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Towards Universal Power Efficient
Scheduling in Gaussian Channels

Dinesh Rajan, Member, IEEE

Abstract— In this paper, we propose a framework for designing
power efficient schedulers for transmitting bursty traffic sources
over Gaussian wireless channels that provides deterministic and
statistical guarantees on absolute delays experienced by the
source packets. The proposed schedulers compute the trans-
mission rate and power using temporal water-filling techniques
without any knowledge of the arrival traffic statistics. The sched-
ulers reduce the average transmission power substantially (55%
in some scenarios) for small increases in delay. The frame-
work allows us to design schedulers that artfully tradeoff the
performance with the complexity of computing the schedulers.
We also introduce an iterative process to compute a lower
bound on the transmit power of any scheduler that provides
absolute delay guarantees. The utility of having accurate traffic
predictors is demonstrated; specifically, we show that a perfect
one step predictor achieves near optimal performances for small
delay bounds. The proposed schedulers and iterative method of
computing the lower bound are also shown to provide statistical
guarantees on packet delays.

Index Terms— Scheduling, Power control, Data Traffic, Delay
bounds.

I. INTRODUCTION

PROVISIONING of quality of service (QoS) is critical for

the success of high data rate multimedia services in future

wireless networks. In this paper, we propose power efficient

schedulers for transmitting bursty traffic sources through a

wireless channel. The proposed schedulers provide determin-

istic or statistical guarantees on absolute packet delays without

any prior knowledge of the arrival traffic statistics.

Scheduling is commonly used to refer to the allocation of

a particular resource (like bandwidth) to multiple competing

entities (like flows) under certain constraints (like fairness);

for example, a first come first serve (FCFS) scheduler. In this

paper, we consider a single user system with varying number

of packet arrivals in every time-slot; such a source is referred

to as a bursty source. A scheduler is defined (in Section II) as

a mapping from the number of packet arrivals and state of the

system to the number of packets transmitted. Schedulers are

proposed for both stationary and nonstationary traffic sources.

The contributions of this paper are as follows:

• Computes a universal lower bound on the transmit power

required by any scheduler that provides deterministic or

statistical guarantees on absolute packet delays. The lower

bound is computed iteratively and in an off-line manner for

a given sequence of packets arrivals. The scheduler which
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achieves this lower bound is referred to as noncausal minimal

power (NOMP) scheduler.

• Proposes a simple memoryless (and causal) scheduler that

uses no information on prior scheduled packets or future

arrivals to schedule packets: Its performance serves as an

upper bound on transmission power and can be computed

in closed form. An approximate relationship between trans-

mission power and delay bound is derived. Remarkably, it is

shown that the derived approximate relationship is analogous

to Shannon’s capacity formulation in which the rate is replaced

by the effective bandwidth of the source.

• For nonstationary sources, a low complexity water-filling

based causal look ahead (CLAD)-0th order1 scheduler is

proposed that has low power consumption.

• For stationary sources, a CLAD-1 scheduler is proposed

that uses information of prior arrivals to predict the statistics

of future arrivals and schedule packets. The power of this

scheduler is lower than that of CLAD-0 schedulers and is

near optimal.

• A simple noncausal scheduler, labeled NCLAD-1, is pro-

posed that assumes perfect knowledge of exactly one future

arrival. The performance of a NCLAD-1 scheduler shows

that an efficient 1-step predictor achieves near optimal perfor-

mance for all traffic scenarios. Thus, various traffic prediction

methods (e.g. neural network based) can be used to construct

optimal schedulers.

All the proposed schedulers are solutions of minimizing

the transmit power under various constraints: The solutions of

these optimization problems (except for CLAD-1 scheduler)

can be interpreted as constrained temporal water-filling and

involves low computational complexity. These schedulers can

thus be readily adapted for implementing in various networks

including cellular data networks, WLANs, ad-hoc networks

and mesh networks. The proposed delay bounded schedulers

are conceptually similar to rate and power adaptation in fading

channels with short term power constraints [2]. Since the

proposed CLAD scheduler achieves performances near that of

the NOMP scheduler without any knowledge of arrival traffic,

it can be considered to be a preliminary or first generation

universal scheduler.

The results in this paper suggest three main messages:

i) Irrespective of traffic, simple schedulers exist which are

near optimal, ii) Perfect one step traffic predictor achieves

near optimal performance for low to medium values of delay,

and iii) An approximate formula can be derived for power-

delay relationship that depends only on first and second order

statistics of the arrival traffic.

1The order of the scheduler is defined in Section III.
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Recognizing that a substantial portion of the energy con-

sumption in a wireless communication system is at the trans-

mitter, in this paper, we focus on minimizing the transmit

power under delay constraints. Power minimization for uplink

transmission is important in mobile terminals due to the

limited battery resources. Using low power transmission to

obtain the desired downlink performance is also important at

the base station since it results in reduced interference to other

users and consequently increased system throughput.

The importance of incorporating traffic models in the design

of wireless communication systems has been well recog-

nized [3], [4]. Techniques that delay data transmission based

on channel conditions is commonly used to save transmis-

sion power. The transmission scheme which maximizes long-

term throughput transmits more power and information in

good channel states, and less in poor conditions [5]. Similar

concepts are used in the INFOSTATION [6] architectures,

where mobile nodes transmit data only when they are close

to base-stations; thus, reducing transmission power for in-

creased delays. Schedulers that minimize the transmit power

under average delay constraints have been considered in [7]–

[10]. These approaches typically use dynamic programming

methods to obtain optimal transmission policies. Schedulers

that provide QoS guarantees have been an area of active

research (see for example [11]); however, many of these

have been proposed for constant rate data links like in wired

networks. In wireless channels, the instantaneous throughput

depends on the channel conditions and the transmit power

and is therefore not a constant. There is extensive work on

scheduling over wireless channels: see [12]–[16] for a partial

list of relevant work. The primary motive behind these works

is to efficiently use system resources, often with an aim of fair

division of resources. Moreover, a lot of emphasis is given on

exploiting the multiuser diversity effects [17], [18].

