - Xp
Q)= y(@)-y, |=0 ©)
Z(q*) - Zp

In mathematical terms, the expression defined by Eq. (3) is indeed a Manttoldoxndary and

cannot readily be visualized.



Joint limits (ranges of motion) are imposed in terms of inequaligtcaints in the form of
g <g<q’ (4)
wherei =1, ...n. We transform the inequalities above into equalities by introducingvasee

of generalized coordinatas=[A, ... A.]" such that
g =((a"+a")/2)+((@’ —q")/2)sin), i=1,...n (5)
In order to include the effect of joint limits, it is proposed to agiginmhe constraint equation

Q(q") with the parametrized inequality constraints of Eq. (5) such that

x(q)-x,

y(@)-vy,

2(q) -z,
G-4& _b| Sin/‘i

H(q) = =0 i=1..n (6)

.
where q= [q” }\T] Is the vector of all generalized coordinates. Note that althoughew

variables (,) have been added)-equations have also been added to the constraint vector

function without loosing the dimensionality of the problem.

The Jacobian (named after the German Mathematician Carl G. Jacdlhe constraint function
H(qg) at a pointq® is the (3+n) x 2n matrix

H,=cH/q (1)
where the subscript denotes a derivative. Note that the Jacobian is definedeimatiatd terms

as the derivative of the transformation (Taylor and Mann 1972). In our formylgt®@dacobian

matrix is the transformation betwekin(the constraint function) argl(the joint variables).

With the modified formulation including joint limits, the Jacais expanded as



H, = F q 0 } ®)

qu qu XCIn
fq* = yq1 yqz e yqn (9)
Ly H, v G,
—((9 —a;)/2)cosA, 0 0
q. = 0 ~((9f —a;)/2)cosh, ... 0 (10)
0 0 0
0 0 . =(@ —ay)/2)cosA,

Because the Jacobian is not square (more than three degree of freedom), rankylefibézia
were developed in the field of robotics (Abdel-Malek and Yeh 1997, AbdelkiViateal. 1997)
and will be used to obtain all singular behavior of the Jacobian. Beforesautdy these criteria,
however, it is important to show why tlsngularity of the Jacobian has a direct effect on
identifying the workspace. A singularity (in the pure mathematical sense)eis thie Jacobian
has no inverse, i.e., a solution cannot be found. Indeed, boundahesworkspace of limbs are

associated with the inability to find solutions of Eq. (6) for qrppbdel-Malek, et al. 1999).

Differentiation Eq. (1) with respect to time yields

x=£.q (11)
where( is the vector of joint velocities. Given a specified path trajectorycirgléi.e., given
x), the calculation of]’ requires computing an inverse of the Jacolfgn For a singular

Jacobian, it is not possible to compute the required velocities for ayzdth. It was also
observed that such behavior is associated with boundaries to the workspace (e.thevelinen

is fully extended and cannot extend any further).



We will use the idea of a singular Jacobian to identify all barrierdeirend on the boundary of
the workspace. Because the Jacobian is nonsquare, we define such barriers as a subset of the
workspace at which the Jacobian of the constraint function of Eq.r@Wisank deficient; i.e.,

barriers defined byW and characterized by
oW [ { RankH  (q) <k, for some withi(q) = o} (12)
wherek is at least(3+n—1). Because of the form of the Jacobian characterized by Eq. (12),
three distinct conditions arise:
(1) Typel singularity sets: If no joints have reached their limits, the diagonal sub-mafriis
full row rank. Therefore, the only possibility fét, to be row-rank deficient is when the block

matrix .fq* is row rank deficient. Type | singularity set is defined as

S® = {p eq: Ranf¢ ] <3 for some constant subseq}af (13)

wherep is within the specified joint limit constraints and may containtgthat are functions of
others or constant values.

