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Abstract 10 

This paper provides formulations of traffic operational capacity in mixed traffic, consisting of automated 11 

vehicles (AVs) and regular vehicles, when traffic is in equilibrium.  The capacity formulations take into 12 

account (1) AV penetration rate, (2) micro/mesoscopic characteristics of regular and automated vehicles 13 

(e.g., platoon size, spacing characteristics), and (3) different lane policies to accommodate AVs such as 14 

exclusive AV and/or RV lanes and mixed-use lanes.  A general formulation is developed to determine the 15 

valid domains of different lane policies and more generally, AV distributions across lanes with respect to 16 

demand, as well as optimal solutions to accommodate AVs.     17 
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List of Variables:  1 

 2 

AV: automated vehicle; 3 

RV: regular vehicle that is at level 0 automation; 4   : critical spacing of a RV following another RV; 5   : spacing coefficient for the lead vehicle in an AV platoon (with a RV ahead); 6  : spacing coefficient for other AVs in the platoon (i.e., with another AV ahead); 7   : spacing coefficient for the first RV following an AV platoon; 8  : AV platoon size; 9  : number of RVs between two platoons; 10   : mean critical spacing per cycle; 11  : AV proportion in the traffic stream; 12  : free-flow speed; 13  : average gain of critical spacing per AV, named “AV gain”; 14   : AV gain on lane  ; 15   : lane capacity with only RVs; 16   : capacity on lane  , with potential RVs and AVs;  17       : capacity function; 18  : AV penetration rate; 19   : flow on lane  ; 20    : AV proportion of lane   in the capacity state;  21        : flow corresponding to a policy, (A, R), (M, R) or (A,M); 22           : maximum flow (i.e., capacity) for a given   for a policy;  23 

       : maximum capacity among the possible   for a policy;  24      : critical AV penetration rate;  25   : total flow for a  -lane highway;  26      : maximum flow (i.e., capacity) for a given   for a  -lane highway. 27       : AV gain for lane   as a function of AV proportion   .     28 

 29 

  30 
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1 Introduction 1 

Emerging automated vehicle (AV) technologies have the potential to fundamentally change driver 2 

interactions and provide tremendous opportunities to drastically improve traffic efficiency, stability and 3 

safety.  Among different types of AV technologies, vehicle platooning is particularly advantageous due to 4 

its unique high performance feature: doubled (or higher) roadway capacity and significantly improved 5 

flow stability (Milanes et al., 2014; Milanés and Shladover, 2014; Shladover et al., 2012, 2010).  A few 6 

pioneering field tests conducted recently have provided the very first understanding of vehicle 7 

platooning realized through cooperative adaptive cruise control and suggested very promising 8 

improvement in roadway efficiency (Bu et al., 2010; Milanes et al., 2014; Ploeg et al., 2011).  Particularly, 9 

the latest experiment at the California PATH showed that vehicles in platoons can maintain a time gap as 10 

small as 0.6 s, compared to 1.5 s for conventional non-automated vehicles, which implies a substantial 11 

increase of roadway capacity and drastic congestion mitigation (Milanés and Shladover, 2014; Shladover 12 

et al., 2012).   13 

 14 

In traffic flow research, one important problem has received much attention: how the improvement in 15 

roadway capacity will evolve as the AV technologies mature and the penetration rate gradually increases?  16 

Understanding this problem is critical for applying the emerging technologies for traffic control and 17 

transportation planning in the era of AVs (Lin and Wang, 2013; Litman, 2015; Williams, 2013; Zhou et al., 18 

2015).  Some existing studies provide valuable insights on this issue.  From the perspective of vehicle 19 

mechanics, Swaroop et al. (1994) examined the impacts of platooning policy (constant time gap vs. 20 

constant space) on traffic flow instability and evaluated lane capacity with different platoon sizes and 21 

headway settings.  However, the formulation of lane capacity was overly simplified.  For example, they 22 

did not consider the interaction between platoons and the distribution of AVs across different lanes.  23 

Later, using simulations, a number of studies investigated changes in microscopic driving behavior in AVs, 24 

such as reaction time and acceleration/deceleration, and platoon size, and their impacts on capacity 25 

(e.g., Jerath and Brennan, 2012; Kesting et al., 2010, 2008; Talebpour et al., 2015; Talebpour and 26 

Mahmassani, 2014; Talebpour et al., 2017; Treiber et al., 2007; van Arem et al., 2006; Zhao and Sun, 27 

2013).  For example, van Arem et al. (2006) used a microscopic simulator, MIXIC, to study the impacts of 28 

vehicle platoons on the flow instability and capacity on a freeway with a lane drop.  Talebpour and 29 

Mahmassani (2016) explicitly considered traffic flow with different compositions of connected and 30 

automated vehicles and found that AVs are superior in terms of improving string stability.  A large 31 

proportion of these studies found that a substantial capacity improvement can be achieved with 32 

medium (or even low) penetration rates (e.g., Jerath and Brennan, 2012; Kesting et al., 2008, 2007; 33 

Treiber and Kesting, 2013).  In contrast, Shaldover et al. (2012) calibrated simulations using field 34 

experiments and found that a capacity increase is marginal until the penetration rate reaches a 35 

moderate to high level (e.g., above 50%), which is consistent with the simulation outcome of van Arem 36 

et al. (2006).  Using simulations, Talebpour et al. (2017) examined the impacts of reserving one lane of a 37 

four-lane highway for AVs on traffic flow dynamics and travel time reliability.  It was found that 38 

throughput can be improved significantly if the AV penetration rate is greater than 30%.  However, the 39 

mechanisms of the throughput improvement are unclear because complex car-following and lane-40 

changing dynamics were assumed in the simulations.  41 

 42 

To date, most evaluation efforts have used simulations, and very limited theoretical research has been 43 

conducted to provide a systematic formulation.  To fill this gap, this paper provides a general theoretical 44 
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framework to shed light on how traffic operational capacity will change with the introduction of AVs.  1 

The operational capacity (hereafter capacity to be succinct) is defined as the maximum sustainable flow 2 

on a segment, given an AV penetration rate, when demand is sufficiently high.  Particularly, this paper 3 

focuses on deriving the base macroscopic capacity for mixed traffic when traffic is in equilibrium.  This is 4 

a very important and necessary step toward establishing a benchmark to meaningfully understand the 5 

effects of bottlenecks and various microscopic features.  This is not trivial because the base equilibrium 6 

capacity is not a fixed number but varies (dynamically) by a number of factors, which presents 7 

complexity in understanding the capacity.  Our formulations take into account (1) AV penetration rate, 8 

(2) micro/mesoscopic characteristics of regular (i.e., conventional non-automated) and automated 9 

vehicles, and (3) different lane policies to accommodate AVs such as exclusive AV and/or RV lanes and 10 

mixed-use lanes, which has received very little attention in the previous research.  The 11 

micro/mesoscopic vehicle characteristics (e.g., platoon size, spacing characteristics) are expressed by a 12 

single parameter, average gain in critical spacing with AVs, thereby establishing a clear connection to the 13 

macroscopic capacity.  We further develop a general formulation, inclusive of all the lane policies 14 

considered in this study, to determine how AVs should be distributed across lanes, given traffic demand, 15 

AV penetration rate, and spacing characteristics of automated and regular vehicles.  The analytical 16 

formulations offer important insights into valid domains of different lane policies and more generally, 17 

AV distributions across lanes with respect to demand, as well as optimal solutions to accommodate AVs.   18 

