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1 Introduction

In many urban environments, private automobile use has led to severe problems with respect

to congestion, pollution and safety. A large effort has been put in industrial countries into

developing new types of transportation systems, the Cybercars, as an answer to this problem

(Parent, 1997). Cybercars are city vehicles with fully automated driving capabilities. Such

autonomous systems cannot be realised without using several capabilities designed to work

together in a single application. Indeed, to safely navigate, the system will have to model

the environment while localising in it, plan its trajectory to the goal and finally execute it.

The problem of designing and integrating such capabilities, while accounting for the various

constraints of such an application, remains largely open and lies at the heart of the work

presented in this paper.

Autonomy in general and motion autonomy in particular has been a longstanding issue

in robotics. Several architecture have been proposed. They mainly differ in the context

as well as the platform which is intended to perform this task. Firstly, the environment

imposes its own constraints. Indeed, within an urban environment, its dynamic nature

(pedestrians, other cars, etc.) imposes on the navigation scheme a real time constraint over

the time that the system has to take a decision. In particular, when a robot is placed in a

dynamic environment, it cannot remain still, otherwise it might be hit by a moving obstacle.

Besides, in a dynamic environment, the future motion of the moving obstacles is usually not

known in advance and will have to be predicted. Since the urban environment is partially

predictable it is possible to provide a valid prediction over a limited time horizon. Secondly,

a complex system as a car-like robot is constrained by its (non-holonomic) kinematics as

well as its dynamics. The intent of our work is to explicitly account for these different

constraints in order to safely move the robot to its goal.

The first automated vehicles are designed to follow a predefined path. The path following

problem, classic in control theory, requires the vehicle to estimate its instantaneous position

with respect to the path. A dedicated infrastructure is used to materialise the path and

enable the vehicle to relocalise on it. Early wires guided vehicles follow a wire buried in the

ground by means of inductive sensors. Later techniques use dead-reckoning associated with

relocalisation on magnets or transponders widely spaced in the ground. These techniques
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allow for fine tuning the exact path of the vehicles. On these configurations, the safety is

related to blocking the access of pedestrians to the special roads, or detecting obstacles on

the way and stopping the vehicle. This kind of system has been already commercialised,

such as on the ParkShuttle (Figure 1).

Figure 1 ParkShuttle system within Schipol airport parking lot

Recent techniques permit the localisation of the vehicle using the natural features in the

environment. These techniques have the advantage of requiring no modification of the

environment. In this case, a collision-free path must be computed which requires a model of

the environment that can be built by extracting higher-level features. Autonomous vehicles

that are infrastrucuture independent become thus very complex. Therefore, most of the work

on autonomous vehicles has been applied to simple indoor robots for which kinematic and

dynamic constraints are usually not considered. Furthermore, they usually rely on strong

geometric assumptions for the environment model construction and disregard the moving

obstacles. Some interesting autonomous navigation systems considering moving obstacles

and relaxed geometric constraints were presented by Thrun et al. (1999) and more recently

by Montesano et al. (2005) and Philippsen et al. (2006). In the previous years, significant

advances have provided medium to high speed autonomous vehicles evolving in outdoor

(Kolski et al., to appear; Thrun et al. accepeted for publishing). These systems are able to

evolve in structured and non-structured environment, considering the dynamic constraints

of the vehicle and the presence of static obstacles. Recently, an autonomous navigation

architecture integrating moving obstacles and safety notions was presented (Pradalier et al.,

2005). However, they rely on a structured environment assumption and do not explicitly

integrate the dynamic environment considerations at the planning stage. Finally, some

previous works have discussed the safety issues in urban environments and their relation to

the perception requirements (Thorpe et al., 2003).

Previous approaches differ in several ways, however, it is clear that an autonomous robot

placed in a partially predictable dynamic environment must have perceptive, deliberative

and reactive capabilities. In this paper, the perception relies on Simultaneously Localisation

and Mapping (SLAM), algorithm extended for moving objects detection and tracking so as

to build a world model including static obstacles as well as a short term prediction of the

motions of moving obstacles. The deliberative scheme uses this world model to generate

trajectories that explicitly account for the constraints of the environment and the system.

The approach which is used rely on a deliberative strategy that interleaves planning with

execution. It consists in incrementally and iteratively calculating a safe trajectory to the

goal in order to provide motion autonomy to the system.
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To the authors’ knowledge, the approach presented in this paper is the first integrated

system that handles explicitly the dynamic nature of the environment and the kinematics

and dynamics of the system.

We review some previous work on perception and planning in the following sections.