(2) Type Il sngularity setss When certain joints reach their limits, e.qg.,
od™ =[¢™ g™, q™]", the corresponding diagonal elements in the mafriwill be equal to
zero. Therefore, the correspondifiy is subjected to the rank-deficiency criterion, whetg

will take on the following form

‘fch ‘fqi é:CIj ‘qu ‘fqn
o .. 1 0 O .. O

H, ~ (14)
d 0O ... O 1 O .. O
O .. 0 O 1 ... O



and where the three columns pertainingéto, .qu, and ¢, are removed such that the rank

deficiency criteria are applied again. From the foregoing observation, thedsgpe of singular

limit imit imit

sets are formulated. Define a new veafqt™ = [qi g™ d ]]T which is a sub-vector of
where 1<dim(d™)< (n-3).
Thetype Il singularity set is defined as

s®@ E{p =[pNA"™]: Ranké .(w, &™) <3 for some eq, dim(A™ ) < (n— 3)} (15)
wherep is the singular set as a result of applying the rank deficiency criteria to Eq. (14).
(3) Type lll singularity sets. are all sets that are composed of the combination of joints at their

limits and is defined by:

s® E{p cR(™2: p= d:llimit — [qilimit ’dijmit ,_“]}; wherei # | (16)

Barriersareidentified by substituting the sefg characterized by Egs. (13, 15, and 16) into the

accessible sef(q’) yields the equation of a surface that can be readily shown.

Determining joint angles of a limb given a specific position and orients usually defined as
the inverse kinematics problem in the robotics literature (Fu, €t98[7). Motion from one

configuration to another along a trajectory sometimes requires haltingotierand changing

the inverse kinematics in order to proceed with the motion. An examplesobdburs when

attempting to reach a point located behind one’s shoulder. Startingomattirajectory may

become very uncomfortable because of joint limits, while trying anothagrctory becomes
simpler. Similarly, reaching a doorknob and turning sometimes is difftoukcomplete and

requires orienting the initial hand configuration in a different pestuThese barriers due to

singular sets identified by Egs. (13, 15, 16) may admit motion onlpennormal direction, and

10



hence are called impediments to motion (Abdel-Malek, et al. 1999). In thistbasa;m, for

example, will not be able to cross such a barrier.

lllustrative Example

Before addressing a model of the arm with many degrees of freedom, we will tdutdtea
formulation to the arm while limited to planar motion (e.g., lm surface of a table). Consider
the motion of the shoulder and the elbow where both joints are parallelrévothte joints) and
their axes perpendicular to the surface of the table as shown in Figte.tlt the arm is

modeled as two revolute joints also shown in Fig. 3. The pointtefeist is on the tip of the

index finger.

Point of
InterestP

Fig. 3 Planar motion of the arm modeled as a two DOF system

Coordinates of the point of interd3tiocated at the tip of the index finger can be written as

(17)

£(q) = —-10sing, — 13sin@, + 4., )
4= 10cosq, + 13¢0s€, +q, )

11



with joint limits imposed as-120f <q, = 70 and -5° < g, < 150, where the tip of the index
finger is positioned at (5, 0) with respect to the fourth coordinate systémese Joint ranges of

motion are converted into equality constraints as:

(18)

q*(k):[(m_ 120*n/( Z 180+( 7% 1207 ( *2 18N )ll}

1265+ 1353inA,

In order to compute the Jacobian singular behavior, we first calculate theadacobi

_ [-10cosg, — 13cosg, +q, ) — 13cos(,+q, (19)
¢ | —~10sing, — 13sin@,+9,) - 13sinf,+q,)
and
. [-1700cosl, 0
' = (20)
0 —_135%o0s,

The singularity of the Jacobian is computed by setting the determin&gttmfzero (sinceitis a

square matrix, otherwise determinant of all square sub-jacolkidinbe set to zero). The

determinant of the Jacobian is
‘.fq* ‘ =130sing, (22)
Setting Eq. (21) to zero yields a solutiongs=0 (note that whileg, = 77 is also a solution, it

does not satisfy the joint range constraints). Similarly, applying the séewado g, yields the
additional singularities (which are indeed the joint limits in this caSapstituting each joint
limit into Eq. (17) yields a curve. For example, épr=0, the resulting equation is given by

—23sing,

@ =0)=
£%(0,,0,=0) [2300%

}; (atg, =q,) for 120° < g, = 70 and shown in Fig. 4.

12



30

Fig. 3 Singular curve due tp =0
Similarly, substituting each singularity in#(q’) yields a curve. The workspace is shown by

plotting all curves in Fig. 4.

