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Abstract

Depth estimation and semantic segmentation are two

fundamental problems in image understanding. While the

two tasks are strongly correlated and mutually beneficial,

they are usually solved separately or sequentially. Moti-

vated by the complementary properties of the two tasks, we

propose a unified framework for joint depth and semantic

prediction. Given an image, we first use a trained Convo-

lutional Neural Network (CNN) to jointly predict a global

layout composed of pixel-wise depth values and semantic

labels. By allowing for interactions between the depth and

semantic information, the joint network provides more ac-

curate depth prediction than a state-of-the-art CNN trained

solely for depth prediction [6]. To further obtain fine-level

details, the image is decomposed into local segments for

region-level depth and semantic prediction under the guid-

ance of global layout. Utilizing the pixel-wise global pre-

diction and region-wise local prediction, we formulate the

inference problem in a two-layer Hierarchical Conditional

Random Field (HCRF) to produce the final depth and se-

mantic map. As demonstrated in the experiments, our ap-

proach effectively leverages the advantages of both tasks

and provides the state-of-the-art results.

1. Introduction

Depth estimation and semantic segmentation from a sin-

gle image are two fundamental yet challenging tasks in

computer vision. While they address different aspects in

scene understanding, there exist strong consistencies among

the semantic and geometric properties of image regions.

When the information from one task is available, it would

provide valuable prior knowledge to guide the other one.

In the depth estimation literature, semantic information

has long been used as a high-level guidance [14, 15, 23,

11, 29]. Certain semantic classes have strong geometric

implications. For example, the ground is usually a hor-

izontal plane in a canonical view, while the building fa-

cades are mostly vertical surfaces [14]. However, these ap-

proaches either assume the semantic labels are known [29],

or perform semantic segmentation to generate the seman-

tic labels [23]. Since the two tasks are performed sequen-

tially, the errors in the predicted semantic labels are in-

evitably propagated to the depth results. On the other hand,

in semantic segmentation, with the increasing availability

of RGBD data from additional depth sensors, many meth-

ods use depth as another channel to regularize the segmen-

tation [28, 31, 12] and have achieved much better perfor-

mance than using RGB images alone.

Since the two tasks are mutually beneficial, extensive in-

vestigations have been done towards jointly solving them

in videos [2, 8, 19, 34], in which 3D information can be

easily obtained through structure from motion. However,

the efforts in jointly tackling the two problems from a sin-

gle image are preliminary [21], mostly because the infer-

ence of both tasks are more ill-posed in a single image. It

is not trivial to formulate the joint inference problem, in

which the two tasks could benefit each other. This paper

is another step towards this direction. Unlike previous ap-

proaches [21], in which the consistency between the seman-

tic and geometric property is limited to local segments or

objects, we propose a unified framework to incorporate both

global context from the whole image and local prediction

from regions, through which the consistency between depth

and semantic information is automatically learned through

joint training.

Fig. 1 illustrates the framework of our approach. We for-

mulate the joint inference problem in a two-layer Hierarchi-

cal Conditional Random Field (HCRF). The unary poten-

tials in the bottom layer are pixel-wise depth values and se-

mantic labels, which are predicted by a Convolutional Neu-

ral Network (CNN) trained globally from the whole image,

while the unary potentials in the upper layer are region-wise

depth and semantic maps, which come from another CNN-

based regressor trained on local regions. The output of the

global CNN, though coarse, provides very accurate global

scale and semantic guidance, while the local regressor gives

more details in depth and semantic boundaries. The mu-

tual interactions between depth and semantic information

are captured through the joint training of the CNNs, and are

further enforced in the joint inference of HCRF.

We evaluated our method on the NYU v2 dataset [31] on

both depth estimation and semantic segmentation. By infer-

ence using our joint global CNN, the depth prediction im-

proves over the depth only CNN by an average 8% relative
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Figure 1. Framework of our approach for joint depth and semantic prediction. As described in Sec. 1, given an image, we obtain region-

wise and pixel-wise potential from a regional and a global CNN respectively. The final results are jointly inferred through the Hierarchical

CRF. We keep the color legend consistent in the paper.

gain, and also outperforms the state-of-the-art. After incor-

porating local predictions, the final depth maps produced

by the HCRF are significantly improved in terms of visual

quality, with much clearer structures and boundaries. Mean-

while in semantic segmentation, we further show that our

joint approach outperforms R-CNN [10] that is currently

known to be the most effective method for semantic seg-

mentation, by 10% relatively in average IOU.