 19 

This paper is organized as follows.  Section 2 presents the capacity formulation for a single-lane highway 20 

to reveal the impact of micro/mesoscopic vehicle spacing and platooning characteristics on roadway 21 

capacity.  Section 3 presents the analysis for a two-lane highway, including the capacity formulations for 22 

three specific lane policies, followed by the general formulation.  Section 4 extends the formulations to a 23 

multi-lane case.  Concluding remarks are provided in Section 5.  24 

 25 

2  Capacity Formulation for Single-lane Highway  26 

In this section, we formulate the ‘physical’ lane capacity of single-lane traffic consisting of regular 27 

vehicles (RVs) and AV platoons, defined as the maximum sustainable flow for given proportions of AVs 28 

and RVs in traffic streams (independent of the AV penetration rate,  ).  Note that the physical lane 29 

capacity is independent of the lane policy.  A more detailed distinction between the operational capacity 30 

and physical capacity is given in the following section.  In this study, RVs refer to vehicles at level 0 31 

automation (i.e., no-automation) according to the definition of NHTSA (NHTSA, 2013).  Specifically, the 32 

capacity is formulated in terms of micro/mesoscopic characteristics, including the AV platoon size, 33 

required inter-vehicle spacing of AVs and RVs, and the proportion of AVs.   34 

 35 

We assume that both AVs and RVs travel at a constant free-flow speed of   until they reach their 36 

respective critical spacing (corresponding to capacity), below which they enter the car-following mode.  37 

The spacing here is defined as the distance between the reference points of a leader and the immediate 38 

follower (e.g., front bumper to front bumper), as in many studies (e.g., Ahn et al., (2004), Newell (2002)).  39 

To capture the difference between AVs and RVs in spacing suggested by previous field tests (Milanés et 40 

al., 2014; Shladover et al., 2010), we differentiate four different critical spacing levels, depending on the 41 

vehicle pairing (see Fig. 2-1): (1)    for a RV following another RV, (2)      for the lead vehicle in an AV 42 

platoon (with a RV or an AV ahead), (3)     for other AVs in the platoon, and (4)      for the first RV 43 
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following an AV platoon, in which     ,     , and    . Furthermore, we expect     with the 1 

automation capability;      since a lead AV is likely to at least maintain the spacing of a non-leader 2 

AV; and      since the first RV following an AV platoon is likely to at least maintain the regular 3 

spacing.  Note that these parameters, though treated as fixed and deterministic in this paper, essentially 4 

represent average drivers/vehicles characteristics.  Since we are only concerned with the critical spacing 5 

in formulating capacity, the word “critical” is dropped hereafter. 6 

 7 

Fig. 2-1: (a) Fundamental diagram; (b) illustration of inter-vehicle spacing characteristics 8 

 9 

For simplification, we assume that all AVs are platooned and that AV platoons exist periodically, such 10 

that the traffic stream is periodic with each cycle consisting of one  -AV platoon and   RVs.  Then, the 11 

mean critical spacing per cycle is expressed as      12                                      .                                                         (2-1) 13 

where 14                          . 15 

Note that, when    , the traffic stream only has AVs, but it still consists of periodic platoons of finite 16 

size ( ), not a single infinite platoon.  We believe that this is preferred in real implementation to assure 17 

(1) effective vehicle communication – the current DSRC communication range is about 300m 18 

(Nowakowski et al., 2016), and (2) safety and efficiency, particularly for lane changes and platoon 19 

adjustment (forming or de-forming).      20 

 21 

Eqn. (2-1) can be re-written as follows:  22             , 23 

where 24        , 25 

                                                                                        (2-2) 26 

The   denotes the AV proportion in the traffic stream, and   represents the average gain of critical 27 

spacing per AV– named “AV gain” hereafter.  The    related term is dropped when     since no RVs 28 

are present.  Notice that     is expected because    ,     , and      as previously stated.  29 

Then, the capacity,  , is derived as follows:  30                          ,                                                             (2-3) 31 

where    denotes the lane capacity with only RVs.  We refer to this as the physical lane capacity 32 

function,       : i.e., 33                 .                                                                      (2-4) 34 

Clearly,   is not constant, but depends on the AV proportion,  , and the AV gain,  .  Note that   is 35 

determined by the spacing characteristics,  ,   , and   , the AV platoon size,  , and potentially  .  36 

Particularly, if     ,   has different values when       and    ; but if     , the value of   is 37 

consistent regardless of  ; see Eqn. (2-2).   Additionally,   will vary if   is dynamic.  For the formulation 38 

in Section 3 and 4, it is assumed that (i)   is independent of   and  , and (ii)   takes a consistent value 39 

for both       and    .   Assumption (ii) is made to simplify the formulation but it will not affect 40 
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the results.  For (i), section 5 will visit the issue of correlated   and   since   could increase with   if 1 

drivers tend to form longer platoons when they see more AVs around.  For a given  , the maximum   is 2 

achieved when     (i.e., AVs only in the lane), which is intuitive given that    ,     , and 3      .  Furthermore,   is an indicator of operational efficiency; a greater   leads to a greater capacity.  4 

From the formulation above, we obtain the following remarks about the impacts of the platoon size and 5 

the spacing characteristics on the physical lane capacity:  6 

 7 

R1: The capacity ( ) increases with platoon size ( ); see Fig. 2-2(a).  This is intuitive since RVs 8 

require greater spacings than the non-leader AVs: i.e.,    , and additional spacing may be 9 

required for the lead AV and the first RV following an AV platoon: i.e.,      , and      .  The 10 

extra spacings will diminish the average AV gain by 
           , shown in Eqn.(2-2), which 11 

decreases with  .     12 

 13 

R2: The capacity decreases with  , as expected; see Fig. 2-2(b).   14 

 15 

R3: The capacity decreases with    as expected; see Fig. 2-2(c).  Notice that when    is 16 

sufficiently large,     and      (e.g., the blue line in the figure).  The same remark holds for 17    since it has a similar characteristics.  These results suggest that overly cautious driving by the 18 

lead AVs or RVs following a platoon could potentially degrade the capacity.  This is particularly 19 

likely in the presence of long platoons.   20 

 21 

R4: If    , the capacity increases with the AV proportion ( ) at an increasing rate; see the 22 

green line on Fig. 2-2(a) for example.  This is straightforward since as   increases, the average 23 

spacing (  ) decreases linearly, and thus capacity increases at the inverse rate.   24 

 25 

Fig 2-2: (a) Capacity change with various   (             ); (b) Capacity change with various   26 

(           ); (c) Capacity change with various    (              ).  27 

 28 

Note that, the expected parameter ranges (i.e.,    ,     , and      ) are based on the 29 

operational features of AVs revealed in the literature (Milanés et al., 2014; Shladover et al., 2010).   30 

However, it is possible that these ranges are violated and that we have sufficiently small    (  ) and 31   (  ), and thus                .  In that case, the opposite of R1 will hold: the physical lane 32 

capacity ( ) decreases with platoon size ( ).   Fortunately, this is well captured in   because our 33 

formulation uses the general values of  ,   , and    as long as they are physically meaningful (i.e., non-34 

negative).   35 

 36 

The results obtained in this section show that the impacts of vehicles’ micro/mesoscopic characteristics 37 

(including spacing characteristics and platoon size) on the physical lane capacity can be captured by a 38 

single parameter,  .  Therefore, in our next analysis, we leave out the detailed vehicle characteristics 39 

and use   to indicate the feature of AV gain for a lane.  40 

 41 



 

7 

 

3 Two-lane Highway  1 

In this section, we consider the scenario of a two-lane highway.  Fig. 3-1 shows a sketch of a general 2 

framework.  Here we assume that the platooning parameters introduced in the single-lane scenario in 3 

section 2 can vary across lanes.  Let    denote the AV proportion in lane  ,    the flow, and    the 4 

physical lane capacity determined by Equation (2-4) (with parameters    and   ); see the definition of 5 

the parameters provided in the beginning of the paper.  The objective of this section is to derive the 6 

