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ABSTRACT

To date, the measurement of user-perceived degradation of qual-
ity of service during denial of service (DoS) attacks remained an
elusive goal. Current approaches mostly rely on lower level traf-
fic measurements such as throughput, utilization, loss rate, and la-
tency. They fail to monitor all traffic parameters that signal ser-
vice degradation for diverse applications, and to map application
quality-of-service (QoS) requirements into specific parameter thresh-
olds. To objectively evaluate an attack’s impact on network ser-
vices, its severity and the effectiveness of a potential defense, we
need precise, quantitative and comprehensive DoS impact metrics
that are applicable to any test scenario.

We propose a series of DoS impact metrics that measure the QoS
experienced by end users during an attack. The proposed metrics
consider QoS requirements for a range of applications and map
them into measurable traffic parameters with acceptable thresholds.
Service quality is derived by comparing measured parameter values
with corresponding thresholds, and aggregated into a series of ap-
propriate DoS impact metrics. We illustrate the proposed metrics
using extensive live experiments, with a wide range of background
traffic and attack variants. We successfully demonstrate that our
metrics capture the DoS impact more precisely than the measures
used in the past.

Categories and Subject Descriptors: C.4 Performance of sys-
tems: Measurement techniques

General Terms: Measurement, security, standardization.

Keywords: Denial of service, metrics.

1. INTRODUCTION
Denial of service (DoS) is a major threat today. Its intended ef-

fect is to prevent legitimate users from doing routine business with
the victim, by exhausting some limited resource via a packet flood
or by sending malformed packets that cause network elements to
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crash. Service denial is experienced by users as a severe slowdown,
service quality degradation or a complete disruption of communi-
cation with the victim.

DoS attacks are studied through network simulation or live ex-
perimentation. Accurately measuring DoS impact is essential for
evaluation of potential DoS defenses and study of novel attack vec-
tors. Current approaches to quantify the impact of DoS attacks in-
volve a collection of one or several traffic measurements and a com-
parison of their first order statistics (e.g., mean, standard deviation,
minimum or maximum) or the value distributions in the baseline
and the attack case. If a defense is being evaluated, the statistics
are also collected for the scenario with attack/defense combination.
Frequently used traffic measurements include the legitimate traffic
request/response delay, total time needed to complete a legitimate
transaction, legitimate traffic goodput or throughput at the victim,
legitimate traffic loss, and division of a critical resource between
the legitimate and the attack traffic.

We argue that current DoS measurement approaches are incom-

plete and imprecise. Because there is no consensus within the
community on which measurements best reflect the DoS impact,
researchers frequently choose one they feel is the most relevant.
This causes the results to be incomplete, as each independent traf-
fic measurement captures only one aspect of the service denial. For
example, a prolonged request/response time will properly signal
denial of service for two-way applications, such as HTTP, FTP and
DNS, but not for media traffic that is sensitive to one-way delay,
packet loss and jitter. The lack of a common DoS impact measure
prevents comparison among published work. We further argue that
the current measurement approaches are imprecise, because ad-hoc
comparisons of measurement statistics or distributions cannot ac-
curately signal service denial. These can only express that network
traffic behaves differently under attack, but do not accurately mea-
sure which services have been denied and how severely. We survey
these existing DoS impact metrics in Section 2.

We propose a novel, user-centric approach to DoS impact mea-
surement. Our key insight is that DoS always causes degradation
of service quality, and a metric that holistically captures a user’s
QoS perception will be applicable to all test scenarios, regardless
of the attack strategy and the legitimate traffic mix. For each pop-
ular network application, we specify its QoS requirements, which
consist of relevant traffic measurements and corresponding thresh-
olds that define good service range. Each legitimate transaction is
then evaluated against the QoS requirements for its application cat-
egory, and transactions that do not meet all the requirements are
considered “failed.” We aggregate the information about transac-
tion failure into several simple and intuitive qualitative and quan-
titative composite metrics to expose the precise interaction of the
DoS attack with the legitimate traffic: the impact of attack on vari-
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ous applications and its severity, and times when failures occur. We
describe our proposed metrics in Section 3.

Ideally, we would like to validate our metrics against the “ground
truth,” e.g., using a set of traces that contain a real user’s commu-
nication with a network under attack, and user feedback about the
time and severity of observed service denial. We are currently con-
ducting a study to collect such traces and user feedback, and we
plan to report these results in our future work. In this paper, our ex-
periments focus on reproducing a wide range of popular attacks that
other researchers have studied and that are known to produce a cer-
tain level of service denial, in controlled testbed experiments and
NS-2 simulations, but without human user participation. Section 4
describes our testing methodology. We demonstrate the inadequacy
of the existing metrics and the utility of our proposed metrics in
Section 5, via live experiments on the DETER testbed [4]. We il-
lustrate the utility of our proposed metrics in NS-2 simulations in
Section 6. We survey related work in Section 7 and conclude in
Section 8.

The contribution of this paper is three-fold: (1) We propose a
novel approach to DoS impact measurement that relies on easy-to-
compute application-specific QoS requirements. Although our pro-
posed metrics combine several existing metrics, our contribution
lies in (i) the careful specification of which traffic measurements
reflect service denial for a range of the most popular applications,
(ii) the definition of QoS thresholds for each measurement and each
application class, and (iii) the aggregation of multiple measure-
ments, using the threshold-based model, into intuitive and infor-
mative DoS metrics that can be directly applied to traffic traces,
without having to define complex application utility functions or
instrument each individual application. (2) We present several intu-
itive metrics that comprehensively capture the DoS impact in a va-
riety of test scenarios, in testbed experimentation or in simulation.
(3) We demonstrate the utility of proposed metrics through rigor-
ous experimentation on DETER testbed [4] under a range of DoS
attacks. To our knowledge, there have been no previous attempts
to consolidate state-of-the-art research to identify comprehensive,
precise and widely applicable metrics for DoS impact evaluation.

We have made all the data used for this paper available at
http://www.cis.udel.edu/∼sunshine/expcs/data.

2. LEGACY METRICS
Existing DoS research has focused on measuring denial of ser-

vice through selected legitimate traffic parameters. The commonly
used parameters are: (a) packet loss, (b) traffic throughput or good-
put, (c) request-response delay, (d) duration of transaction, and (e)
allocation of resources. Researchers have used both the simple met-
rics (single traffic parameter) and combinations of these to report
the impact of an attack on the network. We now discuss each legacy
metric and its failure in capturing the end-to-end DoS impact.

Loss is defined as the number of packets or bytes lost due to the
interaction of the legitimate traffic with the attack [28]. As a metric
of service denial, loss can be inferred from TCP traffic retransmis-
sions, or measured directly as number of packets that did not reach
their destination. As a metric of collateral damage, loss is reported
as the number (or percentage) of legitimate packets discarded by
the defense system.

The loss metric primarily expresses the presence and extent of
congestion in the network due to flooding attacks. However, it is
ill-suited for attacks that do not continually create congestion, such
as the recently examined class of pulsing attacks [18, 14] that will
create congestion periodically for short intervals. In this class, ser-
vice is denied because of TCP’s congestion response which leads
to reduced sending rate and prolonged transaction duration. Fur-

ther, loss metrics usually do not distinguish between the types of
packets lost. Since some packet losses have a more profound im-
pact than others (for example, a lost SYN packet compared to a lost
data packet), this metric is incomplete.

