
Int J Comput Vis

DOI 10.1007/s11263-011-0476-5

Towards Unrestrained Depth Inference with Coherent Occlusion

Filling

Arnav V. Bhavsar · A.N. Rajagopalan

Received: 18 October 2010 / Accepted: 9 June 2011

© Springer Science+Business Media, LLC 2011

Abstract Traditional depth estimation methods typically

exploit the effect of either the variations in internal param-

eters such as aperture and focus (as in depth from defocus),

or variations in extrinsic parameters such as position and

orientation of the camera (as in stereo). When operating off-

the-shelf (OTS) cameras in a general setting, these param-

eters influence the depth of field (DOF) and field of view

(FOV). While DOF mandates one to deal with defocus blur,

a larger FOV necessitates camera motion during image ac-

quisition. As a result, for unfettered operation of an OTS

camera, it becomes inevitable to account for pixel motion

as well as optical defocus blur in the captured images. We

propose a depth estimation framework using calibrated im-

ages captured under general camera motion and lens param-

eter variations. Our formulation seeks to generalize the con-

strained areas of stereo and shape from defocus (SFD)/focus

(SFF) by handling, in tandem, various effects such as focus

variation, zoom, parallax and stereo occlusions, all under

one roof. One of the associated challenges in such an un-

restrained scenario is the problem of removing user-defined

foreground occluders in the reference depth map and im-

age (termed inpainting of depth and image). Inpainting is

achieved by exploiting the cue from motion parallax to dis-

cover (in other images) the correspondence/color informa-

tion missing in the reference image. Moreover, considering

the fact that the observations could be differently blurred,

it is important to ensure that the degree of defocus in the
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missing regions (in the reference image) is coherent with

the local neighbours (defocus inpainting).
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1 Introduction

One of the most challenging tasks in computer vision is

computing the depth of objects in the 3D world from their

2D images captured by a camera. Numerous computer vi-

sion techniques exploit a variety of cues to infer depth infor-

mation. Typically, the cues may be classified as those em-

bedded in the scene itself, such as texture, illumination, per-

spective etc, and those induced by the image capturing de-

vice, such as pixel-motion and blur/accommodation. Here,

we concern ourselves with the latter category i.e., depth cues

which are controllable and are functions of the camera pa-

rameters.

We believe that, in general, the depth estimation task need

not be confined to some restrained camera parameter set-

tings or configurations. One must be at liberty to flexibly

operate a camera since some of the assumptions about the

quality and content of acquired image may not be satisfied

for OTS cameras.

In spite of the immense progress witnessed in the man-

ufacturing of cameras, there still exists practical limits on

the intrinsic parameters such as focal length f , working

distance u and aperture radius r = f/(2fn) (where fn de-

notes the f-number of the lens), that impact the depth-of-

field (DOF) and field-of-view (FOV) (angle of view β). It is

well-known that the DOF can be expressed as

DOF =
2ufncf

2(u − f )

f 4 − f 2
n c2(u − f )2

=
2f 2fnc(μ + 1)

f 2μ2 − f 2
n c2

(1)
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and is inversely related to u, f and r . Here, c denotes the

circle of confusion (which is typically fixed for a particular

sensor size) and μ denotes the magnification. Similarly, the

angle of view (or field of view) can be expressed as

β = 2 arctan
d(u − f )

2uf
(2)

which is also inversely related to f (and hence the magnifi-

cation). Here d is the dimension of the sensor (usually taken

as the larger side). The FOV depends on β and the aperture

radius.

From these relations, it is possible to make some deduc-

tions that clearly reflect the effects that camera parameters

have on the acquired images.

– Moving the camera closer to the objects, to acquire suf-

ficient shape and image detail, reduces the field of view.

Also, since the object is relatively close to the camera, it

can lie beyond the range of the nearer DOF and will get

defocused.

– Another way to acquire sufficient resolution by not going

closer to the object physically is to increase the magni-

fication. However, increasing the magnification yields a

larger focal length, which will in turn reduce the FOV.

This will also decrease the nearer DOF limit, increasing

the possibility of the image getting defocused.

– To increase the FOV, one either has to increase the aper-

ture size or reduce focal length. Reducing the focal length

will reduce the magnification which will reduce the res-

olution. Increasing the aperture will keep the resolution

constant but decrease the DOF leading to increased defo-

cus.

In Table 1, we provide some practical values for a stan-

dard Olympus digital camera (Wrotniak 2003, 2006). When

u = 20 cm, if the object is kept less than 16 cm or more than

23 cm from the camera, then its image will appear defo-

cused. Moreover, for macro-imaging (typically used for op-

erating in the range u = 3 to 20 cm), the DOF is even smaller

with the FOV covering around 5 cm of the real world.

Thus, it is clear that in practical scenarios there are trade-

offs among acquiring sufficient detail, content and image

Table 1 Examples of camera parameters and depth of field for Olym-

pus C-5050 (d = 7.2 mm × 5.3 mm and f = 14.2 mm)

u = 50 cm u = 20 cm

f/ DOF (cm) f/ DOF (cm)

2 48.6–51.5 2 19.1–21

4 47.2–53.1 4 18.2–22.1

5.6 46.2–54.5 5.6 17.6–23.1

8 44.7–56.7 8 16.8–22.8

quality. Often one cannot avoid defocusing of images (al-

though blurring is sometimes even desirable for visual ef-

fects) and a compromise on spatial resolution and content.

There also arise situations where it is necessary to move the

camera (e.g., to capture a larger field-of-view), by varying

the extrinsic parameters viz. rotation and translation. Thus,

it is necessary that the depth estimation framework should be

able to handle unrestrained operation of the camera by con-

sidering parameter variations and the resultant image-level

effects, such as focusing/defocusing, zooming in or out, mo-

tion parallax, occlusions etc.

In this work, we address the problem of formulating a

general framework for inferring dense shape using obser-

vations acquired from a calibrated setup involving an unre-

strained but controllable camera. Acknowledging the exis-

tence of practical effects of camera parameters, our frame-

work elegantly couples the defocus blur and pixel motion,

induced by freely operating the camera, since both carry im-

portant information about the shape of the 3D world. This

essentially encompasses the so called low-level vision task

of shape estimation exploiting the camera induced effects

(and visual cues) of defocus blur and/or motion, whenever

one or both of them are present in the observed images.

The depth cue in defocus blur has been exploited in

works on depth from defocus (DFD) (Rajagopalan and

Chaudhuri 1999; Favaro and Soatto 2005; Favaro et al.

2008) and shape from focus (SFF) (Nayar and Nakagawa

1994; Sahay and Rajagopalan 2008). However, such ap-

proaches impose strong restrictions on camera parameters

and motion. We relax such constraints and handle the blur-

ring under general camera parameter variation as well as

general camera motion. Moreover, we also consider the

pixel motion caused due to the variations in the intrin-

sic camera parameters (e.g., the zooming effect). Such a

level of generalization in considering the blurring effect

is not yet addressed in DFD (Favaro and Soatto 2005;

Favaro et al. 2008), SFF (Sahay and Rajagopalan 2008) or

related works.

Camera motion provides additional depth information

(Scharstein and Szeliski 2002; Strecha et al. 2004; Seitz et

al. 2006), but this has been exploited mainly for the pin-

hole camera and not so much for real-aperture ones. The

pin-hole model is not valid when one operates at distances

beyond the DOF of the camera (e.g., close-up pictures, high

zooming, macro-photography etc). Our approach considers

defocus blurring in the process of finding correspondences.

Moreover, camera motion brings with it a baggage of ad-

ditional issues of occlusions and visibilities due to motion

parallax. We account for the stereo occlusion effect which

involves those points which are seen in the reference image

but not in some of the other images.

We also address the occlusion problem where the points

not seen in the reference view, (due to user-defined fore-

ground objects) are visible in some of the other images
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(we term this as view occlusion). This problem can also

be viewed as one of inpainting depth and image for find-

ing missing background information in the reference view.

Moreover, since we work with a practical real aperture cam-

era, the estimation of missing depth must also consider the

variation in blur across images due to the 3D nature of the

scene. Removing view occlusions involves ‘uncovering’ the

background by removing the occluding objects. Since, re-

moving occluders will change the scene content, the depth

map as well as the image must be estimated at the missing

regions. We consider two cases here: (1) when the occluded

missing regions in the reference image are due to objects

which are part of the scene, and (2) when the occluders are

part of the camera (e.g., local damage to the lens/imaging

sensor).

The motion cue facilitates information missing in some

images to be present in others. This includes the corre-

spondence information for estimating depth as well as the

color information for estimating image in the missing ar-

eas. Since our framework considers camera motion, it nat-

urally exploits the motion cue to address the view occlu-

sion/inpainting problem. Accounting for defocus blur in the

image inpainting implies that despite the fact that observa-

tions have different degrees of blur, a pixel should be in-

painted coherently according to the amount of blur in its

neighbourhood. We term this as defocus inpainting, since

it also considers defocus blur while computing the inpainted

image. We also observe that defocus inpainting involves fill-

ing unknown information in one of the views (using infor-

mation from others), which essentially tantamounts to de-

focused novel view synthesis (albeit, in this case, only for

missing regions).

Note that the task of inpainting as discussed here is one

of occlusion removal. Since disocclusion in this work essen-

tially involves depth cues stemming from parallax and defo-

cus blur, inpainting is a natural fall-out of our depth estima-

tion process. Thus, our work also serves to highlight the tight

coupling between the related problems of depth estimation

and inpainting for an unconstrained real-aperture camera.

In summary, our generalized approach accounts for cam-

era variations such as focus, zooming, parallax, and cam-

era motion for depth estimation. The framework can han-

dle stereo occlusions as well as remove view occlusions. We

also perform defocus image inpainting which can be inter-

preted as a (restricted) version of the more general problem

of defocused novel view synthesis.

1.1 Relation to Previous Work

There is a considerable amount of literature on calibrated

shape estimation under defocus blur and camera motion,

considered individually. These works which are typically

categorized under the aegis of stereo, depth from defocus

and shape from focus, are in fact, special restrictive cases

of the general scenario that we consider; for example, stereo

works with a pin hole model with a point-like aperture; the

blur due to intrinsic parameter variations is not considered.

DFD assumes that the camera is static and only the intrinsic

lens parameters are varied. SFF enforces the intrinsic param-

eters to be constant and only allows for axial motion of the

camera. SFF also ignores pixel motion by assuming the lens

to be tele-centric. Thus, in these cases either only the pixel

motion or the blur cue is used.

Few works have been reported wherein both blurring and

motion effects (or cues) are taken into account in the same

framework. In Myles and Lobo (1998), the authors have pro-

posed a technique to compute the affine motion and the de-

focus blur simultaneously in images of planar scenes. The

work has been extended to estimate defocus blur and arbi-

trary space-variant spatial shifts in Deschenes et al. (2004).

Recently, the work in Seitz and Baker (2009) also handles

global affine transform to model the zooming process in the

depth from defocus problem. However, in these works, only

the defocus blur is actually exploited as a cue for shape.