(operational) capacity of a two-lane highway under various lane policies.   Specifically, we investigate the 7 

capacity (synonymous to “discharge flow”) defined as the maximum sustainable flow on a segment 8 

when demand is sufficiently high.  The capacity depends on the lane policy to distribute AVs across lanes 9 

and is also constrained by the AV penetration rate,  .  Thus, the sum of the physical lane capacities 10 

across lanes is the upper bound for the capacity for a facility.  Underutilization of the physical capacity 11 

can occur due to   and the treatment of vehicle entrance. 12 

 13 

Notably, it is assumed that when traffic enters a highway (e.g., via on-ramps), the proportion of vehicles 14 

that are AVs remains at   throughout the highway.  (Essentially, we assume that FIFO is maintained 15 

throughout the system even when only one of the lanes is at physical lane capacity.  More discussion on 16 

this is provided in Section 6.)  However,   can be regarded as the proportion of AVs entering the 17 

highway to be more general.  Note that the traffic composition can change at a highway entrance if 18 

special schemes are designed to segregate different vehicle types or to prioritize a certain type.  For 19 

example, if AVs and RVs are separated at the entrance (with two ‘equal’ lanes) and have an even chance 20 

to enter the highway, then the AV proportion entering the highway will be fixed at 0.5 (assuming 21 

sufficiently high demand).  In this case, the formulations in this paper will still apply to the simple case of 22   = 0.5.  Similarly, if AVs are prioritized to have guaranteed entrance from the ramp (in low penetration), 23 

a lane that allows for AVs (not necessarily exclusive) is always able to take sufficient AVs from the 24 

demand to reach its physical lane capacity (given by Eqn. (2-4)).  Under such prioritization scheme, the 25 

capacity of a two-lane highway would be equal to the sum of physical lane capacity regardless of the 26 

lane policy.  27 

 28 

To simplify derivations, we assume that in the absence of AVs, the two lanes have the same physical 29 

lane capacity,   .  Since    is a constant, it does not affect the behavior of capacity with respect to more 30 

important parameters,   and  .  It is also assumed that lane 1 has a higher priority in platooning and 31 

thus the AV gain in lane 1 (left lane) is greater than lane 2; i.e.,      .  Such higher priority is possible 32 

for various reasons, such as preference of AVs in the left lane or stricter regulation of platoon length in 33 

the shoulder lane (i.e., lane 2) to favor vehicle merging or exit.  Nevertheless, later in section 4, we will 34 

relax this assumption and derive a more general formulation.       35 

 36 

Below, we first derive the capacity functions for three different lane policies possible as the AV 37 

technology matures and the penetration rate gradually increases.  Then, a more general formulation will 38 

follow to determine the feasible policies and more generally, valid domains of AV lane distributions for 39 

various levels of demand. 40 

Fig. 3-1: Sketch of two-lane framework. 41 

 42 
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3.1 Capacity functions under different lane policies 1 

Here we study the capacity under three different lane policies: (1) (A, R) policy, in which lane 1 only 2 

allows AV platoons and lane 2 RVs; (2) (M, R) policy, in which lane 1 allows both AV platoons and RVs 3 

(i.e., mixed traffic), and lane 2 is still RVs-only; and (3) (A, M) policy, in which lane 1 is dedicated to AV 4 

platoons and lane 2 has mixed traffic.  The (A, R) policy is likely the most preferable for a smooth AV 5 

transition to avoid driver confusion and minimize safety risk.  However, this policy could significantly 6 

undermine the capacity if the AV penetration rate is too low or high.  The (M, R) policy represents a 7 

compromise in low AV penetration that limits AV platooning to certain lane(s) to reduce safety risks 8 

while fully realizing the capacity enhancement.  When the AV penetration becomes sufficiently high, the 9 

(A, M) policy would be desired, which will eventually lead to all AVs when RVs are completely phased 10 

out.  After the analysis of these specific policies, a general formulation regardless of the AV distribution 11 

will follow.  12 

 13 

We study the effects of various parameters with different degrees of control feasibility on the capacity: 14 

(1) AV penetration rate   in traffic demand (external and essentially uncontrollable), (2)    and    15 

(difficult to control but feasible with technological advancements); and (3)    and    (controllable).  16 

Namely,   is treated as an independent input variable;   is a feature of the AV characteristics, also an 17 

independent input variable; and   is a controllable variable that can be used to optimize the capacity, 18 

condition on   and  .  For given  ,    and   , the capacity is achieved when the total flow reaches the 19 

maximum among the possible combinations of    and   , denoted by          with the subscript 20 

specifying the lane policy.  The values of    and    corresponding to          are denoted as     and    , 21 

respectively, referred to as the optimal solution to capacity.  Additionally, among various   values, there 22 

is an optimum   that achieves the maximum level of capacity, which is referred to as the optimum 23 

capacity,       .  For each lane policy, we will first derive the relationship between the flow and key 24 

parameters, and then obtain          and       . 25 

 26 

3.1.1 (A, R) policy 27 

In the (A, R) case,      and      since AVs and RVs are segregated.  Let      denote the total flow, 28         the capacity, and       the optimum capacity.      29 

From the flow conservation of AVs and RVs, we have  30                             .                                                                                     (3-1) 31 

Notice that    and    should not exceed their respective physical lane capacities,    and   , which are 32 

given by Eqn. (2-4).  By integrating      and      into Eqn. (2-4), we have the following constraints:  33                                                                                             (3-2a) 34                                                                                                   (3-2b) 35 

By expressing    and    as functions of     , the constraints in Eqn. (3-2) can be re-written as  36                                                                                            (3-3a) 37              .                                                                                 (3-3b) 38 

Notice that since    and    are pre-determined in the (A, R) case,         equals to     . Therefore, from 39 

Eqn. (3-3), we obtain         as follows:  40                                                                      .                                                       (3-4) 41 
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Or it can be written in a more general form:  1                              .                                                                     (3-5) 2 

Clearly,         varies with  , with the breakpoint,            .  Notice that this breakpoint corresponds 3 

to the penetration rate, at which both lane 1 and lane 2 will reach their respective physical lane 4 

capacities.  If        , the first term of Eqn. (3-5) concerning lane 2 dominates.  In this scenario,         5 

is achieved when lane 2 reaches its physical lane capacity,   , while lane 1 is below its physical lane 6 

capacity (     ).          increases with   at an increasing rate, as shown in Fig. 3-2(a), since a higher   7 

represents a higher utilization of lane 1 and thus, a higher        .  By contrast, if        , the second 8 

term of Eqn. (3-5) concerning lane 1 dominates.  In this scenario,         is achieved when lane 1 has 9 

reached its upper limit (  ) but lane 2 is below its physical lane capacity,   .          decreases with  , as 10 

illustrated.  This is because as   increases, lane 2 becomes more underutilized while the flow in lane 1 11 

remains constant at   . Therefore, over the spectrum of        , the maximum of         (i.e.,      ), is 12 

achieved when        , where both lanes have reached their respective physical lane capacities:    13                                                                                         3-6) 14 