13
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Fig. 4 The workspace envelope of the planar arm

Forearm Workspace

Consider the shoulder and forearm modeled as a 4-DOF system, where the splriaathe
shoulder is modeled as three intersecting revolute joints and thve &ba revolute joint. This is
consistent with published results except that we have not evedithe wrist joint (which is an
additional 3 revolute joints) and we have limited the motion of the glametal joint to
spherical. Furthermore, we have modeled the spherical joint as thregegooits intersecting

at one point, a practice commonly made in modeling to represent sphertal fjpshould be

14



noted that the most difficult and the least successful modeling of a magnanig joint has
been the shoulder because of the lack of appropriate biomechanical data as el as
anatomical complexity of the region. Figure 5 depicts the joint motion® toddleled where
each joint is given an independent coordingtevhere the equivalent kinematic skeleton of the

system is depicted with the z-axis located per the D-H representation method.

Fig. 5 Shoulder and arm and the corresponding degree of freedom

In the following analysis, a point on the tip of the thumb as showrgin6Rwill be tracked. The
dimensions of the arm are also noted on the figure. In the field of kinemagcsjation of a
spherical joint with three degrees of freedom can be modeled as three indépevalate joints

having their axes intersecting at a single point as shawfig. 6. Note that the point on the

15



thumb is shown located at the positibm=[5 0 §' as resolved in the fourth coordinate

frame.

Revolute joint

Fig. 6 Kinematic modeling of the forearm as a spherical joint and a revalhite jo
It shoulde be noted that this model is limited only to the glenehairand not the scapulothoraic
motion of the shoulder joint (i.e., the additional three translatiegrees of freedom of the

scapulothoraic are not taken into consideration).

In order to demonstrate our formulation, consider the followaigt jlimits imposed on the
model of Fig. 690" <ql< 90 -11C¢ <2< 120, -90° <q3=< 90, and0’ < g4 =< 150. Using

the Denavit-Hartenberg representation method, the thumb posigorersby Eq. (1) as

£(q)=| -5cosqlcoxy3+ (4+ 5cos 4)siq 3} sigllcag 34 S5cos4d)sin2 En2 g8 5 ¢os2 gind | (22)

5{cosq3sinql- coxy1(4+ 5coq 4)sig 24 @ 5cas4)smn 1l sin8 opsl (gin2 gind3 5 go2 gsid| )}
5{cosq2[coxy3(4+ 5cos 4} sig 3} 5siq 2 sig 4}

16



Rank deficiency criteria applied to the result{i3x 4) Jacobian matrix yields 40 singular sets
that are listed in Appendix A. Note that most singular sets contain larididat use functions of
other variables, i.e., coupled behavior. For example, substititipglar setp,: (g, =—-71/2
andqg, =-11C) into Eq. (17) yields an exact closed form equation of a barrier as

—-25sinqg, cogy, — 5 cog,— 20 sig,
£(u ) =| —25sin(777/ 1§ cosy, cog,— 25 cos§y 18)sm,+ 5 sinfy 18)sip— 20 sin§ 18)cps
—25cos(7r/ 18) cosl, cog,+ 25 sinfr/ 18)si,+ 5 cosf/ 18 )sjp— 20 cos] 18)qQ

In order to explain the physical meaning of singular surfaces (lsatgemotion), we use the
skeleton model shown in Fig. 7 at the given singular configuratipa{7/2 andq, =-110),

such that onlyg, andq, are allowed to vary. The surface shown in Fig. 7 is a geometric entity in
space where the thumb is permitted to move. These surfaces may exist imsida #me
boundary of the workspace. Some of these surfaces present impediments tobewdiose the

arm will not admit motion in one of the normal directions (AbdeldWaet al. 1999).

17



Fig. 7 Singular surface due tq, & —n/2 andqg, = —-11() while allowing forg, andg, to vary

Similarly, for the singularity set at, =—-110 and g, =-150, and while varyingg, andqg,, the

singular surface and the corresponding arm configuration are shown in Fig. 8.

Fig. 8 The resulting surface due to a singularity set while allowirsidag, to vary

Combining all 40 barriers yields the workspace of the forearm as shown i@ Rigo cross-

sectional views are shown).