Firstly, in Section 2, the proposed perception algorithm is detailed. Secondly, in Section 3,

after reviewing the issues and related work, we present the planning scheme. In Sections 4

and 5, we present the integration of both modules and the results of experiments performed

on a real car-like robot, the Cycab. Future works are discussed in Section 6 and finally we

draw some conclusions in Section 7.

2 Perception in urban environments

2.1 Introduction

Perception is the process of transforming measures of the world into an internal model.

The kind of model (and the choice of the sensors) depends on the application. For

autonomous navigation, the world model needs to integrate at least four elements: the

target to attain, the position of the static obstacles, the current and future position of moving

obstacles and the current state of the vehicle (position, speed, etc.).

Due to occlusion and limited field of view, the robot cannot observe the entire world at

each measurement. Integrating successive observations into a consistent map of forward

obstacles is required to create an effective planning. It is well know that there exists a

duality between creating consistent maps and localising the robot, such a duality has been

extensively studied as the SLAM problem (Thrun, to appear).

Unfortunately, most of the works in SLAM suppose a static environment. The

presence of moving obstacles will contaminate the map and perturb the data

association between two observations. For the planning purpose, we require to explicitly

identify the moving obstacles and estimate their current state in order to predict their

future position.

We can see that for autonomous navigation, as a strict minimum, the robot requires to

solve the Simultaneous Localisation, Mapping and Moving Objects Tracking (SLAMMOT)

problem (Wang, 2004). In the following paragraphs, we will propose a solution to

this problem and then we will discuss the additional considerations required when

integrating perception and planning.

The key point to create correct maps (and thus correctly localise the robot) is to

successfully do data association between current and past measures. Data association

methods have a limited ‘attraction region’, if the initial guess is outside this region, the

association will produce an erroneous result. The attraction region depends on the existing

map, the initial estimate, the current measure and the method employed.

When the robot successfully recognises a previously visited place, the SLAM

algorithms will allow to reduce its pose uncertainty helping thus in the data association

process.

The Incremental Maximum Likelihood method (Thrun, to appear) is a simple approach

for the construction of small scale maps. The incurred error is acceptable when the robot

does not close a loop and the drift inside the map is under the desired bound. The incremental

construction of the map eliminates the need to store the previous measures or to recompute

the map online. A set of small scale maps can be used as building blocks for a larger map.

In Section 6, we discuss the city-sized SLAM problem.
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In outdoor mobile robotics, the sensors commonly employed to observe the surrounds

are video cameras, radars and laser scans (Thorpe et al., 2001). We choose the last one due

to its larger range (more than 180◦ and 40 m) and high precision (±1◦ and ±0.1 m). Notice

that the laser scanner measures provide information about the presence of obstacles and

the existence of free space. We are supposing that urban environments are locally planar

and thus a 2D representation of the environment is good enough for navigation purposes.

Since the world model needs to describe the presence of obstacles, dense measures of the

environment are required. Also, it has been observed that urban environments present a

high variability in geometric shapes and little assumptions can be made about the expected

patterns to appear (Wang, 2004, Chapter 3). Thus, feature-based data association, a common

approach in indoor robotics, seems brittle for the urban environment application. Instead,

a dense scan matching algorithm is proposed.

In Section 2.2, we briefly describe the chosen method to associate successive

measures in order to construct the local maps. Then, in Section 2.3, we explain how

to detect measures of moving objects-based on the consistency of the observed free and

occupied space.

2.2 Laser scan data association

Laser scan data association (so called ‘scan matching’) can be used both to estimate small

displacements between two measures and to recognise a revisited place.

The classic method for scan matching (both in 2D and 3D) is the Iterative Closest

Point (ICP) (Zhang, 1992). This iterative method is very straightforward but provides

slow convergence rates and small attraction regions. This is why many variants have been

proposed (Rusinkiewicz and Levoy, 2001), changing the point-to-point association methods

or changing the optimisation metrics (Minguez et al., 2005).

Recently, a new approach has been proposed (Granger and Pennec, 2002; Zhang and

Hall-Holt, 2004). Instead of matching two clouds of points, a cloud of points is matched

over a distribution of probabilities indicating the probable presence of an object at each

point of the space. This approach has the advantages of allowing error modelling of the

sensor, avoiding the expensive closest point search and providing more robust results with

faster convergence rates.

One method of this family, called Normal Distribution Transform (NDT) has been

successfully applied to robotic applications (Biber and Strasser, 2003). This method

can be seen as a crude but fast approximation for modelling the space occupancy

probability distribution or as an enhanced version of the traditional occupancy grid

representation (Haehnel, 2004). Instead of approximating the occupancy probability

by a grid of squares, it is approximated by a grid of overlapping gaussian distributions.