To sum up, the contribution of this paper is three-fold:

1. We propose a unified framework for joint depth and

semantic prediction from a single image. The consis-

tency of the two tasks is learned through joint training,

and enforced in different stages throughout the frame-

work to boost the performance of both tasks.

2. We formulate the problem in a two-layer HCRF to en-

force synergy between global and local predictions,

where the global layouts are used to guide the lo-

cal predictions and reduce local ambiguities, while

the local results provide detailed region structures and

boundaries.

3. Through extensive evaluation, we demonstrate that

jointly addressing the two problems in our framework

benefits both tasks, and achieves the state-of-the-art.

1.1. Related work

The literature of depth estimation and semantic segmen-

tation is very rich when considering them as two indepen-

dent tasks. Interestingly, though developed separately, the

techniques used to solve the two tasks are quite similar.

MRF-based approaches are common choices in semantic

segmentation [1, 36], while they have also been explored

in depth prediction [30, 14]. Data-driven approaches based

on non-parametric transfer are another popular trend in both

scene parsing [5, 32, 33, 35] and depth estimation [17, 24].

Recently, CNN have shown its effectiveness in both tasks.

In [6], a two-level CNN is learned to directly predict the

depth maps, which significantly outperforms the previous

state-of-the-arts. Similar progress has also been achieved

in semantic segmentation [3, 7, 10, 4]. Inspired by these

work, we also use CNN to train our model for joint global

and local prediction.

Noticing the correlations between the two problems,

some methods try to use the information from one task

to regularize the other. Nevertheless, the interaction be-

tween the depth and semantic information is mostly a one-

way channel in previous work. Several methods try to get-

ter better semantic segmentation results given RGB-D data

[28, 31, 12, 13], while others take the predicted semantic

labels to estimate depth [23, 15]. However, in order to solve

one problem, these methods rely on either the ground-truth

data, or an independent solution to the other problem. Their

results therefore are heavily limited by the availability of

the ground-truth data or the quality of the previous step.

While promising, the joint inference of these two tasks to

to enforce consistency between them is an under-explored

direction in the literature. In [11], the consistency between

the geometric and semantic properties of segments are built,

in which each semantic segment is also predicted to be one

of the three geometric classes: horizontal, vertical, and sky.

However, such a geometric classification is still too coarse

to produce an accurate depth map, and too loose to con-

strain the semantic prediction. Moreover, the consistency

between the two components is limited to local regions.

Ladicky et.al [21] jointly train a canonical classifier con-

sidering both the loss from semantic and depth labels of the

objects. However, they use local regions with hand-crafted

features for prediction, which is only able to generate very

coarse depth and semantic maps, with many local prediction

distortions over large backgrounds. Unlike these methods,

we capture the mutual information through joint training in

a unified framework, which captures more synergy between

semantic and depth prediction. In addition, from a global



to local strategy, we achieve long range context to gener-

ate global reasonable results while maintaining segments

boundary information. Finally, our trained CNNs provide

robust estimation under the large appearance variation of

images and segments. As a result, our model achieves bet-

ter results both quantitatively and qualitatively.

2. Formulation

As shown in previous image segmentation work [1, 20],

semantic inference should consider both short-range pixel-

wise interactions and high-order context. Similarly, the con-

sistency in depth and semantic prediction should also be en-

forced both globally and locally. To this end, instead of

a standard pixel-wise Conditional Random Field, we pro-

pose a two-layer Hierarchical Conditional Random Field

(HCRF) [1, 20] to formulate the joint depth and semantic

prediction problem.
As shown in Fig.1, our HCRF is composed of two lay-

ers of nodes and edges. In the bottom layer, the nodes are
the pixels in the image I. For each pixel i ∈ I, we would
like to predict its depth value di and semantic label li. We
use xi = {di, li} to denote the inference output at pixel i.
Meanwhile in the upper layer, we decompose image I to lo-
cal segments, and use the segments to represent the nodes.
Similarly, we would like to infer the depth and semantic
labels ys = {ds, ls} for each segment s ∈ S , where S
denotes the set of segments after decomposition. We use
Rs to denote all the pixels inside segment s, and use Xs

to denote the predicted labels of Rs. Apparently there are
three kinds of edges in the HCRF, the pair-wise edges be-
tween neighboring pixels, the edges between neighboring
segments, and the edges connecting Rs and s. Given such
a model, the energy for minimization is formulated as:

min
X

∑

i∈I

ψi(xi) + λie

∑

i,j∈I

ψi,j(xi,xj),

+ λy min
Y

(

∑

s∈S

ψs(Xs,ys) + λce

∑

s,t∈S

ψs,t(ys,yt)