18



Fig. 9 Two cross-sectional views of the workspace of the forearm

Crossing a barrier: Some of the singular surfaces identified in Fig. 9 are impediments to
motion. It was shown in recent work (Abdel-Malek, et al. 1999) that a coafigarthat does

not admit motion in the direction normal to the surface (only in orectibn), the surface is
called a barrier. To explain a barrier, consider the configurationeo&tim where the hand is
positioned behind the shoulder. While this point is still in the workspace,rti@ifumotion is
allowed. However, this same point can be reached with a different configusattomarm, and

yet the motion of the arm can continue beyond that point. Therdfardgers are imaginary
surfaces where a trajectory followed by the arm is interrupted because of thigyitaliind an
admissible inverse kinematic solution through the surface. The workspactedneth respect

to the torso is shown in Fig. 10.
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Fig. 10 Depicting the workspace and barriers with respect to the torso

Finger Workspace
Consider the workspace of a point located at the tip of the index finger as shéwn Lla.

The kinematic motion of the finger is modeled as four revolute jawts of which intersect and

shown in Fig. 11b. Limits for the finger joints are as folloW= g, < 20°, -30° <q, < 50,

20



0°<q, <90, and0° =g, < 70°. The complete workspace (every point touchedPpis shown

in Fig. 12.

Fig. 12 Workspace of the finger

Wrist's Range of Motion (Quantifying the Workspace)

21



As a direct application of this formulation, it is now possible to visedle progress of a certain
joint via workspace analysis. Note that measurement techniques and devices arehishexsta
However, the range of motion is typically given in terms of a set of noahgoint angle values.
The progress is difficult to monitor. We will show in this exaenfiat it is now possible to
visualize the progress through a series of plots that depict the mobility of the(ifsin
workspace). Consider for example the wrist joint and hand shown in Fig. 1% thikewrist has

been modeled as a 3-DOF system.

Point of interest

Fig. 13 (a) Wrist and hand (b) Modeling of the wrist joint

For an individual that has had a surgical procedure, the wrist joint moigntake weeks or
months to return to normal or may be left with residual restnstidProgress made, whether due
to time alone or physical therapy, is measured using ranges of motiomg th& above
formulation, not only visualization of the progress can effectively bdembut an accurate
overall number can be used. Indeed, the surface area (or volume if the workspacense, vol
can be used to provide a good estimate. A normal joint range of motioanfadult is
-180° <q, = 48, -70° <, < 80, and-20° < q, < 40, where the initial configuration of the

hand is given as horizontal, thumb up, arm extended and away feobodly. Using the above

22



formulation, the resulting workspace is indeed a surface (a region of a spherieakysas

shown in Fig. 14.

Fig. 14 The workspace of a point on the tip of the thumb with respect to the wrist

For a person who is undergoing physical therapy after a surgical operatidanthionality of
the wrist may first be very limited. For example, immediateigrahe operation, the wrist joints
may be limited to-90°<q, <10, -30°<q, <3¢, and -10°<q,< 20, for which the
workspace is shown in Fig. 15a. As the joint gains better mobility, thgeraf motion is
increased and the progress is monitored by the visual workspace as shown in Fig. i{kbb-
accurate measure is needed, shface area obtained by an integration over the surface is
performed. Note that this is only possible because of the ability tonobtpiations of the

boundary.
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Fig. 15 (a)-90° <q, <10, -30°<q, < 30, and-10° <q, < 20,
(b) -120 <q, < 20, -40°<q, < 45, and-1¥ <q, < 25
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Fig. 15 (c)-140° <q, < 30, -50° <q, < 60, and-16’ <, < 32
(d)-16C° <q, < 40, -60° <q, < 70, and-18 <, < 37
Conclusions

A Dbetter understanding of the workspace of human limbs will aid researchebsttar
comprehending the central nervous system and the manipulation @t rommands.
Furthermore, visualization of the exact workspace including barriers tormatiere the limb is

subjected to a singular configuration are also identified. These bartagran important role in
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the identification of trajectories. Because of this analysis, visualizatitire @xact workspace is

possible.

