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Abstract

Significant attention in recent years has been given towards obtaining a better understanding of

human joint ranges, measurement, and functionality, especially in conjunction with commands

issued by the central nervous system.  Studies of those commands often include computer

algorithms to describe path trajectories. These are typically in “open-form” with specific

descriptions of motions, but not “closed form” mathematical solutions of the full range of

possibilities. This paper proposes a rigorous “closed form” kinematic formulation to model

human limbs, understand their workspace, and delineate barriers therein where a path becomes

difficult or impossible owing to physical constraints. The novel ability to visualize barriers in the

workspace emphasizes the power of these closed form equations.  Moreover, this formulation

takes into account joint limits in terms of ranges of motion. Examples include the workspaces of

a typical forearm, a typical finger, and is used to illustrate the visualization of the progress in the

functionality of a wrist undergoing rehabilitation.

Keywords: Limb workspace, ergonomics, ranges of motion, shoulder, wrist, arm,

anthropometry.
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Introduction

The ability to define specific work limitations, physical impairment, the changes in limitations

with injury or disease, and the improvements with therapy have always been problematic in part

owing to their subjective nature.  Various authors proposed more objective measures including

specific limitations of motions (Van Thiel, et al. 1999, Kawato 1996, Kawato and Wolpert 1998,

Uno, et al 1989, Cruse and Bruwer 1987 and Bruwer and Cruse 1990) on which impairment is

often largely based (e.g., AMA Guides to the Evaluation of Permanent Impairment [AMA

1997]).  The reader is also referred to the recent comparison of commercially available

measuring systems (Richards 1998).  However, in a given patient, none of these approaches can

identify the entire range of limitations given specific constraints in particular directions.

Consider tracking of point on a finger in space.  The volume generated by every possible point

touched by this finger is called the workspace of that limb. Complete identification of workspace

of that finger is important to:

(1) Understand neural strategies allowing the positioning and orienting of the hand during

voluntary reaching movements, especially that of the human upper extremity.

(2) Quantify the full functional potential of a joint.

(3) Select ergonomic postures reducing stresses induced in adjacent joints

The process of moving the hand to a target in space involves a series of sensorimotor

transformations that converts sensory signal of visual data about the location and orientation of

the target object (and the arm) into a set of motor commands that will bring the hand to the

desired position. The CNS learns and maintains internal models of these sensorimotor

transformations such as plane or curved trajectories (Klein-Breler, et al. 1998) and horizontal
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plane trajectories (Suzuki, et al. 1997).  While various models simulate this task (for example the

commercial code JACK [Badler, 1997]), most of these models rely upon experimental data, or

incomplete (i.e., “open-form”) numerical simulations.  These simulations describe specific

situations, but owing to lack of formal description (i.e., “closed form” simulations) cannot

simulate the entire range of possibilities.

Impaired arms exhibit well-defined workspace deficits (Reinkensmeyer, et al. 1999). This

suggests range of motion and constraint forces may prove useful for precise monitoring of arm

impairment and the effects of treatment techniques targeted at abnormal synergies and

workspace deficits (Yu and  Donaldson 1999, Johnson, et al. 1999, Kirstukas, et al. 1992).

These results were consistent with the standard flexion and extension "synergies" described in

the clinical literature. Indeed, this type of approach has been used for the evaluation of arm

impairment after brain injury (Reinkensmeyer, et al. 1999). Studies of limitations of joint

rotation on the independence of hand rotation (Kamper and Zev-Rymer 1999 and Schillings, et

al. 1998), while contributing to the discussion of limb workspace and ergonomics have been

limited by the number of degrees of freedom modeled and by the numerical algorithms used to

generate the workspace.

A comprehensive human model using the Visible Human Dataset (VHD) for the European

project CHARM demonstrates the need for a better understanding of the workspace of human

limbs (Kalra, et al. 1995, Maurel and Thalamann 1999, Maurel and Thalamann 2000 and Maurel,

et al. 1996).  Although this research group has addressed the topological aspects of limbs and

joints, the generation of the workspace has not been demonstrated.
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The understanding of trajectory formations inside the workspace of human limbs is, to a great

extent, dependent upon the identification of control barriers that exist as impediments to motion

and that may hinder the execution of a planned trajectory.  A rigorous mathematical formulation

based on kinematics will first be introduced. Because of this formulation, we will show that

barriers inside the workspace are identified. More importantly, closed form equations of the

workspace will be established.  As a result, a method for quantifying the mobility (functionality)

of a joint will be demonstrated to the wrist. Furthermore, it will be shown that visualization of

the internal of the workspace provides a powerful tool for grasping the limitations.

