
Geophysical Journal International
Geophys. J. Int. (2016) 205, 830–836 doi: 10.1093/gji/ggw052

Advance Access publication 2016 February 8

GJI Seismology

Towards using direct methods in seismic tomography: computation
of the full resolution matrix using high-performance computing and
sparse QR factorization

Petros Bogiatzis,1 Miaki Ishii1 and Timothy A. Davis2

1Department of Earth and Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, MA 02138, USA. E-mail: petrosbogiatzis@fas.harvard.edu
2Department of Computer Science and Engineering, Texas A&M University, TX 77843, USA

Accepted 2016 February 2. Received 2016 February 1; in original form 2015 September 11

S U M M A R Y

For more than two decades, the number of data and model parameters in seismic tomogra-

phy problems has exceeded the available computational resources required for application of

direct computational methods, leaving iterative solvers the only option. One disadvantage of

the iterative techniques is that the inverse of the matrix that defines the system is not ex-

plicitly formed, and as a consequence, the model resolution and covariance matrices cannot

be computed. Despite the significant effort in finding computationally affordable approxima-

tions of these matrices, challenges remain, and methods such as the checkerboard resolution

tests continue to be used. Based upon recent developments in sparse algorithms and high-

performance computing resources, we show that direct methods are becoming feasible for

large seismic tomography problems. We demonstrate the application of QR factorization in

solving the regional P-wave structure and computing the full resolution matrix with 267 520

model parameters.

Key words: Inverse theory; Seismic tomography; Computational seismology.

I N T RO D U C T I O N

Seismic tomography is the most powerful tool for imaging the inte-

rior of the Earth, and many geophysical problems, including seismic

tomography, are typically reduced to solving a linear system of equa-

tions (e.g. Aster et al. 2005; Nolet 2008; Rawlinson et al. 2010).

It is desirable to use accurate and robust direct methods or direct

solvers (e.g. Demmel 1997) to obtain solutions. However, when the

size of these inverse problems is large, the application of the direct

solvers becomes computationally difficult. Over the last decade,

advances in theory and methodology of forward and inverse prob-

lems, as well as increase in computational power and the number

of available data, enabled the exploration of massive tomographic

problems. For example, data availability has been accelerated with

the introduction of dense networks such as the EarthScope USAr-

ray project (e.g. Meltzer et al. 1999), High Sensitivity Seismograph

Network in Japan (Okada et al. 2004) and WOMBAT Seismic Array

in Australia (Rawlinson et al. 2008). These data allow finer spatial

resolution of the tomographic models, yielding inverse problems

with O(105)−O(107) observations and O(105)−O(106) unknown

parameters (e.g. Nolet 2008; Rawlinson et al. 2010, 2014).

As an alternative, iterative solvers such as the LSQR method

(Paige & Saunders 1982a,b) are used to avoid significant memory

or computational run time. A disadvantage of the iterative tech-

niques is that the inverse of the matrix that defines the system is

not explicitly formed, hence measures of the robustness and the

quality of the solution, such as the model resolution and covariance

matrices, cannot be obtained. Consequently, a paradoxical situation

arises. Although modern tomographic studies with large numbers

of data and model parameters produce potentially better images

in terms of spatial resolution, robustness and uncertainty of these

models become obscured. In other words, improvements cannot be

accurately assessed or confirmed.

Different solutions have been proposed to overcome this chal-

lenge. Attempts have been made to assess the spatial resolution of

the model by means of synthetic reconstruction using checkerboard

models or the results of the inversion as inputs (e.g. Rawlinson

et al. 2014). However, such tests are misleading as they consider

only the linear combinations of the columns of the resolution ma-

trix (Lévêque et al. 1993; Rawlinson et al. 2014). Alternatively,

methods based on LSQR can produce an effective resolution ma-

trix (Zhang & McMechan 1995, 1996; Yao et al. 1999; Berry-

man 2000a,b; Zhang & Thurber 2007), but this matrix may differ

significantly from the true resolution matrix (Deal & Nolet 1996;

Berryman 2000a,b; Zhang & Thurber 2007). Nolet et al. (1999)

present another option of a one-step back-projection method, based

upon the Moore-Penrose conditions (Jackson 1972), to obtain an

explicit expression of the approximate inverse matrix to compute

the full resolution matrix. For this approach, the accuracy of the re-

sulting resolution matrix depends upon certain assumptions about
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the sensitivity matrix (Nolet et al. 1999; Yao et al. 2001). On the

other hand, Soldati et al. (2006) use parallel Cholesky factoriza-

tion on the normal equations in shared memory systems, explic-

itly forming the product of the matrix and its transpose. One is-

sue with such product is that it acquires a high condition number

(square of the condition number of the initial matrix which is ill-

conditioned), implying that the rounding errors can cause loss of

information.