The remainder of this paper is organized as follows. We

introduce some basic notation and formalize the scheduling

problem in Section II. Schedulers with deterministic and

statistical guarantees on delay are introduced in Sections III

and IV respectively. Finally, we conclude in Section V.

II. PROBLEM SETUP

Consider a system in which an packets arrive at the trans-

mitter at the beginning of time-slot n. Let D0 be the desired

absolute packet delay bound. Delay is measured in terms of the

number of time-slots and we use the convention that if packets

arriving in time-slot n are transmitted in the same time-slot,

then the delay equals 1 time-slot. To deterministically meet

the delay bound all an packets have to be transmitted within

time-slots n, n + 1, . . . , n + D0 − 1. All arriving packets are

stored in a buffer which is assumed to be large enough not to

cause any overflows.2 In this paper, we treat each packet as

being infinitely divisible and partial packet transmissions in

a time-slot are allowed. For simplicity, we only consider an

additive white Gaussian noise (AWGN) channel. The analysis

can be easily extended to block fading channels.

2If the maximum packet arrival M in any slot is known, then the buffer
size needed to prevent overflows is MD0.

The received signal, Yn, is given by Yn = Xn + zn,

where Xn is the transmitted signal and zn is the additive

Gaussian noise with variance σ2. The signals Yn, Xn and

zn are Tc dimensional vectors, where Tc is the number of

symbols in each time-slot. The transmit signal, Xn, depends

on the number of packets, un, transmitted in time-slot n
and the coding and modulation scheme used. Transmit power

Pn is chosen to ensure that Xn can be reliably determined

from Yn. In this paper, we consider reliability in the Shannon

theoretic sense and use the well known Gaussian capacity

formulation [19] to compute the power required to transmit

un packets as Pn = P (un) = σ2(eRun − 1), where R
is the size of the packet in bits. Although, such reliability

metrics are valid only asymptotically, the performance of

practical advanced coding schemes is very close to information

theoretic limits. Moreover, similar functional forms like P (un)
with additional penalty term can be used to model practical

systems with finite probability of error. The average power

of any scheduler can then be computed as 1
N

N
∑

i=1

P (ui) for

a given packet arrival sequence {an}N
1 . Denote by vn,i the

number of packets transmitted during time-slot n that arrived

during time-slot n − i.

Definition 1: A scheduler is defined as a mapping from

the number of packet arrivals, an and scheduler state, Sn

to the number of packets transmitted in different time-slots,

vn+i,i, ∀i ≥ 0, i.e., (an, Sn) �→ vn+i,i.

In other words, at each time-slot n the scheduler computes

when each of the an packets should be transmitted. Recognize

that schedulers which determine the transmission rate (i.e.,

number of packets transmitted in each time-slot) based only

on the total number of packets in the buffer cannot determin-

istically guarantee the desired delay bound. Thus, buffer state

is not a sufficient statistic for guaranteeing a delay bound.

The state of the scheduler, Sn, at time-slot n depends on the

type of scheduler. For a NOMP scheduler, the state is Sn =
φ({ai}N

i=1), where N is the length of the arrival sequence

and φ() is a function that represents the relation between

packet arrivals and current scheduler state. Although, we do

not explicitly characterize this functional form, its value will

be clarified in the different cases. For the CLAD schedulers,

Sn = φ
(

{ai}n−1
i=1

)

and for the memoryless scheduler Sn = Λ,

the null state. All the proposed schedulers are assumed to

be stationary (i.e. the mapping is time-invariant) even if the

arrivals are not stationary.

For a scheduler that provides deterministic delay guarantees

all packets have to be transmitted within D0 time-slots of

arriving at the transmit buffer, i.e.,

D0−1
∑

j=0

vn+j,j = an. For a

scheduler that provides statistical delay guarantees, at most

δ% of the packets may violate the delay bound, i.e.,

Pr{di > D0} ≤ δ, (1)

where di is the absolute delay of the ith packet and δ is

the fraction of packets that violate the delay bound. In this

paper, we assume that packets which violate the delay bound
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are dropped.3 Thus, vn,i = 0 for i /∈ {0, 1, . . . , D0 − 1}.

The number of packets, un, transmitted in time-slot n is

given by un =

D0−1
∑

j=0

vn,j . In the next section, we compute

power efficient schedulers that provide deterministic delay

guarantees.

Note that with no constraint on the maximum packet arrivals

within a time-slot, an absolute delay bound cannot be guar-

anteed with finite transmission power. In power constrained

systems, an outage formulation is more applicable [20]. We do

not consider power limited systems in this paper; our goal is to

characterize bounds on power required to provide certain delay

guarantees to the traffic. As one application of our results, we

show in Section IV how increasing the ratio of packets that

violate delay bound can be used to provide service in power

constrained systems.

III. SCHEDULERS WITH DETERMINISTIC DELAY

GUARANTEES

In this section, we compute power optimal schedulers with

different amounts of information available to the scheduler.

We first compute a noncausal scheduler, whose performance

serves as a lower bound on the performance of any scheduler

and then proceed to compute different causal schedulers that

approach the performance lower bound.

A. Noncausal minimal power (NOMP) scheduler

We first compute a noncausal scheduler that uses informa-

tion about the entire arrival sequence (i.e., Sn = φ({ai}N
i=1))

to schedule packets and minimize the average power consump-

tion. The problem of interest can be formally stated as follows,

P ∗
NOMP = min

{vi,j}
i=1...,N, j=0,...,D0−1

1

N

N
∑

i=1

P

⎛

⎝

D0−1
∑

j=0

vi,j

⎞

⎠

0 ≤ vi,j ;

D0−1
∑

j=0

vi+j,j = ai, i = 1, . . . , N (2)

It should be noted that a boundary condition on vk,j imposed

due to causality is not explicitly mentioned in (2). Specifically,

recognize that vk,j = 0, for k < D0 and j ≥ k, since there

are no packet arrivals before time-slot 0. In this case, the

scheduler state Sn can be considered as a D0 length vector

with elements,
⎡

⎢

⎢

⎣

D0−1
∑

j=0
j �=0

vn,j ,

D0−1
∑

j=0
j �=1

vn+1,j , . . . ,

D0−1
∑

j=0
j �=D0−1

vn+D0−1,j

⎤

⎥

⎥

⎦

.