Throughput is defined as the number of bytes transferred per
unit time from the source to the destination. Goodput is similar to
throughput but it does not count retransmitted bytes [18, 16].

Both throughput and goodput metrics are meaningful for TCP-
based traffic, which responds to congestion by lowering its sending
rate. Indirectly, these metrics capture the presence and extent of
congestion in the network and the prolonged duration of legitimate
transactions due to congestion. These metrics cannot be applied to
applications that are sensitive to jitter or to loss of specific (e.g.,
control) packets, because a high throughput level may still not sat-
isfy the quality of service required by the user. Further, the through-
put and goodput metrics do not effectively capture DoS impact on
traffic mixes consisting of short connections, with a few packets to
be sent to the server. Such connections already have a low through-
put so service denial may be masked.

Finally, the throughput and goodput depend both on the volume
and timing of individual transactions, as well as on network con-
ditions. Unless the tests are perfectly repeatable, it is difficult to
quantitatively compare values between two test runs.

Request-response delay is defined as the time lapse between
when a request is first sent and when a complete response is re-
ceived from the destination [15]. It is well-suited to measure the
service denial of interactive applications, where a human user in-
teracts with a server and expects to receive a response within a short
time. On the other hand, non-interactive applications (e.g., email)
have very different thresholds for acceptable request-response de-
lay, while one-way traffic, such as media traffic, does not generate
responses but is sensitive to one-way delay, loss and jitter.

Transaction duration is defined as the time between the start
and the end of a data transfer between a source and destination [30,
20, 27]. The main drawback of this metric is that it heavily depends
on the volume of data being transferred and whether the involved
application is interactive and congestion-sensitive. In case of one-
way transactions, such as media streaming, that do not respond to
congestion, transaction duration will not be affected by the attack.

Allocation of resources is defined as the fraction of a critical re-
source (usually bandwidth) allocated to legitimate traffic vs. attack
traffic [20, 24]. This metric does not provide any insight into the
user-perceived service quality, but assumes that the only damage
to legitimate traffic is inflicted by the lack of resources, which is
applicable only to flooding attacks. Further, it cannot capture the
collateral damage of a given defense. For example, a defense that
drops 90% of legitimate and 100% of attack traffic, would appear
perfect, since it allocates all resources to legitimate traffic.

In summary, the existing metrics suffer from two major draw-
backs: (1) They measure a single traffic parameter assuming that
its degradation can be used as a reliable signal of service denial.
This approach is faulty as traffic parameters that signal service de-
nial are application-specific. Further, different attack strategies can
deny service without affecting the monitored parameter. (2) They
fail to define the parameter range that is needed for acceptable ser-
vice quality. For example, while low throughput or high packet
loss can signify service denial, there is a lack of understanding how
large a degradation must be so that a user experiences poor service
quality. Such thresholds are application and task specific.

Finally, the existing metrics predominantly capture the service
denial at the network layer, en route to the victim server. While
many attacks target this route, some affect the server host or the
application directly, target supporting network services (such as
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DNS), or the route from the server to legitimate users. Existing
metrics fail to capture the impact of these attacks.

3. PROPOSED DOS IMPACT METRICS
We now introduce several definitions that will help us define DoS

impact metrics. The client is the host that initiates communication
with another party which we will call the server.

Definition 1: A conversation between a client and a server is the
set of all packets exchanged between these two hosts with a goal to
provide a specific service to the client, at a given time. A conversa-
tion is explicitly initiated by a client application (e.g., by opening a
TCP connection or sending a UDP packet to a well-known service)
and ends either explicitly (a TCP connection is closed, UDP service
is rendered to the client) or after a very long period of inactivity. If
several channels are necessary to render service to a client, such as
FTP control and data channel, or media control and data channel,
all related channels are part of a single conversation.

Definition 2: A transaction is the part of a conversation that
represents a higher-level task whose completion is meaningful to a
user. A transaction usually involves a single request-reply exchange
between a client and a server, or several such exchanges that occur
close in time.

Definition 3: A transaction is considered successful if it meets
all the QoS requirements of its corresponding application. If at least
one QoS requirement is not met, a transaction is considered failed.

3.1 The pft Measure
Our main DoS impact measure is the percentage of failed trans-

actions (pft) in each application category. This metric directly mea-
sures the impact of a DoS attack on network services quantifying
the quality of service experienced by end users. We first identify a
set of popular applications in today’s Internet and the traffic mea-
surements the values of which indicate if the particular applica-
tion’s service was denied.

We then interpret the traffic as series of transactions that repre-
sent higher-level tasks whose completion is meaningful to a user,
such as browsing one Web page, downloading a file, or having a
VoIP conversation. Our main motivation for introducing the notion
of a transaction is to properly handle lengthy communications that
may involve many shorter, self-contained tasks. For example, if a
user downloads 100 files, one by one, during a single FTP session,
and the last file transfer fails, this does not indicate poor service for
the entire FTP session but for 1% of tasks contained in this session.
Section 3.3 describes our approach for identifying transactions.

We define a threshold-based model for the relevant traffic mea-
surements, which is application-specific. When a measurement ex-
ceeds its threshold, this indicates poor service quality. Our thresh-
old specifications are guided by the past findings in the area of QoS
research [5, 29, 3, 26] and efforts of large standard bodies to de-
fine QoS requirements for next generation telecommunication net-
works. Specifically, we leveraged much of the 3rd Generation Part-
nership Project (3GPP) Specification of QoS Requirements [21].
The 3GPP [1] is a consortium of large telecommunications stan-
dards bodies from all over the world, that aims to “produce globally
applicable Technical Specifications ... for a 3rd Generation Mobile
System.” Thus, the proposed set of QoS requirements has the ad-
vantage of being, to a large extent, ratified by the world’s largest
standards bodies.

We evaluate transaction success or failure using definition 3, and
produce the pft measure for each application. We further aggregate
the pft measure into several metrics, as we describe in Section 3.4.

3.2 Application QoS Requirements

Several organizations that collect and publish traffic traces [11,
25] analyze Internet applications and the ratio of the packets and
bytes that they contribute to these traces. We surveyed their find-
ings in order to assemble a list of popular applications. We further
observe that the work of the 3GPP consortium has tackled the prob-
lem of defining popular applications and their QoS requirements in
great depth [21], and we leverage their findings to extend and refine
our compendium. Table 1 summarizes the application categories
we propose, and their corresponding QoS requirements. The re-
mainder of this section provides the rationale for our measurement
and threshold selections. We note that should novel applications
become popular in the future, the proposed application categories
will need to be extended, but our DoS impact metrics will be im-
mediately applicable to new applications.

Interactive applications such as Web, file transfer, telnet, email
(between a user and a server), DNS and Ping involve a human user
requesting a service from a remote server, and waiting for a re-
sponse. For such applications, the primary QoS requirement is that
a response is served within a user-acceptable delay. Research on
human perception of Web traffic delay has shown that people can
tolerate higher latencies for entire task completion if some data is
served incrementally [5]. We specify two types of delay require-
ments for email, Web, telnet and file transfer transactions where a
user can utilize a partial response: (a) partial delay measured be-
tween receipt of any two data packets from the server. For the first
data packet, partial delay is measured from the end of a user’s req-
uest, and (b) whole delay measured from the end of a user’s request
until the entire response has been received. Additionally, Telnet
serves two types of responses to a user: it echoes characters that a
user types, and generates a response to a user’s request. The echo
generation must be faster than the rest of response so we define
the echo delay requirement for Telnet transactions. We identify the
echo delay as the delay between a user’s request and the first re-
sponse packet.