Recently, stochastic matrix probing techniques (Hutchinson

1990; Bekas et al. 2007) have been introduced to estimate the

main diagonal elements of the resolution matrix (MacCarthy et al.

2011; An 2012; Trampert & Fichtner 2013). This method provides

accurate assessment of the diagonal elements, but it does not cal-

culate the off-diagonal elements that are useful in assessing the

coupling between different model parameters, that is, in identify-

ing artefacts such as leakage between different parts of the model

space. Furthermore, depending upon the structure of the resolu-

tion matrix, these methods require a large number of iterations to

yield satisfactory approximations (Bekas et al. 2007). Another ap-

proach available for adjoint tomography applications is to utilize the

second-order adjoints for extracting resolution information (Ficht-

ner & Trampert 2011). This approach can be considered a gener-

alization of the ray density tensor (Kissling 1988) that quantifies

the space-dependent azimuthal coverage, and therefore serves only

as a proxy for resolution. It is more efficient than other techniques,

but is still costly, and the output is a direction-dependent resolution

length, not the full resolution matrix with trade-offs between model

parameters.

In this work, we revisit the application of direct methods in solv-

ing tomographic problems in view of significant developments in

computer science and hardware in the last decade. For example,

efficient rank-revealing algorithms based upon QR factorization

that takes advantage of new architectures such as memory hier-

archy and parallelism now exist (e.g. Davis 2011). Furthermore,

new fill-reducing ordering algorithms effectively propagate sparsity

throughout common factorizations (e.g. Karypis & Kumar 1998;

Amestoy et al. 2004; Davis et al. 2004a,b). These advances are

beginning to make direct methods feasible for problems with large

matrices such as seismic tomography. We demonstrate that they can

be used to solve a teleseismic tomography problem and to compute

the full resolution matrix. We also show that error propagation and

the covariance matrix can be calculated with minimum additional

cost.

M E T H O D

Seismic tomography is a non-linear and high-dimensional optimiza-

tion problem where a set of model parameters is sought to satisfy

observations and additional a priori constraints. In many cases,

the problem is locally approximated in the vicinity of an optimal

Earth model, and perturbation-based methods are used to acquire

successive linear updates to the starting model until a convergence

criterion is met (e.g. Rawlinson et al. 2014). The linearized problem

in each iteration is constructed using the forward operator G such

that

G · x = d, (1)

where x is a model vector with m unknown parameters, d is the data

vector containing n observations or the residuals between observa-

tions and synthetics and G is an n × m matrix that, in most seismic

tomography approaches, is sparse. A solution x̂ can be obtained by

applying a linear matrix inverse operator, G−, that is,

x̂ = G− · d. (2)

The true model parameters x and the estimated parameters x̂ are

related through the model resolution matrix R as (Jackson 1972;

Menke 1989)

x̂ = R · x, (3)

and

R ≡ G− · G. (4)

Eq. (3) suggests that the retrieved solution can be considered

as a projection of the true model. The diagonal elements of R

describe the independent resolvability of each parameter, and the

off-diagonal entries show the trade-offs between model parameters.

In the ideal case, R = I and x̂ = x, but in real tomographic appli-

cations, the resolution matrix deviates from the identity matrix with

non-zero off-diagonal elements. The exact form of R is related with

the geometry of the tomographic problem (e.g. locations of sources

and stations), the theory and assumption used for the forward op-

erator (e.g. rays, sensitivity kernels), and the number and type of

observations (e.g. arrival time measurements).