Recall that the scheduler computes the number of packets to

transmit and the power based on Sn and an.

For any given sequence of packet arrivals {an}N
1 , it can

be shown that (2) is a convex optimization problem and has

3An alternative formulation is to ensure that all packets have to be
completely transmitted, but up to δ% of them may violate the delay bound. In
this case, packets which violate the delay bound are queued separately (rather
than dropped) and transmitted when un ≤ E[an], i.e., when there are not
too many packets scheduled for transmission.

a minimum. In Appendix A, we give an iterative method

for computing P ∗
NOMP . The iterative procedure schedules

packet transmissions using information of future arrivals in

a noncausal manner. Hence, the scheduler is referred to

as a noncausal minimal power (NOMP) scheduler and its

performance serves as a lower bound on the power of any

scheduler that guarantees delay bound D0 for that arrival

sequence. Numerical values of the lower bound are given in

Figure 4 and explained in Section III-G.

B. Causal look ahead (CLAD)-0 schedulers

We now propose a series of causal schedulers labeled

CLAD-k schedulers in which the order of the scheduler, k,

is the number of future time-slots up to which arrivals are

predicted. The rationale is that for stationary sources, the

statistics of future arrivals can be estimated from prior arrivals.

The CLAD-0 scheduler does not predict the statistics of future

arrivals and can be used even when the traffic is nonstationary.

To derive the CLAD-0 scheduler, we modify (2) to mini-

mize the local average power rather than global average power.

The state of the scheduler Sn = φ({ai}n
i=1). In this case,

Sn can be considered as a D0 state vector with elements
⎡

⎣

D0−1
∑

j=1

vn,j ,

D0−1
∑

j=2

vn+1,j , . . . ,

D0−1
∑

j=D0−1

vn+D0−2,j , 0

⎤

⎦. At time-

slot n, the CLAD-0 scheduler computes vn+j,j , j =

0, 1, . . . , D0 − 1 to minimize

D0−1
∑

j=0

P (ũn+j), where ũn+j =

D0−1
∑

k=j

vn+j,k is the number of packets scheduled for transmis-

sion at time-slot n+j that arrived during or before time-slot n.

Note that this scheduler uses the knowledge of prior scheduled

transmissions, vn+j,i, i = j + 1, . . . , D0 via Sn to compute

vn+j,j . Formally,

P ∗
CLAD−0 = min

{vn+j,j}
j=0,...,D0−1

1

D0

D0−1
∑

i=0

P

(

D0−1
∑

k=i

vn+i,k

)

0 ≤ vn+j,j ,

D0−1
∑

j=0

vn+j,j = an (3)

It can be easily shown that the solution to (3) is given by

temporal water-filling as

vn+j,j =

⎛

⎝α −
D0−1
∑

k=j+1

vn+j,k

⎞

⎠

+

, j = 0, . . . , D0 − 1 (4)

where (x)+ = max{x, 0}, and α is computed from
D0−1
∑

j=0

(α − vn+j,j)
+

= an. The performance of this scheduler

is shown in Figure 4 and is discussed in Section III-G.

C. CLAD-1 scheduler

For stationary sources, we propose a scheduler which min-

imizes local transmit power by estimating the distribution of

future arrivals. In this paper, we use a simple histogram to
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estimate the distribution of future arrivals and thus p̂(an+1 =

i) = 1
n

n
∑

k=1

I(ak = i), ∀i, where I() is the indicator func-

tion. As n increases p̂ → p, the true distribution of the

source. At each time-slot n the CLAD-1 scheduler not only

computes vn+j,j but also v
(k)
n+j+1,j for k = 1, . . . , Mn =

max{a1, . . . , an}. Note that v
(k)
n+j+1,j represents the number

of packets transmitted in time-slot n + j + 1 if k packets

arrive at time-slot n + 1. Formally, the scheduler is chosen to

optimize

P ∗
CLAD−1 = min

{vn+j,j ,v
(k)
n+j+1,j

}
j=0,1,...,D0−1

Mn
∑

k=0

D0
∑

i=0

P (ûn+i)p(an+1 = k)

0 ≤ vn+j,j ,

D0−1
∑

j=0

vn+j,j = an, (5)

D0−1
∑

j=0

v
(k)
n+j+1,j = k ∀1 ≤ k ≤ max{a1, . . . , an}

where ûn+i =

D0−1
∑

j=0

vn+i,j . Solving (5) analytically is in-

tractable and hence we resort to numerical optimization tech-

niques. The performance of the CLAD-1 scheduler is given in

Figure 4 and explained in Section III-G.

The CLAD-m schedulers can be derived using similar tech-

niques: However, their computational complexity increases

with m. Moreover, as will become evident from Section III-

G the performance of the CLAD-1 scheduler is close to the

NOMP scheduler and thus is a reasonable choice for obtaining

good performance at low complexity. It should be reiterated

that the CLAD-m schedulers assume stationarity of the arrival

traffic and are not guaranteed to provide significant scheduling

gains when the traffic is non-stationary. The formulation of

the CLAD-m schedulers are not unique. For example, a lower

complexity CLAD-1 scheduler formulation assumes that when

computing the scheduler at time-slot n, the an+1 packets

are uniformly split and transmitted over D0 time-slots. A

similar approach is taken in the NCLAD-m schedulers which

is discussed next.

D. NCLAD-1 scheduler

The main motivation behind the NCLAD-1 scheduler

is to understand and quantify the gains in using traffic

predictors in the scheduling context. The NCLAD-

1 scheduler minimizes local transmit power assuming

that one future arrival is known exactly, i.e., at

time-instant n, scheduler has knowledge of {ai, i =
1, . . . , n + 1}. Thus, scheduler state Sn = φ({ai}n+1

1 ) =
⎡

⎢

⎢

⎣

D0−1
∑

j=0
j �=0

vn,j ,

D0−1
∑

j=0
j �=1

vn+1,j ,

D0−1
∑

j=1
j �=2

vn+2,j , . . . ,

D0−1
∑

j=D0−2
j �=D0−1

vn+D0−1,j

⎤

⎥

⎥

⎦

;

note the noncausal nature of Sn which depends on an+1.