Some works (Subbarao et al. 1997; Frese and Gheta

2006) have motivated the problem of shape estimation from

a cue combination point of view. The authors in Subbarao et

al. (1997) carry out a sequential process where the shape is

first estimated using local DFD and SFF techniques. This

shape estimate is used to constrain the stereo correspon-

dence problem and is improved by solving the stereo prob-

lem on pin-hole images. Another sequential approach is pro-

posed in Frese and Gheta (2006) where a depth map com-

puted with a contemporary stereo technique on pin hole im-

ages is further improved by an SFF technique on a focus se-

ries. In their case, the images in focus-series are not coinci-

dent (as is required in traditional SFF). The SFF algorithm is

modified to take into account the pixel shift, the information

about which is available from the stereo depth map. Apart

from these works, some cooperative active depth estimation

approaches have also been reported (Ahuja and Abbot 1993;

Krotkov and Bajcsy 1993) that control the focus and ver-

gence angles in an active manner to facilitate image acqui-

sition suitable for depth from focus and depth from stereo.

The depth maps obtained from each are improved by that

obtained from the other. The motivation for these active

approaches arises due to the claim that stereo-based and

focus-based shape estimation act in a complementary man-

ner when one considers aspects such as occlusions, depth

of field, feature localization etc. Although these techniques

utilize both the motion and the defocus cues for shape es-

timation, they sequentially combine the conventional tech-

niques of stereo, SFF and DFD and hence work with image

configurations that are tailored for these specific techniques.

Recently, an approach that integrates structure from mo-

tion with the depth from defocus problem, has been reported
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in Wohler et al. (2009). It involves a priori tracking of points

and computation of blur at those tracked points. This is fol-

lowed by a cost minimization that compares the projection

of 3D points to the tracked image points and also com-

pares the depth of the projected points to the a priori com-

puted blur parameter at the tracked points. This technique

computes a sparse structure. Also, the a priori blur parame-

ter computation is quite heuristic. Moreover, this technique

(and, in fact, all the above mentioned methods) do not ex-

ploit the relationship between blur, motion and depth in an

integrated framework as in our case.

In recent years, some works have considered the inter-

relationship between the blur and the motion since both

are related to the depth (Rajagopalan et al. 2004; Kim and

Sikora 2007; Duo and Favaro 2008). In Duo and Favaro

(2008), a novel approach is suggested to create a virtual

stereo pair by using a special camera in which, in addition

to the aperture size, the aperture position with respect to the

lens can be varied laterally. This gives rise to both motion

parallax and defocus blur in the observed image. However,

this configuration is different and has limited freedom than

the more general camera variations that we consider. Also,

this requires a special camera setup, that may not always

be feasible with conventional off-the shelf cameras. The au-

thors in Kim and Sikora (2007) consider a depth estimation

and image restoration problem similar to ours in a binocular

stereo scenario with lateral motion. Here, multiple (around

10) differently focused images are captured from each view

and a window to constraint the disparity estimation is com-

puted using the blur disparity relationship. Although this

method uses the blur motion (disparity) relationship, it only

exploits it locally to define windows for stereo disparity es-

timation.

Closely related to our work are those in Rajagopalan et

al. (2004), Sahay and Rajagopalan (2009b) which use the

blur-disparity relationship in a global regularization frame-

work to compute depth. Whereas the work of Rajagopalan

et al. (2004) uses binocular stereo images with lateral cam-

era translation and captures two differently focused im-

ages from each view, the authors in Sahay and Rajagopalan

(2009b) follow axial camera translation with no intrinsic pa-

rameters variation (a commonly used setting in SFF). Thus,

these methods involve very restricted camera configurations.

None of the above mentioned works consider handling

stereo occlusions; especially, the problem of removing / in-

painting the view occluders. The former is addressed in

numerous stereo approaches, but not in the works which

also consider defocus blur. The view occlusion (inpaint-

ing) problem has been mainly reported on a single image

level for color and range images (Criminisi et al. 2003;

Bhavsar and Rajagopalan 2008), individually. These are es-

sentially based on some heuristics for establishing continu-

ities in some sense by considering neighbourhood, edges,

etc. Our occluder inpainting methodology uses multiple

views and searches (in different views) for the actual in-

formation, which is lost in the reference image. Thus, our

inpainting approach involves more of looking for plausibly

correct information and less of heuristics. In fact, there is

very little work on inpainting both images and depth. A re-

cent work uses a stereo setting (with pin-hole cameras) to

inpaint occluders present in the scene, in both image and the

depth map (Wang et al. 2008). Unlike Wang et al. (2008)

which uses a binocular setup, our approach uses multiple

images and involves a different pixel mapping. Also, we

address the cases of removing occluders in the scene as

well as missing regions due to sensor/lens damage, unlike

Wang et al. (2008) which only considers the former. More-

over, akin to traditional inpainting approaches, the method

in Wang et al. (2008) does not account for camera defo-

cus. Some approaches do consider the camera defocus while

inpainting distortions in the images (Zhou and Lin 2007;

Gu et al. 2009). However, in these works the images are ac-

quired from a single view and address only image inpaint-

ing. The works in Sahay and Rajagopalan (2009a), Sahay

and Rajagopalan (2010) considers both motion and blur in

the restrictive setting of axial motion and no camera param-

eter variations. On the other hand, our approach involves de-

focus and pixel-motion under a very general setting, consid-

ers visibility and segmentation constraints, and is also com-

putationally efficient.

The novelties of our work as compared to the above men-

tioned works can be summarized as follows. (1) Our im-

age acquisition process offers more freedom so as not to be

constrained by a strict DFD, SFF or a stereo-like setting.

We consider general camera motion and parameter varia-

tions. (1a) For intrinsic parameters, we consider variations

in the aperture, working distance and lens-to-image-plane

distance. Our framework also accommodates the zooming

process caused by variations in the latter. We also account

for the situation where the scene does not completely lie in

one part of the blur cone (the near-far focusing scenario).

(1b) Unlike in most of the above works, we consider all 6

degrees of freedom for camera motion. An important conse-

quence of this is in considering the effect of camera rotation

on defocus blur variation. (2) We also address the impor-

tant issue of occlusions that has not been addressed in other

works. (2a) The view-occlusion case is, in fact, equivalent to

depth and image inpainting which is another novel addition.

We account for two kinds of occluders while considering

motion as well as the blur cue. (3) We also use the vital cue

from color image segmentation during the depth estimation

and inpainting process; a cue that has been shown to be very

successful in conventional stereo works (Yang et al. 2009).

We would like to add that this work is a comprehen-

sive extension of our own related and previously published

works (Bhavsar and Rajagopalan 2009, 2010). The work in
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Bhavsar and Rajagopalan (2009) reports only depth estima-

tion for camera translation (albeit along all the 3 axes) and

with aperture variation. In Bhavsar and Rajagopalan (2010),

we consider depth estimation under general camera motion

and parameter variation, but inpainting only static missing

regions (e.g. due to sensor damage). In this paper (1) we

extend the inpainting section by also considering the case

of removing occluders present in the scene. We note that

this is a more general problem than the one considered in

Bhavsar and Rajagopalan (2010). (2) We also include a dis-

cussion on special cases of our general framework and bring

out a couple of non-conventional and important special cam-

era configurations arising out of our general framework.

(3) We provide a brief analysis on the inpainting problem

relating camera motion to the extent of the missing regions

that can be inpainted. (4) Finally, we provide extensive re-

sults with quantitative evaluation for performance evalua-

tion.

2 Coupling Motion, Blur and Depth

We now discuss the relationship among motion, blur and

depth. Without loss of generality, we work in camera cen-

tered coordinates with the initial camera center coincident

with the origin of the Cartesian coordinate system. The opti-

cal axis for the initial camera position coincides with z-axis,

and the x- and y-axis are parallel to the image plane axes.

We denote the hypothetical focused (pin-hole equivalent)

and noiseless ideal image with respect to the initial camera

position as I . The ith observation gi is modeled as warped

and blurred version of I i.e.,

gi(n1, n2) =
∑

l1,l2

hi(n1, n2, σi, θ1i
, θ2i

)

· I (θ1i
, θ2i

) + ηi(n1, n2), i = 1,2, . . . ,N.

(3)

In the above equation, the geometrically transformed co-

ordinates of the pixel at (l1, l2) in the hypothetical refer-

ence view I , are denoted by (θ1i
, θ2i

), while the blur kernel

around the pixel which operates on I (θ1i
, θ2i

) is expressed

by hi(n1, n2, σi, θ1i
, θ2i

).

In the following discussion, we refer to Fig. 1 which

shows perspective projection and blurring for two different

lens position and settings. Note, from Fig. 1, that the blur

kernel is centered on the point of projection of the central

ray from the 3D point P on to the image plane. Also, the

blur kernel for any point will always be symmetric around

this point as long as the lens is symmetric and is parallel to

the image plane (a common arrangement in most cameras).

Thus, the geometry clearly shows that the transformation of

a particular 3D point P can be described by its projection

on the image plane followed by blurring of this projected

Fig. 1 Camera transformations

image point. At the image level, this implies that in (3), the

observations gi are formed by depth-dependent warping of

the pixels of f , followed by their space-variant blurring.

Hence, to describe the projection of a 3D particular point,

we only require the principle ray that passes through the cen-

ter of the lens, because the blur is always centered around the

point of projection of this ray on the image plane. We shall

now discuss the relationship of motion and blur with the 3D

location of a point. In the following discussion, without loss

of generality, we consider the reference camera to be placed

at the world origin.

2.1 Motion-Depth Relationship

Let us denote the coordinates of a 3D point in space as

(X,Y,Z), with respect to the reference camera position (or

the world origin). The image pixel coordinates (l1, l2) in the

first view corresponding to the perspective projection of this

3D point is expressed as

l1 =
v1X

Z
, l2 =

v1Y

Z
(4)

where v1 is the distance between the lens and the image

plane for the first view.

Denoting vi as the lens-to-image-plane distance in the

ith view, the camera translation along the x-, y- and z-

axes by the elements of a 3 × 1 vector [txi
tyi

tzi
]T , and

the rotation parameters as the elements of a 3 × 3 matrix

R = [ap1p2
], where 1 ≤ p1,p2 ≤ 3, the 2D projection of the

point (X,Y,Z) in the ith view can be expressed as

θ1i
=

viai11
X + viai12

Y + viai13
Z + vi txi

ai31
X + ai32

Y + ai33
Z + v2tzi

,

(5)

θ2i
=

viai21
X + viai22

Y + viai23
Z + vi tyi

ai31
X + ai32

Y + ai33
Z + v2tzi

.
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Eliminating X and Y , we can relate pixel coordinates in

the reference and the ith view in terms of the camera param-

eters and depth Z as

θ1i
=

viai11
l1 + viai12

l2 + v1viai13
+ v1vi

txi

Z

ai31
l1 + ai32

l2 + v1ai33
+ v1

tzi
Z

,

(6)

θ2i
=

viai21
l1 + viai22

l2 + v1viai23
+ v1vi

tyi

Z

ai31
l1 + ai32

l2 + v1ai33
+ v1

tzi
Z

.