Modeling and Formulation

Whereas the anatomy of limbs and their joints are indeed very complex (as evidenced by the

debate in the literature on the correct method for modeling joint motion), we will employ a

kinematic pair (or combination thereof) as used in the field of robotics.  For example, if the

resultant motion is rotational, the joint will be modeled as a revolute joint. The effect of a

spherical joint is modeled as three revolute joints whose axes intersect at the center of the sphere.

Indeed, all anatomical joints can be modeled using basic kinematic pairs (any joint). The elbow

joint is modeled as a revolute joint, where q1 is the joint variable (Figure 1).
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Fig. 1 Definition of a kinematic pair (e.g., an elbow is modeled as a revolute joint)

In order to obtain a systematic representation of any serial kinematic chain, we define

q R* [ ... ]= ³q qn
T n

1  as the vector of n-generalized coordinates defining the motion of a limb

with respect to another, where qi  are the individual joint variables. The position vector function

(shown in Fig. 2) generated by a point of interest written as a multiplication of rotation matrices

and position vectors is expressed by
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where iq  is the joint angle from xi−1  axis to the xi  axis, di  is the shortest distance between xi−1

and xi  axes, ai  is the offset distance  between zi  and zi−1  axes, and α i  is the offset angle from

zi−1  and zi  axes.

q1

q2
qn

...

Point of interest

Origin

ξ(q*)

Fig. 2 Definition of the position vector function x( )*q

The vector function x( )*q  characterizes the set of all points touched by the point of interest. The

aim is to determine the envelope of this set (also sometimes called the “reach envelope”

Molenbroek 1998 and Li and Xi 1990) At a specified position in space given by ( , , )x y zp p p , Eq.

1 can be written as a constraint function as
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In mathematical terms, the expression defined by Eq. (3) is indeed a Manifold with boundary and

cannot readily be visualized.
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Joint limits (ranges of motion) are imposed in terms of inequality constraints in the form of

 q q qi
L

i i
U≤ ≤ (4)

where i n= 1,  ...  .  We transform the inequalities above into equalities by introducing a new set

of generalized coordinates l = [ ... ]λ λ1 n
T  such that

q q q q qi i
L

i
U

i
U

i
L

i= + + −( ) ( ) sin2 22 7 2 7 λ        i n= 1,..., (5)

In order to include the effect of joint limits, it is proposed to augment the constraint equation

Ω( )q*  with the parametrized inequality constraints of Eq. (5) such that
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where   q q= * T T
T

λ is the vector of all generalized coordinates.  Note that although n − new

variables (λ i ) have been added, n − equations have also been added to the constraint vector

function without loosing the dimensionality of the problem.

The Jacobian (named after the German Mathematician Carl G. Jacobi) of the constraint function

H q( )  at a point q0  is the ( )3 2+ ×n n  matrix

H H qq = ∂ ∂ (7)

where the subscript denotes a derivative.  Note that the Jacobian is defined in mathematical terms

as the derivative of the transformation (Taylor and Mann 1972). In our formulation, the Jacobian

matrix is the transformation between H (the constraint function) and q (the joint variables).

With the modified formulation including joint limits, the Jacobian is expanded as



8

H
0

I qq
q

=

�

!
 

"

$
#

x

l

*

*
(8)

where q q
l

l
* *
= � � , x x

q
q*

*
= � � , 0  is a ( )3× n  zero matrix, I is the identity matrix, and

x
q*

...

...

...

=

�

!

 
 
 

"

$

#
#
#

x x x

y y y

z z z

q q q

q q q

q q q

n

n

n

1 2

1 2

1 2

(9)

q
l

*

(( ) ) cos ...

(( ) ) cos ...

...

... (( ) ) cos

=

- -

- -

- -

�

!