We use 250 ms as the Telnet’s echo delay requirement, as sug-
gested in [21]. We use 4 s as the partial-delay threshold for Web,
Telnet and email applications [21], and 10 s for file transfer ap-
plications [21]. We use 60 s as the whole-delay requirement for
Web [5], and require that the delay for email and file transfer not
exceed three times the expected delay [10], given the amount of
data being transferred. The expected delay is defined as the delay
experienced by the same transaction in the absence of an attack.
For DNS and Ping services, we adopt a 4 s whole delay require-
ment. This is the maximum human-acceptable delay for interactive
tasks [21]. We regard peer to peer applications as file transfer.

Media applications such as conversational and streaming audio
and video have strict requirements for low loss, low jitter and low
one-way delay. These applications further involve the media chan-
nel (where the audio and video traffic are sent, usually via UDP)
and the control channel (for media control). Both of these channels
must provide satisfactory service to the user. We adopt the one-way
delay and loss requirements for media traffic from [21]. Because
many media applications can sustain higher jitter than 1 ms [21]
using variable-size buffers, we adopt the jitter threshold value of
50 ms as defined in [2]. Further, we treat the control traffic as in-
teractive traffic and impose on it a 4 s partial-delay requirement.

Online games have strict requirements for low one-way delay [21].
We differentiate between first-person shooter (FPS) and real time
strategy (RTS) games, because research has shown that their QoS
requirements differ. We use the work presented in [3] (FPS) and [26]
(RTS) as sources for specifying delay and loss bounds (see Table 1
for specific values).

Chat applications can be used for text and media transfer be-
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tween two human users. While the request-response delays depend
on human conversation dynamics, the receipt of user messages by
the server must be acknowledged within a certain time. We ex-
press this delay requirement as 4 s threshold on a round-trip time
between the client and the server. Additionally, we apply the QoS
requirements for media applications to the media channel of the
chat application.

Non-interactive services such as email transfer between servers
and Usenet do not have a strict delay requirement. Instead, users are
prepared to endure long delays, as long as the transactions complete
within a given interval. 3GPP [21] specifies the transaction duration
threshold as several hours for email and Usenet. We quantify this as
4 hours, since this value is commonly used by mail servers to notify
a user about a failure to deliver a mail to the destination server.

Category One-way Req/resp Loss Dur. Jitter
delay delay

email (srv/srv) whole, RTT < 4 h
Usenet whole, RTT < 4 h

Chat, typing RTT < 4 s
Chat, audio < 150 ms whole, RTT < 4 s < 3% < 50 ms
Chat, video < 150 ms whole, RTT < 4 s < 3%

Web part, RTT < 4 s < 60 s
FTP Data part, RTT < 10 s < 300%

FTP Control part, RTT < 4 s
FPS games < 150 ms < 3 %
RTS games < 500 ms

Telnet part, RTT < 250 ms
email (usr/srv) part, RTT < 4 s < 300%

DNS whole < 4 s
Ping whole < 4 s

media control media media

Audio, conv. < 150 ms whole, RTT < 4 s < 3% < 50 ms
Audio, messg. < 2 s whole, RTT < 4 s < 3% < 50 ms
Audio, stream < 10 s whole, RTT < 4 s < 1% < 50 ms
Videophone < 150 ms whole, RTT < 4 s < 3%

Video, stream < 10 s whole, RTT < 4 s < 1%

Table 1: Application categories and their QoS requirements

3.3 Measurement Approach
When devising a measurement methodology, it is important to

ensure that the measurement does not perturb the system. We ex-
plored two possible approaches to collect the necessary measure-
ments during experimentation: (i) we can instrument each client
application to compute statistics such as average response time and
transaction duration, or (ii) we can use real, uninstrumented appli-
cation programs, and then collect and process network traffic traces
to identify transactions, collect required traffic measurements and
compute performance metrics in an automated fashion. The first
approach (instrumented client) has the advantage that it can pre-
cisely identify transactions, because we have complete access to
the application and transaction semantics. The downside is that we
would need to instrument each client of interest, which would cer-
tainly limit experimentation to a chosen set of open-source clients.
Our goal, however, is to devise a general measurement approach
that is easily applicable to most test scenarios. The trace-based
approach has exactly this advantage — all traffic can be collected
by tcpdump, regardless of the application that generated it, and
be subject to analysis, with no application modification. Thus, the
trace-based approach scales better to new, off-the-shelf, diverse ap-
plication types, and allows researchers to evaluate performance in
traces captured by others. The disadvantage of the trace-based ap-
proach is that it can only observe anomalies at the network layer.
If a user’s host or a user’s client application fails to send or display
traffic to the user, or if a server returns a bogus reply, these events
are not visible at the network layer.

In implementing trace-based service quality evaluation, we have

encountered additional challenges that have led us to further re-
fine our transaction success computation methods as follows: (1)
We measure request/response delay and transaction duration using
a sender-collected trace, which allows us to capture a user’s QoS
experience for a variety of DoS attacks, regardless of the resource
they target. We correlate sender/receiver traces to measure one-way
delay, loss and jitter. (2) We capture request/response delay at the
transport level of the flow traffic. This measure will miss the delay
that occurs if some request packets are dropped and retransmitted,
but this delay is noticed by a user and must be included in success
calculation. We thus add the maximum Round-Trip-Time (RTT)
as an additional QoS requirement for TCP-based applications. (3)
Although reference [21] specifies some loss bounds for TCP-based
applications, we ignore these loss bounds because losses will either
be handled through TCP retransmissions or will lead to a high req-
uest/response delay or RTT that exceeds the corresponding thresh-
old. (4) If a DNS or a Ping request or reply is lost, we map this
packet loss into delay, by setting request/response delay to a large,
fixed value (10 times the delay threshold). (5) We measure one-way
delay by matching packets from a sender’s trace to packets in a re-
ceiver’s trace. Successful matches update our delay estimate, but
lost packets do not. (6) We differentiate between the total packet
loss measured over the entire transaction duration, and the interval
packet loss, measured over the most recent 5-second interval. A
lengthy transaction that had excessive loss near the end of its life
will have a low total loss measure but a high interval loss measure.
We calculate the maximum interval loss during the experiment and
use this value for success calculation. (7) If FTP transfer is per-
formed with an FTP server, there will be a control and a data chan-
nel. Similar to our success criteria for media traffic, we impose a
4 s whole delay requirement on FTP control traffic, and we pair the
data and control channels into a single transaction. If either channel
fails, the entire transaction is considered as failed.

Within a trace, we identify client-initiated conversations using
the following criteria: (1) For Web, email, Usenet, FTP control,
Chat and Telnet traffic, we look for SYN packets sent from the
client and use them to signify the start of a conversation. The con-
versation ends after the exchange of a FIN/ACK packet in each
direction, or after any side sends a RST packet. If there is a denial
of service, the conversation may also end when the service is de-
nied, i.e., when one of the QoS thresholds has been exceeded. (2)
For FTP data traffic, we look for SYN packets sent to this client
and associate the FTP data channel with the corresponding FTP
control channel. This association is done by parsing the content of
FTP control packets and extracting data port information, then lo-
cating a conversation with the corresponding port at the server side
and port 20 at the client side. (3) For DNS traffic, packets sent to
port 53 with a request bit set will initiate a new conversation if they
are not retransmissions. We identify retransmitted DNS requests
using the identifier in the DNS header. (4) ICMP ECHO packets
with a request bit set will initiate a new conversation if they are not
retransmissions. We identify retransmitted ICMP ECHO requests
using the identifier in the ICMP header. (5) For VoIP traffic, we
currently use a VoIP simulator that generates a constant-rate UDP
packet stream. Hence, we identify new conversations by looking
for packets sent to the assigned VoIP server port.