C O M P U TAT I O NA L A S P E C T

Commonly, G− is chosen such that x̂ is a least-squares solution to

eq. (1), that is, it is obtained by minimizing ‖G · x̂ − d‖2, where

‖ · ‖ is the Euclidian norm (e.g. Menke 1989; Aster et al. 2005;

Nolet 2008). This yields the normal equations

GT · G · x = GT · d. (5)

In most seismic tomography problems, the forward operator G

is rank deficient or nearly rank deficient even when n > m, since

some rows are either exactly linearly dependent or nearly linearly

dependent in the presence of round-off errors and modelling un-

certainties. Consequently, additional conditions are imposed such

as some form of Tikhonov regularization operator L of size k × m

with n + k ≥ m (Tikhonov & Arsenin 1977). The regularized least-

squares problem is the same as eq. (1) except that G is replaced by

its regularized version A and vector d by b where

A =

[

G

aL

]

and b =

[

d

0

]

, (6)

and a is a scalar that controls the weight of the regularization term.

The corresponding regularized normal equations are
(

GT · G + a2LT · L
)

· x = GT · d. (7)

A potential problem in normal equations approach is that it yields

less accurate solutions than direct methods when the initial problem

is ill-conditioned because the accuracy depends on the condition

number of GT · G, which is the square of the condition number of

G. Furthermore, although G is typically a sparse matrix, GT · G

is significantly denser and requires additional memory for storage.

The most accurate approach in solving both eq. (1) or its regularized

version is through singular value decomposition (SVD; Lanczos

1961; Demmel 1997; Snieder & Trampert 1999; Aster et al. 2005)

or generalized SVD (e.g. Hansen, 1990, 1992, 1998, 2007; Aster

et al. 2005). However, as data and model spaces become larger,

the computational cost of SVD in floating-point operations, and in

particular, memory requirements, makes it intractable. This arises

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/2
0
5
/2

/8
3
0
/6

8
6
7
2
6
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



832 P. Bogiatzis, M. Ishii and T.A. Davis

because the sparseness of the numerical null space of G is not

exploited.

S PA R S E Q R FA C T O R I Z AT I O N

In this study, we select QR factorization since it avoids the ex-

plicit formation of GT · G. Although modern QR algorithms can be

used to solve rank-deficient problems (Davis 2011; Foster & Davis

2013), we consider the regularized least-squares problem to be con-

sistent with conventional seismic tomography modelling such as

that presented in MacCarthy et al. (2011). The forward operator

A is therefore a full-rank, rectangular matrix with more rows than

columns, that is, n + k > m. The QR factorization of A decomposes

the matrix into a product A = Q̃ · R̃ consisting of an orthogonal,

square matrix Q̃ and a trapezoidal matrix R̃. The trapezoidal matrix

R̃ has the form R̃ = [RT 0T]T, where R is an m × m upper triangular

matrix. The square orthogonal matrix Q̃ = [Q Q0], consists of the

‘economy’ QR factor Q of size m × m that corresponds to R, and

Q0 that contains the remaining n + k − m columns of Q̃. QR fac-

torization solves the least-squares problem through minimization of

an equivalent problem (e.g. Björck 1996; Gander et al. 2014), that

is,

∣

∣

∣

∣Q̃T · A · x − Q̃T · b
∣

∣

∣

∣ =

∣

∣

∣

∣

∣

∣

∣

∣

[

R

0

]

· x −

[

QT

QT
0

]

· b

∣

∣

∣

∣

∣

∣

∣

∣

. (8)

Since R is full rank, the least-squares solution of eq. (8)

is the same as the solution to the linear system Rx = QT · b,

and the objective function is at its minimum when ‖QT
0 · b‖ =

(‖b‖2−‖QT · b‖2)1/2. Similar to SVD, the 2-norm is preserved in

QR factorization since Q̃ is orthogonal. Norm preservation implies

no amplification of numerical error, ensuring that inaccuracies in A

or G are not amplified (e.g. Demmel 1997).

Various direct solvers exist that take advantage of the sparsity of

the A matrix (e.g. Davis 2006), but they are considerably more com-

plicated and difficult to implement than their generic counterparts.

Among the complications is the need for efficient handling of the

fill-in (i.e. non-zero entries) in the factors during the factorization,

and to ensure that the sparseness propagates throughout the proce-

dure. For example, appropriate permutation of rows and columns

of the input matrix results in the R matrix with vast difference in

its sparseness. An example shown in Fig. 1 considers a matrix that

is formed from an upper rectangular block and a lower diagonal

matrix, a typical structure of a tomographic problem with zeroth-

order Tikhonov regularization. Only 0.9 per cent of the entries of

this matrix are non-zero, but QR factorization of this matrix yields

an upper triangular R matrix that consists of 46 per cent non-zero

entries. A different ordering of the columns of the initial matrix, on

the other hand, produces significantly sparser R factor with only 9.4

per cent of the factors being non-zero (Fig. 1).