Moreover, the NCLAD-1 scheduler assumes that the an+1

packets are uniformly divided and transmitted over time-slots

n + 1, . . . , n + D0. 4

Similar to the earlier cases, the optimization problem is

posed as,

P ∗
NCLAD−1 = min

{vn+j,j}
j=0,...,D0−1

1

D0

D0−1
∑

i=0

P

⎛

⎝

D0−1
∑

k=(i−1)+

vn+i,k

⎞

⎠ .

0 ≤ vn+j,j ,

D0−1
∑

j=0

vn+j,j = an (6)

The solution is again obtained by temporal water-filling as

vn+j,j =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

⎛

⎝α −
D0−1
∑

k=j+1

vn+j,k

⎞

⎠

+

, j = 0

⎛

⎝α −
D0−1
∑

k=j+1

vn+j,k − an+1

D0

⎞

⎠

+

, 1 ≤ j < D0

(7)

where α is computed as

D0−1
∑

j=0

(α− vn+j,j)
+ = an. Although,

there are many different schedulers that use knowledge of

future arrivals, our results indicate that the proposed NCLAD-

1 scheduler is near optimal for small delay bounds. Moreover,

the complexity of the proposed NCLAD-1 scheduler is low.

Numerical values of the NCLAD-1 scheduler is given in

Figure 6 and explained in Section III-G. As noted earlier,

the main objective of the NCLAD-1 scheduler is to study

the effect of perfect one step traffic predictor on scheduler

performance.

E. Memoryless scheduler

We now present a simple memoryless scheduler in which

vn+j,j , j = 0, 1, . . . , D0 − 1 depends only on an and not on

the prior scheduled packets; thus Sn = Λ, the Null state.

Specifically, the memoryless scheduler uniformly spreads the

packet transmissions across the entire available time-slots,

i.e., vn+j,j = 1
D0

an and thus, un = 1
D0

D0−1
∑

j=0

an−j . This

memoryless scheduler serves four objectives: i) Its perfor-

mance serves as an upper bound on the transmit power of any

scheduler for arbitrary delay bounds, ii) Its performance can be

derived analytically in closed form, if the traffic is stationary.

iii) It is used to show the connection between filtering and

scheduling and derive the delay-bandwidth relationship, and

iv) An approximate formula for the power of this scheduler at

large delay bounds is derived that depends only on the first and

second order statistics of the incoming traffic. Remarkably, this

approximate formulation is similar to the notion of effective

bandwidth [21]. For non-stationary sources, the first and

second order statistics in the approximate formula are replaced

by the sample mean and variance for that arrival sequence.

4An approach similar to the CLAD-1 scheduler can be used in which the
scheduler at time n attempts to optimize the transmission of the an+1 packets
also; however, as the results indicate, the proposed NCLAD-1 scheduler
attains near optimal performance for small delays.
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Fig. 1. Performance of approximate power derivation for Ethernet traffic

1) Closed form analysis: The average power of the mem-

oryless scheduler, Pmemoryless, is given by

Pmemoryless =
1

N

N
∑

n=1

P

⎛

⎝

1

D0

D0−1
∑

j=0

an−j

⎞

⎠ .

If the source arrivals are stationary, then Pmemoryless can be

derived in closed form as

Pmemoryless =
∑

a1...aD0

P

(

∑D0

i=1ai

D0

)

p(a1, . . . , aD0)(8)

= σ2

⎛

⎝

∑

a1...aD0

D0
∏

i=1

eRai/D0p(ai) − 1

⎞

⎠

= σ2

(

D0
∏

i=1

∑

ai

eRai/D0p(ai) − 1

)

= σ2

(

(

E[eRan/D0 ]
)D0

− 1

)

, (9)

where p(a1 . . . , aD0) =

D0
∏

i=1

p(ai) is the joint pmf of the

arrivals which is assumed to be an i.i.d. process. Note that the

memoryless scheduler is derived without assuming stationarity

of the arrival process. The stationarity of the arrival process is

only used to calculate the average power in closed form (9).

Rewriting (9), we see that

log

(

1 +
P

σ2

)

= D0 log E[eRan/D0 ] (10)

It can be seen that as D0 → 1, the RHS equals log E[eRan ].
Also, as D0 → ∞, by the law of large numbers (applied

to (8)), the RHS equals E[Ran] which is the Shannon limit.

2) Performance analysis based on first and second order

statistics: To better understand the performance of the mem-

oryless scheduler, we derive an approximate relationship for

Pmemoryless that depends only on the first order (mean) and

second order (variance) statistics of the arrival process. We

then study the validity of this approximation when applied to

traffic for which the entire statistics are unknown or difficult

to model, e.g. Ethernet traffic. The approximation derived in

Appendix B is given as follows:

log

(

1 +
P

σ2

)

= R(λ +
1

2

Rσ2
a

D0
) = R(λ +

1

2
Rσ2

u), (11)

where σ2
u is the variance of the output traffic and is derived

in Appendix B. The accuracy of the approximation (11) at

high delays is evident from Figure 1 which compares the

performance of the memoryless scheduler and the approximate

formulation for Ethernet traffic. Interestingly, the approxima-

tion is accurate only at very high delays (on the order of 100

time-slots or higher) for Ethernet traffic. However, for MPEG

and i.i.d traffic, the approximation holds at smaller values of

delay bound.5 Moreover, the analysis easily extends to the

case of multiple flows with different delay constraints and our

results will be presented at a later forum.
3) Non-monotonic behavior of memoryless scheduler: It

should be noted that the power of the memoryless scheduler is

not a monotonically decreasing function of the delay bound.

A simple example illustrates this non-monotonic behavior.

Consider the deterministic arrival sequence {0, M, 0, M, . . .}.