)

, (1)

where ψi(xi) is the pixel-level unary potential in the bot-

tom layer, ψi,j(xi,xj) is the pair-wise edge potential be-

tween pixels, and ψs,t(ys,yt) is the edge potential between

segments in the upper layer. λy is a balancing parameter. In

addition, the cross-layer potential term ψs(Xs,ys) usually

could be further decomposed as:

ψs(Xs,ys) = φs(ys) +
∑

i∈Rs

φs(ys,xi), (2)

where φs(ys) is the unary potential of segments in the up-
per layer, and φs(ys,xi) is the edge potential between seg-

ment s and the pixel i inside segment s.
In our model, the potential terms introduced in Eqn.(1)

and Eqn.(2) are defined as follows:

Unary potentials. As illustrated in Fig.1, the pixel-level

potential ψi(xi) is provided by a CNN trained globally on

the whole image, which jointly predicts pixel-wise depth

values and probabilities of semantic labels. The details of

the global CNN training and prediction will be introduced

in Section 3. Similarly, the segment-level potential φs(ys)
in Eqn.(2) is generated by a CNN-based regressor trained

on local regions, with details described in Section 4.

Edge potentials. For pixel-wise edge potentials, we
only consider neighboring pixels, and define

ψi,j(xi,xj) = 1{li 6= lj}(exp(−edge(i, j)) + ed(di, dj)),
(3)

where 1{li 6= lj} is a switching function which enables

penalizing when the semantic labels of i and j are differ-

ent. edge(·) is the output from a semantic edge detection

method [22], and ed(di, dj) = exp(−[‖di − dj‖1 − td]+),
where [x]+ = max{x, 0} represents the hinge loss. This

term generally enforces pairwise smoothness, except when

there is a strong semantic edge or possible depth discontinu-

ity between i and j. The definition of ed(di, dj) gives credit

for assigning different labels when the depth difference is

greater than a threshold td.

For the segment-wise edge potentials, we only consider

neighboring segments as well. For each segment s, we cal-

culate the mean and variance of the pixel RGB values inside

the segment to get its local appearance feature fs. Mean-

while, for each pair of neighboring segments s and t, we cal-

culate the geodesic distance between them distg(s, t) based

on the semantic edge map produced by [22]. We then get

the appearance-based distance between two segments:

dista(s, t) = distg(s, t) + λa‖fs − ft‖, (4)

where λa is a balancing weight. We also define the depth-

based distance between the two segments distd(s, t) to be

the average of pixel-wise depth difference within the over-

lapping boundary areas of the two segments. Then the edge

potential between two segments ψs,t(ys,yt) is defined as:

ψs,t(ys,yt) =1{ls 6= lt}(exp(−dista(s, t)) + ed(s, t)),

+w(ls, lt)distd(s, t), (5)

where ed(s, t) = exp(−[distd(s, t) − td]+) has the similar

functionality as in Eqn.(3) that allows different semantic la-

bels if the depth change between the two segments is large.

w(ls, lt) is a smoothness weight matrix which is learned

from the data, in which higher value of w(ls, lt) requires a

higher depth smoothness between segments s, t when their

semantic labels ls, lt are consistent, and vice versa.

For the cross-layer edge potentials φs(ys,xi) between

the segments and the pixels, we simply enforce consistency

when the pixels are inside the segment, and have no con-

straints if the pixels do not belong to the segment.

Given the above definition, we see that the pixel-level

unary potentials encode coarse global layout, while the



Figure 2. An example of the global network output. Middle: Depth

map. Right: Semantic probability map.

segment-level unary potentials focus on local region details.

The edge potentials incorporate the consistency between the

depth and semantic labels. Therefore through joint infer-

ence, our model is able to better exploit the interactions be-

tween global and local predictions, as well as between depth

and semantic information. We will describe the inference

procedure in details in Section 5.