2.2 Relating Blur with Depth

Having described the pixel motion, we now focus our at-

tention on blurring. Our framework models the camera lens

system with the thin lens model as shown in Fig. 1, which

suggests a circularly symmetric point spread function (PSF)

for the blur kernel. Without loss of generality, in this work,

we use the Gaussian PSF model as it is a popular approx-

imation owing to the effect of the central limit theorem

for describing various optical aberrations (Pentland 1987;

Rajagopalan and Chaudhuri 1999). A parametric blur model

allows us to relate blur and depth analytically thus simpli-

fying the calibration as compared to the case of arbitrary

blur kernels. In general, the PSF need not have a parametric

form. Our depth estimation/inpainting approach (elaborated

in Sect. 3), works by computing the relative blur between

images, i.e., for each point it computes the blur that, ideally,

brings the ith image close to the reference image. Such a

computation of relative blur can be done for any known ar-

bitrary relative blur kernel. Hence, our framework does not

enforce any particular form or parametrization of the PSF.

Some discussion on this issue is provided in Sect. 6.

The Gaussian blur kernel can be expressed as

hi(n1, n2, σi, θ1i
, θ2i

)

=
1

2πσ 2
i

exp

(

−
(n1 − θ1i

)2 + (n2 − θ2i
)2

2σ 2
i

)

. (7)

The depth dependent blur parameter σi = ρrbi
, where rbi

is the physical blur radius and ρ is the factor (camera con-

stant) that converts physical units to pixels. We now derive

the relationship of σi to depth Z of a 3D point under general

camera parameter variation and motion.

Remark 1 The blur parameter σi for the ith view, corre-

sponding to a 3D point with coordinates (X,Y,Z) in the

reference coordinate system, is related to the distance Zi

which is the distance between the lens plane in the ith view

and plane parallel to the lens plane and passing through that

3D point. This relationship can be stated as

σi = ρrivi

(

1

ui

−
1

Zi

)

. (8)

Fig. 2 A flatland representation of relative motion between rotated

and translated coordinate systems

Here, ri is the aperture radius in the ith view, Zi is the depth

of point P with respect to the ith camera, ui signifies the

focusing distance and vi denotes the distance between the

lens and the image plane.1

We now relate the depth Zi with respect to the ith view

to the depth Z from the reference view. For, simplicity, we

derive this in 2D and then generalize it to 3D. In Fig. 2,

we show a flatland representation of the relative motion be-

tween two camera coordinate systems. The origin of the ref-

erence coordinate system, which coincides with the center

of the lens L1 is denoted by O . In the reference coordinate

system, a 3D point P has coordinates (X,Z). Thus, the dis-

tance between the lens plane L1 and the plane parallel to the

lens plane L1 passing through P is Z, which is nothing but

the Z-coordinate of P . Since we considered the first view

as the reference view (the choice being quite arbitrary), we

have Z1 = Z (i = 1) for the reference view.

The lens Li in the ith view (i �= 1) with center Oi is also

shown in Fig. 2 which is rotated about the x-axis by an an-

gle αi with respect to L1. The lens center Oi is also shifted

relative to O , by Cxi
and Czi

along the x- and z-axes, re-

spectively. The depth of point P from lens Li is denoted by

Zi . Since we wish to compute the depth Z in the reference

view (center O), we must express Zi in terms of Z. This

relationship can be derived as follows. According to Fig. 2,

Z = Czi
+ l1 + l2 + L3 (9)

= Czi
+

Zi

cos(α)
+

Cxi
sin(α)

cos(α)
+

X sin(α)

cos(α)
, (10)

Zi = (Z − Czi
) cos(α) − (X + Cxi

) sin(α). (11)

1This remark, although well-known, is emphasized here because it is

important in the context of defocus blur in the multiple-view scenario.
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Similarly, one can express Xi , the x-coordinate of point P in

the ith view, in terms of X and Z as

Xi =
Zi sin(α)

cos(α)
+

Cxi
cos(α)

cos(α)
+

X

cos(α)
(12)

= (Z − Czi
) sin(α) − (X + Cxi

) cos(α). (13)

This can be written in matrix-vector form as

X′ = Ri(X − Ci) (14)

where

Ri =

[

cos(α) sin(α)

− sin(α) cos(α)

]

, (15)

Ci =
[

−Cxi
Czi

]T
, (16)

X =
[

X Z
]T

, (17)

Xi =
[

X′ Z′
]T

. (18)

Here, Ri is the 2D rotation matrix and Ci is the vector sig-

nifying the shift in the center of projection. Conventionally,

the vector −RiCi is denoted by ti , the translation of the cam-

era. Thus, (14) can be written as

Xi = RiX + ti . (19)

The 3D counterpart of (19) involves a 3×3 Ri matrix and

a 3D translation vector ti . The components ripq p,q ∈ 1,2,3

of the Ri matrix are functions of the rotation angles about

the 3 axes, while the components of ti denote the camera

translations along these axes. Hence, in a 3D case, Zi for

a point P with reference coordinates (X,Y,Z) can be ex-

pressed as

Zi = ai31
X + ai32

Y + ai33
Z + tzi

. (20)

From (4), we can rewrite Zi in terms of (l1, l2) as

Zi = Z

(

ai31
l1

v1
+

ai32
l2

v1
+ ai33

)

+ tzi
. (21)

From (8) and (21), we have the following.

Proposition 1 (Blur variation under general camera mo-

tion) Under general camera motion, σi at a particular pixel

(l1, l2) in the ith view is related to the depth Z (in the ref-

erence coordinate system). This relationship of σi and Z in

terms of known intrinsic and extrinsic camera parameters,

can be expressed as 2

σi = ρrivi

(

1

ui

−
1

Z
( ai31

l1

v1
+

ai32
l2

v1
+ ai33

)

+ tzi

)

. (22)

2This relationship is the generalization of the defocus blur equation to

the multi-view scenario.

Note, from Fig. 1, that the blur kernel is centered on the

point of projection of the central ray on to the image plane.

Thus, according to the above model the transformed blur

kernel is formed around the point (θ1i(l1), θ2i(l2)) in the ith

image. Hence, the position of the blur kernel is also warped

in the ith image.

2.3 Some Special Cases

Here, we provide a discussion on various special cases

that emerge from the generalized imaging model described

by (3), (6) and (22).

– The stereo case arises when the aperture ri = 0 (∀i)

in (22) but the motion parameters (especially, the trans-

lation components txi
, tyi

, tzi
) are not all zero in (6). Note

that these will yield σi = 0 in (22), no matter what values

the motion and the other intrinsic parameters are, since

ri = 0. Thus, due to ri being 0, blur kernel hi is an im-

pulse located at the kernel center. Thus, the pure stereo

case does not involve any blurring of the images and the

only depth cue arises from pixel motion. Our framework

allows ri �= 0 and thus the presence of varying blur across

images. Also, the shift in the blur kernel is accounted for

in (3), as the blur kernel operates at the shifted pixel loca-

tion (θ1i
, θ2i

).

– The DFD scenario restricts the rotation matrix to be an

identity matrix and the translation components to be all

zero. However, at least one of the intrinsic parameters

(ri, vi or ui ) in (22) is varied across images. Since there

is no camera motion, only the blur acts as a cue for depth.

Note that in this case the variation in vi will also be

responsible for co-ordinate scaling (see (6)). However,

this scaling/magnification effect is usually neglected in

DFD, by assuming the availability of (an expensive) tele-

centric lens (Watanabe and Nayar 1995) (on the image-

side) while capturing the images. Our general model does

not make any such assumption and allows for scaling of

image coordinates. The shift in the kernel due to image

scaling is inherently accounted for in (3).

– The SFF scenario enforces the intrinsic parameters to be

constant (and non-zero) across images but allows for re-

stricted camera motion (only the tzi
translation compo-

nent is active). The camera translation tzi
will induce

pixel shifts according to 6, but this is ignored in SFF ap-

proaches, again through the assumption of tele-centricity

(Watanabe and Nayar 1995) (on the object-side) akin to

the DFD scenario. If the effect of camera motion is ig-

nored, then blur acts as the only cue. However, if tele-

centricity assumption is relaxed, the camera motion will

play a role by inducing depth dependent pixel-shift in

which case the SFF scenario turns out to be a special

case of real-aperture axial stereo (Sahay and Rajagopalan

2010).
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3 Depth Estimation Using Belief Propagation

In this section, we formulate the depth estimation problem

in a MAP framework which we solve using belief propa-

gation (BP) (Felzenszwalb and Huttenlocher 2004). Belief

propagation has shown much promise in recent years for ef-

ficiently solving standard computer vision problems such as

denoising and stereo. As compared to traditional combina-

torial optimization problems such as simulated annealing or

iterated conditional modes, the fast-BP algorithm is com-

putationally more efficient and quick in convergence. Fur-

thermore, although not considered in this paper, BP can be

made highly parallel and is well-suited for implementation

on GPUs.

The max-product BP computes the MAP estimates over

a graph (Felzenszwalb and Huttenlocher 2004). For images,

the graph is usually a grid-graph, with nodes being pixel

locations. (For the following discussion on BP, we denote

nodes by p, q and s, for conciseness.) The max-product rule

works by passing messages mt
pq(fq) at time t to a node q

from its neighbouring node p of the graph as follows:

mt
pq(fq)

= min
fp

(

Dp(fp) + V (fp, fq) +
∑

s∈	(p)|q

mt−1
sp (fp)

)

(23)

where Dp(fp) is the data cost at node p for accepting a la-

bel fp , V (fp, fq) is the prior cost between the neighbouring

nodes p and q , and s ∈ 	(p)|q denotes the set of nodes in

the neighbourhood of p, not including q . The message vec-

tor mt
pq is an L-dimensional vector, where L is the number

of labels that each node can take. This message passing is it-

erated for each node until convergence. At convergence, the

beliefs are computed as

bq(fq) = Dq(fq) +
∑

p∈N(q)

mpq(fq). (24)

The belief bq(fq) at each node q is a L-dimensional vec-

tor. The MAP solution for the label at q is that fq which

maximizes bq(fq).

In our framework, the data cost is formulated from the

image generation process described in the previous section.

The prior cost is chosen to constrain neighbouring nodes to

favour similar labels. Moreover, since some portions in the

reference image may not be visible in the ith image, we mod-

ulate the data cost with a visibility term which is updated at

each iteration. Furthermore, to improve the depth estimate

at unreliable and occluded pixels, we use a cue from color-

image segmentation and plane-fitting, inspired from recent

works in stereo vision (Yang et al. 2009). We now explain

our cost computation in more detail. BP does not have the

notion of an initial estimate of the unknown variable. As we

discuss later in the section, this necessitates an approxima-

tion to be made while handling defocus blur.

3.1 Data Cost

To define the data cost, we relate the image in the ith view

with that in the reference view. Without loss of generality,

the first image is considered as the reference image (i = 1).

For ease of explanation, we consider for now, that the ref-

erence image is modeled as a shifted and blurred version

of the ith image. (This will not hold good if the reference

image is more blurred than the ith image, a situation which

we will discuss shortly.) Thus, the relationship between the

reference image and the ith image is given as

g1(n1, n2) = hri(σi, n1, n2) ∗ gi(n1, n2)

=
∑

l1,l2

hri (σi, n1 − θ1i
(l1, l2), n2 − θ2i

(l1, l2))

· gi(θ1i
(l1, l2), θ2i

(l1, l2)) (25)

where hri signifies the relative Gaussian blur kernel corre-

sponding to blur parameter (standard deviation)

√

σ 2
1 − σ 2

i .