 
 
 
 

"

$

#
#
#
#

q q

q q

q q

U L

U L

n
U

n
L

n

1 1 1

2 2 2

2 0 0

0 2 0

0 0 0

0 0 2

λ
λ

λ

(10)

Because the Jacobian is not square (more than three degree of freedom), rank deficiency criteria

were developed in the field of robotics (Abdel-Malek and Yeh 1997, Abdel-Malek, et al. 1997)

and will be used to obtain all singular behavior of the Jacobian.  Before addressing these criteria,

however, it is important to show why the singularity of the Jacobian has a direct effect on

identifying the workspace. A singularity (in the pure mathematical sense) is when the Jacobian

has no inverse, i.e., a solution cannot be found. Indeed, boundaries to the workspace of limbs are

associated with the inability to find solutions of Eq. (6) for any q (Abdel-Malek, et al. 1999).

Differentiation Eq. (1) with respect to time yields

& &*
*x q

q
= x (11)

where & *q  is the vector of joint velocities.  Given a specified path trajectory velocity (i.e., given

&x), the calculation of & *q  requires computing an inverse of the Jacobian xq .  For a singular

Jacobian, it is not possible to compute the required velocities for such a path. It was also

observed that such behavior is associated with boundaries to the workspace (e.g., when the arm

is fully extended and cannot extend any further).
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We will use the idea of a singular Jacobian to identify all barriers inside and on the boundary of

the workspace.  Because the Jacobian is nonsquare, we define such barriers as a subset of the

workspace at which the Jacobian of the constraint function of Eq. (7) is row rank deficient;  i.e.,

barriers defined by �W  and characterized by

 { }∂W k⊂ <Rank  for some  with H q q H q 0q ( ) , ( ) = (12)

where k is at least ( )3 1+ −n . Because of the form of the Jacobian characterized by Eq. (12),

three distinct conditions arise:

(1) Type I singularity sets: If no joints have reached their limits, the diagonal sub-matrix q
l

*  is

full row rank.  Therefore, the only possibility for Hq  to be row-rank deficient is when the block

matrix x
q*  is row rank deficient.  Type I singularity set is defined as

S ( ) * : [ ] ,*
1 3� ³ <p q q

q
 Rank  for some constant subset of xJ L (13)

where p is within the specified joint limit constraints and may contain joints that are functions of

others or constant values.

(2) Type II singularity sets: When certain joints reach their limits, e.g.,

T
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l
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and where the three columns pertaining to x qi
, x q j

, and x qk
 are removed such that the rank

deficiency criteria are applied again. From the foregoing observation, the second type of singular

sets are formulated.  Define a new vector ∂qlimit limit limit limit= q q qi j k

T
, ,  which is a sub-vector of q*

where 1 3≤ ≤ −dim ( )∂qlimit2 7 n .

The type II singularity set is defined as

S n( ) [ $ ]: [ ( , )] , $ , ( ) ( )*
2 3 3� = ­ < ³ � -p p q w q p q dim q

q
∂ ∂ ∂limit limit limit Rank for some  xJ L (15)

where $p  is the singular set as a result of applying the rank deficiency criteria to Eq. (14).

(3) Type III singularity sets: are all sets that are composed of the combination of joints at their

limits and is defined by:

S q qn
i j

( ) ( ): [ , ,...]3 2
� ³ � =

-p R p q limit limit limit∂= B; where i jā (16)

Barriers are identified by substituting the sets pi  characterized by Eqs. (13, 15, and 16) into the

accessible set x( )*q  yields the equation of a surface that can be readily shown.

Determining joint angles of a limb given a specific position and orientation is usually defined as

the inverse kinematics problem in the robotics literature (Fu, et al. 1987). Motion from one

configuration to another along a trajectory sometimes requires halting the motion and changing

the inverse kinematics in order to proceed with the motion.  An example of this occurs when

attempting to reach a point located behind one’s shoulder.  Starting with one trajectory may

become very uncomfortable because of joint limits, while trying another trajectory becomes

simpler. Similarly, reaching a doorknob and turning sometimes is difficult to complete and

requires orienting the initial hand configuration in a different posture.  These barriers due to

singular sets identified by Eqs. (13, 15, 16) may admit motion only in one normal direction, and
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hence are called impediments to motion (Abdel-Malek, et al. 1999).  In this case, the arm, for

example, will not be able to cross such a barrier.