In this study, we use the SPQR algorithm from the SuiteSparseQR

package (Davis 2011), a high-performance, parallel algorithm based

on the multifrontal method (Duff & Reid 1983). The factorization

of large sparse matrices is broken into multiple factorizations of

smaller dense submatrices, and the structure of the algorithm has a

dendritic organization, suitable for parallel computing. Each node

in the tree is assigned to the factorization of a dense submatrix,

a frontal matrix. The results of lower order nodes are gathered to

assemble frontal matrices of higher order nodes through irregular,

one-way data communication that occurs only from the lower to

higher order nodes (Davis 2011).

The SPQR algorithm includes the ability to represent and store the

orthogonal matrix Q in an efficient sparse format using the House-

Figure 1. Effect of ordering on the sparseness. (a) An example matrix that

contains 0.9 per cent of non-zero elements. The colours show the size, that

is, median(log(|value|)), of the entries with white being zero and dark blue

colours indicating large absolute values. (b) The same matrix as in panel

(a) with different ordering of its columns. (c) The upper triangular matrix R

obtained from QR factorization of the matrix shown in panel (a). (d) Same

as in panel (c) except for the input matrix shown in panel (b). Note that the

matrices are much larger than the pixel resolution (e.g. matrices in panels c

and d are 267 520 × 267 520), hence the figures show only an impression

of the structure of the matrix.

holder transformations (Householder 1958; Davis 2011). Neverthe-

less, a more efficient alternative is to directly compute the product

QT · b during the calculation of Q to avoid storing Q, which is an

option in the SuiteSparseQR package. We can obtain both the solu-

tion vector and the resolution matrix R of the regularized problem

by using

A · x = B, where B =

[

dm×1

0k×1

Gm×n

0k×n

]

. (9)

This formulation has the advantage that both the analysis and the

factorization are performed only once. The QR factors are used for

retrieving the model estimation that corresponds to the first column

of B, and the resolution matrix is obtained, in a column-wise manner,

from the remaining columns of B.

Following this approach, the error propagation can also be per-

formed with minor additional cost. In real applications, the data

vector d is contaminated with errors due to noise and other uncer-

tainties, and eq. (1) is written as

G · x = d + e, (10)

where e is the vector containing the errors. The error propagates to

the model estimation as

x̂ = G− · d + G− · e. (11)
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Figure 2. Map of stations from the teleseismic tomography experiment of

MacCarthy et al. (2011). CREST stations are shown as orange triangles,

and USArray stations are shown as blue circles. The background elevation

is given in grey scale (Amante & Eakins 2009). The grey lines depict state

boundaries.

The overall departure of the true model x from the estimated

model x̂ is the result of both limited resolution and error propagation

(e.g. Snieder & Trampert 1999), that is,

e (x̂) = x − x̂ = (I − R) · x − G− · e. (12)

The error propagation can be calculated with minimum cost by

incorporating the vector e as an additional column of B (eq. 9).

In addition to the error propagation, the model covariance matrix,

defined as C = A− · (A−)T provides a measure of model uncertainty

(e.g. Nolet et al. 1999). In QR factorization, due to orthogonality,

C can be rewritten as, C = R− · (R−)T = (RT · R)− (e.g. Björck

1996; Gander et al. 2014), and using its symmetry, only the upper

triangular part needs to be computed. There are several algorithms

that efficiently compute C or certain elements of it such as the

diagonal elements (e.g. Björck 1996; Gander et al. 2014).

A P P L I C AT I O N

To demonstrate the features and applicability of the sparse QR

approach, we use the teleseismic data set from Colorado Rockies

Experiment and Seismic Transects (CREST; Aster et al. 2009; Mac-

Carthy 2010) and obtain P-wave structure beneath Colorado. This

data set has been used to estimate the diagonal elements of the reso-

lution matrix using the matrix probing techniques (MacCarthy et al.

2011) and provides a good comparison basis. The model space is

parametrized in the same manner as in MacCarthy et al. (2011) using

267 520 constant velocity blocks of 0.25◦×0.25◦×25 km in size.

We further follow MacCarthy et al. (2011) and regularize the least-

squares problem, utilizing the Tikhonov regularization (Tikhonov &

Arsenin 1977). The data vector d consists of 19 608 mean-removed

teleseismic P-wave traveltime residuals from 167 stations (Fig. 2),

and the forward operator G has the dimensions of 19 608 × 267 520.