For this arrival sequence and a delay bound of 2 time-slots,

the memoryless scheduler transmits M/2 packets in every

time-slot: Thus, the average power equals Pmemoryless(2) =
σ2(eRM/2 − 1). For a delay bound of 3 time-slots, the

scheduler alternatingly transmits M/3 and 2M/3 packets

and hence the average power equals Pmemoryless(3) =
σ2((eRM/3 + e2RM/3)/2 − 1). Clearly Pmemoryless(3) is

greater than Pmemoryless(2) due to the convexity of the

exponential function.
4) Average delay and delay distribution: The average delay

of the proposed scheduler can be easily derived from Little’s

law as the ratio of average buffer length E[xn] and average

arrival rate. The buffer length xn for the memoryless scheduler

is given by

xn =

n
∑

i=1

ai −
n−1
∑

i=1

ui

=
D0 − 0

D0
an +

D0 − 1

D0
an−1 + + . . . +

1

D0
an−D0+1

=

D0−1
∑

i=0

(

1 − i

D0

)

an−i

It follows that E[xn] = E[an]
(

D0+1
2

)

and hence the aver-

age delay equals D0+1
2 . For the other schedulers proposed,

deriving the average delay in closed form is not feasible. A

trivial upper bound on the average delay for all the proposed

schedulers is D0.

It should be noted that for a specified absolute delay bound,

the variance in the delay histogram, i.e., the actual delays

experienced by the different packets, can be reduced without

any additional increase in transmission power by applying

traditional packet re-ordering mechanisms like FCFS policy.

The application of the FCFS policy does not change the packet

delay distribution when D0 = 2. The delay distribution before

and after enforcing FCFS policy is given in Figure 2 for

the CLAD-0 scheduler. Clearly, the concatenation of FCFS

5Plots similar to Figure 1 for MPEG and i.i.d. traffic are not shown.
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Fig. 2. Histogram of delay distributions with and without imposing FCFS
policy in conjunction with the proposed CLAD-0 scheduler: a) Delay bound
of 4 time-slots, b) Delay bound of 7 time-slots.

policy reduces the variance of this distribution at all delays.

It should be noted that by coupling with a FCFS policy, no

packets are received out of order, a useful feature for real time

traffic source and TCP based networks. In case of multiple

flows with different deadlines, the proposed schedulers can be

easily coupled with other reordering mechanisms like earliest-

deadline-first (EDF) [11].

F. Water-filling interpretation of schedulers

The solution of the proposed optimization problems can be

interpreted using standard water-filling method. This water-

filling process is pictorially depicted in Figure 3. Consider a

multiple binned vessel, where each bin corresponds to one

time-slot and the base of all bins are of unit area. The volume

of water poured equals an for the memoryless and CLAD-0

schedulers. The memoryless scheduler, is similar to water-

filling into Do empty bins, i.e., the an packets are distributed

uniformly across all D0 bins. The CLAD-0 scheduler is

Fig. 3. Water-filling interpretation of schedulers

analogous to pouring the water into a vessel with D0 bins;

the vertical level in the first D0−1 bins is proportional to the

number of packets already scheduled for transmission (vn+i,j)

and the last bin is empty.

The NOMP scheduler is similar to water-filling into a bin

with N + D0 − 1 bins. The amount of water poured equals
N

∑

n=1

an. However, there is a valve or filter between the bins that

allows only certain fluids to pass through in both directions.

The different fluids will settle down to as uniform a level as

possible in each bin subject to valve operation constraints.

G. Numerical Results

We now numerically study the performance (average power

versus delay bound) of the different schedulers.

Scheduler Performance for i.i.d. traffic: The average

power of the different schedulers are plotted against the delay

bound in Figure 4 for an i.i.d. arrival sequence of length

10,000 time-slots. Clearly, at a delay of 1 time-slot, all packets

have to be transmitted in the same time-slot that they arrive.

Thus, all schedulers require the same power. As the delay

bound increases from 1 to 2 time-slots, the power required

decreases substantially (nearly 55% for CLAD-0 scheduler)

for all schedulers. Eventually, as the delay goes to infinity, the

required power approaches the Shannon limit. The Shannon

limit is simply given by P

(

R
N

N
∑

n=1

an

)

and is the power

required to transmit constant rate traffic.

The power required by the memoryless scheduler is higher

than the power required by the CLAD-0 scheduler, which

is not surprising since the memoryless scheduler does not

utilize knowledge of prior packet schedules in determining

the transmission rate. As the delay increases the CLAD-0

scheduler smoothes the input traffic thereby reducing bursti-

ness of output traffic, an effect which has also been observed

in case of schedulers which minimize power under average

delay constraints [8]. The CLAD-1 scheduler has performance
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Fig. 4. Average power versus absolute delay for the proposed schedulers.

better than even the CLAD-0 scheduler and nearly that of the

NOMP scheduler. It should be reiterated that only the CLAD-1

scheduler requires the stationarity of arrival process. The other

schedulers can be used even for nonstationary traffic sources.

In this case, the performance of the NCLAD-1 scheduler was

similar to that of the CLAD-1 scheduler and is not shown.

Scheduler Performance for MPEG traffic: The perfor-

mance of the proposed schedulers is given in Figure 5 for an

MPEG traffic source. The average power of the memoryless,

CLAD-0 and NOMP schedulers are plotted in Figure 5. It can

be seen that the average power decreases substantially (nearly

60%) for small increase in delay. Further, the performance of

all three schedulers are nearly identical. Thus, for this traffic

source, the memoryless and CLAD-0 schedulers exhibit near

optimal performance. Analysis of the actual traffic sequence il-

luminates the reasons for such scheduler behavior. The MPEG

traffic consists of packets that contain periodic intracoded

frames (I-frames) with intercoded frames (P/B frames) in

between. The I-frames contain significantly more data than

the P/B frames and thus the power required to transmit the

I-frames is significantly higher than the power required to

transmit the P/B-frames. Hence, changing the transmission

rates of the P/B frames according to prior I-frame packets

scheduled and vice-versa does not provide significant power

reduction over the memoryless scheduler.