3. Joint Global Depth and Semantic Prediction

In this section, we describe how we train a CNN with

the whole image as input to predict pixel-wise depth and

semantic maps, which are used as the pixel-level unary po-

tentials in our HCRF model.

CNN has shown its effectiveness in predicting not only

discrete class labels [18] but also structured continuous

maps. In [6], with the use of ground-truth depth data, a

CNN is trained to directly predict a depth map using the

whole image as input, which achieves global context. In-

spired by this work, we extend it to a CNN that directly pre-

dicts pixel-wise depth values jointly with semantic labels

from the whole image.

We follow the CNN structure in [6] in the earlier layers.

However, in addition to the depth nodes in the final layer,

we further introduce semantic nodes to predict the seman-

tic labels. Formally, our loss function during the network

training is composed of two parts:

loss(X ,X ∗) =
1

n

n
∑

i=1

(log di − log d∗i )
2 + λl

−1

n

n
∑

i=1

log(P (l∗i )),

and P (l∗i ) = exp(zi,l∗
i
)/
∑

li

exp(zi,li), (6)

where di and li are the predicted depth values and se-

mantic labels, while d∗i and l∗i are the ground truth. zi,li is

the output of the semantic node corresponding to pixel i.
Since the training data with ground truth semantic labels

are very limited compared with raw RGB-D data, we first

train the network to only predict depth values using RGB-

D training data (i.e., drop the semantic nodes in the final

layer), and then fine-tune the network with added semantic

nodes using the RGB-D data with available semantic labels.

Once trained, given an input image, the network will pre-

dict a depth map and a probability map of each pixel be-

longing to a semantic label. Since it is trained globally,

the predicted maps are quite coarse (Fig.2). Nevertheless,

they provide very accurate global scale and semantic lay-

out, which helps avoid prediction errors caused by local ap-

pearance ambiguities. Moreover, as will be shown in the

experiments, the joint-prediction network after fine-tuning

provides more accurate depth maps than the network trained

to predict depth alone, which demonstrates that semantic in-

formation can regularize the CNN that benefit depth predic-

tion.

We use d′i to denote the depth value at pixel i predicted

by the global CNN, and use P (li) to denote the predicted

probabilities of semantic labels at pixel i. The pixel-wise

unary term in Eqn.(1) can be written as:

ψi(xi) = −log(P (li)) + λi‖di − d′i‖1. (7)

4. Joint Local Depth and Semantic Prediction

While the depth and semantic maps predicted by the

global CNN accurately capture the scene layout, they still

lack details in local regions. Therefore in order to recover

scene structures and object boundaries, we decompose the

image into segments by over-segmentation [25], and predict

the semantic label and depth map for each segment. The

predicted results are then used as the segment-level unary

potentials in our HCRF to complement the global results.

The training and prediction of depth and semantic la-

bels in local segments are not as straightforward as in the

global inference. First we need to find a proper way to rep-

resent the depth and semantic labels inside the segment, i.e.,

ys = {ds, ls} in Sec. 2. For semantic labels, we use the ma-

jority of the pixel-wise semantic labels to represent the seg-

ment label ls, which is a generally valid assumption. How-

ever for depth, it is too coarse to use a single depth value to

represent ds. Meanwhile, when cropping out the local seg-

ment from the image, the global scale information is lost,

and it is difficult to tell its absolute depth values by look-

ing at the segment alone. A more feasible task would be

to predict a relative depth trend inside the segment. There-

fore we transform the absolute depth map of the segment

to a normalized relative depth map by subtracting the abso-

lute depth value at the segment center dc and re-scaling it

to have range [0,1]. Given the normalized depth map, the

depth value at center dc and the scale change sc, we can ex-

actly recover the absolute depth values of each pixel in the

segment di = dn ∗ sc+ dc, where dn are the relative depth

values in the normalized depth map. Therefore, in the local

prediction stage, we would like to estimate the normalized

depth map of the segment, while [dc, sc] are two unknown

variables that we would infer in the HCRF.

4.1. Normalized Joint Templates

Even if we normalize the depth map of the segment, it

is still difficult to train a regressor from the image to the

map. This is because the depth of local segments is highly

ambiguous when solely judging from its local appearance.
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Figure 3. Examples of joint semantic and depth templates for local

segments. The normalized depth maps in each row are associated

with their corresponding semantic labels.