Within client-server conversations, we identify transactions as
user/server exchanges that are meaningful to the user. As men-
tioned above, had we instrumented applications, we could have pre-
cisely identified transaction semantics. Instead, traffic trace analy-
sis is imperfect in transaction identification, but is more extensible
and portable.

Table 2 shows how we identify transactions in the trace data. For
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Figure 1: Illustration of request/response identification

interactive applications, an inactive time (user think time) followed
by a new user’s request denotes a new transaction. A transaction is
either a part of a flow, or the entire flow, e.g., if a user opened a TCP
connection to an FTP server, downloaded one file and closed the
connection, this would be recognized as one transaction. Down-
loading 3 files in the same session, with think time in-between,
would be recognized as 3 transactions. In case of media traffic,
both the media stream (UDP flow) and the control stream (TCP
flow) are part of a single transaction. Similarly, for FTP transac-
tions both control and data channels are part of a single transaction.

Application Transaction

email (srv/srv), Usenet TCP flow
Chat, Web, Telnet, email (usr/srv) TCP flow and inactive time > 4 s

FTP TCP flow and inactive time > 4 s
on both the control and the data channel

Games UDP flow and inactive time > 4 s
DNS, ICMP One request/response exchange

Audio and video TCP flow (control channel) and a
corresponding UDP flow (media traffic)

Table 2: Transaction identification

We identify requests and responses using the data flow between
senders and receivers. Let A be a client that initiates some conver-
sation with a server B. A request is identified as all data packets
sent from A to B, before any data packet is received from B. A
reply is identified as all data packets sent from B to A, before any
new request from A. Figure 1 illustrates request and reply identifi-
cation, and measurement of partial delay and whole delay values.

Email and Usenet applications have a delay bound of 4 hours
and will retry a failed transaction for a limited number of times.
Because researchers frequently need to run numerous experiments
to gain insights into scenarios they study, which requires short ex-
periment duration, we must infer DoS impact metrics for Email
and Usenet from short experiments. We observe that DoS impact
usually stabilizes shortly after the onset of an attack or after the
defense’s activation, unless the attack or the defense exhibit time-
varying behavior. We can thus use the pft value measured for trans-
actions that originate after the stabilization point as a predictor of
pft in a longer experiment. Let r be a total number of retries within
4 hours and let s be the stabilized pft for email (or Usenet) trans-
actions during a short experiment. The predicted pft for a long
experiment is then: pftp = sr .

Finally, FTP and email success criteria require comparing a trans-
action duration during an attack with its expected duration without
the attack. Since transaction duration depends on the volume of
data being transferred and network load, we cannot set an abso-
lute duration threshold. If we had perfectly repeatable experiments,
we could guarantee that legitimate traffic transactions occur in the
fixed order, with fixed arrival times and durations. We could then
measure the expected transaction duration directly, running the ex-
periment without the attack. However, some traffic generators have
built-in randomness that prevents repeatable experiments. That is,

they generate a specified mix of traffic but repeated runs result in
different numbers, orders, interarrival times and durations of trans-
actions. In this case, we must estimate the expected transaction du-
ration, using information about the throughput of transactions from
the same application category that complete prior to the attack. As-
sume a transaction T has completed in tr seconds, sending B bytes
of data, and its duration overlaps with an attack. Let Th be the av-
erage throughput of transactions generated by the same application
as transaction T, completed prior to the attack’s start. We calcu-
late the expected duration for the transaction T as te = B/Th. If
tr > 3 · te (see Table 1), the transaction will be labeled as failed.

3.4 DoS Metrics
We aggregate the above measures of transaction success and fail-

ure into several intuitive composite metrics and describe how they
capture DoS impact on network services. Section 5 provides exper-
imental evidence that they effectively summarize the DoS effect on
the network.

The DoS-hist measure shows the histogram of pft measures across
application categories. We found this measure especially useful for
capturing the impact of attacks that target only one application, e.g.,
TCP SYN attack at Web server port 80. Because many DoS attacks
inflict damage only while they are active, and the impact ceases
when the attack is aborted, we suggest that only transactions that
overlap the attack be used for DoS-hist calculation.

The DoS-level measure is the weighted average of pft measures
for all applications of interest: DoS-level =

P

k
pft(k)·wk, where k

spans all application categories, and wk is a weight associated with
a category k. We propose this measure because in some experi-
ments it may be useful to produce a single number that describes
the DoS impact, but we caution that DoS-level is highly dependent
on the chosen set of application weights. Unless there is a broad
consensus on the appropriate set of weights, using DoS-level for
defense performance comparison could lead to false conclusions,
as weights can be chosen to bias the results in any desired way.

The QoS-degrade measure for each failed transaction is a mea-
sure of the severity of service denial. We compute this measure by
locating a transaction’s measurement that exceeded its QoS thresh-
old and calculating the ratio of their difference and the threshold.
For example, if d is the measured delay that exceeds the threshold
value t, QoS-degrade=(d − t)/t. If more than one measurement
violates its threshold, we choose the largest QoS-degrade. Intu-
itively, a value N of QoS-degrade means that the service of failed
transactions was N times worse than a user could tolerate. In ex-
periments, we report the average of the QoS-degrade measures for
transactions in the same application category.

The life diagram shows the birth and death of each transaction
during the experiment with colored horizontal bars. The x-axis rep-
resents the time and the bar’s position indicates a transaction’s birth
(start of the bar) and death (end of the bar). We show the failed and
the successful transactions on separate diagrams, for visibility rea-
sons. We believe that this diagram can help researchers quickly
evaluate which transactions failed and spot commonalities (e.g., all
are long FTP transactions, or all failed transactions are close to the
start of the attack).

The failure ratio shows the percentage of transactions that are
alive in the current interval (we use 1-second intervals in our ex-
periments), but will fail (violate one of their QoS requirements)
in the future. The failure ratio is especially useful for evaluation
of DoS defenses, where experimenters need to calculate DoS im-
pact over time, to capture the timeliness of a defense’s response. It
is also useful to capture the impact of time-varying attacks, such
as pulsing floods [18]. We identify live transactions by observing
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each transaction whose duration overlaps or follows the attack —
transactions that complete prior to the attack are excluded since
they cannot be affected by it. Transactions that are born during or
after the attack are considered live until they either complete suc-
cessfully or fail. Transactions that are born before the attack are
considered live after the attack starts. We make this adjustment of
the birth time to avoid the measurement being biased by the traffic
mix. Without this adjustment, we would have a positive and vari-
able failure ratio well before the attack, which would only depend
on the ratio of the lengthy transactions in the traffic mix.

A transaction that fails contributes to the failed transaction count
in all intervals where it was live. We have considered an alternative
approach where a transaction counts as failed only in the interval
when the failure occurs. However, since it takes at least several
seconds for an application to breach some threshold and fail, the
failed transaction count would always lag behind the live transac-
tion count, and failure ratio would not reach 100% in any scenario.