Scheduler Performance for wide-area traffic: The per-

formance of the proposed schedulers for Ethernet traffic is

given in Figure 6. The trace files for the simulations were

obtained from [22] and details of the trace files are given

in [23]. In this case, the rate of decrease of power with

delay is slower than for i.i.d. or MPEG traffic. The reason

for the slower decrease in average power versus delay bound

curve is the self similar nature of the traffic stream, i.e., the

traffic exhibits burstiness across an extremely wide range of

time-scales [24]. Thus, smoothing the traffic at smaller time-

scales (smaller delay bounds) does not completely remove the

burstiness at larger time-scales and hence the power of the

CLAD-0 and memoryless schedulers are significantly higher

than the NOMP scheduler.

Also, the NOMP scheduler has significantly better per-

formance than the CLAD-0 scheduler. However, for this
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Fig. 5. Performance of proposed schedulers for MPEG traffic.
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Fig. 6. Performance of proposed schedulers for Ethernet traffic.

arrival traffic, as expected, the CLAD-1 scheduler does not

provide significant gain over the CLAD-0 scheduler since

the arrival traffic is not stationary and a simple histogram

based predictor is not very accurate. The performance of

the NCLAD-1 scheduler is near optimal for small delays.

Thus, illustrating that with a perfect one-step predictor near

optimal power is obtained for small delays. We found that the

NCLAD-2 scheduler, which has perfect knowledge of 2 future

arrivals, nearly achieves NOMP scheduler performance for

even higher delays than the NCLAD-1 scheduler. For clarity

the performance of the NCLAD-2 scheduler is not shown in

Figure 6.

IV. SCHEDULERS WITH STATISTICAL DELAY GUARANTEES

In this section, we modify the scheduler design to provide

statistical delay guarantees on the traffic.

A. Statistical NOMP scheduler

For a given arrival sequence {an}N
1 we now compute a

lower bound on the power required by any scheduler which

provides delay guarantees of the form (1). In this paper, we

assume that packets which violate the delay bound are dropped
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and retransmission will be ensured by higher layers.6 The

statistical NOMP scheduler is computed in two steps:

1) Deterministic NOMP: Calculate vi,j and un like in the

deterministic NOMP scheduler (Section III-A).

2) Dropping policy: Given δ and {an}N
1 , compute a dropping

threshold udr such that no more than udr packets are trans-

mitted in any time-slot n. At each time-slot n the remaining

un−udr packets are dropped. The threshold udr is determined

to ensure that the total fraction of dropped packets equals δ i.e.,
N

∑

n=1

(un−udr)
+ = δ

N
∑

n=1

an. The dropping policy is essentially

an inverse water-filling process, i.e., a threshold is set and all

packets larger than the threshold are dropped. The optimality

of this NOMP scheduler is discussed in Appendix D.

The performance of the statistical NOMP scheduler is given

in Figure 7a for two different values of δ. For a given value

of δ, the average power is a decreasing function of the delay

bound similar to the earlier case of absolute delay bounds.

This rate of decrease is smaller for larger values of δ. The

reduction in power with increasing δ is clear for all delays

from the figure.

The proposed statistical NOMP scheduler is constructed to

ensure that over the entire arrival sequence {ai}N
1 not more

than δ% of the packets violate the delay bound. However, this

scheduler does not guarantee that over all subsets {ai}n
1 lesser

than δ fraction of packets will violate the delay bound.

B. Statistical CLAD schedulers

The proposed deterministic CLAD schedulers can be readily

modified to guarantee statistical bounds on delay (1). There

are three main steps in the calculation of the statistical CLAD

schedulers namely:

1) Deterministic CLAD: Compute vk,j and un as given in

Section III-B.

2) Adaptive dropping policy: At each time-slot n, compute

ηal(n) = δ

n
∑

i=1

an the total number of packets that could

have violated the delay bound and ηact(n) the actual number

of dropped packets. Packets are dropped if un > uth
n and

ηact(n) ≤ ηal(n); the number of dropped packets equals

un − uth
n , and uth

n is the dropping threshold. The rationale

behind this dropping policy comes from the realization that

the transmission of large number of packets consume exponen-

tially high power. Hence, the maximum packet transmission

size is limited by setting a adaptively varying threshold.

3) Threshold update: The dropping threshold is adapted as

follows: uth
n+1 = uth

n + ∆th(ηact(n) − ηal(n)), where ∆th is

the threshold updating step parameter.

C. Numerical Results

The performance of the statistical CLAD-0 scheduler is

given in Figure 7a for two different values of δ. For large

values of δ the reduction in power with increasing delays

6Moreover, we assume partial packets can be dropped and retransmitted.
Packet integrity constraints can be easily imposed in this framework by
considering the optimal continuous valued solution and mapping them to
discrete values.

is negligible, since most packets are dropped and there is

not much variation in the transmission rate. As δ → 1, the

required power reaches zero for all delay bounds since all

packets are dropped. As δ → 0, the required power is the

same as that of the deterministic schedulers. The performance

of statistical CLAD-1 scheduler is also given in Figure 7a. It

can be clearly seen from the figure that the performance of

the CLAD-1 scheduler is better than the CLAD-0 scheduler

but not as good as the CLAD-1 scheduler. In contrast to the

statistical NOMP scheduler, the statistical CLAD schedulers

are designed to ensure that over all finite time intervals

{ai}n
i=1 no more than δ% of the packets violate the delay

bound. The variation of power of the CLAD-0 scheduler with

δ is given in Figure 7b for two different delay bounds. As

expected the power decreases rapidly with δ and eventually

approaches 0 as delta → 1. Not surprisingly, the rate of

decrease is higher for smaller delay bounds, since in that case

the output traffic is more bursty than at higher delay bounds.

D. Approximate analytical bound: Statistical scheduler

Proceeding as before, we derive in Appendix C the fol-

lowing simple approximation for the behavior of statistical

scheduler:

log

(

1 − δ +
P

σ2

)

= R

(

λ +
Rσ2

u

2

)

+ (12)

log
(

Φ
[

Φ−1(1 − δ) − Rσu

])

,

where Φ(.) is the standard Normal CDF. The numerical

accuracy of the approximation is evident from Figure 7a.