The regularization kernel Lk×m , with k = 570 232, is a combination

of damping and Laplacian-smoothing in equal amounts, both scaled

by the Lagrangian multiplier a that is set to 0.5 (MacCarthy 2010;

MacCarthy et al. 2011). The sizes of the matrices are large, and

using conventional seismic tomography techniques and algorithms,

this problem is considered unfeasible to solve directly.

Our setup is based on SuiteSparse 4.4.0 (Davis 2009, 2011; avail-

able online at http://faculty.cse.tamu.edu/davis/suitesparse.html)

with MATLAB interface compiled with METIS 4.0.1 (Karypis &

Kumar 1998) and Intel’s Threading Building Blocks 4.3 (Reinders

2007). Various algorithms in the SuiteSparse package are tested for

the best permutation of the input matrix for sparseness preserva-

tion, and we find that METIS algorithm (Karypis & Kumar 1998)

yields the best result for the QR factors. All computations are per-

formed in one node at Harvard’s Odyssey Cluster, using 32 CPU

cores, and total shared memory of about 250 GB. The parameters

for SPQR algorithm are selected such that the ‘nthreads’ parameter

is set to the number of cores and the ‘grain’ parameter is set to two

times the number of cores. Both parameters control the multitasking

performance of Intel’s Threading Building Blocks, and their val-

ues comply with the recommended configuration of the algorithm

(Davis 2009). The tolerance for treating a column as zero is set to

have a 2-norm less or equal with 0.1. The matrix A is then suc-

cessfully factorized, and the factors R and Q are stored, the latter

in the economic form of Householder reflections. The resulting R

factor is sparse with only 2.2 per cent of elements being non-zero

(Fig. 3a).

The model vector x and the full resolution matrix R should

be attainable from these factors, or more efficiently, by using the

SPQR_SOLVE algorithm (Davis 2011) where Q is not stored at all

(eq. 9). If the resolution matrix is sparse enough, this procedure is

carried out efficiently with one call of the SPQR SOLVE algorithm.

However, the resolution matrix in this case is not sufficiently sparse

and exceeds the available memory. To circumvent this problem, the

B matrix is broken into 10 equally divided columnar strips. If a strip

fails to produce results due to a lack of memory, the strip is further

divided in half. The model parameters and the full resolution matrix

(Fig. 3b) are obtained using this approach. The resolution matrix

with 267 520 × 267 520 elements contain ∼40 per cent of non-

zero entries and requires over 200 GB of storage space. Reduction

in storage can be achieved by eliminating entries with absolute

values smaller than 10−3. These elements are practically zero, and

the application of the threshold leads to significant gains in hard

disk space, decreasing the ‘non-zero’ entries to ∼0.5 per cent and

required storage to about 3 GB. This thresholded version of R is

considered for the remainder of this manuscript.

Both the estimated model and diagonal elements of the resolution

matrix are compatible with the results from MacCarthy et al. (2011).

The relative difference εx between the estimated models following

MacCarthy et al. (2011) approach that utilizes the LSQR algorithm,

xLSQR, and the QR approach described here, xQR, calculated as

εx = ‖xLSQR − xQR‖/‖xLSQR‖, is 0.03 per cent (Fig. 4; Supporting

Information Fig. S1). Furthermore, the relative difference εdiag, of

the diagonal elements of the resolution matrix between the stochas-

tic approximation of MacCarthy et al. (2011), R
diag
sto , and the QR

approach, R
diag

QR , calculated as, εdiag = ‖R
diag
sto − R

diag

QR ‖/‖R
diag
sto ‖, is

5.40 per cent. This result does not change, up to the second decimal

place, even if we apply the same precision of 10−3 to R
diag
sto . The

relative difference between R
diag
sto and its lower-precision version

is 0.27 per cent, confirming that small entries, even for the diago-

nal elements, do not contribute significantly to the structure of the

resolution matrix.

The availability of the full resolution matrix allows the evaluation

of the trade-offs between model parameters. This can be visualized

by plotting the specific rows of the resolution matrix (Fig. 5). The

example in Figs 5(a) and (b) illustrates that trade-offs extend over
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834 P. Bogiatzis, M. Ishii and T.A. Davis

Figure 3. (a) Sparseness structure of the R factor from QR decomposition. Zero elements are coloured white while darker colours represent larger absolute

values. (b) The full resolution matrix. The colour scheme is same as in panel (a) except that white colour includes all entries with absolute value smaller than

0.001.