The symbol ∗ denotes convolution. The relative blur param-

eter

√

σ 2
1 − σ 2

i can be related to Z by substituting (8) for σ1

and σi . The data cost for a particular node in the ith view is

defined as

Edi
(n1, n2)

= |g1(n1, n2) − hri (σi, n1, n2) ∗ gi(n1, n2)|. (26)

Due to general camera motion and variation in focusing

distance, g1 need not be more blurred than gi at all pixels

(the near-far focusing scenario). The data cost in (26) in-

volves blurring gi so as to yield an estimate of g1. Hence,

(26) will not be valid where gi is more blurred than g1

(as mentioned earlier). In such cases, only the magnitude

of σ 2
1 − σ 2

i is not sufficient for estimating depth, since two

depth values on opposite sides of the σ 2
1 − σ 2

i = 0 plane can

yield equal magnitude of σ 2
1 − σ 2

i . To resolve this, we mod-

ify the data cost computation as follows. For a particular

depth label, if σ 2
1 − σ 2

i ≥ 0, we use (26) to define the data

cost at the node. If σ 2
1 − σ 2

i < 0 we define the original data

cost (viz. a counterpart of (26)), as

Edi
(n1, n2)

= |gi(θ1i
, θ2i

) − hr1
(σi, n1, n2) ∗ g1(n1, n2)|. (27)

The convolution on the right hand side of (27) is defined as

hr1
(σi, n1, n2) ∗ g1(n1, n2)

=
∑

l1,l2

hr1
(σi, n1 − l1, n2 − l2) · g1(l1, l2). (28)

In this case, since gi is more defocused than g1, we blur g1

to yield an estimate of gi .
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At this point, we note that (26) and (27) involve a convo-

lution of a shifted blur kernel and a shifted image. However,

(3) does not involve a convolution, since it models the image

generation with space-variant blur. Thus, the data costs de-

fined in (26) and (27), assume local space-invariance which

is an approximation to the actual image generation model

of (3). Such an approximation is also known as the equi-

focal approximation and is commonly used in DFD works

(Favaro et al. 2008).

This approximation is required to make our data cost

amenable to processing by the BP algorithm. The data cost

in BP, for a particular label at a node, is defined as the cost

incurred by that node for accepting that particular label.

For applications such as de-noising or stereo disparity esti-

mation, the data cost at a particular node involves only the

label at that node and is independent of the labels of neigh-

bouring nodes. However, for applications involving space-

variant blur, this does not hold since the blur at the neigh-

bouring nodes also influences the observation at a particular

node. This requires the current depth estimates for the neigh-

bouring nodes. However, BP does not entertain a notion of

current label estimates and operates by simply finding the

best label out of a set of labels that minimizes a cost. Defin-

ing the data cost at a node through a convolution (26), (i.e.

using the equi-focal approximation), involves only the rela-

tive blur kernel values at the current node which in turn de-

pends on the depth label at the current node. Thus the data

cost is rendered independent of the labels of the neighbour-

ing nodes, allowing it to be used within the BP framework.

3.2 Visibility

We incorporate the notion of visibility in the data term to

handle occlusions. Here, we consider the case of stereo oc-

clusions. The view occlusion case with its inpainting inter-

pretation, warrants a separate discussion which is deferred

to Sect. 4.

For handling stereo occlusions, we introduce a binary vis-

ibility function Vi . For a particular site (n1, n2) on the refer-

ence grid, Vi(n1, n2) is 1 if the pixel at that site is visible in

the ith image and 0 if the pixel is occluded. The modulated

data cost is given by

Edi
(n1, n2)

= Vi(n1, n2) · |g1(n1, n2) − hri (σi, n1, n2) ∗ gi(n1, n2)|.

(29)

We begin by considering all pixels as visible. In each it-

eration, the visibility is computed by warping the current

depth estimate in the ith view. As observed in Drouin et al.

(2005), Kang et al. (2001) for the stereo problem, comput-

ing visibility in each iteration independently, may not yield a

convergent solution (Kang et al. 2001). Hence, we use geo-

consistency definition (Drouin et al. 2005) to update visibil-

ity in a temporal manner as

Vi(n1, n2, t) = V new
i (n1, n2, t) · Vi(n1, n2, t − 1) (30)

where V new
i (n1, n2, t) is the visibility computed with the

current disparity estimate and t denotes the iteration index.

The total data cost for a particular node considering all

views is then computed as

Ed =
1

Ni

∑

i

Edi
(31)

where i > 1 and Ni is the total number of images (excluding

the reference image) where the pixel is visible.

3.3 Prior Cost

The prior cost enforces a smooth solution that constrains the

neighbouring nodes to have similar labels. (At a more fun-

damental level, a smoothness constraint on depth manifests

from modeling the depth as a Markov random field having a

joint Gibbs distribution (Li 1995).) Although, a smooth so-

lution is preferred, we also wish to avoid over-smoothing of

prominent discontinuities in the solution. Thus, the penalty

for neighbouring labels being different cannot be arbitrarily

high. We define the smoothness prior as a truncated absolute

function which is given by

Ep(n1, n2,m1,m2)

= min(|Z(n1, n2) − Z(m1,m2)|, T ) (32)

where (n1, n2) and (m1,m2) are neighbouring nodes in a

first-order neighbourhood and T is the truncation threshold

to saturate the prior cost beyond a certain difference in the

depth labels.

3.4 Incorporating Segmentation Cue

Modeling space-variant blurring as local convolution is gen-

erally a good approximation except at depth discontinuities,

especially if the blurring differences are large across discon-

tinuities. This factor, in addition to image noise and errors in

computing occlusions, can make the depth estimation error

prone. To mitigate such errors, we incorporate segmentation

cue in our estimation (Yang et al. 2009), as explained below.

Prior to starting the estimation, we color-segment the ref-

erence image using the mean-shift algorithm (Dorin and

Meer 2002). We also compute a reliability map to classify

the pixels as reliable or not. To form this reliability map,

we compute the top two labels which provide the two least
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data costs. Calling these costs as C1 and C2, we compute a

confidence measure

C =
|C1 − C2|

C2
. (33)

This measure is similar to that defined in Yang et al. (2009).

However, we note that in Yang et al. (2009) the costs C1 and

C2 are computed using a correlation volume. In our case,

the terms C1 and C2 are computed using the data cost itself,

which also accounts for the blurring effect while computing

the confidence. If the confidence measure is above a partic-

ular threshold cf then we define that pixel to be a reliable

pixel. After this initial processing, the actual estimation pro-

cess follows.

The first BP iteration is run without using the segmenta-

tion cue. We then compute a plane-fitted depth map that uses

the current estimate, the segmented image and the reliabil-

ity map. The plane computation for each segment is carried

out via the robust RANSAC (Fischler and Bolles 1981) ap-

proach, using only reliable pixels in that segment. The plane-

fitted depth map is computed as follows. If the fraction of

reliable pixels rf in a segment is above a threshold, then the

reliable pixels are assigned their own depth values and only

the unreliable pixels are assigned the plane-fitted depth val-

ues. If this is not so, then all the pixels in the segment are

assigned the plane-fitted depth values. If the segment itself

is very small (< sf pixels), then all pixels are assigned the

median of the current depth labels for that segment.

Once the plane-fitted depth map is computed as explained

above, we feed it back into the iteration process to regularize

the data term. Thus, the new data term is

Eds (n1, n2) = Ed(n1, n2)

+ w(n1, n2) · |Z(n1, n2) − Zp(n1, n2)| (34)

where Zp denotes the plane-fitted depth map and the regu-

larization weight w is binary (0 if the pixel is a reliable pixel

and 1 if it is not). The second term in (34) regularizes the

unreliable depth estimate such that these estimates do not

deviate from the plane-fitted depth map. We use this data

term in subsequent iterations after the first.

4 Handling View Occlusions: Depth and Image

Inpainting

We are now ready to discuss the view occlusion problem.

Many natural scenes contain unwanted foreground objects

that occlude the objects of interest in the background. Often

these objects are such that they would occlude, at least par-

tially, a background object of interest no matter from which

view one captures the scene. Information gathering can also

be hampered due to defects in camera sensors and lenses.

These include sensor contamination by dust and humidity

while changing lenses (Zhou and Lin 2007), sensor damage

from over-exposure to sunlight etc. Similarly, lens damage

due to shocks as well as climatic effects, and occlusions due

to lens depositions/attachments can also lead to image arti-

facts (Gu et al. 2009; Sahay and Rajagopalan 2009a). It is

not surprising that numerous photography sites/blogs exist

on the web that discuss these issues, thus highlighting the

practical significance of this problem.

The above mentioned issues can be classified into two

scenarios, both of which we address. (1) The case where it

is desired to remove, from the reference depth map and the

image, a user-defined object which is a part of the scene and

occludes the background objects of interest. (2) The case

where some portion of the image data is missing due to dam-

age to sensor/lens and one desires to retrieve the depth and

image, from the reference view, in the damaged areas.

Our approach to handle such view occlusions is essen-

tially built upon the depth estimation framework described

in Sect. 3. We realize that camera motion, which is an in-

tegral part of our framework, can be exploited to discover,

in other views, the pixels occluded/missing in the reference

view. Note that the view occlusion case is in fact quite com-

plementary to that of stereo occlusions. Unlike in the latter

case, where the points in the reference view are rendered in-

visible in other views due to motion parallax, in the view

occlusion scenario, the points invisible in the reference im-

age are rendered visible in other views, also due to motion

parallax.

An example to demonstrate this effect is shown in Fig. 3

where the wires in the foreground serve as occluders, which

we wish to remove. We observe that the portions which are

occluded in the reference (left) image are uncovered in the

right image due to the inherent parallax between the wires

and the other background objects. Some such prominent

portions which can be explicitly pointed out include the bars

in the Pisa tower, neck of the bunny, and the dots on the yel-

low tree in Fig. 3. Thus, if such pixels can be found in more

than one view then the correspondence (depth) and intensi-

ties can be found even for the pixels which are not visible in

the reference view.

Given the images where the foreground/damaged regions

to be removed are marked by the user, our approach com-

Fig. 3 (a, b) Two observations showing the uncovering of regions in

the second image which are occluded in first image
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putes the depth map along with the background depth labels

estimated in the regions marked as occluded. Note that as

described in Sect. 3.1, the correspondence search for occlu-

sion removal also considers the defocus blur. Given the es-

timated depth map, we fill in the missing region in the (ref-

erence) color image. Importantly, since the observations are

acquired using a real-aperture camera, the intensity assign-

ment for the occluded pixels should also satisfy the defocus

extent from that view to maintain visual coherence.

Removing occlusions caused by objects/device damage

is essentially the same as filling in background information

in missing regions in the images. In this sense, the view oc-

clusion problem can also be interpreted as one of inpainting.