It should be noted that this closed form approximation is

mainly used to observe trends in variation of power with delay,

average traffic rate and packet loss probabilities.

As one application of the approximation, in power con-

strained systems, one could drop larger fraction of packets

to satisfy power constraints. For large SNR (P/σ2), we can

compute this fraction of packets to drop for a given power P0

and traffic from (12) as

δ = 1 − Φ

(

R2σu + Φ−1

(

(1 + P0

σ2 )

eRλ+R2σ2
u/2

))

(13)

There are many variations of the adaptive dropping and thresh-

olding methods. Investigating other adaptation policies that

achieve performance closer to the statistical NOMP scheduler

should be considered in future work.

V. CONCLUSIONS

In this paper, we introduced power efficient schedulers

which provide deterministic and statistical guarantees on

packet delays. The proposed schedulers achieve near optimal

performance without prior knowledge of arrival traffic statis-

tics. A universal lower bound is proposed that provides a lower

bound on the performance of any scheduler that guarantees a

desired delay bound. We believe that the lower bound intro-

duced is not a tight bound for the class of causal schedulers

and obtaining tighter bounds should be considered in future

work. The proposed schedulers can be easily extended to

include multiple flows with different delay constraints. For
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Fig. 7. a) Performance of proposed statistical NOMP, CLAD-1 and CLAD-0 schedulers as a function of delays for two different values of δ. The closed
form approximation is also shown in the Figure. b) Variation of the power of CLAD-0 scheduler with δ for two different values of delays: The performance
of statistical NOMP and CLAD-1 schedulers are similar and not shown.

multiple accessing schemes that are orthogonal in frequency

or code space, the scheduling concept can be directly applied

with appropriate modification to the power-rate formula. For

multiple accessing schemes, based on time division multiplex-

ing the proposed formulation can be applied using a modified

form of the delay calculation. Extension to multi-hop scenarios

should be considered in future research.
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APPENDIX

A. Iterative water-filling

First, it should be noted that optimization problem (2) does

not have a unique minimizer. The objective function in (2)

can be shown to be a convex function and the constraint set

can be shown to be a convex set; thus, the local optimum

equals the global optimum. By a simple change of variables,

optimization problem (2) can be rewritten as

P ∗
NOMP = min

{ui}

1

N

N
∑

n=1

P (un) (14)

0 ≤ un,

n−D0+1
∑

j=1

aj ≤
n

∑

j=1

uj ≤
n

∑

j=1

aj

The Hessian matrix for the objective function (14) can be

computed and shown to be positive definite and thus (14) is

a strictly convex function. Thus, (14) has a unique minimizer.

The equivalence between the two optimization problems (2)

and (14) can be explained based on the relationship between

{vi,j} and {ui}. For any given set {vi,j} that satisfies the

constraints to (2), we can compute a set {ui} that satisfies

constraints to (14) by choosing ui =

D0−1
∑

j=0

vi,j . Similarly, for

every set of {ui} that satisfies constraints to (14) we can

compute at least one set of {vi,j} that satisfies constraints

to (2). For example, when D0 = 2, set v1,0 = u1, v2,1 =
a1 − u1, v2,0 = u2 − v2,1, . . .. In general, more than one set

{vi,j} corresponds to a given set {ui}. Hence, the optimization

problems (2) and (14) have the same minimum.

Now, we explain the iterative process used to solve (2).

At the kth iteration denote by vk
n,i the number of packets

transmitted at time slot n that arrived at time n− i. Consider

an arrival sequence {an} of length N . At each time-slot n
compute vk

n+i,i for i = 0, 1, . . . , D0−1 based on two factors:

i) The number of packets scheduled for transmission in time-

slots n+1, ..., n+D0−1 by the (k−1)th iteration among the

packets that arrived during time-slots n + 1, . . . , n + D0 − 1,

and ii) The number of packets scheduled for transmission in

time-slots n, n+1, . . . , n+D0−1 by the kth iteration among

the packets that arrived during time-slots an−1, . . . , an−D0 .

Further, vk
n+i,i is computed to minimize P

⎛

⎝

D0−1
∑

j=0

ũk
n+j

⎞

⎠

where ũk
n+j =

D0−1
∑

i=j

vk
n+j,i +

j−1
∑

i=0

vk−1
n+j,i. The solution to this

optimization problem is given by water-filling techniques as

vk
n+j,j =

⎛

⎝β −
D0−1
∑

i=j+1

vk
n+j,i −

j−1
∑

i=0

vk−1
n+j,i

⎞

⎠

+

(15)

where β is computed from

D0−1
∑

j=0

(

β − vk
n+j,j

)+
= an The

average power after the kth iteration is given by P (k) =

1
N

N
∑

i=1

P
(

uk
i

)

, where uk
i =

D0−1
∑

j=0

vk
i,j . The variation of the

power with iteration is given in Figure 8, which shows that

the iterative process converges within a few iterations for all

delay bounds. As noted earlier, since the problem is convex

this iterative procedure converges to the global minimum.
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Fig. 8. Convergence of iterative process in computing the lower bound on
powers at different absolute delay constraints.