Nevertheless, the patterns in the depth maps of local seg-

ments are less diverse, e.g. often like a plane or a corner,

and therefore could be captured by a limited number of

templates. Thus, we formulate the local depth estimation

problem as a prediction of the composition from a set of

normalized templates, which largely constrains the learning

space.

To generate the templates, we use both the semantic and

depth ground truth to ensure consistency. To avoid the dom-

inance of segments from a large semantic class, we first

cluster the segments according to their semantic labels. For

the segments with the same semantic label, we cluster their

normalized depth maps using L1 distance metric to gener-

ate a set of templates. Fig. 3 illustrates a subset of our joint

templates, which provides meaningful patterns like a plane,

a corner or a curved surface.

4.2. Joint Template Regression

Given a segment s and a set of templates Tj , we would
like to learn the affinities of this segment to the templates.
The affinity during training is defined as:

a(s,Tj) = 1{ls = lTj
}Sd(s,Tj)/max

k
Sd(s,Tk)

Sd(s,Tj) = exp(−‖ds − dTj
‖1). (8)

where d denotes the values in the normalized depth maps.
Intuitively, when the semantic labels are different, the affin-
ity of the segment to the template is zero, otherwise it is de-
termined by the similarity of their normalized depth maps.
We use CNN as the local training model as well, which
takes the warped bounding box of the segments as input,
with loss function defined as the sum of sigmoid cross en-
tropy loss over the affinities, i.e.:

l(as,a
∗
s) =

−1

Nt

Nt
∑

i=1

(ai log a
∗
i + (1− ai) log(1− a∗i )),

where as = [a1, · · · , aNt
] are the affinities of segment s

to all the templates. Based on the loss defined, our local

CNN is learned through fine-tuning the global CNN in Sec-

tion 3. After regression, we choose top N (N=2 in exper-

iments) templates with the highest affinities and aggregate

their normalized depth values as well as the semantic labels

to the segment with their affinities as weights. The averaged

results are the prediction of the normalized depth map and

the probability of semantic labels of that segment.

The depth and semantic ambiguity caused by local seg-

ment appearance is still a problem in template regression.

Therefore we use three techniques to further reduce ambi-

guity. First, the output of the global CNN in Sec. 3 gives

us a very good global layout to regularize the local predic-

tion. Second, masking out the background outside a seg-

ment as in R-CNN [10],could reduce confusions when two

segments share a same bounding box. Therefore, for a seg-

ment, we take the fc6 layer output of the local CNN both

from its bounding box and masked region, and concate-

nate it with the global prediction within the corresponding

bounding box to form our feature vector. We train a Support

Vector Regressor upon that feature to predict a segment’s

affinities to the templates. Third, the ambiguity of predic-

tion will decrease when the segments are larger. Therefore

instead of performing the regression on small segments pro-

duced by over-segmentation, we cluster them to generate

multi-scale large segments (30, 50, 100 segments in three

scales respectively). Consider that a small segment s is cov-

ered by a larger segment sL, we can map the depth and se-

mantic predictions of sL back to segment s. The final depth

and semantic prediction of s is a weighted averaging of the

results from multiple sL covering s. The details of getting

larger segments is in our supplementary material.

Fig. 4 gives two predicted examples from the learned

model. We can see our depth prediction is robust to im-

age variations and does not depend on particular structures,

and has the potential to overcome the difficulties met in tra-

ditional line and vanishing point detection methods [30].

Given the normalized depth map, as mentioned earlier,
we can represent the depth values in the segment using two
parameters: center depth dc and scale factor sc. We hereby
define the segment-level unary potential φs(ys) as:

φs(ys) = − log(P (ls)) + λd(‖dc − dgc‖1 + ‖sc− scg‖1) (9)

where P (ls) is the predicted probability of semantic labels

on segment s. dgc is the absolute depth from the global

depth prediction at the segment center, and scg is the depth

scale from the global prediction within the segments bound-

ing box. Intuitively, we want dc and sc to be close to the one

predicted by global CNN, which can also be regarded as the

message passed from the pixel-level potential. Once dc and

sc are inferred, we can combine them with the normalized

depth map to get the absolute depth for each pixel in this

segment, which can be used to calculate the edge potentials

between the segments in Eqn.(5), as well as to enforce the
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Figure 4. Illustration of local prediction results from two difficult

segments (located in the red box). Our prediction is robust to the

complex scenario or even blurred cases.
consistency between the global pixel-wise prediction and

local segment-level prediction.