4. METHODOLOGY
In this section, we describe the topology and traffic scenarios in

the DETER testbed [4] that we employ to illustrate our metrics.
The DETER testbed at the USC Information Sciences Institute and
UC Berkeley allows security researchers to replicate threats of in-
terest in a secure environment and to develop, deploy and evaluate
potential solutions. The testbed has a variety of hardware devices
and supports many popular operating systems. Researchers obtain
exclusive use of a portion of the testbed, configured into a user-
specified topology.

4.1 Topology
The experimental topology is shown in Figure 2. It consists of

four client networks and two attack networks interconnected via
four core routers. Each client network has four server nodes and
two client nodes. All but one client network (Net2) have an access
router that connects the network to the core. We introduced this
asymmetry so we could study the impact of the traffic path crossing
different numbers of routers on the service quality.

All but four links in the topology have no traffic shaping. They
have the default bandwidth of 1 Gbps and a delay of 0 ms1. Four
links that connect client networks to the core have limited band-
width of 10 Mbps and different delays of several tens of millisec-
onds (shown in Figure 2). We imposed the bandwidth limits to
create bottleneck links that can be saturated by flooding bandwidth
attacks, and we imposed different delays to break the synchroniza-
tion between TCP connections. The location of bottlenecks is cho-
sen to mimic high-bandwidth local networks that connect over a
limited access link to an overprovisioned core. The limited band-
width and delay are introduced by deploying a Click router [17]
(small, black circles in Figure 2) on a bottleneck link, and running
a script that emulates the desired link properties.

We simulate six application types: Web, DNS, FTP, Telnet, IRC
and VoIP. In networks 1 and 2, Web, DNS, FTP and Telnet service
each have their dedicated server. In networks 3 and 4, DNS and
Web service are collocated on one server, FTP and Telnet service
reside on another server, and IRC and VoIP services have dedicated
servers. Service separation enables us to isolate effects of DoS at-
tacks on a specific service, and attribute the impact on other traffic
to network congestion. Collocated services enable us to measure
the extent to which resource sharing can transfer the denial of ser-

1This simply means that there is no added delay. Because traffic on
a link still has to cross this link and a switch there is some delay,
but it is much smaller than delays we introduce through shaping.
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vice from a targeted service to a collocated service. Each attack
network hosts two attackers.

4.2 Background Traffic
Each client generates a mixture of Web, DNS, FTP, Telnet and

IRC traffic. Clients talk with servers in their own network, and
with servers from two out of three external networks (see Figure 3).
Specifically, clients from networks 1 and 4 talk to servers in net-
works 2 and 3, and clients from networks 2 and 3 talk to servers
in networks 1 and 4. Additionally, one client in network 1 talks to
the VoIP server in network 3, and similarly one client in network 2
talks to the VoIP server in network 4. The difference between the
VoIP and other service’s traffic patterns occurs due to limitations
of our VoIP traffic generator. This generator can only support a
conversation between a single client and a single server.

We select attack targets in network 3. Thus, client traffic from
networks 1 and 3 shares the path with the attack, regardless of the
destination, while client traffic from networks 2 and 4 shares the
path only if its destination is in network 3. Since only clients from
network 1 and 4, but not from 2 will talk with servers in network
3, we can measure various incarnations of service denial. Traffic
from network 4 to network 3 will suffer the direct effect because it
is destined for the target network. Traffic from network 1 to 3 will
suffer both because of the congestion on the shared attack path and
because it is destined for the target network. Traffic from network
2 to 4 should be free of denial of service since it neither shares a
path nor travels to the attack’s target. Traffic from network 2 to 1
will suffer because it shares the path with attack traffic.

We use diverse background traffic to evaluate the impact of DoS
attacks on the traffic. Whenever possible, we used the real server
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and client applications to generate traffic, so we could faithfully
replicate traffic dynamics and avoid artifacts introduced by traffic
generators. File sizes, user request arrivals and transaction dura-
tions are drawn from the distributions observed in real-world traf-
fic [19]. We had to adjust the distribution parameters to create a
sufficient number of transactions within the experiment duration
(10 minutes), while avoiding congestion. Hence, our request ar-
rivals are shorter than in real world traffic (to maximize number of
transactions), and our file sizes are smaller (to avoid congestion).
Traffic parameters and their distributions are given in Table 4.2.

Type Parameter (unit) Distribution

Telnet

Time between key strokes (s) Exp(1), S=1, M=10
Request interarrival time (s) Exp(5), S=5, M=100

Response size (B) Γ(40,0.9)
Session duration (s) Γ(30,0.5)

Time between sessions (s) Exp(2,1,10)

FTP
Request interarrival time (s) Exp(5), S=1, M=100

File size (B) Pareto(1.2,5000), M=5000

HTTP
Request interarrival time (s) Exp(5), S=1, M=15

File size (B) Pareto(1.04,1000), M=1000

DNS Request interarrival time (s) Exp(1), S=3, M=30

Ping Request interarrival time (s) Exp(5), S=2, M=30

IRC
Request interarrival time (s) Exp(1), S=5, M=100

Message size (B) Γ(40,0.9)

VoIP Packet interarrival time (s) 0.03

Table 3: Legitimate traffic parameters and their distributions.

S is the scaling factor that multiplies the random variable

drawn from the distribution. M is the maximum allowed value

for the given parameter— values larger than M are scaled down

to M.

We generate the following traffic types: (1) Telnet traffic is gen-
erated using interactive SSH. We generate characters that a user
would type on the client machine using a perl bot and pipe them
to the server via an SSH channel. The server then returns the re-
ply via the same channel. After the current session finishes, the
SSH channel is terminated (TCP connection is closed) and later re-
opened (new TCP connection is established) for a new session. (2)
FTP traffic is generated by a client sending requests for files via
wget to the server running vsFTP. Each request asks for one file
only, and opens a new TCP connection. (3) HTTP traffic is gen-
erated by a client sending requests for files via wget to the server
running Apache. Each request asks for one file only, and opens a
new TCP connection. (4) Ping traffic is generated by a client send-
ing one ping request to the server. (5) DNS traffic is generated by
a client using dig to query a chosen server. The server runs bind
which generates replies. (6) IRC traffic is generated by a client
using an automated perl bot to generate chat messages to a server
running pircd. (7) We generate simulated VoIP traffic that sends
128B packets every 30 ms from a client to a server.

5. EVALUATION OF METRICS
In this section, we generate several popular variants of DoS at-

tacks and apply our metrics to evaluate attack impact on network
services. While there are numerous ways to deny service in addi-
tion to the ones we tested, our chosen attacks form an exhaustive
collection of attacks used for testing DDoS defenses by other re-
searchers [20, 27, 16, 24, 30]. They are also the most commonly
seen attack variants in the real DDoS incidents. Each experiment
lasts for 10 minutes.

Our tests are meant only to illustrate the expressiveness of the
metrics. More comprehensive tests would be needed to evaluate
resilience of various services to different DoS attacks. In each

Figure 4: DoS-hist measures for all source and destination net-

works, for the UDP bandwidth flood.

subsection, we illustrate how a legacy metric (as discussed in Sec-
tion 2) fails to capture the impact of DoS as expressively and com-
pletely as our proposed pft metrics.