Illustrative Example

Before addressing a model of the arm with many degrees of freedom, we will illustrate the

formulation to the arm while limited to planar motion (e.g., on the surface of a table).  Consider

the motion of the shoulder and the elbow where both joints are parallel (both revolute joints) and

their axes perpendicular to the surface of the table as shown in Fig. 3. Note that the arm is

modeled as two revolute joints also shown in Fig. 3. The point of interest is on the tip of the

index finger.

Point of 
Interest P

z0z1

z0
z1

q1
q2

Fig. 3 Planar motion of the arm modeled as a two DOF system

Coordinates of the point of interest P located at the tip of the index finger can be written as
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with joint limits imposed as - � �120 701
o oq  and - � �5 1502

o oq , where the tip of the index

finger is positioned at (5, 0) with respect to the fourth coordinate system.  These joint ranges of

motion are converted into equality constraints as:

q* ( )
( ) * / ( * ) ( ) * / ( * ) sin

. . sin
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In order to compute the Jacobian singular behavior, we first calculate the Jacobian
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The singularity of the Jacobian is computed by setting the determinant of x
q*  to zero (since it is a

square matrix, otherwise determinant of all square sub-jacobians will be set to zero).  The

determinant of the Jacobian is

x
q* sin=130 2q (21)

Setting Eq. (21) to zero yields a solution as q2 0=  (note that while q2 = π  is also a solution, it

does not satisfy the joint range constraints). Similarly, applying the same criteria to q
l

*  yields the

additional singularities (which are indeed the joint limits in this case). Substituting each joint

limit into Eq. (17) yields a curve.  For example, for q2 0= , the resulting equation is given by

x
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sin
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1 2
1

1
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23

23
q q
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#; (at q q L

1 1= ) for 120 701
o oq� �  and shown in Fig. 4.
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Fig. 3 Singular curve due to q2 0=

Similarly, substituting each singularity into x( )*q  yields a curve.  The workspace is shown by

plotting all curves in Fig. 4.
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Fig. 4 The workspace envelope of the planar arm

Forearm Workspace

Consider the shoulder and forearm modeled as a 4-DOF system, where the spherical joint at the

shoulder is modeled as three intersecting revolute joints and the elbow as a revolute joint.  This is

consistent with published results except that we have not considered the wrist joint (which is an

additional 3 revolute joints) and we have limited the motion of the glenohumeral joint to

spherical. Furthermore, we have modeled the spherical joint as three revolute joints intersecting

at one point, a practice commonly made in modeling to represent spherical joints. It should be
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noted that the most difficult and the least successful modeling of a major articulating joint has

been the shoulder because of the lack of appropriate biomechanical data as well as the

anatomical complexity of the region. Figure 5 depicts the joint motions to be modeled where

each joint is given an independent coordinate qi  where the equivalent kinematic skeleton of the

system is depicted with the z-axis located per the D-H representation method.

q3
q2

q1

q4

z0

x0

y0
10

10

5

5

Fig. 5 Shoulder and arm and the corresponding degree of freedom

In the following analysis, a point on the tip of the thumb as shown in Fig. 6 will be tracked.  The

dimensions of the arm are also noted on the figure. In the field of kinematics, the motion of a

spherical joint with three degrees of freedom can be modeled as three independent revolute joints

having their axes intersecting at a single point as shown in Fig. 6.  Note that the point on the
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thumb is shown located at the position 4 5 0 5v = [ ] T  as resolved in the fourth coordinate

frame.

z1

z2

z0

z3

Spherical joint

Revolute joint

x4

z4
Tracked point 

Fig. 6 Kinematic modeling of the forearm as a spherical joint and a revolute joint

It shoulde be noted that this model is limited only to the glenohumeral and not the scapulothoraic

motion of the shoulder joint (i.e., the additional three translational degrees of freedom of the

scapulothoraic are not taken into consideration).