5. Joint HCRF Inference

To do inference over the Joint HCRF, direct inference

over the joint space of semantic label and depth through

loopy belief propagation (LBP) [26] costs a long time for

convergence. We consider a more efficient alternating opti-

mization strategy by minimizing one when fixing the other.

Semantic inference given the depth. Given the esti-

mated depth, we first perform LBP to infer the semantic

labels in the segment level, and then pass the predictions of

local segments to their covering pixels. We then infer the

labels in the pixel level, which can be solved through MAP.

Depth inference given the semantic label. Similarly,

we first infer the depth variables in the segment-level,

namely, the center depth dc and the scale factor sc. The

inference of continuous depth variables are impractical for

LBP. Thus, we quantize the center depth dc of a segment to

be a set of discrete offsets (in our experiment, we set it to

be 20 uniformly distributed values within range [−rd, rd])
from the respective value predicted in the global model, and

the scale sc to be a shift of respective global scale (10 in-

tervals within [−rs, rs] and then truncate the values within

the range [minsc,maxsc]). Theoretically, our quantization

follows the same spirit of particle belief propagation [27].

In our experiments, our global predictions are already

very good. Therefore we use the global prediction as our

initialization, and perform 1 iteration by first estimating se-

mantic labels and then predicting depth. It already produces

the state-of-the-art results, and more iterations brings very

little improvement in our experiments. To further accelerate

the algorithm, we use graph cut to efficiently solve pixel-

wise semantic labeling. In pixel-level depth inference, we

find the smoothness term makes little difference in the final

solution. Thus, the depth inference is reduced to a linear

combine of global prediction and local prediction consid-

ering the weight λy in Eqn.(1) which is very easy to learn

through maximum likelihood using the ground truth depth.

6. Experiments
Data. We evaluate our method on the NYU v2

dataset [31] which contains images taken by Kinect cam-

(b)(a)

Vertical

Ceiling

Object

Furniture

Ground

Figure 5. We map the detailed semantic classes in (a) to five main

semantic classes in (b).

era in 464 indoor scenes. We use the official train/test

split, using 249 scenes for training the global depth pre-

diction. After evening the distribution (1200 images per

scene), the total number of depth images are 200K. The

joint depth and semantic label set contains 1449 images,

and it is partitioned into 795 training images and 654 test-

ing images. Due to the limited number of data, we also use

images from the NYU v1 dataset that are not overlapped

with the 654 testing images for training. There are 894
annotated semantic labels in the dataset. In order to bet-

ter ensuring consistency between depth maps and seman-

tic labels with limited data, we mapped the semantic labels

into 5 categories conveying strong geometric properties,

i.e. {Ground, V ertical, Ceiling, Furnitures,Objects}.

Fig. 5 illustrates our mapped labels. When train the global

CNN, we do the data augmentation similar to the method in

[6], which gives us 2 million depth images for training.

Implementation details. The structure of the global

CNN is the same as the one in [6], and the resolution for

semantic output is 20× 26, yielding 3120 additional output

nodes. We use caffe [16] for our network implementation.

For inference over our graphical model, we use the LBP

tool provided by Meltzer1.

For the parameters balancing unary and edge potentials,

in Eqn.(1), λy = 4, which is learned through ML as stated

in Sec. 5. λie = 3, λce = 2, which are learned through

cross-validation. For the parameters balancing the semantic

and depth, we adjust them to make their numerical ranges

comparable. Specifically, λl = 0.05 in Eqn.(6), λi = λd =
10 in Eqn.(7) and Eqn. (9), λa = 0.1 in Eqn.(4). For the

threshold td, we set it to be 0.2m.

In Sec. 4.1, when clustering the templates, the num-

bers in five semantic class are [40, 40, 40, 60, 60] respec-

tively. We keep C = 0.3 when learning the SVR. To bal-

ance different features in SVR, we normalize each feature

with L2 norm, and concatenate all the features and weight

each type of feature based on its relative feature length, i.e.

wi =
∑

j Lj/Li where Li is the length of feature type i.