 15 

Notably, the result above suggests that if AVs and RVs are segregated, roadway capacity is underutilized 16 

unless        .  Therefore, to better utilize the capacity, the (M, R) policy should be considered if 17        ,  to allow RVs to use lane 1, and the (A,M) policy if        , to allow AVs to use lane 2.  These 18 

will be discussed next. 19 

 20 

It is also worth noting that, the AV efficiency gain in lane 1,   , has an interesting effect on         21 

according to Eqn. (3-5)  and (3-6).  Fig. 3-2(b) shows         plots and the corresponding       (captured 22 

by the dotted vertical lines) under various    values.  Clearly, a greater    (a measure of the efficiency 23 

gain) leads to a greater       and thus,      .  Since platooning is not allowed in lane 2,    does not have 24 

any impact on        . 25 

 26 

Fig. 3-2: (A, R) policy: (a)         under various   (             ); (b) impacts of    on         and       27 

(      ). 28 

3.1.2 (M, R) policy 29 

In the (M, R) case, a key feature is that    is undetermined, though     .  Let      denote the total 30 

flow of the roadway, and similarly         denote the capacity for a given penetration rate   under the (M, 31 

R) policy.  Based on the results of the (A, R) case above, we focus on the scenario of        .   32 

 33 

The flow conservation (in Eqn. (3-1) changes to the below: 34                           .                                                                                        (3-7) 35 

By reformulating Eqn. (3-7), we can derive the flows in the two lanes: 36            ,                                                                                               (3-8a) 37               .                                                                                      (3-8b) 38 

Similar to the (A, R) case,    and    should not exceed their physical lane capacities,    and   , 39 

respectively, which are given by Eqn. (2-4).  By plugging      into Eqn. (2-4), we obtain 40 
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               ,                                                                                  (3-9a) 1       .                                                                                                  (3-9b) 2 

By expressing    and    as functions of      and integrating the premise of        , the inequalities in 3 

(3-9) result in the following constraints for     , respectively: 4                                                                             .                                                       (3-10) 5 

Note that the lower bound for    is  , obtained based on the assumption that      (see Eqn. (3-8b)).  6 

Eqn. (3-10) can be written in a more general form: 7                                  .                                                             (3-11) 8 

Eqn. (3-10) and (3-11) suggest that there exists a breakpoint of           , at which both lane 1 and 9 

lane 2 reach their respective physical lane capacities (i.e., equalities in Eqn. (3-9)).  If           , lane 1 10 

reaches the physical lane capacity but lane 2 is underused, and thus the first term (concerning lane 1) in 11 

Eqn. (3-11) determines     .  In this case,      increases with    since    increases with    (Eqn. (3-12 

9a)); see Fig. 3-3 (a).  By contrast, if           , the RV flow is constrained, and thus the second term 13 

(concerning lane 2) in Eqn. (3-11) determines     .   In this case,      decreases with    since the 14 

greater the   , the smaller the available capacity for RVs (            ), and thus the more 15 

constrained the RV flow.      16 

   17 

Clearly,      achieves the maximum,        , when           ; i.e.,             and       by the nature 18 

of the policy.  Then,         can be derived by plugging     into either expressions in Eqn. (3-11):   19 

 20                            .                                                      (3-12) 21 

 22 

Since we assume that        , Eqn. (3-12) suggests that         increases with  ; see Fig. 3-3(b).  This is 23 

straightforward: if   is greater, more AVs can platoon in lane 1 (without exceeding its physical lane 24 

capacity   ), resulting in more efficient use of the roadway.  Notice that according to Eqn. (3-12),         25 

reaches the maximum when        :  26 

 27                                ,                                                 (3-13) 28 

 29 

which converges to the optimum capacity of the (A, R) policy as expected; i.e.,            .  The effects 30 

of    and    are similar to the (A, R) policy.  A comparison of the capacities under the (A, R) and (M, R) 31 

policies (i.e.,         and        ) is shown in Fig. 3-3(c).  The vertical difference between the two curves 32 

represents the additional capacity gain if one switches from the (A, R) to (M, R) policy.  One can see that 33 

the two plots converge when        .  Note that if        , the (M, R) policy is possible but it 34 

effectively becomes the (A, R) policy since lane 1 can be fully utilized by AVs before RVs in lane 2 reach 35   .  In this case, lane 2 would be underutilized, and thus the (A, M) policy, presented below, is desirable 36 

to maximize the utilization of lane 2.  37 

 38 

Fig. 3-3: (M, R) policy (             ): (a)      under various   ; (b)         under various  ; (c) 39 

comparison of         and        . 40 
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 1 

3.1.3  (A, M) policy 2 

In this policy, lane 1 is dedicated to AVs only and lane 2 accommodates both AVs and RVs.  Then the 3 

same principles of analysis as the (M, R) policy apply: we seek the optimal proportion for AVs in lane 2 4 

(i.e.,    ) that maximizes the flow.  In this case,      and    is our decision variable.  The total flow of 5 

the roadway is denoted by     .   6 

 7 

Let      denote the total flow.  Based on the flow conservation, we obtain 8                              .                                                                           (3-14) 9 

 10 

in which     .  By solving Eqn. (3-14) simultaneously, we derive    and   : 11                                                                                                         (3-15a) 12                .                                                                                      (3-15b) 13 

Similar to the other policies,    and    should not exceed their respective physical lane capacities,    14 

and   , given by Eqn. (2-4).  By plugging Eqn. (3-15) into Eqn. (2-4), we obtain  15                                                                                                    (3-16a) 16                                                                                                   (3-16b) 17 

By expressing    and    as functions of      and integrating them with the premise of        , the 18 

inequalities in (3-16) result in the following constraints for      respectively: 19 

 20                                                                                                                            .                                             (3-17) 21 

More generally, 22                                                      .    (3-18) 23 

 24 

The upper bound for   ,  , is obtained by setting      in Eqn. (3-15a). 25 

 26 

The interpretation of these constraints are similar to the (M, R) policy.  Specifically, the breakpoint of 27                            corresponds to the AV proportion in lane 2 that both lanes achieve their respective 28 

physical lane capacities (i.e., equalities in Eqn. (3-16) and (3-17)).  If    is smaller than this breakpoint, 29 

lane 1 is underused.  Thus, the first term concerning lane 1 in Eqn. (3-18) determines     , in which case 30      increases with    since    increases with   ; see Fig. 3-4 (a).  Otherwise, AV flow in lane 2 is 31 

constrained, and the second term determines     .  In this case,      decreases with    since the 32 

greater the   , the more constrained the AV flow.      33 

 34 

Fig. 3-4: (A,M) policy (             ): (a)      under various   ; (b)         under various  ; (c)         35 

under various   ;(c) comparison of        ,        , and        . 36 

 37 

As in the (M, R) policy, the capacity under this policy,        , occurs at the breakpoint; i.e.,     38                         (and      ).  Then,         is derived as:   39 
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                                           .                                                      (3-19) 1 

 2 

Since we expect that        and       , Eqn. (3-19) suggests that         increases with  ; see 3 

Fig. 3-4 (b).  This is expected: as   increases, more AVs will platoon in lane 2, resulting in more efficient 4 

use of the roadway.  Thus,       is achieved when     (i.e., all AVs):  5 

 6                                                          .                                  (3-20) 7 

 8 

From Eqn. (3-20), it is also intuitive that         increases with    and   , the measurement of AV 9 

efficiency in lanes 1 and 2, respectively.  Specifically, the impacts of    are the same with the (M, R) 10 

policy, but it is worth noting that unlike the (M, R) policy,    now plays an important role in         and 11       because platooning in lane 2 results in more efficient roadway usage; see Fig. 3-4(c).  A comparison 12 

of         to the capacity under the (A, R) policy (       ) is shown in Fig. 3-4(d).  It is clear that allowing AV 13 

platooning in lane 2 substantially increases the capacity (from the red to the blue curve).  Note that if  14        , the (A, M) policy effectively becomes the (A, R) policy since, with sufficient demand, RVs in 15 

lane 2 will reach    before AVs fully utilize lane 1.  As discussed, the (M, R) policy is desired in this case 16 

to further increase the capacity.  Table 1 summarizes the capacity states for the three policies. 17 