In order to demonstrate our formulation, consider the following joint limits imposed on the

model of Fig. 6: - � �90 1 90o q , - � �110 2 120o oq , - � �90 3 90o oq , and 0 4 150o oq� � . Using

the Denavit-Hartenberg representation method, the thumb position is given by Eq. (1) as
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Rank deficiency criteria applied to the resulting ( )3 4�  Jacobian matrix yields 40 singular sets

that are listed in Appendix A.  Note that most singular sets contain variables that use functions of

other variables, i.e., coupled behavior.  For example, substituting singular set p1: ( q1 2=-π /

and q o
2 110=- ) into Eq. (17) yields an exact closed form equation of a barrier as

x( )

sin cos cos sin

sin( ) cos cos cos( ) sin sin( )sin sin( ) cos

cos( )cos cos sin( ) sin cos( ) sin cos( ) cos

u
1

25 5 20

25 7 18 25 7 18 5 7 18 20 7 18

25 7 18 25 7 18 5 7 18 20 7 18

3 4 3 3

3 4 4 3 3

3 4 4 3 3
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!
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In order to explain the physical meaning of singular surfaces (barriers to motion), we use the

skeleton model shown in Fig. 7 at the given singular configuration (q1 2=-π /  and q2 110=- ),

such that only q3 and q4  are allowed to vary. The surface shown in Fig. 7 is a geometric entity in

space where the thumb is permitted to move. These surfaces may exist inside and on the

boundary of the workspace. Some of these surfaces present impediments to motion because the

arm will not admit motion in one of the normal directions (Abdel-Malek, et al. 1999).

z0

q4

q3
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Fig. 7 Singular surface due to (q1 2=-π /  and q2 110=- ) while allowing for q3 and q4  to vary

Similarly, for the singularity set at q2 110=-  and q4 150=- , and while varying q1 and q3, the

singular surface and the corresponding arm configuration are shown in Fig. 8.

q1

q3z0

Fig. 8 The resulting surface due to a singularity set while allowing q1 and q3 to vary

Combining all 40 barriers yields the workspace of the forearm as shown in Fig. 9 (two cross-

sectional views are shown).
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Fig. 9 Two cross-sectional views of the workspace of the forearm

Crossing a barrier: Some of the singular surfaces identified in Fig. 9 are impediments to

motion. It was shown in recent work (Abdel-Malek, et al. 1999) that a configuration that does

not admit motion in the direction normal to the surface (only in one direction), the surface is

called a barrier. To explain a barrier, consider the configuration of the arm where the hand is

positioned behind the shoulder. While this point is still in the workspace, no further motion is

allowed.  However, this same point can be reached with a different configuration of the arm, and

yet the motion of the arm can continue beyond that point. Therefore, barriers are imaginary

surfaces where a trajectory followed by the arm is interrupted because of the inability to find an

admissible inverse kinematic solution through the surface. The workspace oriented with respect

to the torso is shown in Fig. 10.
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Fig. 10 Depicting the workspace and barriers with respect to the torso

Finger Workspace

Consider the workspace of a point located at the tip of the index finger as shown in Fig. 11a.

The kinematic motion of the finger is modeled as four revolute joints, two of which intersect and

shown in Fig. 11b.  Limits for the finger joints are as follows: 0 201
o oq� � , - � �30 502

o oq ,
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0 903
o oq� � , and 0 704

o oq� � .  The complete workspace (every point touched by P) is shown

in Fig. 12.

           

x0

z0

q2

q3
q4

1.5
1q1

z1

z2
z3

1

Fig. 11 (a) A schematic of a finger (b) Kinematic modeling of the finger as four revolute joints

0

1

2

3

0

0.5

1

-2

0

0

0.5

1

-2

0

Fig. 12 Workspace of the finger

Wrist’s Range of Motion (Quantifying the Workspace)

Point P
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As a direct application of this formulation, it is now possible to visualize the progress of a certain

joint via workspace analysis. Note that measurement techniques and devices are well established.

However, the range of motion is typically given in terms of a set of numerical joint angle values.

The progress is difficult to monitor.  We will show in this example that it is now possible to

visualize the progress through a series of plots that depict the mobility of the joint (its

workspace). Consider for example the wrist joint and hand shown in Fig. 13, where the wrist has

been modeled as a 3-DOF system.