5.1 UDP Bandwidth Flood
UDP flood attacks can deny service in two ways: (1) by gen-

erating a huge volume of traffic that exhausts bandwidth on the
bottleneck links, (2) by generating a high packet rate that exhausts
the CPU at an intermediate router or the target host. In this experi-
ment, we generate a UDP bandwidth flood with 1000-byte packets
to achieve high-bandwidth attacks with moderate packet per sec-
ond rate. Four attackers located in ANet1 and ANet3 target the
DNS/Web server in Net3 and generate attack packets at the max-
imum possible speed. The attack starts at 100 seconds and lasts
for 460 seconds. The expected effect is that links connecting net-
works Net1 and Net3 to the core will become congested and all
network traffic targeted to Net3 will experience high latencies and
packets drops. Additionally, cross traffic traversing the congested
links, such as traffic exchanged with Net1 or originating from Net3
will also be affected.

Figure 4 shows the DoS-hist measures for all source and desti-
nation networks. We calculate each DoS-hist measure by applying
filters to the client tcpdump trace to select only the traffic for the
specified destination network. Then, we run our measurement tool
on this trace, and average the pft measures for both clients in the
source network. As we expected, the pft measures for clients that
share the same network are very similar, since they communicate
with the same destinations and their traffic crosses the same links.
Labels on the top of the graph indicate DoS-hist measures that be-
long to the same source network, x-axis labels denote the destina-
tion network, and the y-axis shows the pft per application.

Unlike our prognosis, the traffic from and to Net1 experiences
the largest service denial because the attack from network ANet1
shares the bottleneck link with this legitimate traffic, and the at-
tack completely saturates this link. Almost all traffic from and to
Net1 is denied service. The slight difference between pft measures
for different applications associated with Net1 does not result from
their higher or lower resiliency to packet drops; since the generated
attack is very strong, all the service should be denied. Rather, this
is a side effect of our short experiment and different transaction
density in two brief intervals at the beginning and the end of the
attack, when queues are not too full. Transactions that “luck out”
and fall in those intervals have a better chance of success, and since
the test is short, even a small number of such successes can mean a
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Figure 5: QoS-degrade measure for all source and destination

networks, and all application types, for the UDP bandwidth

flood.

significant difference in percentage.
Traffic from and to Net3 experiences lower service denial for

two reasons: (1) the attack traffic from ANet3 does not traverse the
bottleneck link that connects Net3 to the core and (2) the attack
traffic from ANet1 arrives to the bottleneck link at a small volume
(10 Mbps), because it crossed the bottleneck link in front of Net1.

These two phenomena — the influence of transaction density
and experiment duration on pft measures, and lower service denial
at Net3 than at Net1 — are artifacts of the experimental setup. They
illustrate the fact that experiments must be carefully designed and
include many diverse scenarios, to ensure that measurements reflect
the true nature of the event being studied instead of experimental
artifacts.

Figure 5 shows the QoS-degrade measure. All services that in-
clude traffic to or from Net1 are severely degraded, while services
to and from Net3 experience smaller service denial. A small per-
centage of Telnet traffic is degraded in all networks because retrans-
missions of dropped packets from or to Net3 create congestion that
violates Telnet’s small echo delay bound. For space reasons, we
omit the QoS-degrade measure for the following experiments.

Figure 6 shows the failure ratio for all transactions originating
from Net1 to Net3. The periods when queues are filling and emp-
tying, at the attack start and end, are noticeable as intervals when
the failure ratio is smaller than 1. Throughout the attack, the failure
ratio value stays at 1, illustrating that all service between these two
networks is denied.

Figure 7 shows the life diagrams of successful and failed trans-
actions. The x-axis plots the start and end time of a transaction,
the colored bars represent transactions, and the y-axis shows the
transaction ID. This is just a number we assign to a transaction to
identify it. We assign consecutive numbers to transactions of the
same type to make the life diagram more visible. While most of
the failures occur during the attack, a few Telnet transactions fail
after the end of the attack. This is because other TCP-based trans-
actions (Web and FTP) start recovery after the end of the attack,
growing their congestion window. This excess traffic causes a few
Telnet packet losses and due to a low delay bound, Telnet trans-
actions fail even from a single packet loss. Transactions that start
prior to the attack fail promptly as soon as the attack is launched.

Finally, we contrast the proposed metrics with the legacy metric
of request/response delay for traffic originating from Net1 in Fig-
ure 8. The graph shows the cdf function of the request/response
delay metric in the baseline case with no attack, and compares

Figure 6: The failure ratio for traffic from Net1 to Net3, for

UDP bandwidth flood.

it to the case when the attack is present. The x-axis plots the
request-response delay on a logarithmic scale. While the distribu-
tion under attack looks different than the distribution in the baseline
case, a large fraction of the transactions experience very similar de-
lays in both cases. In fact, as illustrated by point A on the graph,
some transactions that fail have a lower request/response delay than
transactions that have succeeded. The transaction highlighted by
point A is an IRC transaction that fails because its roundtrip time
was longer than permitted by the thresholds defined in Table 1. This
illustrates that request/response metric by itself is insufficient to
completely capture the DoS impact on the network.

5.2 TCP SYN Flood
TCP SYN flood attacks deny service by generating many TCP

SYN packets to an open TCP port. In this experiment, we generate
40-byte TCP SYN packets from all four attackers to the Web server
in Net3. Each attack machine sends 200 packets per second, which
is sufficient to deny service to Web traffic at the target machine.
Since TCP SYN packets are small, no congestion should build up
and no other network service should be denied. The attack starts at
100 seconds and lasts for 400 seconds.

Figure 9 shows the DoS-hist measures for all source and destina-
tion networks. Almost all Web transactions with Net3 have failed
as a result of this attack. The pft of Web transactions is a little lower
than 1 thanks to the transactions that start close to the end of the at-
tack. These transactions recover after the attack stops and before
their delay exceeds the threshold.

Figure 10 shows the failure ratio for Web transactions originating
from Net1 to Net3. For almost the entire attack duration, the failure
ratio value stays at 1, occasionally dropping to lower values for
1 second when some legitimate SYN packet gains access to the
target’s connection buffer.

Figure 11 shows the life diagrams of successful and failed trans-
actions. All the failures occur during the attack and only Web trans-
actions fail. One Telnet transaction fails also, due to a single packet
loss, caused by mild congestion.

Next, we compare the pft-based metrics to the legacy metric of
transaction duration for traffic originating from Net1 in Figure 12.
The duration distributions in the attack and the baseline case ap-
pear very similar, and failed transactions have the same or lower
duration than about 20% of successful transactions under attack,
and 20% of baseline transactions. We have highlighted one such
point B on the graph, where an HTTP transaction fails because its
roundtrip time exceeded the delay bound. This illustrates that the
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Figure 7: Life diagram of successful and failed transactions, for

UDP bandwidth flood.

transaction duration metric by itself fails to completely capture the
impact of the attack on the network traffic.

5.3 ICMP CPU Flood
Similar to UDP flood attacks, ICMP floods target bandwidth or

CPU resources. In this experiment, we generate an ICMP CPU
flood by directing 48 byte ICMP packets from all the attackers in
ANet1 and ANet3 to the victim DNS/Web server in Net3. Each
attacker generates a 10K packets per second flood; the attack starts
at 110 seconds and lasts until 560 seconds. The expected effect
is that routers connecting networks Net1 and Net3 to the core will
become overwhelmed and drop all traffic. Thus, all traffic to Net3
should experience drops and high latencies, in addition to traffic
from Net1 to Net2 and Net3.