 18 

Table 1: Summary of capacity formulation for three lane policies 19 

Policy                     

(A,R)     1       

              

      

                        

(M,R)             

      

                 

Same as (A, R) case 

(A,M) Same as (A, R) case       

                            

                                 

 20 

The capacity formulations for the three policies provide a useful insight for implementation.  Particularly, 21 

they show the possible and the most efficient solutions for a given demand level ( ) and penetration 22 

rate ( ).  This is illustrated in Fig. 3-5.  Specifically, under small penetration rates (       ), all three 23 

policies are possible if           (see the pink region); while only the (M, R) policy should be considered 24 

if           (the purple region).  Otherwise, the flow will be constrained at        .  With greater 25 

penetration rates (       ), all three policies are possible if           (the blue region), but only the 26 

(A, M) policy is desirable if           (the green region).  These regions will be fully investigated in the 27 

next section.  28 

 29 

Fig. 3-5: Feasible policies under various demand. 30 

 31 
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Note that these conclusions are based on our premise that lane 1 is more efficient than lane 2 (     ).  1 

If we assume the opposite (     ), the results will be reversed and symmetric.  The general 2 

formulation relaxing this assumption will be provided in the next section. 3 

 4 

3.2 General formulation for two-lane highway 5 

The capacity formulations in Section 3.1 provide insight into which policy should be adopted to achieve 6 

the highest capacity if the overall demand is high.  However, if the demand is sufficiently low, multiple 7 

policies may be feasible.  This section presents a general framework, inclusive of all the lane policies 8 

considered in this paper, to determine valid domains of different lane policies and more generally, lane 9 

distributions of AVs with respect to demand.  Specifically, in our general framework, AVs and RVs can 10 

use both lanes, and thus, the AV proportions,    and   , are our decision variables.  Additionally, we 11 

eliminate the assumption that lane 1 is more efficient than lane 2; namely, now it is possible to have 12       or      .    13 

 14 

In the general formulation, flow conservation can be written as follows:   15                                    ,                                                                        (3-21) 16 

where   denotes the total flow, and    denotes the flow in lane  , which should not exceed the physical 17 

lane capacity; i.e.,  18         ,                                                                                    (3-22a) 19         ,                                                                                    (3-22b) 20 

where    depends on    and    according to Eqn. (2-4).  Additionally, the AV proportions have natural 21 

physical bounds: 22                                                                                              (3-23a) 23         .                                                                                     (3-23b) 24 

By solving the equations in (3-21) simultaneously, we express    and    as:  25                                
           ,                                                              (3-24a) 26 

and  27                    .                                                                  (3-24b) 28 

Note that Eqn. (3-24b) denotes a special value set of (  ,   ), for which    and    have infinite solutions 29 

as long as their sum is   and they satisfy (3-21).   30 

 31 

The formulations in Eqn. (3-24) are subject to the constraints in Eqn. (3-22) and (3-23), which will define 32 

the valid domains for (  ,   ).  Particularly, by integrating Eqn. (3-24), (3-22), and the physical lane 33 

capacity function (2-4), we obtain the formulations of    and    constraints in a simple but noble 34 

structure.   Specifically, if     , 35                             ,                                                (3-25a) 36                  ,            .                                                (3-25b) 37 

Or if      38                             ,                                                 (3-26a) 39                  ,            .                                                 (3-26b) 40 

where  41 
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             ,      1            , 2                         , 3            , 4              , 5                         . 6 

 7 

The valid domains of (  ,   ) are the regions that satisfy Eqn. (3-23), (3-25), and (3-26); see the shaded 8 

regions in Fig. 3-6, for example, with       (       ),              .  In these plots, the two 9 

boundaries (red and green dashed lines) denote the instances where the equalities to the upper bounds 10 

are achieved in Eqn. (3-22): the red dashed boundary from       and the green dashed boundary 11 

from      .  (Note that if the demand is extremely low (e.g.,     ), it becomes impossible to 12 

achieve the equalities, and the boundaries will originate from the natural physical boundaries in Eqn. (3-13 

23)).  The figure also shows contours of    (in relative scale of   ), corresponding to a set of linear 14 

relationship between    and   , derived from the first formulation in (3-24a):   15                    . 16 

Specifically, the valid domains are colored according to the       values, and the black lines denote 17 

contours for some specific    values; see Fig. 3-6(a).  One can see that    increases in the clock-wise 18 

direction as the color transitions from dark blue to light orange.  A similar feature can be obtained for   , 19 

where    increases in the counter-clockwise direction, opposite to   .   20 

 21 

Five features of valid domains are worth noting from the figure.   22 

R1: The valid domains fall in two regions, upper left and lower right since    and    should 23 

satisfy the following conditions according to Eqn. (3-24) to assure that        : 24               ,                                                                            (3-27a) 25 

Or  26               .                                                                           (3-27b) 27 

 28 

R2: The valid domains shrink as   increases; for example, see Fig. 3-6(a-c) for valid domains for 29 

three demand levels in the relative scale of    , representing low, medium, and high demand.  30 

This implies that the feasible solution set (i.e., combinations of    and    and consequently    31 

and   ) decreases as the demand increases.  Notably, if the demand is sufficiently high, the 32 

solution reduces to a single point, suggesting that there is a unique solution.   33 

 34 

R3: The valid domains vary with the penetration rate  .  Fig. 3-7 shows the valid domains with 35 

the same set of demand levels (and    and   ) but with            .  One can see that the 36 

valid domains shift towards the upper right, closer to the physical boundary where      and 37     .  This is expected because with a large penetration rate, the chance of having a lane fully 38 

filled by AVs is greater.   39 

 40 
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R4: For given  ,    and   , feasible policies vary with the demand level, which are denoted by 1 

the bold lines along the boarders.  For example, in low demand (Fig. 3-6(a)) six policies are 2 

possible.  In medium demand (Fig. 3-6(b)), the feasible policies reduce to (M, R) and (R, M), and 3 

in high demand (Fig. 3-6(c)), only (M, R) is possible.  Obviously, changes of feasible policies also 4 

depend on  .  One can see the differences in feasible policies between Fig. 3-6 and Fig. 3-7.   5 

 6 

R5: The solution to the maximum possible demand (i.e., the level of capacity) varies with   and 7 

the relationship between    and   .  Each dot in Fig. 3-8(a) denotes the solution for a given   8 

value in the case of      , which is essentially obtained from the formulation in Table 1.  9 

Clearly, when        , the solutions are found on the bottom border (    ), corresponding to 10 

the (M, R) policy, and move towards right as   increases.  When        , the solutions are 11 

found on the right boarder (    ), corresponding to the (A, M) policy, and move towards the 12 

top boarder.  Interestingly, when the relationship between    and    is reversed (i.e.,      ), 13 

the solutions occur on the left and then move to the top boarder as   increases (see Fig. 3-8b), 14 

which is because the roles of    and    are symmetric.  If       (i.e., both lanes have the same 15 

AV gain), a unique solution is found only when         .  Otherwise, there are infinite 16 

solutions of    and    that satisfy the relationship in Eqn. (3-21) and lead to the same capacity.  17 