In our approach, the information to be inpainted is actually

available in the images due to the motion cue, which is ex-

ploited to inpaint both depth and image. Moreover, since

filling in color information in missing regions in the image

also accounts for the defocus blur, we refer to it as defocus

inpainting. Thus, unlike traditional inpainting works, our ap-

proach is cue-based, which considers the motion and defo-

cus cues for inpainting the occluded regions.

Intra-Scene Occluder Here, the task is to remove from an

image, an object which is part of the scene. Typically, this

is a foreground object occluding background objects in the

scene. As the occluder is just another object in the scene,

it also undergoes an apparent motion in the image like other

background objects do. However, the motion of the occluder

is different from that of the background objects. Hence, pix-

els occluded in the reference image may be observed (un-

covered) in other images. Thus, even if correspondences

with the reference image cannot be found, they can still be

established across other images.

As mentioned earlier, the locations of the occluded pix-

els to be inpainted is usually assumed to be known and are

a priori marked by the user. Although our approach involves

multiple images, the user interaction is minimized by mark-

ing the occluder pixels to be inpainted only in the reference

image. The occluder pixel locations in the images other than

the reference are marked depending on the knowledge of

those in the reference image. However, the motion of the oc-

cluder pixels across images depends on their depth values.

Hence, we compute the depth map of the complete scene in-

cluding the occluder using our proposed depth estimation

approach. Given this depth map and the reference image

where the occluder pixels are marked, we compute and mark

the location of the occluder pixels in other images.

Missing Pixels Due to Sensor/Lens Damage While con-

sidering sensor/lens damage, the situation is somewhat sim-

pler. Given that a single damaged camera is used to capture

the images, all observations will be equally affected due to

the sensor/lens damage; the locations of the missing pixels

do not vary in the image coordinate system i.e., the motion

of the missing pixels is zero. In case where multiple differ-

ently damaged cameras are used, the location of the missing

regions will be different in each image. However, in both

cases, the motion of the pixels to be inpainted will be inde-

pendent of depth. Thus, in the case of sensor/lens damage,

prior computation of depth of the complete-scene, as in the

intra-scene occluder case, is not required.

Due to camera motion, the locations of pixels corre-

sponding to scene points will change independent of the

damaged pixels. Thus, the above argument of missing pixels

in the reference image being visible in the other images, still

holds and provides the cue for inpainting.

We now formally describe our approach for depth and

image inpainting where we have the reference image with

occluded/missing regions marked. Given the observations

with the missing regions marked, the following methodol-

ogy for depth and image inpainting is common for both the

cases of intra-scene occluder as well as device damage.

4.1 Depth Inpainting

We denote the set of missing pixels as M . We begin by ar-

ranging the images in an (arbitrary) order (g1, g2, . . . , gN )

with g1 being the reference image. For pixels /∈ M in all im-

ages, we estimate the depth as described in Sect. 3. Thus, if

there are no missing regions and no pixels belong to M , we

effectively carry out depth estimation as in Sect. 3.

If a pixel g1(l1, l2) /∈ M and gj (θ1i
, θ2i

) ∈ M for some

i > 1 then the data cost between the reference view and the

ith view is not computed. In case, gj (θ1i
, θ2i

) ∈ M ∀i �= 1,

then the pixel is left unlabeled.

If g1(l1, l2) ∈ M , we look for observations at (θ1i
, θ2i

)

and (θ1j
, θ2j

) for a depth label. If the observations gi(θ1i
, θ2i

)

/∈ M and gj (θ1j
, θ2j

) /∈ M , the matching cost between them

is defined as

Edi
(n1, n2) = Vij (n1, n2) · |gi(θ1i

, θ2i
)

− hrij (σij , n1, n2) ∗ gj (n1, n2)| (35)

where 1 < i < j , and

hrij (σi, n1, n2) ∗ gj (n1, n2)

=
∑

l1,l2

hrij (σi, n1 − θ1j
, n2 − θ2j

) · gj (θ1j
, θ2j

) (36)

and

Vij (n1, n2) = Vi(n1, n2)Vj (n1, n2). (37)

Note that the variables in the above equation are with respect

to the ith and the j th as opposed to the reference and the ith

image used in defining the data cost in Sect. 3.1. Here, hrij
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denotes the blur kernel corresponding to the blur parameter
√

σ 2
i − σ 2

j . The compound visibility Vij signifies that the

data cost is not computed if a pixel is not observed in ei-

ther the ith or the j th view. We also update this compound

visibility similar to (30).

The corresponding data cost for a pixel and depth label,

considering all views, is then computed by summing the

matching costs as Ed = 1
Nij

∑

i Edi
, where Nij are the num-

ber of pairs of images gi and gj such that gi(θ1i
, θ2i

) /∈ M

and gj (θ1j
, θ2j

) /∈ M and Vij (l1, l2) �= 0. Thus, the cost for

a pixel missing in the reference image is computed by using

those images in which the corresponding pixels are visible.

Equation (35) implicitly assumes that gj (θ1j
, θ2j

) is

blurred and compared with gi(θ1i
, θ2i

). However, as in

Sect. 3.1, this is assumed only for ease of explanation. The

vice-versa case (near-far focusing) can be handled comfort-

ably in a manner similar to that discussed in Sect. 3.1.

The above process can yield pixels which are not labeled

(for which no correspondences are found). Moreover, as dis-

cussed in Sect. 3.4, some pixels can also be labeled incor-

rectly. We invoke the segmentation cue similar to that ex-

plained in Sect. 3.4 to mitigate such errors. Note, however,

that color segmentation of damaged observations will yield

segments corresponding to missing regions. For brevity, we

denote a set of such segments by Sm. Each such segment will

span largely different depth layers, thus disobeying the very

premise for the use of segmentation, and cannot be used for

computing the plane-fitted depth.

To address this issue, we assign the pixels in Sm to the

closest segment /∈ Sm. This essentially extends the segments

neighbouring to those in Sm by including the pixels belong-

ing to Sm. The closeness is determined by searching in eight

directions around the pixel. Thus, after this operation every

pixel that belonged to Sm will be assigned a new segment-

label of that segment (/∈ Sm) which is closest to that pixel.

The intuitive idea is that most of such pixels which belong

to the segment Sm corresponding to the missing region, ac-

tually would have been a part of the segments to which

they are assigned after this operation, if the missing regions,

which gave rise to Sm, had not been present. Thus, this op-

eration computes the natural segmentation labeling which is

necessary for using the segmentation cue.

The plane-fitted depth map is then computed using the

reliable pixels in these extended segments. This plane-fitted

depth map is fed back into the estimation process in the next

iteration where the unlabeled pixels are now labeled because

of the regularizer depending on the plane-fitted depth map.

Further iterations improve the estimates.

4.2 Image Inpainting

Given the estimated depth map, we now wish to estimate the

color labels for the missing pixels. We minimize a data cost

using the BP algorithm, which compares the intensities of

gi(θ1i
, θ2i

), i > 1 with an intensity label, if gi(θ1i
, θ2i

) /∈ M .

This data cost is defined as

Ed(n1, n2)

= Vi(n1, n2) · |L − h
p
ri (σi, n1, n2) ∗ gi(n1, n2)| (38)

where L is an intensity label, and the convolution is defined

as in (25). We note that the image inpainting accounts for the

blurring process. The kernel superscript p denotes that h
p
ri

carries out a partial sum for only those pixels in its support

which /∈ M .

Here, a minor limitation is that g1 should be more de-

focused than gi for at least some i > 1 for the pixels to be

inpainted. The above data cost is computed only for those

gis satisfying this condition, which however, is easily met,

given sufficient images.

Lastly, there may be missing pixels in g1 for whom it is

possible that gi(θ1i
, θ2i

) ∈ M ∀i. Such pixels are left unla-

beled. The extent of these unlabeled regions depends on the

original extent of the missing region and pixel motion. In

our experiments, for most cases, the pixel motion, when all

the images are considered, is sufficient to leave no missing

region unlabeled. The maximum extent of such unlabeled

regions, if they exist at all, is up to 2–3 pixels. Such small

unlabeled regions can be filled by any inpainting algorithm;

for instance, we use exemplar-based inpainting (Criminisi et

al. 2003).

4.3 Comments on the Inpainting Ability with Respect to

Extent of the Missing Regions

Since our inpainting approach is dependent primarily on the

motion cue, the motion for a particular pixel should be such

that it crosses the missing regions in one or more of the other

images.

In the case of camera damage, where the missing regions

are static, we can see that

w1 < |l1 − θ1i
| or

(39)
w2 < |l2 − θ2i

|

where w1 and w2 are the extent of the missing regions,

starting from (l1, l2) in the directions given by the signs of

(θ1i
− l1) and (θ2i

− l2) along the x and y image axes, re-

spectively. Thus, for a missing pixel at (l1, l2) in the refer-

ence image, its corresponding warped pixel at (θ1i
, θ2i

) in

the ith image should satisfy the above relation to go beyond

the missing regions. In fact, for depth estimation, the above

condition must be satisfied for at least two images, while for

image inpainting it will suffice if even any one image satis-

fies (39).
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For the case of intra-scene occlusion, the foreground to

be inpainted also changes its location across the observa-

tions depending on its own depth. However, given the depth

map containing the foreground occluder (which we compute

as a first step), we can know locations of the occluder pixels

in the ith image. Thus, the ideal condition for the motion to

serve as an inpainting cue can be written as

|l1 − θo
1i(l1)| + w1p < |l1 − θb

1i(l1)| or

|l1 − θo
1i(l1)| − w1n > |l1 − θb

1i(l1)| or
(40)

|l2 − θo
2i(l2)| + w2p < |l2 − θb

2i(l2)| or

|l2 − θo
2i(l2)| − w2n > |l2 − θb

2i(l2)|

where w1p and w2p are the extent of the missing regions in

the ith image, starting from (θo
1i

(l1), θ
o
2i

(l2)) in the directions

given by the signs of (θo
1i

(l1) − l1) and (θo
2i

(l2) − l2) along

the x and y image axes, respectively. Similarly, w1n and w2n

are the extent of the missing regions, in the directions given

by the signs of (l1 − θo
1i

(l1)) and (l2 − θo
2i

(l2)), respectively.

The superscripts o and b denote that the warped pixels are

those for the occluder and the background. If the background

pixels hidden in the reference image, satisfy the above con-

dition, then they will undergo enough shift to come out of

the missing region and will be uncovered in the ith image.

We now provide some insights based on the above anal-

ysis, which can serve as important guidelines for inpainting

under general camera motion.

– The warped pixel coordinates θ1i
and θ2i

depend on the

camera motion, the distance between the image plane and

lens, and the depth of the scene. For the sensor/lens dam-

age scenario, there is no constraint on the type of camera

motion (rotation and or translation). The missing pixels

are static (have zero motion) with respect to the camera

coordinate system while the scene pixels will almost al-

ways have a different (non-zero) motion no matter how

the camera moves. The only constraint is that the amount

of camera motion should be sufficient enough so as to po-

tentially satisfy the above conditions.