The space is subdivided in a grid and each cell is associated to one or more gaussian

distributions (Biber and Strasser, 2003). When a new point hits a cell, the associated

gaussian parameters are incrementally updated. Since the gaussians approximate the

observed obstacles locally, the representation is much finer than the grid granularity

(see Figure 2).

Each bidimensional Gaussian is defined by its mean vector q and its covariance matrix

�. A laser scan measure is defined as a set of point xi . Then, the score function between a

scan and the occupancy distribution can be written as Equation 1.

score =
∑

i

exp

(

−
1

2
(x ′

i − qi)
T�−1

i (x ′
i − qi)

)

(1)
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Figure 2 Static occupancy probability scalar field approximation using a grid of gaussians

and bilinear interpolation. Cells size is 1 [m]. A vehicle and its past trajectory are

also shown

The term x ′
i describes the scan point xi in the map reference frame (translated using current

pose estimate) and qi, �i are the mean and covariance of a gaussian covering the point x ′
i

(there can be more than one gaussian per point).

The objective of scan matching is to search the displacement of the scan that optimises

the score of (1). The derivatives of the score function can be written explicitly and are cheap

to evaluate. Thus, optimisation methods such as gradient descent and Newton’s law can be

applied directly. It has been experimentally validated that this approach is both faster and

more robust than ICP (Magnusson et al., 2005).

Since the grid of gaussians can be updated incrementally, it does not only provide

a good scan matching method, but it can also be used as a map representation. Since

the gaussians are estimated using measures from scans matched using the maximum

aposteriori probability, the variance matrix will naturally represent the measure error. Using

a regular grid makes the assumption that the measure error is still low (smaller than the grid

granularity) as the distance augments, which is true for a laser scanner. When using vision

as the base sensor, the error augments exponentially with the distance, thus, the proposed

approach would be inadequate. In such a case, a multiresolution grid approach should be

explored (Montesano and Thrun, 2004).

The second derivatives of the score function can be written explicitly, so the Hessian

matrix can be evaluated at the computed optimum point. Then, this matrix can be used to

approximate the uncertainty of the scan matching. This is very useful for a good estimation

of the pose uncertainty, the ICP algorithm and its variants do not provide any cheap way to

do this (Wang, 2004 Chapter 3).

In the experiments presented here, we are not yet dealing the revisiting problem (a core

aspect of the SLAM problem). However, since the presented data association is more robust,

it is at least more adequate than plain ICP. If more computing time is available, it is possible

to enhance the matching method using stochastic search or with a multiresolution extension

(Granger and Pennec, 2002; Ripperda and Brenner, 2005).

In the next Section, we will discuss how to merge the grid of gaussians representation

with a moving objects detection method.
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2.3 Moving objects detection and tracking

Many works discuss how to detect moving objects, and many others how to construct maps

of static objects. However, yet, little work has been done in doing both simultaneously.

The proposed methods include offline optimisation (Biswas et al., 2002; Haehnel, 2004

Chapter 4) and online heuristics (Haehnel, 2004; Montesano, et al., 2005, Chapter 3).

Firstly, works on online SLAMMOT proposed to detect moving objects using a data

consistency approach between successive laser scans (Wang, 2004). This approach was

then formalised in a bayesian estimation formulation using a modified grid of occupancy

(Wolf and Sukhatme, 2005). Here, we will discuss how to integrate this last method with a

grid of gaussians representation.

The core notion to detect moving objects is the inconsistencies between observed free

space and observed occupied space. If free space appears where a static object was observed,

then it probably moved. If measures appear in areas previously seen as free, then these

measures probably correspond to moving objects.

Let P(Sx
t ) be the static obstacle occupancy probability at the point x and the instant t .

Instead of updating the occupancy probability P(Sx
t ) using only the last observation

value ot , the update depends on both the observation value ot and the last occupancy

estimate P(Sx
t−1).

The probability of occupancy is divided into three ranges: Free, Unknown and Occupied.

Then, the relation P(Sx
t | Sx

t−1, ot ) enforcing the coherence between free and occupied

space observations can be illustrated as shown in Table 1. The case when the last

observation gives no information about the occupancy probablity, P(Sx | ot ) = Unknown,

is omitted. The distribution P(Sx | ot ) is constructed-based on the sensor characteristics,

while P(Sx
t | Sx

t−1, ot ) is a design variable, see (Wolf and Sukhatme, 2005) for more

details.