Figure 4. A comparison of P-wave perturbation models at 90 km depth obtained by using (a) the approach presented here, and (b) LSQR algorithm of the

MacCarthy et al. (2011). The map area shown here corresponds to the area displayed in Fig. 2. Additional comparisons at 20 and 400 km depths are presented

in Supporting Information Fig. S1.

large distances, well exceeding the region where the diagonal ele-

ment of the resolution matrix is relevant. Even if the absolute values

of individual off-diagonal elements are relatively small, the cumu-

lative effect of these values associated with large number of model

parameters can be significant. This implies that estimations of un-

certainty are inaccurate, especially when the diagonal elements of

the resolution matrix have small values.

C O N C LU S I O N S

Advances in computational science and hardware infrastructure are

at a stage where large tomographic problems can be efficiently

solved using direct methods. In addition, most seismic tomography

matrices are sparse, and this feature can be used to further accom-

modate the analysis. Depending upon the algorithm and the imple-

mentation, the users can adjust some parameters of the algorithms

such as the column 2-norm tolerance to determine when a column

is ignored, but many are hard-wired. For example, ‘zero threshold’

is typically defined as the tolerance threshold below which an ele-

ment is considered zero and dropped during numerical operations.

Software (including Sparse QR) and hardware that complies with

IEEE-754 format for the floating point numbers use the smallest

denormalized number as the zero threshold, which is 4.9407e-324

for double precision calculations. This means that any element of a

matrix above this value would be considered non-zero, and there-

fore stored in memory, even if it becomes as small as 1e-323. This

threshold is unrealistically small for many numerical applications,

including seismic tomography, and results in pseudo-dense matri-

ces, for example, during the computation of the resolution matrix.

Introducing modifications to existing solvers based upon the partic-

ular needs and properties of seismic tomography problems, such as

an option to change the ‘zero threshold’, can significantly increase

the computational efficiency. For example, as mentioned previously,

the requirement to break B into smaller strips to fit into the mem-

ory, and therefore to repeat the factorization procedure, is neces-

sary because the product of QT with B is dense, or pseudo-dense.

Changing the ‘zero threshold’ parameter would allow small values

to be dropped as they are computed individually, instead of stor-

ing the dense result and removing entries using the 10−3 threshold.

This would accelerate the procedure dramatically, since it would

allow the computation of both the inversion solution and the full

resolution matrix with only one factorization, requiring total com-

putation time slightly more than one factorization time (∼12 hr).
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Figure 5. (a) 3-D visualization of the 30 136th row of the resolution matrix, showing the isosurfaces at 0.003 (red) and −0.003 (black). In the topographic map,

the rectangle with the thick grey border shows the region of the model displayed in panels (b) and (c) corresponding to the region interpreted by MacCarthy

(2010) and MacCarthy et al. (2011). (b) Cross-sections of the diagonal elements of the resolution matrix for the grey-boxed region in panel (a) and to a depth

of 800 km. (c) Similar to panel (b) but for the 30 136th row of the resolution matrix. The location of the corresponding model parameter is shown by the red

circle at the depth of ∼100 km emphasized by the black arrow.

Furthermore, it would significantly reduce the total required mem-

ory, allowing the computations to be carried out on a desktop

computer.

One of the main advantages of direct sparse methods is the as-

sessment of the model resolution through accurate calculation of

the full resolution matrix, including both diagonal and off-diagonal

elements. The large number of parameters (i.e. columns), however,

poses challenges in efficient examination and exploration of this

matrix. One possible future direction is using algorithms similar to

those applied to large networks and graphs (e.g. Batagelj & Mrvar

2003; Bullmore & Sporns 2009; Cohen & Havlin 2010; Davis &

Hu 2011; Kenett & Havlin 2015). The resolution matrix can be con-

sidered as a graph where each element Ri j describes the trade-off

relationship between the parameters i and j .
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Figure S1. A comparison of the P-wave perturbation models at

20 km (top row) and 400 km (bottom row) depths obtained by

using the approaches presented in the manuscript (a,c), and LSQR

algorithm of MacCarthy et al. (2011) (b,d). There are no systematic

differences between the two models regardless of the poor- or well-

resolved regions of the model space.
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