– For the occlusion removal case, the inpainting essentially

depends on the parallax between the foreground and the

background. Thus, there must be a translational compo-

nent in the camera motion. A purely rotating camera will

make θ1i
and θ2i

independent of the foreground and back-

ground depths, thus effectively providing no relative mo-

tion between foreground and background.

– In the restrictive case of an axial translation (Sahay and

Rajagopalan 2010), the motion-cue for inpainting is ef-

fectively absent near the image center due to small pixel

motion. Hence, the above bounds are not satisfied. On the

other hand, a general motion scenario allows the motion

to act as an inpainting cue without any restrictions on the

image positions.

– In general, the bounds derived in this section require

knowledge of scene depth to compute θ1i
and θ2i

, which

is unknown in the first place. However, they can still be

used to derive worst-case bounds for maximum depths,

bounds for average depths etc., given the knowledge of

the depth ranges that we operate upon. Thus, one can in-

deed use these bounds to deduce the required motion so

that the captured observations do contain sufficient infor-

mation for inpainting.

5 Experimental Results

We provide validation on several synthetic and real images.

The synthetic experiments were carried out on the Middle-

bury stereo database (Scharstein and Szeliski 2002) by cre-

ating warped and blurred observations from a focused im-

age and depth map, using realistic camera parameters. For

the real results, the observations were captured in our labo-

ratory with Olympus C-5050 camera. The images were cap-

tured with the camera either in a normal mode or in a super-

macro mode (in which the camera can focus on very short

distances). The focal length of the camera was of the order of

1 to 2 cm. The distance range in the scene was 20 to 50 cm in

the normal mode, and 3 to 15 cm in the super-macro mode,

within which we varied the focusing distance. The f-number

is varied between F/8–F/4. The camera translation and ro-

tation was of the order of 5–20 mm and 5–15 degrees, re-

spectively, with respect to the reference image. In all experi-

ments, threshold T , in the prior cost, is chosen as half of the

maximum depth label. The depth quantization is 0.5.

The intrinsic parameters of the Olympus C-5050 cam-

era which can be varied are the aperture radius r , the focus-

ing distance u and focal length f (which also controls the

zoom). For this camera, the values of r and u are available

while operating the camera whereas the value of f is avail-

able from the exif data stored in the images. For moving the

camera, we used a calibrated translational and rotational ta-

ble.

In Sect. 5.1, we first show the results for the generalized

depth estimation described in Sect. 3 to validate our primary

claims about a general framework. In addition to various

general cases of intrinsic and extrinsic parameter variation,

we also provide results for some non-conventional scenar-

ios. Results for the view occlusion problem which involve

depth inpainting as well as the defocus image inpainting are

provided in Sect. 5.2.

Our experiments involve various arbitrary combinations

of intrinsic and extrinsic parameters. In each of the Sects. 5.1

and 5.2, we typically begin with simpler cases involving

variations in two parameters viz. camera translation along

an axis and aperture variation, and then move on to more in-

volved scenarios involving general camera motion, aperture
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Fig. 4 A blur kernel estimated at a fronto-parallel region in n real

image using two images with different aperture settings

variations and focusing distance. The idea is to show that our

method performs consistently well regardless of the nature

of variations in intrinsic and extrinsic parameters.

We provide quantitative evaluation for our synthetic ex-

periments by computing the mean absolute error (MAE)

with ground-truth. To evaluate the performance of our ap-

proach for real scenes we also provide quantitative eval-

uation for some of the experiments. The real experiments

which are evaluated are chosen based on ease of ground-

truth measurements in the scene for at least 4–5 different

depths. Otherwise, these experiments and scenes have no

special attributes as compared to others.

Before getting into the depth estimation and inpainting

experiments, we show an example of a real relative blur

PSF estimated for the Olympus C5050Z camera which we

used in our real experiments. The PSF was estimated at a

fronto-parallel region using a pair of real images with no

relative motion (Fig. 4). We used the method of Paramanand

and Rajagopalan (2010), which does not assume any addi-

tional constraints. We see that the circular symmetry sug-

gested by the thin lens model is indeed satisfied. Moreover,

we can observe a decay in the magnitude of the kernel which

peaks at the center. The real blur kernel can, in fact, be well-

approximated by a Gaussian. The choice of a parametric

Gaussian model for the blur kernel is apt, not just due to

the simplicity it offers in relating blur with absolute depth

or its physical justification via the central limit theorem, but

also due to the resemblance it bears to a real blur kernel.

5.1 Results for Depth Estimation

Synthetic Experiment (tx,Rx, r) In Fig. 5 we show results

for synthetic experiments on the teddy scene and the plastic

scene. These experiments involve camera translation, rota-

tion and aperture variation. For each scene, one of the im-

ages and the ground-truth disparity map is acquired from the

Fig. 5 Synthetic experiments: (a, c) and (b, d) Binocular image

pairs with translation, rotation, aperture variation for teddy and plastic

scenes, respectively. (e, f) Ground-truth depth maps, and (g, h) their re-

spective estimated depth maps. MAE in depth estimation for the teddy

and plastic scenes is 0.34 cm and 0.46 cm, respectively. The depth

range for the scenes are 5–16 cm and 6–20 cm, respectively

Middlebury stereo database (Scharstein and Szeliski 2002).

The ground-truth depth maps are computed from the dis-

parity maps. Using one view, the ground-truth depth map,

and realistic camera parameters (of the order of few cen-

timeters), we create another view which is warped and dif-

ferently blurred as compared to the first view. The transla-

tion, rotation and the camera parameters were chosen such

that the maximum pixel motion was ≈ 30 pixels. The max-

imum relative blur parameter σr ≈ 2. The observations for

the teddy and plastic scenes are shown in Figs. 5(a, c) and

Figs. 5(b, d), respectively. It is important to note that the

image generation followed the space-variant model of (3),

whereas the estimation is carried out using the convolution

approximation discussed in Sect. 3.1. The estimated depth

maps for the two scenes are shown in Figs. 5(g, h). Observe

that the depth estimates are very close to the ground-truth

(5(e, f)) and also show good discontinuity localization. The
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Fig. 6 Real experiments: (a, c) and (b, d) Translated image pairs with

aperture variation for two different scenes. (e, f) Estimated depth maps

complicated shapes in the teddy depth map are quite well-

preserved.

Binocular stereo real experiments (tx, r) In Fig. 6 we

demonstrate results on real data for two real scenes. We

show both the results in a single figure since both exam-

ples involve binocular images (two observations shown in

Fig. 6(a, c) and Fig. 6(b, d)) with tx translation and variation

in the aperture. In these experiments, we used the camera in

the so called super-macro mode, since the scene depth range

was less than 15 cm. The respective depth maps from the ref-

erence views of Figs. 6(a) and 6(b) are shown in Figs. 6(e)

and 6(f). In addition to shape and discontinuity preservation,

we note that the output is quite good even on somewhat low

textured regions (e.g. the cardboard in the scene in the bot-

tom row). Moreover, in this experiment, since the objects

are kept quite close to the camera, the algorithm is also able

to capture relatively fine variations (e.g. on the Pisa tower-

model in both the scenes and on the circuit board in the ex-

ample in the left column).

Multi-view Stereo Real Experiment (tx, r) Next, we show

an experiment using multiple images captured with a trans-

lating camera, varying in aperture. This real example in-

volves a scene where all the foreground objects are low-

textured wooden statues/models. (Figs. 7(a–c)). The cam-

era is focused on the Ashoka pillar model (the leftmost

model in the images). Note especially, the heavy blurring

over the Ganesha idol and the background region. The esti-

mated depth map for the reference view (Fig. 7(a)), is shown

Fig. 7 Real experiment: (a, b, c) Translated observations with aperture

variation. (d) Estimated depth map. (e) Novel-view rendering of the

scene

Table 2 Comparison of the estimated and ground-truth distances for

the scene shown in Fig. 7

Objects/regions dm (cm) de (cm)

Ashoka pillar model 24 24.6

Buddha idol (central region) 30 27.6

Ganesha idol (central region) 32 31.15

Background (top region) 40 38.6

in Fig. 7(d). The algorithm is able to capture the depth vari-

ations with good shape localization. For instance, note the

curves and the gaps in the Ashoka pillar model and the sub-

tle sawtooth patterns in the hemisphere around the Buddha’s

head. In the Ganesha idol, the fact that the belly, trunk and

the shade (over the head) are in front of the legs and the ears,

manifests in the depth map too. A novel-view rendering of

this scene is shown in Fig. 7(e). We also measured the ac-

tual distances (dm) from the camera for some regions on the

objects. We find that our estimated distances (de) (averaged

for around 10 points in these regions) agree well with the

measured distances. These values are provided in Table 2.

Multi-view Stereo Real Experiment (tx, tz, r) In Fig. 8 we

provide a result on real data involving multiple observations

with translation and variation in the aperture. Figures 8(a–c)

show three out of the four observations that involve transla-
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Fig. 8 Real experiment: (a, b, c) Observations with tx and tz trans-

lation and aperture variation. (d) Estimated depth map. (e) Tex-

ture-mapped novel-view rendering of the scene

tion in the tx and tz direction. Note that the image in Fig. 8(c)

appears to be somewhat magnified than the other observa-

tions because of the tz (axial) translational component to-

wards the scene while acquiring this observation. The cam-

era was focused on the Pisa tower model. The depth map

from the reference view of Fig. 8(a) is shown in Fig. 8(d).

The result re-assures that the approach captures all the im-

portant depth variations and achieves good discontinuity lo-

calization. The scene-objects in this experiment were also

kept at similar distances as in the previous one. We can

see that the gray-level depth representation which uses the

same scale-factor as the previous experiment shows similar

gray-levels, thus, indicating a correct estimation. A rendered

novel view for this scene is shown in Fig. 8(e) by texture-

mapping the reference observation onto the depth map.

Multi-view Stereo Real Experiment (tx,Rx, r) In Figs.

9(a–c), we show three out of five observations involving

translation, rotation and aperture variation. In this experi-

ment, the camera was focused on the blue background. One

can clearly make out the large relative motion and blur vari-

ation over the regions in the front. Our depth map output for

the view in Fig. 9(a) is shown in Fig. 9(d). In this experiment

too, the depth ranges are similar to those in the evaluated

experiment of Fig. 7 and the result clearly shows the depth

estimation fidelity. We can also see that the discontinuities

are consistently preserved. Figure 9(e) shows a novel-view

rendering of the scene, which brings out the relative depth

differences between the objects.

Fig. 9 Real experiment: (a, b, c) Observations with translation, rota-

tion and aperture variation. (d) Estimated depth map. (e) A novel-view

5.1.1 Depth Estimation Results for Non-conventional

Scenarios

In addition to the results for the various cases shown above,

we now discuss two unconventional scenarios, arising in our

general framework. In obtaining the results for these situa-

tions, we did not enforce the segmentation cue, since we

wish to highlight the stand-alone ability of the inherent cues

for depth estimation under these special camera configura-

tions.

Depth Estimation with Pure Camera Rotation The first

of these is the case of pure rotational camera motion. The

images captured under pure camera rotation for a pin-

hole camera model are geometrically related through a 8-

parameter homography. For this special case, the pixel mo-

tion does not depend on the depth of the corresponding 3D

points. Pure rotational motion provides no depth cue for the

pin-hole camera (Hartley and Zisserman 2003). However,

if the camera has a non-zero aperture, then all is not lost.