This is illustrated in Fig. 3-8(c).  Rather than a unique solution, a contour line is obtained for a 18 

given   value (      .  This contour line is obtained by plugging the physical lane capacity 19 

function Eqn. (2-4) into Eqn. (3-24) and solving the equation, which is given as follows: 20                               
 ,                                                          (3-28) 21 

where        .   22 

 23 

Fig. 3-6: Valid domain for          (                    : (a) low demand (
 
        ); (a) 24 

medium demand (
 
        ); (c) high demand (

 
         ). 25 

 26 

Fig. 3-7: Valid domain for          (                    : (a) low demand (
 
        ); (a) 27 

medium demand (
 
        ); (c) high demand (

 
         ). 28 

 29 

Fig. 3-8 Solution to operational capacity under various  : (a) scenario of      ; (a) scenario of      ; 30 

(c) scenario of      . 31 

 32 

4 Multi-lane Highway  33 

This section aims to expand the general framework for a two-lane highway to the general  -lane case, 34 

with    .  We assume that for lane  , the efficiency gain with AV platooning is denoted by   , the flow 35   , and the AV proportion   .  The total flow is denoted by   .  To facilitate a simpler formulation, we 36 

assume that the lanes are numbered according to their    values in the descending order; i.e.,       37        , but this is not required to obtain the following results.   38 

 39 

Similar to the two-lane case, from the flow conservation of AVs and RVs Eqn. (3-21), we have: 40 



 

16 

 

                                ,                                                                                       (4-1) 1 

where the flow and AV proportions are constrained by the physical lane capacities: 2                                                                                       (4-2a) 3                                                                                       (4-2b) 4 

 5 

And    is given by the physical lane capacity function in Eqn. (2-4).  We have proved that to maximize 6 

the overall capacity, each lane should reach its physical lane capacity; i.e.,       ; see the proof in 7 

Appendix A.  Thus, from Eqn. (4-1), we can reformulate the flow conservation and the capacity of  -lane, 8      , as follows: 9 

 10 

                                                                     .      (4-3) 11 

 12 

It can be proved (the proof is in the Appendix B) that the solution of (     ,…,   ) to        is below:  13                          ,                                                         (4-4a) 14                          ,                                                        (4-4b) 15                                                                                                         (4-4c) 16 

if   falls in the following range: 17                           ,                                                                        (4-5) 18 

where      measures the physical lane capacity sum of lanes   to     (in relative scale of   ), given as 19 

below: 20                   .                                                                                       (4-6) 21 

The solution in Eqn. (4-4) and (4-5) implies that lanes   to     only have AVs, lanes     to   only 22 

have RVs, and lane   has mixed traffic.  The physical mechanism behind this solution is straightforward: 23 

to achieve the maximum flow (i.e., capacity), AVs should fill the most efficient lane first and gradually 24 

move to the less efficient lanes.  This is consistent with our results for the two-lane highway scenario.   25 

 26 

From Eqn. (4-3) and (4-4), we can derive    and      : 27 

 28                                             .                                                                  (4-7) 29                                                            .                   (4-8) 30 

 31 

The derivative of    with respect to   is always positive, suggesting that    increases with  .  This is also 32 

straightforward: as   increases, the AV proportion in lane   increases until it reaches the maximum 33 

(    ).  Thereafter, AVs will start to use lane    .  More importantly,       increases with   since 34          always holds (see Eqn. (4-6)) and thus the numerator in Eqn. (4-8) is always positive.  From 35 

the bounds of   in Eqn. (4-5), the bounds of       can be derived:  36                                 .                                           (4-9) 37 

The lower and upper bounds of       are achieved when      and     , respectively.  In the full 38 

spectrum of        , the maximum of      , namely the optimum capacity,    , is achieved when  39    , and all lanes will be filled by AVs:   40 
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         .                                                                               (4-10) 1 

 2 

For generic traffic demand, we can derive valid domains of   ’s in a way similar to the two-lane highway 3 

scenario by addressing the constraints in Eqn. (4-2).  However, one can expect   decision variables, and 4 

exact solutions to the bounds will be complex.  Nevertheless, numerical solutions can be obtained.   5 

5 Potential correlation between   and   6 

In formulating the capacity so far,   and   are treated as independent based on the assumption that the 7 

platoon size,  , is fixed.  In this section, this assumption is relaxed since   could increase with   (e.g., 8 

drivers tend to form longer platoons when they see more AVs around).  More generally, we investigate 9 

potential correlation between   and   and its effect on capacity and optimal lane policies.  In this case,   10 

is dynamic, increasing with  , and the physical lane capacity function (Eqn. (2-4)) also becomes dynamic.  11 

However, traffic would eventually reach an equilibrium.  Theoretically   can be negatively correlated 12 

with   too.  Either way, the formulations for flow conservation and constraints still hold, but the optimal 13 

lane policy could be different.  A more in-depth investigation follows. 14 

 15 

For the correlation case, we consider a two-lane highway.  Assume that    (  ) is a function of    (  ); 16 

i.e.,           and          .  It can be proved that when a two-lane highway reaches its optimal 17 

capacity, all its lanes should have reached their physical lane capacity (see proof in Appendix C part I).  18 

Let    denote the total flow when both lanes reach their respective physical lane capacities.  Then, we 19 

can formulate an optimization problem to maximize    (objective function) with respect to    and    20 

(decision variables): 21                                                                                             (5-1) 22 

subject to the flow conservation and physical boundaries of   ,   , and  : 23                            ,                                                                        (5-2) 24       ,                                                                                (5-3a) 25       ,                                                                                (5-3b) 26      .                                                                                   (5-3c) 27 

Note that this is not a convex optimization problem because the constraint for the flow conservation 28 

(Eqn. (5-2)) is not necessarily convex (notice that    and    are functions of    and   ).  Thus, this 29 

problem can be solved using a heuristic algorithm (e.g., genetic algorithms).  To gain better insight into 30 

the effect of    and    on   , we perform a marginal analysis.  The results are complex due to the 31 

complex feasible domains of    and    and thus are presented in Appendix C part II.  Instead, we 32 

present the result of a numerical experiment by assuming some typical functions for        to obtain 33 

some insight.   34 

 35 

We consider three different typical functions for        and obtain the feasible solution domain of    for 36 

each.  Specifically, we consider (i) linear function,               ; (ii) convex function,        37         ; and (iii) concave function,                 ; see Fig. 5-1.  We also assume that 38        and        have the same functional form with some vertical shift:        is shifted below 39       .  Thus, it is assumed that lane 1 has larger efficiency gains for any given AV proportion. The 40 

results are illustrated in Fig. 5-2.  For each function, two levels of   are considered, representing small 41 

and large penetration rates:       and      , respectively.  Note that in each plot, the solid black 42 
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line represents the feasible domain, and the black dot denotes the optimal solution.  For all three 1 

functions considered,    decreases with    in the feasible domains.  For the small   value (Fig. 5-2(a, c, 2 

e)), the optimum of    is achieved in the bottom border, where      and     , suggesting that all 3 

AVs are allocated in the more efficient lane (lane 1) and that lane 1 is partially filled with AVs due to the 4 

small penetration.   For the large   value (Fig. 5-2(b, d, f)), the optimal solution is found on the right 5 

boarder, where      and     , suggesting that lane 1 is fully filled by AVs while lane 2 has mixed 6 

traffic.  Clearly, the optimal AV distribution strategies here are consistent with the case of independent 7    and   , though the capacity values are different.  Obviously, the multi-lane case will have more 8 

complex feasible domains and optimal solutions.  However, the finding for the two-lane case can be 9 

generalized, and we conjecture that the optimal strategies will be consistent with the independent case.  10 

To be succinct, formulation for the multi-lane case is omitted. 11 

 12 

Fig. 5-1: Four functions for       : (a) linear function (                ,              ); (b) 13 

convex function (                 ,               ); (c) concave function (           14       ,                ). 15 