Table 1 Inverse observation model for the static occupancy probability

P(Sx
t−1) P (Sx | ot ) P (Sx

t | Sx
t−1, ot )

Free Free Low

Unknown Free Low

Occupied Free Low

Free Occupied Low

Unknown Occupied High

Occupied Occupied High

Note: Wolf and Sukhatme, 2005.

The occupancy probability update is then written as in Equation 2.

odds(x) =
P(x)

(1−P(x))
,

odds(Sx
t | o1,...,t , Sx

1,...,t−1) = odds(Sx
t | ot , Sx

1,...,t−1)odds(Sx)−1odds(Sx
t−1)

(2)

In order to merge this approach with the grid of gaussians representation we propose to

separate the storage of occupancy measures Oocc and the free space measures Ofree, as

defined in 3.

Oocc = {o| P(Sx |o) = Occupied and o ∈ o1,...,t }

Ofree = {o| P(Sx |o) = Free and o ∈ o1,...,t }
(3)
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Since odds(Sx
t |o1,...,t , Sx

1,...,t−1) is estimated from a multiplication series Equation (2), this

series can be split and reduced into two separate factors, defined at (4). The factor oddsx
occ

accounts the occupancy estimation-based in occupied space measures and the second factor

oddsx
free accounts the occupancy estimation-based in free space measures.

oddsx
occ = odds(Sx

t | Oocc, Sx
1,...,t−1)

oddsx
free = odds(Sx

t | Ofree, Sx
1,...,t−1)

(4)

Then, occupancy probability can be retrieved at any moment multiplying the two values,

as shown by the Equation 5.

odds(Sx
t | o1,...,t , Sx

1,...,t−1) = oddsx
freeoddsx

occ (5)

Doing this separation, the grid of gaussians can be used directly as part of the detection of

static obstacles and moving obstacles.

If points are added to a gaussian only when P(Sx
t−1) = Occupied, then the gaussian

distribution evaluated at x can be used as an approximation for oddsx
occ. This means

that the grid of gaussians provides an estimate of the static obstacles in the environment.

Because of the dynamic nature of the environment, a previously static object can start

moving. In order to clean the gaussians that correspond to space that is no more

occupied, it is necessary to keep an estimate of the occupancy probability at its mean

value qi (we suppose that the shift of mean point during gaussians parameters updates does

not invalidate the occupancy probability estimate). When P(S
qi
t ) = Free, the corresponding

gaussian is erased.

The factor oddx
free can be estimated using any representation (including coarse or fine

grids). In our implementation, we use a bilinear interpolation between the corners of a cell

of the grid of gaussians. An illustration of the resulting occupancy probability scalar field

can be seen at Figure 2.

The proposed method still being a gross approximation (just as grid methods), however,

separating occupancy and free area factors allows to control better the approximation used.

More precise approaches would consider updating the gaussian parameters when portions of

it pass into free regions. The proposed approach allows to have a lightweight representation

that allows fast matching and detection of moving objects.

At the end of the scan matching, each point x ′
i has already been evaluated over its

corresponding gaussians, thus odd
x′
i

occ is available. Computing the odds
x′
i

free allows to estimate

P(S
x′
i

t ). Points P(S
x′
i

t ) = Free are considered as moving objects measures.

Once we are able to detect moving objects, we need to track them in order to estimate

their state and predict their behaviour (since the prediction will be used for the planning

stage). Tracking multiple moving objects, is a classical problem. In the general case, this

problem is very hard, however, it has to be shown experimentally that simple methods are

good enough to cope with urban scenarios (Fuerstenberg, 2003; Wang, 2004). We use a

similar approach to Fuerstenberg et al. (2003).

2.4 Safety considerations

In the driverless vehicle context, safety is associated to collision-free trajectories. Since

the world model provided by the perception module is the only information available for

planning, we have to ensure that the trajectories without collisions generated in the predicted

world, will still be free of collisions during their realisation in the real world.
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To ensure this, the world model need to do consistent predictions: predicted free space

has to be effectively free in the real world future.

The future observations of the moving obstacles need to be inside the predicted occupied

area. Integrating adequately the model error into the predictions allows to have consistent

predictions. However, too loose predictions (large model errors) will generate large banned

areas forcing the planning to be too much conservative.

In order to have a consistent prediction, we do not only have to deal with the

measured moving obstacles, but also with not yet observed ones. At the unobserved

limits of the field of view frontier, we have to assume the possible appearance of moving

obstacles. To ensure trajectories free of collisions, we need to suppose the worst case,

that is, the presence of obstacles moving directly toward the current robot position at

the maximum expected speed. Creating such virtual obstacles will force the planning

module to generate a trajectory conservative enough to deal with the sudden apparition

of new obstacles.