Equation (22) for pure camera rotation yields

σi = ρrivi

(

1

f
−

1

vi

−
1

Z(
ai31

l1

v1
+

ai32
l2

v1
+ ai33

)

)

. (41)
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Fig. 10 Synthetic experiment: (a, b) Observations acquired from a

purely rotating real aperture camera. (c) Ground-truth depth map.

(d) Estimated depth map. MAE is 0.22 cm where the depth range is

8 to 10 cm)

Clearly, even though the camera parameters are kept con-

stant, one can note that the blur parameter σi for the ith view

for the pixel at coordinates (l1, l2) in the reference view, is

different than σ1, the blur parameter in the reference view.

Not only is the relative blur parameter σr =

√

σ 2
i − σ 2

1 non-

zero, but it is also a function of the depth Z. Hence, for a

real-aperture camera, even pure camera rotation provides a

depth cue through the relative blur induced by camera rota-

tion.

Figure 10 shows the results for a synthetic experiment for

depth estimation under pure camera rotation. For simplicity,

the ground-truth depth was chosen to be a two-layer cake

(Fig. 10(c)). A random-dot image was rotated and blurred to

create the observations (Figs. 10(a, b)), with the reference

image being the latter. The rotation was 2◦ while the depth

varied from 8 to 10 cm. The camera parameters were realis-

tically chosen so that the order of ri was a few millimeters

and that of ui and vi was a few centimeters. As the camera

parameters were constant across the observations, the blur

variation was only due to camera rotation.

We observe the depth variation is captured satisfactorily

(Fig. 10(d)). The errors at the discontinuities are due to con-

volution approximation and owing to the fact that we did not

enforce the segmentation constraint for this experiment.

A real result for the case of pure camera rotation about

the vertical axis is shown in Fig. 11. Note the blur variation

in the observations (Figs. 11(a, b)) induced by the camera

rotation (visible more clearly over the foreground). The dis-

tance of the object from the camera was 3–5 cm and the

camera was rotated by about 2◦. The estimated depth map is

Fig. 11 Real experiment: (a, b) Observations for a real aperture cam-

era undergoing pure rotation. (c) Estimated depth map

shown in Fig. 11(c). Again, except for the errors at the dis-

continuities, shapes of the objects in the scene are captured

fairly well with blur serving as the only depth cue.

Resolving DFD Ambiguity with Stereo Yet another uncon-

ventional situation arises when we exploit the ability of our

framework to handle camera motion to resolve the ambigu-

ity in depth estimation that can occur with just the defocus

cue. In DFD, it is common to capture two images with differ-

ent camera settings. In such a case, one can face a situation

where two different values of Z yield equal values of the rel-

ative blur parameter. This, in turn, makes depth estimation

ambiguous.

The square of the relative blur parameter σr , under two

internal camera settings (r1, v1, u1) and (r2, v2, u2) in a

DFD scenario can be given as

σ 2
2 − σ 2

1

=

(

ρr2v2

(

1

u2
−

1

Z

))2

−

(

ρr1v1

(

1

u1
−

1

Z

))2

. (42)

The plot in Fig. 12 shows an example of the variation in

σ 2
2 − σ 2

1 as a function of depth (blue curve), where Zc1
and

Zc2
denote abscissa values of the zero crossings. Note that

Z = Zp , σ 2
2 −σ 2

1 has a stationary point, which can be easily

computed by taking the first derivative of 42 with respect to

Z and setting it to 0. Thus, Zp can be expressed as

Zp =
(v2

2 − v2
1)

(
v2

2
u2

−
v2

1
u1

)

. (43)

If for all the world objects, the depth Z is restricted such

that Z ≥ Zp or Z ≤ Zp , then there is a one-one corre-
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Fig. 12 Ambiguity in DFD

spondence between the depth value Z and the relative blur

σ 2
2 − σ 2

1 . Otherwise, one can have two depth values (e.g.

Zp1
and Zp2

) for which the magnitude and sign of quantity

σ 2
2 − σ 2

1 are equal. Thus, there is no way of distinguishing

between depths Zp1
and Zp2

.

However, if now the real aperture camera also under-

goes motion (importantly, translation), in addition to the pa-

rameter variation, while capturing the two images, then one

could resolve such an ambiguity. For simplicity, considering

pure camera translation tx in the x-direction and assuming

v1 = vi = v, the pixel motion (or in this case, disparity dz)

is given as

dz =
vtx

Z
. (44)

The function dz is not quadratic with respect to Z and is bi-

jective. It is shown by the monotonically decreasing curve

in Fig. 12. Hence, every Z corresponds to a unique disparity

dz. Thus, with the observations captured with a translating

real aperture camera, ideally our framework should select

the depth which solves both (42) and (44) since only such

a depth will minimize the energy with respect to the rela-

tive blur σ 2
2 − σ 2

1 as well as pixel disparity dz. We thus have

only one value of depth that satisfies both these constraints

no matter what depth range one considers. Thus, our frame-

work, allows one to operate even over those distances where

using only the DFD approach can yield incorrect depth esti-

mates.

A synthetic example is shown in Fig. 13 to provide a

proof of concept for the case where the DFD ambiguity can

be resolved using the stereo cue. We selected camera pa-

rameters such that the extremum of σ 2
r (Z) lies at a depth

of 5.7 cm. Our focused image was a random dot pattern.

First, we choose our ground truth depth variation to be a

ramp varying between 6.6 and 9.6 cm (Fig. 13(a)). In this

Fig. 13 Synthetic experiment: (a, b) Ground-truth and estimated

depth maps, respectively, using only DFD when the depth values lie

in a monotonic portion of the function σ 2
r (Z). (c, d) Ground-truth and

estimated depth maps, respectively, using only DFD when the depth

values lie in a non-monotonic portion of the function σ 2
r (Z). (e) Esti-

mated depth map for the depth range in (c) when camera is also trans-

lated. MAE between (a) and (b) (with no ambiguity in DFD) is 0.24 cm

(depth range is 6.6 cm to 9.6 cm). MAE between (c) and (d) (where

DFD suffers from an inherent ambiguity) is 0.91 cm (depth range is

4 cm to 7 cm). MAE between (c) and (e) is 0.11 cm (where the stereo

cue neutralizes the DFD ambiguity over the same depth range of 4 cm

to 7 cm)

range, the variation of σ 2
r (Z) is monotonic. Hence, our ap-

proach operated for the special case of DFD (with no rel-

ative motion between the images), results in correct depth

estimates (Fig. 13(b)). We next choose the depth variation

as a ramp between 4 to 7 cm (Fig. 13(c)). In this case, us-

ing only a DFD pair as observations yields gross errors in

the resultant depth map (Fig. 13(d)). Indeed, the depth vari-

ation does not resemble the true ramp-like variation at all.

Now, for the same depth range shown in Fig. 13(c), we also

induced a camera translation in the tx (horizontal) direction

while synthesizing the observations and used our algorithm

such that it considers both blur and motion. Inclusion of the

stereo cue disambiguates the depth variation and produces a

correct output as shown in Fig. 13(e).

A real result for this phenomenon is shown in Fig. 14,

where Zp = 36.6 cm. In Fig. 14(c), we see that the depth

estimation using only the DFD technique is correct when

the scene depth range for the observations (Figs. 14(a, b))

lies in the monotonic part of σ 2
r (Z) (more precisely, the

depth range is 24–34 cm which is completely below Zp).

The depth variations represented as grey levels specify the

depth ordering of the scene objects.

On the contrary, for a scene lying between 27–39 cm and

thus containing Zp (corresponding to the DFD observations

in Figs. 14(d, e)), the DFD output (Fig. 14(f)) is quite erro-

neous. Note that the gray scale representation of some por-

tions of the horse and the complete background are actually

ordered in reverse to what they actually should have been.
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Fig. 14 Real experiment: (a, b) Observations for DFD with the scene

depth range lying in a monotonic portion of the function σ 2
r (Z). (c) Es-

timated depth map using only DFD. (d, e) Observations for DFD when

the scene depth range contains Zp . (f) Estimated depth map using only

DFD. (g) Estimated depth map with both blur and stereo cues. It uses

the observation (d) and another with the same camera settings as used

in (e) but also involving a relative translation along the horizontal axis

The shape of the objects also have many distortions due to

erroneous depth assignments.

The picture changes (even in the literal sense!) when we

use the stereo cue along with the blur cue in this ambiguous

depth range. The same scene and the same internal camera

settings were used, as in the case for capturing Figs. 14(d, e),

except that the second image (not shown here) was cap-

tured with the camera translated along the horizontal axis by

about 1 cm relative to its position in Fig. 14(e). Note that the

DFD depth estimation is disambiguated with the inclusion

of stereo (Fig. 14(g)). The depth variations and localization

are correctly captured now.

Thus, complimentary to the previous scenario where the

blur cue can used to disambiguate the depth estimation un-

der pure camera rotation, in this case, it is the motion cue

which is helpful when the defocus cue fails. These special

cases thus clearly further highlight the importance of a gen-

eral framework for the depth estimation task.

5.2 Results for the View Occlusion/Inpainting Problem

In this subsection, we depict results for removing view oc-

clusions/inpainting. We first cover the case of intra-scene oc-

Fig. 15 Real experiment: (a) Reference observation where (b) the oc-

cluder is masked. (c) Inpainted depth map. (d) Inpainted image

cluder, where we remove foreground occluding objects from

the scene. We then show experiments for the sensor damage

case. In all the experiments, the occluded/missing regions

are about 15–30 pixels wide.

5.2.1 Results for Intra-Scene Occlusion Removal

Multi-view Stereo Real Experiments (tx, r) We next pro-

vide real results for our inpainting approach which in-

volves removing an occluder present in the scene. Figures 15

and 16 show two such examples which involve camera trans-

lation and variation in aperture. The images with the largest

aperture was chosen as reference images in both the exam-

ples (Figs. 15(a) and 16(a)). The wires in the foreground are

the occluders which we desire to remove from the scene.

Note that in the example in Fig. 16, one such occluder com-

pletely masks the green stem of the left-most yellow tree in

the reference observation Fig. 16(a) and hence in the resul-

tant depth map with the occluders (Fig. 16(d)). This green

stem is visible in some of the other observations (e.g. in

Fig. 16(b)). The occluders are shown masked in Figs. 15(b)

and 16(c). The respective occluder-free depth map outputs

are shown in Figs. 15(c) and 16(e). Note that there is barely

any trace of the foreground wires. In particular, observe that

the discontinuities where the wire crosses the objects do not

show any visible signs of distortion. The smoother regions

also do not show any artifacts. The resultant inpainted im-

ages are shown in Figs. 15(d) and 16(f). Here too, one can

notice that texture with its inherent blurring on the rabbit,

clay shapes and the background has been inpainted quite

coherently with respect to the neighbourhood region. The

details on the Ashoka pillar are also retrieved in Fig. 15(d).