 16 

Fig. 5-2: Feasible domains and optimal solution with correlated    and       : (a-b) linear function 17 

(                ,              ); (c-d) convex function (                 ,        18        ); (e-f) concave function (                 ,                );       for (a, c, e) and 19       for (b, d, f). 20 

 21 

6 Conclusion and Discussion  22 

In this study, we developed a general theoretical framework to study how the macroscopic capacity in 23 

equilibrium traffic will change with the introduction of AVs.  We first derived the formulation for the 24 

physical lane capacity (independent of the AV penetration rate,  ) of a single lane facility considering 25 

micro/mesoscopic characteristics of RVs and AVs, including the platoon size and spacing characteristics.  26 

Particularly, efficiency gain via AV platooning is expressed as a parameter in terms of spacing 27 

characteristics of different vehicle types and platoon positions, which establishes a clear connection 28 

between microscopic vehicle characteristics and macroscopic roadway capacity.  Based on the 29 

formulation for a single-lane facility, we formulated the capacities of a two-lane highway, incorporating 30  , for different lane policies to accommodate AVs, from segregated AV and/or RV lanes to mixed-use 31 

lanes.  We found that strict segregation of AVs and RVs ((A, R) policy) can lead to lower capacity and that 32 

mixed-use ((M, R) and (A, M)) policies can realize higher capacities.  Based on the analytical formulation, 33 

we determined the optimal policy and AV distribution, depending on the AV penetration rate. 34 

 35 

We further developed a general formulation, inclusive of all the lane policies considered in this paper, to 36 

determine how AVs should be distributed across lanes, given traffic demand, AV penetration rate, and 37 

AV efficiency gain.  The analytical formulation offered important insight into valid domains for AV 38 

distributions.  We found that as demand increases, feasible domains of AV distributions shrink and 39 

eventually converge to a unique solution or a contour line that depends on the AV penetration and 40 

efficiency gain parameters.  Lastly, we extended our formulation to the general multi-lane highway.  It 41 

was found that to make the best utilization of roadway efficiency and thus achieve the highest capacity, 42 
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AVs should use the most efficient lane(s) (i.e., with the largest AV gain) to the maximum possible extent 1 

and then move to the less efficient lanes.  2 

 3 

We also explored the impact of correlated   and   on capacity and optimal solution.  Our numerical 4 

experiments via three typical functions suggest that for a two-lane highway the main conclusions are 5 

consistent with the case of independent   and  .  We conjecture that this finding can be generalized for 6 

multi-lane cases, but a more comprehensive investigation is needed in the future.  Particularly, future 7 

research is needed to (1) understand the potential correlations based on empirical tests, and (2) 8 

integrate the correlations in the capacity formulation and determine the new optimal lane management 9 

policy.   10 

 11 

Several extensions to the present study are desired in the future.  Our formulations were developed 12 

based on average speed and spacing characteristics.  A more systematic investigation of heterogeneous 13 

driver/vehicle characteristics is necessary to fully understand the impact of AVs on traffic capacity, such 14 

as different vehicle length, spacing preference, and platoon size.    can be modified to capture these 15 

effects, such that it varies across drivers (or driver types).  Then, the overall effect can be assessed by 16 

considering the distributions of driver/vehicle characteristics, as illustrated by Treiber and Kesting 17 

(Treiber and Kesting, 2013) for regular vehicles, for example.  Moreover, although our capacity 18 

formulations capture some key microscopic characteristics of vehicle spacing, it does not capture the 19 

details of a platooning process.  When an AV enters or exits a lane, it will likely require an extra spacing 20 

(Milanes et al., 2014; Nowakowski et al., 2016) or create a void ahead as in regular traffic (Laval and 21 

Daganzo, 2006), which can compromise the capacity.  The net effect of each maneuver can potentially 22 

be reflected in  .  Another issue is traffic instability during platoon splitting and merging.  Although 23 

successful platooning is presumed to have string stability (Milanes et al., 2014), it is unclear how traffic 24 

instability will involve when the AVs interact with RVs.   25 

 26 

Additionally, some assumptions made in this study could be violated, and we caution against 27 

generalizing the results.  Firstly, we treat AV penetration rate,  , as an external variable that remains 28 

consistent throughout the system.  This assumption holds if FIFO can be maintained, which is reasonable 29 

if traffic is freely flowing (with similar desirable speed) and no prioritization scheme is applied.  However, 30 

the FIFO principle may be violated upstream of a control region, particularly in (A, R) policy, where 31 

different traffic regimes can arise in different lanes (e.g., when congestion starts to build up), and 32 

vehicles self-organize.  In that case, the traffic composition in the controlled region may differ 33 

significantly from what is expected from the AV penetration rate.  Secondly, our formulation uses a 34 

deterministic and static   value.  In reality,   may vary over time and location, which can affect optimal 35 

lane policies.  Capacity formulation considering stochastic and/or dynamic   is left for future research.  36 

 37 

Each problem discussed above presents an important and very challenging research topic.  Extensive 38 

future research is needed, building on empirical studies of AV behavior and the interactions between 39 

AVs and RVs to better understand the mixed traffic.  Nevertheless, this paper provides an explicit 40 

framework to link these microscopic characteristics to the macroscopic operational capacity.    41 

 42 
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 35 

 36 

Appendix A 37 

Here we will prove that if a set of (     ,…,   ) maximizes total flow   , all lanes should have reached 38 

their physical lane capacity; i.e.,  39                               .                                                                    (A1) 40 

For the proof, we consider three cases below, and we will show that none of these three cases is the 41 

optimal and thus the optimal solution form has to be in the format stated in (A1).   42 

Case (i): in the solution set (     ,…,   ), there exists at least one lane that is empty.  43 

Case (ii): in the solution set (     ,…,   ), there exists one and only one lane that is partially 44 

filled; i.e., it has not reached its physical lane capacity; and all other lanes are fully filled.  45 

http://trrjournalonline.trb.org/author/Bustamante%2C+Fabi%C3%A1n+E


 

22 

 

Case (iii): in the solution set (     ,…,   ), there exists two or more lanes that are partially filled, 1 

and all other lanes are fully filled.   2 

Analysis of Case (i)  3 

Let lane   be one of the empty lanes; i.e.,     .  From flow conservation, we have  4                            .                                                                    (A2) 5 

In this case, the flow    does not matter and we can always increase    to    with the conservation valid.  6 

Thus, we can set      and increase    until      .  This will increase the overall flow   .  Apply this 7 

process to all empty lanes.  Towards the end, we will have all empty lanes become fully filled; i.e., in the 8 

format of (A1). 9 

 Analysis of Case (ii)  10 

Let lane   be the partially filled lane and lane   be one of the lanes that’s fully filled; i e ,  11       ,           . 12 

From flow conservation, we have  13                                        . 14 

This can be reformulated as  15                                                                     (A3) 16 

where 17               
         

 

We fix the flow and AV proportion of all other lanes except for   and  , then the RHS of Eqn. (A3),   , is a 18 

constant.  If     , we can increase    until       with the flow conservation preserved, which will 19 

increase the total flow   .  The new set of (     ,…,   ) is consistent with Eqn. (A1).  If      , we 20 

consider changing   , and thus    and/or    as long as the flow conservation is valid; i.e.,    remains a 21 

constant.  Let     be the total flow of lane   and  ; i.e.,          .  We reformulate    and     as 22 

below:  23                    ,                                                                           (A4a) 24                                               .                                                 (A4b) 25 

If we fix all other variables except for   , we can take the derivative of   , and     in respect to   : 26                                 ,                                                                  (A5a) 27                                    .                                                                (A5b) 28 