In urban environment, the expected maximum speed of surrounding obstacles depends

on their position. It would be interesting to be able to model their maximum speed as a

function of the space in order to make worst-case estimations less conservative (Vasquez

and Fraichard, 2004; Wang et al., 2006).

Once we are able to create a consistent world model in real time, we now need to construct

a trajectory that respects both safety and computation time constraints.

3 Planning in dynamic environment

3.1 Introduction

Planning in an environment cluttered with moving obstacles implies to plan under a real

time constraint. Indeed, a robotic system placed in a dynamic environment has a limited

time only to compute the motion plan to be executed. If the execution of the plan could

begin at an arbitrary time, there would not be any problem. This is, however, not the case.

In a real dynamic environment, a robotic system cannot safely remain passive as it might be

collided by a moving obstacle. The time, the system has to make its decision is the decision

time constraint, δd and is therefore a real-time constraint imposed by the environment.

Early work addressing the problem of navigation within dynamic environments, rely

on reactive approaches. These methods consist in a local exploration of the velocity

space, that is, the set of all possible velocities of the robot, in order to find the proper

velocity to be applied during the next time step. For robots controlled in speed and steering

angle, the velocity output can be directly executed by the robot, which makes these

techniques particularly efficient. Their local nature exhibits however, strong limitations

in terms of convergence. Besides, complex kinematic or dynamic constraints are difficult to

handle in a general way, without resorting to crude approximations. Recently, deliberative

methods accounting for time constraints have also been presented. Deliberative methods,

also referred to as motion planning methods, consist in calculating a priori a complete

motion plan to the goal. Some approaches based on improved dynamic programming

techniques have been presented (Likhachev et al., 2005). These methods, however, are

restricted to low dimension problems and cannot account for general kinematic or dynamic

system constraints. Recent random techniques have been presented with very fast and

impressive results for higher dimension problems (Hsu et al., 2002). The real time constraint

is, however, never explicitly considered, and therefore, no computation time upper bound

can be guaranteed. Due to the complexity of the motion planning problem, sometimes
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referred to as ‘the curse of dimensionality’, there is little hope that within an arbitrary

bounded time, a complete plan to the goal might be found. Therefore, the proposed approach

to the problem is a Partial Motion Planner (PMP) that guarantees a bounded computation

time at the expense of its completeness, that is, the guarantee to plan a complete trajectory

to the goal.

3.2 Notations

Let A denote the car-like robot placed in a workspace W (Figure 3). The model of the car-like

robot used in the planning strategy is described by the following differential equation:

⎡
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ẋ

ẏ
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This equation is of the form ṡ = f (s, u) where s ∈ S is the state of the system, ṡ its time

derivative and u ∈ U a control. S is the state space and U the control space of A. A state

of A is defined by the five-tuple s = (x, y, θ, v, ξ) where (x, y) are the coordinates of

the rear wheel θ is the main orientation of A, v is the linear velocity of the rear wheel, and

ξ is the orientation of the front wheels. A control of A is defined by the couple (α, γ ) where

α is the rear wheel linear acceleration and γ the steering velocity, with |v| ≤ vmax(velocity

bound), α ∈ [αmin, αmax] (acceleration bounds), γ ∈
[

γmin, γmax

]

(steering velocity bounds)

and |ξ | ≤ ξmax (steering angle bounds). L is the wheelbase of A, A(s) is the subset of W

occupied by A at a state s. Let φ ∈ �:
[

t0, tf
]

�−→ U denote a control input, that is, a

time-sequence of controls. Starting from an initial state s0, at time t0, and under the action

of a control input φ, the state of the system A at time t is denoted by s(t) = φ(s0, t).

An initial state and a control input define a trajectory for A, that is, a time sequence

of states.

Figure 3 The car-like vehicle A (a) bicycle model and (b) the cycab
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3.3 Partial motion planner algorithm

The PMP is a motion planning strategy that explicitly accounts for the real time constraint

imposed by the environment. Besides, in a real environment, the model of the future can

be predicted over a limited time only δv . Therefore, PMP is structured around a constant

planning cycle (PMP cycle in Figure 4) of duration δc, in order to be able to regularly

get an update of the model. This cycle duration must in fact fulfil the requirement that

δc = min(δd ,
1
2
δv). A typical PMP cycle is described as follows, starting at time ti :

1 Get an updated model of the future.

2 The state-time space of A is searched using an incremental exploration method that

builds a tree rooted at the state s(ti+1) with ti+1 = ti + δc.