Figure 13 shows the DoS-hist measures for all source and des-
tination networks. All transactions to and from Net1 experience
the largest service denial, for the same reason as in the case of the
UDP bandwidth flood — the sharing of a common router by the
attack from network ANet1 and the legitimate traffic to and from
Net1 makes this traffic the most affected. However, we observe
that the impact of ICMP CPU flood attacks is lower than the im-
pact of UDP bandwidth floods. This is because attack packets are
small, so router buffers manage to successfully store and forward
more legitimate packets even though they experience higher laten-

cies. This results in a lower percentage of lost legitimate packets.
For example, 60-80% of Ping transactions, 75-90% of Web trans-
actions and about 70% of DNS transactions with Net1 were suc-
cessful in spite of the attack. Web transactions are denied the least
because dropped packets will be retransmitted by TCP, increasing
the chance of transaction success. FTP and Telnet traffic suffered
the largest denial. FTP transactions got prolonged and violated
their overall duration bound, while Telnet traffic easily exceeded
its small echo delay bound even when packet loss was small. This
is visible when observing the attack effect on transactions to and
from Net3, where only Telnet traffic suffered around 55% failure.

Figure 14 shows the failure ratio for all transactions originating
from Net1 to Net3. The failure ratio was oscillating throughout the
attack, as the routers were trying to keep up with the packet flood.

Finally, we illustrate how the legacy metrics fail to capture the
details of the failure conditions. We use two legacy metrics: packet
loss for traffic originating from Net1, and throughput of the traf-
fic originating from Net1. In Figure 15, the x-axis represents the
fraction of packets lost in a transaction. We observe that although
the loss is higher during an attack, many failed transactions have
lower loss than successful ones. These transactions fail due to la-
tency intolerance. We have highlighted one such point C on the
graph, where a Telnet transaction has 8% loss but fails due to a
high round-trip time. Similarly, in Figure 16, the y-axis represents
the average throughput on a logarithmic scale. Even though the dis-
tributions in the baseline and the attack case appear similar, there
are many failed transactions with throughput higher than that of
successful transactions. We have highlighted one such point D on
the graph, where a Telnet transaction fails since its roundtrip time
exceeded the echo delay threshold.

5.4 HTTP Flood (Flash Crowd Attack)
Flash crowd attacks deny service by sending many legitimate-

like requests to a server whose resources are limited. The primary
limitation usually lies in the server application that cannot handle
more than a certain number of simultaneous requests. To mimic
flash crowd attacks, we have modified the Web server’s configu-
ration file in Net3 to limit the number of clients and the number
of client requests that can be served simultaneously, to 50 and 100
respectively. Only one attacker from ANet1 participates in HTTP
flood, sending 100 requests per second to the Net3’s Web server,
and requesting a small, 5-byte file. The reply size is deliberately
made small, so we could guarantee that the reverse traffic will not
create congestion. The attack starts at time 110 seconds and lasts

Figure 8: The distribution of request/response delay for traffic

from Net1, for UDP bandwidth flood.
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for 2 minutes. We expect that the flash crowd effect should be simi-
lar to the effect of TCP SYN attack, that is, legitimate Web requests
to the targeted server should be denied service while other traffic
should not be affected. We observe this effect in the two graphs
illustrating the DoS-hist and the failure ratio of Web transactions.

Figure 17 shows the DoS-hist measures for all source and des-
tination networks. Similar to the case of TCP SYN flood attack,
almost all Web transactions with Net3 have failed. Additionally,
a very small percentage (0.5-0.7%) of Telnet and FTP transactions
fail because of increased congestion. Figure 18 shows the failure
ratio for Web transactions only originating from Net1 to Net3. A
striking difference between this and other flooding attacks is that
the DoS impact remains even after the attack. Excess Web requests
seem to permanently disable the Apache Web server and we could
only restore it by restarting the Apache process on the server host.

5.5 Pulsing Attack
Pulsing attacks, also known as low-rate TCP attacks [18], deny

service by periodically creating congestion on the path shared with
legitimate TCP traffic. This leads to traffic drops and the legitimate
TCP traffic responds by decreasing its sending rate. Denial of ser-
vice occurs because the goodput and throughput of affected TCP
connections are significantly reduced due to the congestion control
response, even when the pulses are relatively wide apart. Pulsing
attacks are appealing to the attackers because attack traffic can be
sent stealthily in short, sparse pulses, making detection difficult.
We generate a UDP pulsing attack with the same parameters as in
the case of UDP bandwidth floods. The pulses start at 195 sec-
onds, last for 20 seconds, with a sleep time between pulses of 100
seconds. There is a total of 5 pulses. Although [18] suggests that
pulses as short as 1 RTT are sufficient to deny service, our pulses
last longer because our traffic is sparse and we wanted to maximize
the chance that an attack overlaps with the legitimate TCP traffic.

We observe that the pulsing flood denies traffic to and from Net1,
and to some small extent to and from Net3. The denial is smaller
than in the case of the UDP flood attack because resources are in-
termittently consumed.

Figure 20 shows the failure ratio for transactions originating from
Net1 to Net3. The failure ratio oscillates with the attack, but the
transactions fail even when the attack is not present because the pe-
riodic loss inflicts significant damage on their sending rate during
loss periods and they cannot recover quickly enough when the at-
tack stops to meet their QoS criteria. We compare the failure ratio
to the legacy metric of division of resources for bandwidth reach-

Figure 9: DoS-hist measure for all source and destination net-

works, and all application types, for TCP SYN flood attack.

Figure 10: The failure ratio for Web transactions in traffic from

Net1 to Net3, for TCP SYN flood attack.
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attack starts
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Figure 11: Life diagram of successful and failed transactions,

for TCP SYN flood attack.
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Figure 12: The distribution of transaction duration for traffic

from Net1, for TCP SYN flood attack.

Figure 13: DoS-hist measure for all source and destination net-

works, and all application types, for ICMP CPU flood.

Figure 14: The failure ratio for all transactions in traffic from

Net1 to Net3, for ICMP CPU flood.

Figure 15: The distribution of packet loss for traffic from Net1,

for ICMP CPU flood.

Figure 16: The distribution of throughput for traffic from Net1,

for ICMP CPU flood.

Figure 17: DoS-hist measure for all source and destination net-

works, and all application types, for HTTP flood.
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Figure 18: The failure ratio for Web transactions in traffic from

Net1 to Net3, for HTTP flood.

Figure 19: DoS-hist measures for all source and destination net-

works, for pulsing flood.

ing the victim server in Figure 21. The y-axis shows the percentage
of bandwidth consumed by legitimate or attack traffic. Although
this measure does indicate that the period of service denial is dur-
ing the pulses, it does not capture the impact of the attack between
the pulses. Comparing Figure 20 and Figure 21, we observe that
the failure ratio metric clearly captures both the effect of the attack
during the pulses and in-between them, making it a superior metric.

5.6 Defense Effect
We now illustrate how our proposed DoS impact metrics can be

used to measure the effectiveness of a defense. We repeat the TCP
SYN flood attack, but we turn on the TCP SYN cookies option
after the first 3 minutes of the attack. SYN cookies prevent resource
allocation at the server until the TCP 3-way handshake is complete,
thus disabling the TCP SYN flood means of service denial. We
expect that shortly after the activation of SYN cookies, the Web
service quality should return back to normal.