 

Point of interest

Fig. 13 (a) Wrist and hand (b) Modeling of the wrist joint

For an individual that has had a surgical procedure, the wrist joint motion may take weeks or

months to return to normal or may be left with residual restrictions.  Progress made, whether due

to time alone or physical therapy, is measured using ranges of motion.  Using the above

formulation, not only visualization of the progress can effectively be made, but an accurate

overall number can be used.  Indeed, the surface area (or volume if the workspace is a volume),

can be used to provide a good estimate. A normal joint range of motion for an adult is

- � �180 451
o oq , - � �70 802

o oq , and - � �20 403
o oq , where the initial configuration of the

hand is given as horizontal, thumb up, arm extended and away from the body.  Using the above
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formulation, the resulting workspace is indeed a surface (a region of a spherical surface) as

shown in Fig. 14.

Fig. 14 The workspace of a point on the tip of the thumb with respect to the wrist

For a person who is undergoing physical therapy after a surgical operation, the functionality of

the wrist may first be very limited.  For example, immediately after the operation, the wrist joints

may be limited to - � �90 101
o oq , - � �30 302

o oq , and - � �10 203
o oq , for which the

workspace is shown in Fig. 15a.  As the joint gains better mobility, the range of motion is

increased and the progress is monitored by the visual workspace as shown in Figs. (15b-d), if an

accurate measure is needed, the surface area obtained by an integration over the surface is

performed. Note that this is only possible because of the ability to obtain equations of the

boundary.
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Fig. 15 (a) - � �90 101

o oq , - � �30 302
o oq , and - � �10 203

o oq ,
(b) - � �120 201

o oq , - � �40 452
o oq , and - � �13 253

o oq

 
Fig. 15 (c) - � �140 301

o oq , - � �50 602
o oq , and - � �16 323

o oq
(d) - � �160 401

o oq , - � �60 702
o oq , and - � �18 373

o oq

Conclusions

A better understanding of the workspace of human limbs will aid researchers in better

comprehending the central nervous system and the manipulation of motor commands.

Furthermore, visualization of the exact workspace including barriers to motion where the limb is

subjected to a singular configuration are also identified.  These barriers play an important role in
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the identification of trajectories. Because of this analysis, visualization of the exact workspace is

possible.

The present study has focused on geometric features of workspace and joint-space paths of three-

dimensional reaching movements.  In this report, we have presented a rigorous formulation for

modeling, analysis, and visualization of the workspace of human limbs. It was shown that

barriers to trajectory control are explicitly identified in closed form and are based on the

singularity of the Jacobian matrix.  It was also shown using the proposed formulation that joint

limits play an important role in distinguishing these barriers. While this is a first step towards

investigating the workspace, only positioning (e.g., reacheability of the arm) is considered.

Subsequent work will concentrate on a better understanding of the orientation workspace (e.g.,

wrist dexterity). Workspaces of the forearm and the finger were demonstrated. Because of this

unique ability to generate the workspace boundary in closed form, it was shown that progress

towards full mobility of a joint undergoing physical therapy, for example, is easily visualized and

accurately quantified using a surface area calculation. The potential of this work to play an

important role in the design for ergonomics and in providing a quantifiable measure for the

functionality of joints is evident.
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Appendix A
Singularity sets of the shoulder-forearm example:
p1 1 2 2 11 18= =- =-q qπ π, /; @, p2 1 2 2 2 3= =- =q qπ π, /; @,
p3 1 2 2 11 18= = =-q qπ π, /; @, p4 1 2 2 2 3= = =q qπ π, /; @,
p5 1 2 3 2= =- =-q qπ π, /; @,p6 1 2 3 2= =- =q qπ π, /; @,
p7 1 2 3 2= = =-q qπ π, /; @,p8 1 2 3 2= = =q qπ π, /; @,
p9 2 11 18 3 2= =- =q qπ π/ , /; @,p10 2 11 18 3 2= =- =-q qπ π/ , /; @,
p11 2 12 18 3 2= = =-q qπ π/ , /; @,p12 2 12 18 3 2= = =q qπ π/ , /; @
The reduced rank deficiency singularity sets are as listed below.
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