The present study has focused on geometric features of workspace and joint-space paths of three-
dimensional reaching movements. In this report, we have presentgaus formulation for
modeling, analysis, and visualization of the workspace of human limbs. It was ghat
barriers to trajectory control are explicitly identified @fosed form and are based on the
singularity of the Jacobian matrix. It was also shown using the propasedidtion that joint

limits play an important role in distinguishing these barri&vile this is a first step towards
investigating the workspace, only positioning (e.g., reacheability of the arepnisidered.
Subsequent work will concentrate on a better understanding ofidmabion workspace (e.g.,

wrist dexterity). Workspaces of the forearm and the finger were demonstrated. Because of this
unique ability to generate the workspace boundary in closed form, it was shownodrasgr
towards full mobility of a joint undergoing physical therapy, for eplemis easily visualized and
accurately quantified using a surface area calculation. The potential of thistavpltay an
important role in the design for ergonomics and in providing a quantifiablesure for the

functionality of joints is evident.
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Appendix A

Singularity sets of the shoulder-forearm example:
p,={dl=-n/2,q2=—1In/ 18, p, ={gl=-n/2,q2= 2n/ 3,
p,={ql=7n/2,q2=-1In/ 18, p, ={gl=n/2,92= 2n/ 3,
ps={0l=-7/2,q3=-n/ 3,p, ={ql=-n/2,q3=n/ 3,
p,={ql=n/2,q3=-n/ 2 p;={dgl=n/2,q3=n/ 3,

P, ={02=-11n/18q = n/ 2,p,,={92=-11n/18q 3=-n/ 2,
p,={02=121/18q 3=-n/ 2p,,={q2=12n/18q 3=n/ 2

The reduced rank deficiency singularity sets are as listed below.

P;=10l=-7/2,03=—Arccos ! :
J17+ 40cosq 4+ 25c08q

P, =409l=772,q3=—Arccos 1 :
J17+ 40cosq 4+ 25c08(

g2=-117/ 189 3= — Arccos 1 )
J17+ 40cosq 4+ 25c08(

p16:{q2:2n/3q3:—Arccos 1 4}

J17+ 40cosq 4+ 25c08(

ql=-772,93= Arccos 1 ,
J17+ 40cosq 4+ 25c08(
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ql= 77/2,q3= Arccos 1
\/17+ 40cosy 4+ 25c08(

g2=-117/ 18q 3= Arccos 1
\/17+ 40cos 4+ 25c08q

g2=2m/ 39q3= Arccos 1
17+ 40cosq 4+ 25003

ql=-772,q3=-Arccos

16+ 40cosq 4+ 25c08q 4
\/17+ 40cosy 4+ 25c03q

16+ 40cosg 4+ 25c08( j}

ql=77/2,43=—Arccos
"J17+ 40cosq 4+ 250084

_y/16+ 40cosg 4+ 25c08q
"J17+ 40c0sq 4+ 25003

-l
|
|
|
-
|
P {qz 2711 30 3 — Arccost 1+ 400051 4 25c08q j}
|
|
|
|
|
|
|

q2=-1177/ 18q 3= - Arccos

17+ 40cosq 4+ 25003
/16+ 40cosq 4+ 25c03( j}

={0gl=-7/2,q3= Arccos
Pas=140 / o+ 20nom o Zocota
4t 2
P, =1091=712,93= Arccoe\/ 6+ 40cox 5coéq 4
17+ 40cosq 4+ 25003
4t 2
P2y =492=-117/18q 3= Arccoe\/16+ A0cosg 4+ 25c0Sq 4
\/17+ 40cosy 4+ 25c05q
P =1402= 2/ 393= ArCcoe\/l6+ 40cosy 4+ 25c08q 4
\/17+ 40cos 4+ 25c03q
: 5sing4
=101=-7/2,q2=—Arcsin ’
= / 1+ 25sin? g 4}
P3=1{01l=-772,q2=—Arcsin osing4
\/1+ 25sin’ q 4
Ps = g3=-71/2,g2=-Arcsin 5sing4 ' p.,={ql= 7_[/2 q2= Arcsin 5sinq4
1+ 25sin’ q 4 JL+ 25sin*q4)
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gl=-7/2,q2= Arcsin >sing Pau=1093=—-71/ 2,q2= Arcsin osing4
J1+ 25sin? q 4 1+ 25sir? q 4

.
Pas {q3 7/ 2,q2= arcsmﬂ} p36={q1=—7T,Q4=arcsin$},
pa-|
pae|

1+ 25sin* q 4

ql=77/2,94= arcsm—}, {q3——n/2q4 arcsi ta5q2}

g3= 1/ 2,q4= arcsin——— 5 }
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