Figure 22 shows the DoS-hist measures for all source and des-
tination networks. Comparing it with Figure 9 for the TCP SYN
attack, we observe that when the SYN cookie defense in activated,
the pft becomes significantly lower than during a SYN flood with-
out the defense. Figure 23 shows the failure ratio for Web trans-
actions from Net1 to Net3. Initially, all the Web transactions fail.
After the defense deployment, this ratio returns to 0, illustrating a
complete protection from the attack.

6. NS2 IMPLEMENTATION
To extend the application of our proposed metrics to simulated

DDoS defense evaluation, we have ported the metrics to the NS-
2 simulator [23]. During simulation, we generate flows such that
each flow exactly represents a transaction. Since we specify a
unique ID for each transaction, we can easily compute the dura-
tion, echo, partial and whole request/response delay for a transac-
tion. We then compare measured values with QoS requirements,
and produce the DoS-hist measure.

We illustrate the DoS impact metrics in small-scale experiments
using the NS-2 (version 2.29) simulator and we compare it with
identical experiments in the DETER testbed. The simple network
topology contains a single legitimate client, an attacker, and a server.
All nodes are connected to the same router. The link between the
server and router is 10 Mbps with 10 ms delay. The other two links
are 100 Mbps bandwidth with 10 ms delay. We use a queue size of
100 packets, with a drop-tail queuing strategy. We generate the fol-
lowing legitimate traffic between the client and the server: (1) Web
and FTP traffic with file size 1000 bytes and 20 second request in-
terarrival period. (2) Telnet traffic with 10 packets per second and a
100-byte packet size. During the simulation, we start a new Telnet
connection every 60 seconds with duration 120 seconds. (3) DNS
and ICMP traffic with 20 second request interarrival period. We use
the following applications in NS-2 to generate the simulation traf-
fic: Application/FTP for FTP, PagePool/WebTraf for HTTP, Ap-
plication/Telnet for Telnet, Agent/Ping for ICMP, and a modified
version of Agent/Ping with a maximum of 3 retransmissions with
5-second timeouts as DNS. In our simulations, we generate a UDP
flood that overwhelms the bottleneck link with 10 Mbps (moderate
attack) or 80 Mbps (large attack) rate.

To minimize the effect of different traffic generation dynamics
in simulation and emulation, we fixed the traffic patterns so we can
guarantee that both implementations observe the same transactions.
The request interarrival period for Web and FTP was fixed at 20 s,
the file size at 1 MB, the request interarrival period for Ping and
DNS at 10 s, the Telnet session interarrival period at 1 minute, the
duration at 2 minutes, and the packet rate at 10 packets per second.

Figure 24 shows the DoS-hist measure during the two attacks
for NS-2 and DETER experiments. The x-axis shows the attack
strength, and the column height denotes the result of 10 test runs.
Since the legitimate traffic pattern is fixed for the NS-2 simulation,
we achieve variability by randomly choosing a small delay (10-
100 ms) to apply to the attack start time. We also show the DoS-
level measure using equal application weights as a blue line across

Figure 20: The failure ratio for traffic from Net1 to Net3, for

pulsing flood.
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Figure 21: The division of bandwidth to Net3 during a pulsing

attack

the histograms in the Figure. The Telnet application is the most
affected by the attack due to its small echo-delay bound (250 ms).
Denial of service is similar for DNS and Ping, even though DNS
can retransmit requests up to three times because these retransmis-
sions occur after the DNS’ request/response delay threshold is ex-
ceeded. Web transactions survive the attack best because of the
generous (10 s) delay threshold and because the lost requests are
retransmitted by the TCP. At high attack rate (80 Mbps), the pft of
all applications goes to almost 100%.

Comparing simulation results with testbed results, shown in Fig-
ure 24(b), we find that trends in both graphs are the same but more
transactions fail in simulations. This is because the software routers
used on the testbed can handle the attack traffic better, than the sim-
ple single output queuing model used in NS-2. These results are
consistent with the results in [9] which show higher throughput and
TCP congestion window sizes in testbed experiments compared to
same experiments in NS-2.

7. RELATED WORK
In the quality of service field, there is an initiative, led by 3GPP

partnership, to define a universally accepted set of QoS require-
ments for applications [1]. While many of the specified require-
ments apply to our work, we extend, modify and formalize these
requirements as explained in Section 3.2.

Figure 22: DoS-hist measure for all source and destination net-

works, and all application types, for TCP SYN flood with dy-

namic SYN cookie defense.

Figure 23: The failure ratio for Web transactions in traffic from

Net1 to Net3, for TCP SYN flood with dynamic SYN cookie

defense.

(a) NS-2 (b) DETER

Figure 24: DoS-hist and DoS-level measures in NS-2 and DE-

TER experiments

The Internet and ATM research communities have separated ap-
plications into several categories based on their sensitivity to delay,
loss and jitter [12]. An application is either inelastic (real-time),
which requires end-to-end delay bounds, or elastic, which can wait
for data to arrive. Real-time applications are further subdivided into
those that are intolerant to delay, and those that are more tolerant,
called “delay-adaptive.” The Internet’s integrated services frame-
work mapped these application types onto three service categories:
the guaranteed service, the controlled load service and the currently
available best effort service [6]. These research efforts, however,
focus on providing guaranteed service to applications, rather than
on measuring if the service was denied during a DoS attack.

In study [7], the authors measure DoS impact on real-world traf-
fic via the distributions of several parameters: the throughput of
FTP applications, round-trip times of FTP and Web flows, and la-
tency of Web flows and the DNS lookup service in real world traces
before, during, and after an attack. Our paper strives to define a
more formal threshold-based model for these and other parameters,
that can be extended to a broader variety of services and attacks.

The Internet Research Task Force Transport Modeling Research
Group (TMRG) is chartered to standardize evaluation of transport
protocols by developing a common testing methodology, including
a benchmark suite of tests [13]. The TMRG documents discuss
using user-based QoS metrics for measuring congestion, but do not
specify such metrics in any detail.

In [8] a user satisfaction index is computed from Skype traces
using regression analyses of several call and quality of service at-
tributes. The index is validated via analysis of other call charac-
teristics, such as conversation interactivity. Our work provides a
framework where this index can be easily incorporated into a DoS
metric for Skype and other VoIP traffic.
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In slow-motion benchmarking [22], the authors modify desktop
benchmarks by introducing delays between tasks, and use network
traces collected at the client to measure performance of thin clients.
The only performance measure in that work is the sum of transac-
tion durations in the benchmark.

8. CONCLUSIONS AND FUTURE WORK
Ultimately, DoS attacks are about denying end user service. A

complete DoS metric has to intuitively and succinctly summarize
end user conditions that truly capture the service denial aspect of
the attack. We believe the key aspect of designing such a metric is
defining a threshold-based model to capture the quality of service
expectations of the end user. The pft metric proposed in this paper
elegantly captures the impact of the attack as experienced by the
end user. We are able to represent the denial of service effects
with high accuracy for a wide range of attacks and have illustrated
inadequacy of legacy metrics to capture these effects.

We believe there is much more work to be done in defining an
appropriate threshold-based model that encapsulates all aspects of
network and attack traffic. However, the techniques outlined in this
paper provide a strong framework to the research community to
develop a formal methodology and metric for malicious traffic seen
on the network. This is the first concentrated effort in developing
unbiased metrics for DoS technology evaluation and will hopefully
encourage such endeavors in the future.
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