B. Approximate closed form analysis of memoryless scheduler

For i.i.d. traffic arrivals, the distribution of the output

packets for delay bound D0 is given by the convolution of the

distribution of the arrival traffic. For example, when D0 = 2,

the output distribution is given by

Pr(un = i) =
2i

∑

k=0

Pr(an−1 = k, an = 2i − k)

=

2i
∑

k=0

Pr(an−1 = k)Pr(an = 2i − k)

where the joint distribution is written as the product of the

marginals due to the i.i.d. nature of arrival traffic. A similar

expression involving integrals results if the input distribu-

tion is continuous.By the Central Limit Theorem, for large

delays, the output distribution may be approximated as a

Gaussian distribution. The mean of the output distribution

equals E[an] and the variance may be computed as σ2
u =

E[(
a1+...+aD0

D0
)2]−(E[an])2. For i.i.d traffic, this variance can

be further evaluated and shown to equal
σ2

a

D0
. The total transmit

power can now be approximated as,

P =
σ2

√

2πσ2
a/D0

∫ ∞

−∞

(eRx − 1)e
−

(x−λ)2D0
2σ2

a dx

=
σ2

√

2πσ2
a/D0

∫ ∞

−∞

e
−

x2+λ2−2λx−2Rσ2
ux

2σ2
u dx − 1

= σ2

(

eRλ+R2σ2
u/2

√

2πσ2
a/D0

∫ ∞

−∞

e
−

(x−λ−σ2
u)2

2Rσ2
u dx − 1

)

= σ2

(

eRλe
R2σ2

a
2D0 − 1

)

Thus,

log

(

1 +
P

σ2

)

= Rλ +
R2σ2

a

2D0
. (16)

Note the remarkable similarity in the expression on the right

and the form for the effective bandwidth [21]. The effective

bandwidth is defined [21] as α(s, t) = 1
st log E[esX[0,t]], 0 <

s, t < ∞. Indeed λR +
R2σ2

a

2D0
exactly equals the effective

bandwidth of a Gaussian source evaluated at t = 1, s = 1
D0

.

The Gaussian traffic source is defined [21] as X [0, t] = λRt+
Z(t), where Z(t) is normally distributed with zero mean.

As expected, at D0 → ∞, the variation in input traffic are

smoothened and we obtain Shannon’s capacity formulation.

Note also the similarity of (16) with the results in [8], which

gives the average power as a function of the average delay.

In [8], no bound on the absolute delay is imposed.

In the case of dependent traffic arrivals, we continue to

assume that the output distribution is asymptotically Gaussian.

In this case, the mean of the output distribution equals λ and

the variance equals

σ2
u = E[u2

n] − E[un]2 (17)

=
1

D2
0

E[(an + an+1 + . . . + an+D0−1)
2] − λ2(18)

=

D0−1
∑

i=0

(D0 − i)

D2
0

Ra(i) − λ2, (19)

where Ra(i) = E[anan+i] is the autocorrelation of the

input sequence. Further, proceeding as before an approximate

relationship for power can be derived as (11).

C. Closed form approximation: Statistical Scheduler

In the case of the statistical delay guarantees, we make the

same assumption on Gaussianity of output traffic. In addition,

we assume that the dropping policy is such that all high rate

transmissions are truncated. Thus, the output traffic, which is

assumed to have mean λ and variance σ2
u, is truncated beyond

size β. The truncation threshold β is calculated, as follows,

to ensure that only δ fraction of packets are dropped

1
√

2πσ2
u

∫ β

−∞

e
− (x−λ)2

2σ2
u dx = 1 − δ (20)

=⇒ 1√
2π

∫
β−λ
σu

−∞

e−s2/2dx = 1 − δ (21)

=⇒ Φ

(

β − λ

σu

)

= 1 − δ, (22)

where Φ is the standard normal CDF. The transmission power

can now be calculated as,

P = σ2 1
√

2πσ2
a/D0

∫ β

−∞

(eRx − 1)e
−

(x−λ)2D0
2σ2

a dx

= σ2

(

eRλ+R2σ2
u/2

√

2πσ2
a/D0

∫ β

−∞

e
−

(x−λ−Rσ2
u)2

2σ2
u dx − 1

)

= σ2

(

eRλe
R2σ2

a
2D0 Φ[Φ−1(1 − δ) − Rσu] − 1 + δ

)

By rearranging terms and taking logarithm, we obtain (12).

D. Optimality of statistical NOMP scheduler.

Heuristic Argument: For a delay bound of 1 time-slot, the

proof follows directly from the exponential relationship be-

tween power and rate given by Shannon’s Gaussian formula.7

7Actually a convex relationship is sufficient for the proof and all practical
coding and modulation schemes follow a convex relationship.
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Let each packet be subdivided into “bits” (or in general sym-

bols) which are the smallest indivisible pieces of information.

Let us assume that only one bit of information may be dropped

from the entire sequence. Clearly, the optimum bit to drop that

results in largest reduction of power is from the instant when

un is maximum. Now, to drop the second (and all further) bits,

a similar process can be used and thus bits are dropped from

the largest resulting outputs. Essentially, this is a process of

inverse water-filling, in which a threshold for the number of

atoms (packets) is set and all packets bigger than the threshold

are dropped. The dropping threshold is calculated to ensure

that no more than δ% of the packets are dropped.

A similar argument can be used for arbitrary delay bounds

D0. Initially compute the optimal NOMP scheduler. Now,

if only one bit can be dropped, the optimal bit to drop is

drop is from the largest occurring packet transmission in the

deterministic NOMP scheduler. Repeating the process till δ%
of packets are dropped we see that the proposed stationary

NOMP scheduler is optimal.

Proof: The problem of providing statistical guarantees is

now posed as follows. Let u′
n denote the number of packets

that would have been scheduled for transmission in time-slot n
using the NOMP scheduler, i.e. with no packets violating the

delay bound. Let un denote the number of packets transmitted

by the statistical NOMP scheduler. Since, δ% of the packets

may violate the delay bound, we have the constraint

N
∑

n=1

un =

(1 − δ)

N
∑

n=1

u′
n ≈ (1 − δ)

N
∑

n=1

an. The approximation

N
∑

n=1

u′
n ≈

N
∑

n=1

an, arises due to the boundary conditions8 and does not

affect the results for large N . The problem of minimizing the

power is now posed as follows:

min
{un}

σ2
N

∑

n=1

eRun − 1 (23)

s.t. un ≤ u′
n ,

N
∑

n=1

un = (1 − δ)

N
∑

n=1

u′
n ≈ (1 − δ)

N
∑

n=1

an

The solution to this optimization problem is easily de-

rived using Lagrangian techniques and is given by un =
min(u′

n, udr), where udr is a dropping threshold that is

calculated from
∑N

n=1(u
′
n − udr)

+ = (δ)
∑N

n=1 an.
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