3 At time ti+1, the current iteration is over, the best partial trajectory φi in the tree is

selected according to given criteria (safety, metric) and is fed to the robot that will

execute it from now on. φi is defined over [ti+1, ti+1 + δhi
] with δhi

the trajectory

duration.

After completion of a planning cycle i, it is most likely the planned trajectory of time

horizon δhi
is partial. Thus, the PMP algorithm iterates over a cycle of duration δc,

as depicted in Figure 4, until the goal is reached. The algorithm operates until the robot

reaches a neighbourhood of the goal state. In case, the planned trajectory has a duration

δhi
< δc, the cycle of PMP can be set to this new lower bound or the navigation (safely)

stopped. In practice, however, the magnitude of δhi
is much higher than δc.

Figure 4 Partial motion planning architecture

3.4 Space exploration

In our work, we use an incremental sampling-based method. Sampling-based methods

avoid the complete space representation by probing the space by means of a collision

detection module. Incremental methods have the advantage to be interuptible, that is,

anytime the calculation is stopped, a partial answer can be returned. The exploration of

the state-time space ST consists in building incrementally a tree by integrating the system

over which a constant control is applied, over a small duration. To this mean, the control

space of the system is discretised. We use the set of bang bang controls Ũ=(α, γ ) with

α ∈ [αmin, 0, αmax] and γ ∈
[

γmax, 0, γmin

]

. The tree construction consists of the following

(Figure 5):

1 the state sc from the existing tree and closest to the target sr is selected

2 a control from Ũ is applied to the system during the fixed integration step from sc

3 in case the newly obtained state sn is safe, this control is valid.
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The operation is repeated over all control inputs. Finally, the new safe state sn closest to the

goal, is finally selected and added to the tree.

Figure 5 Tree construction over a PMP cycle

target S
r

One difficulty when performing motion planning using an incremental approach is

the choice of the metric used to find the closest states and expand the nodes when

building the tree. This parameter is recognised to have a large influence on the trajectory

quality specially when dealing with non-holonomic systems. Indeed, a typical euclidean

metric does not account for the heading of the car. In case, a L∞ based metric

is used, the heading is weighted but does not account for a real non-holonomic

displacement. Such a metric can yield to oscillatory and poor quality trajectories with

low convergence (Figure 6(b)). The first non-holonomic metric was based on real

path length calculation, a summation of straight segments and arc of circles (Dubins,

1957). Later, the Continuous Curvature (CC) metric was presented in Scheuer and

Fraichard (1996). Basically, this metric connects the straight path and the arc of circle

of the dubbins path, where there is a discontinuity in the curvature, with a clothoid. This

metric is very natural to the system considered in our work and provides very high quality

results (Figure 6(a)).

Figure 6 Influence of the metric on the generated trajectory

3.5 Safety issues

Like every method that computes partial motions, PMP has to face a safety issue: since PMP

has no control over the duration of the partial trajectory that is computed, what guarantee
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do we have that A will never end up in a critical situation yielding an inevitable collision?

We need, however, to define the safety we consider. In Figure 7(a), we consider a selected

milestone of a point mass robot P with non-zero velocity moving to the right (a state of

P is therefore characterised by its position (x, y) and its speed v). Depending upon its state,

there is a region of states for which P, even though it is not in collision, will not have the

time to brake and avoid the collision with the obstacle. As per Fraichard and Asama (2004),

it is an Inevitable Collision State (ICS). In this paper, we refer to a safe state as ICS-free.

Figure 7 Inevitable collision states (ICS) (a) Inevitable collision state versus collision

free state and (b) ICS computation

In general, computing ICS for a given system is an intricate problem since it requires to

consider the set of all the possible future trajectories. To compute in practice, the ICS for

a system such as A, it is taken advantage of the approximation property established in

Fraichard and Asama (2004). This property shows that a conservative approximation of the

ICS can be obtained by considering only a finite subset I of the whole set of possible future

trajectories. For our application, we consider the subset I of braking trajectories obtained by

applying respectively constant controls (αmin, γmax), (αmin, 0), (αmin, γ min) until the system

has stopped. In the PMP algorithm, every new state is similarly checked to be an ICS or

not over I. In case, all trajectories are in collision, this state is an ICS and is not selected

(see Figure 7(b)).

A safe trajectory therefore consists of a sequence of safe states, that is, ICS-free states.