1http://www.cs.huji.ac.il/ talyam/inference.html
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Figure 7. Qualitative visualization of two level depth prediction.

To infer the depth in Sec. 5, we set rd = 0.5m, rc = 0.25m
and [minsc,maxsc] = [0.05m, 0.5m]. In addition, the

learned weight matrix of w(sc, sk) in Eqn.(5) is attached

in the supplementary material. By our matlab implemen-

tation, it takes about 4 days to learn our models, and the

testing time for our algorithm is around 40s for a 480×640
under a desktop with 3.4GHz processor and a K-40 GPU.

6.1. Quantitative results

Depth estimation To evaluate the depth prediction, we

take various available metrics from the previous work [24,

6] to measure different aspects of the depth results. For-

mally, given the predicted absolute depth of a pixel dx
and the ground truth d∗

x
, the evaluation metrics are: (1)

Abs relative difference(Rel): 1

N

∑

x

|dx−d∗

x
|

d∗

x

; (2) Square

relative difference(Rel(sqr)): 1

N

∑

x

|dx−d∗

x
|2

d∗

x

; (3) Aver-

age log10 error: 1

N

∑

x
| log10(dx) − log10(d

∗
x
)|; (4)

RMSE (linear):

√

1

N

∑

x
|dx − d∗

x
|2; (5) RMSE (log):

√

1

N

∑

x
|log(dx)− log(d∗

x
)|2; (6) Threshold: % of dx s.t.

max(dx

d∗

x

) < thr, where thr ∈ {1.25, 1.252, 1.253}.

We compare our results with five most recent methods,

i.e. Make3D [30], Depth Transfer [17], DC Depth [24],

Canonical Depth [21] and Depth CNN [6]. We follow the

test setting exactly as that in Depth CNN2 [6].

Tab. 1 shows the quantitative results from all the algo-

rithms. Our final algorithm, i.e. Joint HCRF, outperforms

the state-of-the art Depth CNN [6] with a noticeable mar-

gin. The results of our Global Depth CNN are compara-

ble to the one produced by [6]. We think the difference

is mostly because we use a geometric preserving cropping

for data augmentation (described in our supplementary ma-

terial), yielding improvements on the metrics of Rel and

RMSE. However, we did not use the scale invariance loss

and do pre-training on imagenet as [6], which might lead

2For the results of Make3D, Canonical Depth and Depth CNN, we copy

the results that reported in [6]. However, we find the setting of DC Depth

is different in terms of evaluated image size. Thus, we asked the author

for their results for a fair comparison. For Depth Transfer, we down-

loaded their code <http://kevinkarsch.com/?p=323>, and re-

trained the model to generate all the results.

(a) Depth Global Joint Global

(b) Semantic only Joint HCRF

(c) Depth only Joint HCRF
Figure 8. Examples showing the intuitions behind joint prediction.

to dropping of the δ metric. By fine-tuning the network to

jointly predict depth and semantic labels, the joint global

CNN is better than the depth-only CNN in 7 out of 8 met-

rics. It shows that the semantic labels regularized the depth

prediction through the CNN training, which benefits the

depth estimation. By enforcing the global and local con-

sistency in our joint HCRF, although the quantitative results

are slightly better than the global joint CNN, in Fig. 7 and

Fig. 3 in our supplementary material, we show that it pro-

vides a significant improvement in visual quality both in

semantic segmentation and depth estimation. The results

from HCRF have sharper transitions at the surface bound-

aries and align to local details. The same phenomenon is

also mentioned in [6]. Thus a better metric to measure the

visual quality is worth investigating in the future work.

Semantic prediction. To evaluate the semantic segmenta-

tion, we take the both the popularly used Intersection Over

Union (IOU) and pixel accuracy percentage as evaluation

metrics. We take the state-of-the-art segmentation method

R-CNN [10] for comparison to show the effectiveness of

our joint prediction. To obtain R-CNN results, we use the

author’s code3, and follow the exactly same training strat-

egy for the segmentation stated in their paper. For a fair

comparison, we apply our trained model for region-wise

features, and apply the same CRF as we did for local su-

perpixels without considering the depth information.