Interestingly, the green stem of the yellow tree (which is to-
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Fig. 16 (Color online) Real experiment: (a, b) Two out of four obser-

vations. (c) Occluders masked in the reference observation. Estimated

depth map (d) with the occluder present and (e) with the occluder re-

moved. (f) Inpainted image

tally occluded in the reference view) is also recovered com-

pletely in both the inpainted depth (Fig. 16(e)) and image

(Fig. 16(f)). A small amount of jaggedness in the green stem

in the inpainted image can be discounted, considering the

fact that it was completely occluded in the reference image.

Recovering a completely occluded object is simply impossi-

ble for single image-based inpainting methods and thus this

result underlines the importance of motion-based occlusion

removal.

Multi-view Stereo Real Experiment (tx, r, u) Next, we

show results for an experiment that uses 5 observations two

of which are shown in Figs. 17(a) and 17(b). The images

are captured from a camera translating on a plane while un-

dergoing a change in aperture and focusing distance. Note

that in Fig. 17(a) the camera focuses on blue rabbit while

in Fig. 17(b), the focus is on the yellow tree. Figure 17(c)

shows the reference observation with the occluders masked.

The complete estimated depth map with the occluders is

shown in Fig. 17(d). Note how the occluders are indeed

shown closest to the camera (the darkest in shade) and are

also localized quite well; this is important for their correct

warping and subsequent use in inpainting. The inpainted

depth map without the occluders is shown in Fig. 17(e)

while Fig. 17(f) shows the inpainted image. Again, we ob-

serve that the occluders have been successfully removed.

The discontinuities and the depth values are correctly in-

painted in the depth map. The image inpainting also demon-

Fig. 17 (Color online) Real experiment: (a, b) Two out of five obser-

vations. (c) Occluders masked in the reference observation. Estimated

depth map (a) with the occluder present and (b) with the occluder re-

moved. (f) Inpainted image

Table 3 Comparison of the estimated and ground-truth distances for

the scene shown in Fig. 17

Objects/regions dm (cm) de (cm)

Leftmost blue occluder 23 23.7

Blue rabbit (central region) 27 27.2

Pink rabbit (face region) 29 29.6

Yellow tree (central region) 32 31.8

Background (central region) 38 37.4

strates a plausible estimation of texture, details and blur in

the occluded regions. Akin to the experiment of Fig. 7, in

this experiment too we compared the actual measured depth

values to the estimated ones and found that they agree quite

closely (see Table 3).

Multi-view Stereo Real Experiment (tx,Rx, r) Our next in-

painting experiment uses a camera undergoing translation,

rotation and aperture variations. Two of the four images used

in the experiment are shown in Figs. 18(a, b). The reference

image with the masked occluders are depicted in Fig. 18(c).

Figures 18(d, e) respectively show the complete depth map

(with the occluders) and the inpainted depth map with the

occluders successfully inpainted. In this experiment, the ac-

tual depth of the objects from the camera was similar to that

in that of Fig. 17. Hence, we can deduce, on the basis of

result (which uses the same scale factor in gray-scale rep-
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Fig. 18 (Color online) Real experiment: (a, b) Two out of four obser-

vations. (c) Occluders masked in the reference observation. Estimated

depth map (d) with the occluder present and (e) with the occluder re-

moved. (f) Inpainted image

resentation as in Fig. 17), that the depth estimation is fairly

accurate. The inpainted image is shown in Fig. 18(f). Note

especially the salient aspects in the inpainted regions such

as the structural details in the Pisa tower. Also, texture on

the yellow tree, pink bunny and the background are all re-

covered without any visible artifacts.

5.2.2 Results for Inpainting Lens/Sensor Damage

We now show results for inpainting the sensor damage

where we scratch the observations to emulate sensor dam-

age. For simplicity, we consider the case of a single damaged

camera used for capturing multiple images. However, as dis-

cussed earlier, the same framework can be used to handle the

multiple damaged camera case too. Since, we have the actual

observations without scratches, to demonstrate the efficacy

of the depth inpainting in the real examples, we compare the

depth estimates with the scratched observations with those

estimated using the undamaged observations.

Multi-view Stereo Synthetic Experiment (tx,Rx, r) In

Fig. 19 we show a synthetic example involving translation,

rotation and aperture variation. Note that the scratched ob-

servations Figs. 19(a, b) are also space-variantly blurred.

The observations were synthesized as in the earlier example

of Fig. 5. We note that the inpainted depth map Fig. 19(d)

is quite close to the ground truth of Fig. 19(c). The effect

of sensor damage is barely visible. Similarly, the inpainted

Fig. 19 Synthetic experiment: (a, b) Two of the four observations used

in the experiment. (c, d) Ground-truth and estimated depth, respec-

tively. (e, f) Original image and inpainted image, respectively. MAE

for depth estimation is 0.33 cm over the depth range 5–16 cm. MAE

for the inpainted image at the masked pixels is 6.29 intensity levels

image Fig. 19(f) is visually identical to the ground-truth

blurred image Fig. 19(e). Note that the filled-in regions in

the image are coherently defocused as their neighbourhood

even though the observations have varying amounts of blur.

Multi-view Stereo Real Experiment (tx,Rx, r) We next

provide a real result for inpainting involving translation, ro-

tation and aperture variation. Figures 20(a, b) display two

of the four damaged observations. Observe the difference in

blurring, especially on the background and the farther ob-

jects such as the green tree and Pisa tower. Our depth map

output is shown in Fig. 20(d). Note, again, that the depth

map is cleanly inpainted and in addition, shows good discon-

tinuity preservation and a plausible depth variation. Since

we also have the undamaged observations we can com-

pare the depth map in Fig. 20(d) with that estimated using

the undamaged images (Fig. 20(c)). There is some differ-

ence at the places where the damage crosses the discontinu-

ities, but that is hardly noticeable and there is no unnatural-

ness in the inpainted depth map. Thus, the accuracy of the

depth inpainting can be appreciated. In comparing the orig-

inal unscratched image (Fig. 20(e)) and the inpainted image

(Fig. 20(f)), we find that the scratches are indeed filled with-

out hampering the intricate intensity variations on the ob-
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Fig. 20 Real experiment: (a, b) Two observations out of four with

translation, rotation and variations in aperture. Estimated depth map

from (c) non-damaged observations and (d) damaged observations.

(e) Original unscratched image. (f) Inpainted image. MAE between

the depth estimates in (c) and (d) is 0.5 cm overall and 0.67 cm over

the scratched regions, where the depth range was 24–40 cm. MAE be-

tween the original image and the inpainted image over the scratched

regions is 9.57 intensity levels

jects (e.g., the pattern on the Pisa tower and the Ashoka pil-

lar, and the dotted texture on the trees and the background).

Multi-view Stereo Real Experiment (tx, r, u) Finally, we

show a real result with four images involving camera trans-

lation, and variation in aperture and focusing distance. One

can note the near-far focusing effects in the three observa-

tions which are shown in Figs. 21(a, b). Figure 21(d) shows

the estimated depth map having well-defined shapes, even

with a large amount of defocus in the observations for the

foreground and background objects. The depth variation is

also captured with good fidelity, not only across close ob-

jects (such as the bunny and the Pisa tower model), but also

within each object (e.g. the ears of the bunny, which are

slightly behind the face). In addition, the depth estimation in

the damaged regions is also quite flawless. Again, we notice

that the depth map estimated with undamaged observations

(Fig. 21(c)) has little difference with that estimated using

damaged observations, thus highlighting the correctness of

depth inpainting. With largely different blur in the observa-

tions, the image inpainting result (Fig. 21(f)) also empha-

sizes the ability of our approach to coherently inpaint the

damaged image regions, maintaining visually correct defo-

Fig. 21 Real experiment: (a, b) Two out of four damaged observations

involving translation and variations in aperture and focusing distance.

Estimated depth map from (c) undamaged observations and (d) dam-

aged observations. (e) Original undamaged image. (f) Inpainted image.

MAE between the depth estimates in (c) and (d) is 0.43 cm overall

and 0.52 cm over the scratched regions, where the depth range was

25–45 cm. MAE between the original image and the inpainted image

over the scratched regions is 6.72 intensity levels

cusing. The inpainted image also compares well with the

actual undamaged observation (Fig. 21(e)).

6 Discussions

This paper describes one of the first comprehensive efforts

of its kind towards generalizing the depth estimation prob-

lem. To our knowledge, there is no work in literature which

considers the level of generalization considered in this pa-

per. Hence, we are unable to provide comparisons with ex-

isting approaches as they are quite restrictive. Nevertheless,

we believe that our results are qualitatively comparable to

what is typically achieved in state-of-the-art depth estima-

tion approaches. The primary goal of the paper was to de-

velop a general framework for depth estimation and address

the view occlusion problem within such a framework. Al-

though, we have discussed, at length, various interesting

situations that arise in the process of generalizing the task

of depth estimation when using a real-aperture camera, we

would like to highlight some issues that hold potential for

future research in this direction.

– As mentioned in Sect. 2.2, ideally, the defocus blur kernel

need not be constrained to have a parametric form. In the
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worst case, it may not even be circularly symmetric and

can have an arbitrary shape. However, unlike parametric

kernels, it is difficult to analytically relate such an arbi-

trary kernel with depth.

One way to map an arbitrary blur kernel to depth is

to use a priori calibration to relate estimated blur kernels

with their respective depth values and then pick the depth

label corresponding to the kernel that minimizes the cost

(Ens and Lawrence 1993). For a thin lens model, the ker-

nels at different depths can be related through scaling of

the PSF (Sorel 2007). In this case, the absolute depth at

any point can be computed if one a priori knows (through

calibration) the kernel-depth correspondence at some ref-

erence point.

– We discussed some bounds and gave some insights for

the view occlusion problem which can provide the user

with helpful guidelines. However, a detailed analysis (e.g.

Chan and Kang 2006) of such a motion-based inpainting

problem may provide a deeper understanding.

– The occlusions in our framework is only related to camera

motion. There exists some works which consider partial

occlusion due to defocus. However, for noticeable par-

tial occlusion, the foreground objects should be extremely

close to the camera and the background should be consid-

erably farther. We note that over the (more natural) depth

ranges that we operate, we have negligible partial occlu-

sion and it is safe to ignore it. But it would play an im-

portant role if, in some special situations, one needs to

considers more extreme depth ranges.

– We relate the relative blur between the images to the scene

depth. This is in fact an approximation to the actual space-

variant imaging model (as discussed in Sect. 3.1). An effi-

cient approach which considers the true space-variant na-

ture of the problem can be explored.

– Generalizing depth estimation further should consider

even aspects such as different degrees of exposure and

motion blur.

7 Conclusions

We proposed a depth estimation framework that intertwines

the camera parameters, motion and blur cues. Our frame-

work handles various camera effects such as parallax, zoom-

ing, occlusions and focusing variations. We also address the

problem of removing user-defined view-occlusions from the

depth map as well as the image. Our occlusion removal (in-

painting) approach exploits depth cues resulting from mo-

tion and defocus blur and is hence closely coupled to the

depth estimation framework. We formulated our depth es-

timation and occlusion removal approaches in an efficient

BP framework with visibility handling and segmentation

constraint. Our results sufficiently validate our claims, both

qualitatively as well as quantitatively.
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