However, a practical problem appears when safety has to be checked for the continuous

sequence of states defining the trajectory. In order to solve this problem and further reduce

the complexity of the PMP algorithm, we presented in Petti and Fraichard (2005) a property

that simplifies the safety checking for a trajectory. This property is important since, firstly,

it proves a trajectory is continuously safe while the states safety is verified discretely

only, and secondly, it permits a practical computation of safe trajectories by integrating

an inevitable collision detection module within the exploration algorithms in place of the

conventional geometric collision detection module. In Figure 8, simulation results of partial

safe trajectories of a car moving within a pedestrian environment are shown.

4 System integration

The algorithms presented in Sections 2 and 3, are implemented in C++ and integrated into

a single application controlling an automated electric vehicle, the Cycab (Figure 3(b)).

The complete software runs on a standard 3.3 GHz PC.
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Figure 8 Navigation within an urban environment cluttered with moving pedestrians

Currently, the only input data used is one layer of an IbeoML laser scanner.

The distribution P(Sx | ot ) is defined according to the manufacturer specifications. Measures

are done at 8 Hz and the world model is updated in realtime. The trajectory update rate is

set at 2 Hz.

The tracking of the generated trajectories is ensured by a non-linear proportional closed

loop controller (Equation 7) . The control takes advantage of the fact that the trajectory

planner computes a reference state including the desired speed value.

v = vref(1 − k1	x)

φ = k2	y + k3 sin 	θ
(7)

with vref the reference velocity given by the open loop trajectory calculated by PMP.

The parameters k1, k2and k3 are tuning coefficients of the control law. The probable error

bounds of the tracking are integrated in the vehicle bounding box used during the planning

stage in order to consider the collision risk associated to tracking errors.

Both perception and planning algorithms are designed to incrementally and iteratively

construct a solution which enables an efficient and simple interweaving. Figure 9 presents

the task allocation sequence in the vehicle processor. As soon as a measure is available, the

vehicle state estimate is updated and the control command is sent. Computing the command

signal as soon as possible allows to keep a good state estimate, and thus helping the control

task. After the control stage, the world model is incrementally updated and processor time

is allocated for the planning computation. During this time slot, the planned trajectory

is incrementally updated. Depending on the desired trajectory update rate, a tradeoff is

made between reactivity and planning horizon. The execution cycle is executed under a

soft real time constraint. The integrated system is able to autonomously drive in real world

environments toward goals lying within about a hundred metres, while avoiding static and

moving obstacles.

Figure 9 Execution time-line between two measurements

The described perception algorithm is based on an optimisation procedure. Fixing the

maximum number of optimisation steps allows to bound his computation time (currently

set to 20 steps). In theory, the method used to track moving obstacles grows cuadratically
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with the number of moving objects, however, even for more than ten obstacles, the

computation time related to this task is negligible compared to the optimisation step of the

scan matching. The planning algorithm is also based on an optimisation procedure which

is interrupted in a periodic fashion. The output quality of both modules is proportional to

the computation power (force in time) available. However, as shown in the next section,

current computational capabilities are enough for full scale experiments.

5 Experimental results

In Figure 10, we present the result of an early experiment. The top pictures are snapshots

of the world model constructed during a single experiment. Darker areas represent higher

occupancy probability of static obstacles. Moving obstacles are represented by a circle.

Current results do not include the estimation of unobserved obstacles. The dark rectangle

describes the current vehicle pose, and the light one, the desired vehicle pose (speeds

are not shown). The executed trajectory is behind the vehicle and the current planned

partial trajectory is represented in front of it. The bottom of the pictures show the

corresponding scenes in the real world. During initial validation, the maximum speed

of the Cycab is limited to low speeds (1.5 m/s), full speed experiments at higher speed

(4 m/s) will be done in the future.

First results indicate that this new architecture is functional and provides the expected

behaviour. The vehicle is able to incrementally construct a map of approximately 50 square

metres, define a safe partial trajectory towards the goal over some tens of metres and follow

it, all in real time.

Observed execution times indicate that 40% of processing time is dedicated to perception,

40% to planning and 20% to graphical output (tracking cost is negligible). This gives average

values of 50 ms for localisation, mapping and movings objects tracking in the presented

scenario and 200 ms to compute a trajectory for the next 500 ms avoiding the obstacles

shown in Figure 10. Notice that in practice the trajectories found provides a solution for a

time horizon much larger than 500 ms (around 20 times larger in the presented scenario).

6 Towards city scale

We believe that the discussed perception and planning methods provide a sound solution to

the problem of navigation in urban environments. However, we have focused the discussion

on the core issues related to small area navigation. One of the major remaining open tasks

left is the extension of this work to the city scale level.

In the previous section, it was shown that integrated perception and planning in medium

sized urban areas is possible. The grow of computational power ensures that having better

maps, trajectories and being able to deal with many moving obstacles is not an issue.