Tab. 2 shows the compared results, and our joint estima-

tion provides the best performance. As shown in the second

row, adding only the semantic guidance from global CNN

improves the performance about 2.5%, which shows the

benefits of the interaction between global guidance and lo-

cal prediction. By adding depth information into the frame-

work, the accuracy is further improved, which proves the

complementary of the depth and semantic information. We

also tried to use a global jointly trained CNN to directly pre-

dict the semantic labels. However, such a global prediction

3https://github.com/rbgirshick/rcnn

<http://kevinkarsch.com/?p=323>


Image DC Depth [24] D. CNN [6] Ours depth Depth GT Ours semantic Semantic GT

Figure 6. Qualitative comparison with other approaches. Depth maps are normalized by their respective max depth (Best viewed in color).

Lower is better Higher is better

Criteria Rel Rel(sqr) Log10 RMSE(linear) RMSE(log) δ < 1.25 δ < 1.252 δ < 1.253

Make 3D [30] 0.349 0.492 - 1.214 0.409 0.447 0.745 0.897

Depth Transfer [17] 0.350 0.539 0.134 1.1 0.378 0.460 0.742 0.893

DC Depth [24] 0.335 0.442 0.127 1.06 0.362 0.475 0.770 0.911

Canonical Depth [21] - - - - - 0.542 0.829 0.940

Depth CNN Coarse [6] 0.228 0.223 - 0.871 0.283 0.618 0.891 0.969

Depth CNN Fine [6] 0.215 0.212 - 0.907 0.285 0.611 0.887 0.971

Global CNN - Depth only 0.207 0.216 0.104 0.823 0.284 0.550 0.861 0.969

Global CNN - Joint 0.226 0.208 0.095 0.750 0.266 0.593 0.889 0.976

Joint HCRF 0.220 0.210 0.094 0.745 0.262 0.605 0.890 0.970

Table 1. Quantitative comparison between our method and other state-of-the-art baseline on the NYU v2 dataset.

Method Ground Vertical Ceiling Furniture Object Mean IOU Pix acc.

R-CNN [10] CRF 57.837 64.062 16.513 17.8 45.536 40.349 68.312

Semantic HCRF 61.840 66.344 15.977 26.291 43.121 42.715 69.351

Joint HCRF 63.791 66.154 20.033 25.399 45.624 44.200 70.287

Table 2. Quantitative comparison between our method and R-CNN [10] on image segmentation task of NYU v2 dataset.

only achieves 30.5% in mean IOU, which is considerably

lower than the results of our HCRF. The segmentation from

the joint global CNN is very blurry, while HCRF provides

much clearer boundaries.

6.2. Qualitative results

In Fig. 6, we further visually show the depth comparison

results between our method, DC Depth [24] and DCNN [6],

and the segmentation comparing with the ground truth. In

Fig. 6, we can see that DC Depth uses small local segments

which suffers from local distortions due to lack of global

cues. DCNN does not have the constraint from semantic,

thus the prediction may be negatively influenced by appear-

ance variation, e.g. the refrigerator in the second image,

and the reflection on the ground at right-bottom of the third

image. In our case, our approach jointly considers both the

global prediction and local details, and leverages the benefit

from depth and semantic prediction, and therefore achieves

more consistent depth changes with the ground truth.

In Fig. 7, we show that comparing with global depth out-

put, the joint output provides more detailed structures in the

scene, yielding visually more satisfied results. In addition,

in Fig. 8, we illustrate the intuition behind the joint informa-

tion of depth and semantic labels by doing experiments of

removing one from the model and test the other. In Fig. 8(a),

for global prediction, by adding the semantic constraint, the

distortion of depth CNN prediction is fixed because of the

smoothness constraint enforced by the “vertical” label. In

Fig. 8(b), by considering local depth change and depth dis-

continuity, the model is able to handle the appearance con-

fusion in semantic segmentation. In Fig. 8(c), for fine-level

depth estimation, by adding semantic segments, the depth

map are better aligned with object boundaries.

7. Conclusion
We propose a unified approach to jointly estimate depth

and semantic labels from a single image. We formulate the

problem in a hierarchical CRF which embeds the potential

from a global CNN and a local regional CNN. Through joint

inference, our algorithm achieves promising results in both

depth and semantic estimation. In future work, we will ex-

tend to outdoor scenarios such as the KITTI dataset [9].
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