As mentioned in Section 2, in order to keep the local map error bounded, a new map should

be created periodically. Using previous measures to initialise, the new map allows to have

a continuous flow between successive local maps. This is only a technical issue related to

the software implementation.

The perception and planning coupling presented here is a generic approach that can be

applied to an environment of arbitrary complexity. For real world deployment, one has to

ensure that the modelling of the moving objects and the inclusion of the non-observed ones

allows to do consistent predictions while having viable safe trajectories. If the vision range



Towards urban driverless vehicles 19

of the vehicles is too low, the vehicle will not be able to find a safe trajectory. The explicit

elucidation of the interaction between safe planning, sensors precision and sensors range is

left for a future document.

In order to reach city scale, it is also necessary to connect the street level real time

trajectory planning module to a city level road planner (such as commonly found in

commercial navigation products). A non-trivial issue arises with the fact that trajectory

planning tries to reach a precise point on a local map, while current city level maps provide

information within a few metres of error. Somehow, the low precision path points have to

be matched to the centimetric precision maps used for trajectory computation. Even if this

is done, a second non-trivial issue arises. We desire that the vehicle pass from one region

to another as indicated by the higher level road planner. However, the proposed trajectory

planning method tries to reach a goal defined by a specific vehicle state (a specific point on

the road). Extending the method to the notion of ‘goal region’ is non-trivial.

In order to solve these issues, it is required to match the constructed high precision

local map to the topologic description of the roads (used for road planning). While

similar problems have been discussed in the context of aerial or satellite image processing

(Frueh, 2002 Chapter 8), this specific issue remains an open problem. Even though the

matching realised, the second issue would remain. A possible solution would consist in

modifying the non-holonomic metric in order to integrate the notion of ‘goal region’ instead

of a specific goal state. This idea would provide a sound solution, however it seems complex

and computationally more expensive. A second approach consists in trying to obtain,

a priori, the number of lanes on the road. Then, non-holonomic metric used in the trajectory

planning can be modified to choose between a limited set of goals, one per lane centre. This

second idea provides an easier but more application-specific solution.

Matching between the topological description of the road and the constructed local maps

can be done online. However, there is a clear interest in constructing offline a city scale

high resolution map. Such a map would be used to enhance the trajectory planning since it

would provide information about not yet observed regions. This map would also allow to

obtain the number of lanes information. Furthermore, the matching to the topological roads

description could be done offline, thus in a more robust manner.

Most of the work on automatic large map construction has been centred on the SLAM

problem. The objective is to compute an optimal map that reduces the uncertainty of

position for each map portion. Much has been discussed around the computational

cost associated to computing such maps and realising online SLAM. However, it is

important to remind that the key issue for successful map construction is the data

association problem. Optimising online constructed map (i.e. doing online SLAM),

reduces the pose uncertainty and thus helps to do data association. If data association

was always successful, offline map optimisation would suffice. Existing commercial

GPS systems allow to bound the uncertainty of the position anywhere over the

globe to less than 30 m of error. However, these systems require a wireless link

with satellites, which are commonly unreachable in dense cities (Chao et al., 2001).

A realistic estimation is 50% of availability. Successful city sized SLAM will depend

on the adequate fusing of GPS measures with other sensors measures in order

to bound the pose uncertainty up to the attraction region of the data association

algorithm. An interesting research direction consists in enhancing the data association

method to be able to deal with GPS grade position errors. Since the non-availability

regions of the GPS are variable, 100% success rates will not be possible to ensure. In such

situations, erroneous data association detection and correction methods can be applied

(Hähnel et al., 2003).
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Figure 10 Experiment results (a) start tracking the first trajectory; (b) braking in front

a pedestrian; (c) avoiding obstacle and pedestrian and (d) continuing after avoiding

the hedge and another pedestrian

7 Conclusion and perspectives

In this paper, we analysed the main difficulties associated to the navigation of driverless

vehicles in urban environments. We propose a perception-planning duo able to cope with

an heterogeneous environment populated by static and moving obstacles.
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The perception algorithm provides a better data representation, coupled with faster

data association and the detection of moving obstacles. The planning algorithm generates

safe trajectories in bounded time. Their successful integration provides an experimental

validation of the proposal.

As discussed through this text, we identify four areas for future work: constructing high

precision city scale maps at low cost; coupling road and trajectory planning; fusing multiple

sensors for enhanced localisation; fusing multiple sensors for enhanced road, sidewalks and

obstacles detection.

We believe that working on these key areas will open the door for city scale driverless

vehicles.
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