Clearly, if       ,          and 
          suggesting that    and also     increase as    decreases.  In 29 

this case, we will decrease    to increase    and     until either (a)    equals to    or (b)     , 30 

whichever occurs first, during which the flow conservation always holds.  The former case is consistent 31 

with Eqn. (A1).  For the latter case, assuming that now the flow on lane   is    , according to the flow 32 

conservation, we have  33                                                                              (A6) 34 

where       , and       .   35 



 

23 

 

Note that Eqn. (A6) suggests that the RHS should be a negative constant.  Then we have  1                                                                                              (A7) 2 

This suggests that     decreases with   .  Thus, we can decrease    to increase    .  Note that eventually 3 

we can achieve                  , because as    approaches  , the denominator is really small 4 

while the numerator remains constant, which can result in an infinite value on the RHS.  Thus, the RHS is 5 

assure to reach    before    decreases to  .  Therefore, this case now becomes the format of Eqn. (A1).   6 

 7 

In the case that        , the process is the opposite but in a similar manner.  Specifically, we 8 

have          and 
          suggesting that    and also     increase as    increases.  In this case, we will 9 

increase    to increase    and     until either (a)    equals to    or (b)     , whichever occurs first.  10 

The former case is consistent with Eqn. (A1).  For the latter case, the flow conservation form (originally 11 

in Eqn. (A6)) becomes  12                                                                                    (A8) 13 

Eqn. (A7) suggests that the RHS should be a positive constant.  Then we have  14                                                                                                   (A9) 15 

This suggests that     increases with   .  Thus, we can increase    to increase     until       , which is 16 

guaranteed due to the same reason explained above.  17 

Thus, overall, a solution in Case (ii) can always be improved to increase     and becomes the format of 18 

Eqn. (A1).  19 

 20 

Analysis of Case (iii)  21 

If any of these partially filled lanes, lane  , has AV proportion equal to  , according to the flow 22 

conservation, the flow    does not matter and we can always increase    to   .  Therefore, we only need 23 

to consider the scenario where the partially filled lanes have AV proportion not equal to  .  Let   and   24 

(   ) be two such lanes; i.e.,      and     .  Then we have   25                       
From flow conservation we  26                             

         
   

This can be reformulated as  27 

 28                                                                                     (A10) 29 

where 30                         . 31 

If we fix the AV proportion and flow of all lanes except for   and  , then    is a constant.  Now consider 32 

changing the flow on lane   and  .  Reformulating Eqn. (A10), we have  33                    . 34 



 

24 

 

                               
If we fix all other variables on the RHS except for   , we can get the derivatives of    and     in respect 1 

to   , which are given as below: 2                                     

These indicate that if             ,    will decrease with    but     will increase or remains constant 3 

(the case that 
          ) .  In this case, we will increase    until either (a)       or (b)     , 4 

whichever occurs first.  If (a) occurs first, the number of partially filled lanes now reduces by one and we 5 

can repeat this process until there is only one partially filled lane, which now becomes the Case (ii).  If (b) 6 

occurs first, it becomes Case (i).  With either case, eventually, the solution can be improved to increase 7    and  (     ,…,   ) will be in the format of Eqn. (A1).  8 

 9 

If  
          ,    and     will increase with   .  In this case, we can increase    until either (a)       or 10 

(b)      , whichever occurs first.  In any case, the number of partially filled lanes now reduces by one.  11 

We can repeat this process until there is only one partially filled lane, which now becomes the Case (ii). 12 

 13 

If  
          ,    and     will decrease with   .  In this case, we can decrease    to increase    and     14 

until either (a)       or (b)     , whichever occurs first.  Similar to the scenario of             , if 15 

(a) occurs first, the number of partially filled lanes now reduces by one and we can repeat this process 16 

until there is only one partially filled lane, which now becomes the Case (ii).  If (b) occurs first, it 17 

becomes Case (i).   18 

 19 

In any case, the number of partially filled lanes now reduces by one.  We can repeat this process until 20 

there is only one partially filled lane, which now becomes the Case (ii). 21 

 22 

Therefore, it is clear that none of the three cases will maximize    and the optimal solution has to be in 23 

the format of Eqn. (A1).   24 

 25 

Appendix B 26 

 27 

To prove that to achieve higher capacity, AVs should use the most efficient lane to the possible extent 28 

and then the less efficient lanes.   29 

 30 

Proof:   31 

According to the result of Appendix A, if the total flow is maximized, all lanes should reach their 32 

respective physical capacity.   Let    denote the total flow when all lanes reach their respective physical 33 

lane capacities.  Namely, 34 



 

25 

 

                                                                                                                       (B1) 1 

where 2                            ,                                                      (B2) 3                                                                            (B3) 4                     ，                                    (B4) 5 

Assuming that the AV proportion on all lanes are fixed except for           where    .   6 

Consider the capacity sum of lane    :  7                      .                                                                    (B5) 8 

Since the AV proportions on all other lanes (except   and  ) are fixed, from (B1) it’s clear that    depends 9 

on   and when   is maximized,    is maximized too.   10 

According to the flow conservation in (B1), we have 11                        ,                                                                    (B6) 12 

where  13               
 

             

Notice that the term   is a constant because all AV proportions on all other lanes (except   and  ) are 14 

fixed.  Take the full derivative of Eqn. (B6), we have 15                                          .                                                                    (B7) 16 

Similarly, we take the derivative of   in (B5), we have  17                                     .                                                            (B8) 18 

Integrate Eqn. (B7-B8), we have  19                               .                                                                    (A9) 20 

Note that since if    , we have      .  Also, since          ,           and      , the 21 

denominator is always positive.   22 

 23 

Clearly, if      , to obtain an increasing trend of   (i.e.,     ), we should decrease    and increase    24 

(note that     has an opposite sign of     according to Eqn. (B7)).  Considering the physical boundaries of 25    and    in (A4a),   will achieve the maximum when     .  When      ,    equals to 0, suggesting 26 

that   doesn’t change with    or   , which is expected because now the two lanes have the same 27 

efficiency.  In this case, there exists a deterministic relationship between    and    that results in a 28 

contour of  .   29 

The results above imply that to maximize   , we should assign AVs to the most efficient lane (with the 30 

largest  ) whenever possible. 31 

 32 

Appendix C 33 

 34 



 

26 

 

Part I: in this part, we will show that the statement in Appendix A holds if    and the AV gain        are 1 

correlated.  Unless specified the value, we use    to refer to       .  2 

 3 

Similar to the proof in Appendix, we consider the same three cases.  Note that the proof for Case (i) and 4 

(iii) still hold when    and    are correlated.  Thus, we only need to consider Case (ii).   5 

 6 

Analysis of Case (ii)  7 

Similar to the setting in Appendix A, let lane   be the partially filled lane and lane   be one of the lanes 8 

that’s fully filled; i e ,  9       ,           . 10 

Note that (A3) and (A4) hold.  We denote them using the new equation numbering:  11                                                                                (C1) 12                  ,                                                                                 (C2a) 13                                               .                                                 (C2b) 14 

If we fix all other variables except for   , we can take the derivative of   , and     in respect to   : 15                                                  ,                                                     (C3a) 16                                                      .                                                   (C3b) 17 

where        
 denotes the derivative of      in respect to   , which is positive; i.e.,           .   18 

 19 

If        , 
         and 

         .  We can increase    to increase    and also     until (a)       or 20 

(b)     , whichever occurs first.  Note that when (a) occurs,    is still larger than   according to (C2a).  21 

Thus, it infers that (a) will occur first, and thus the solution becomes the format in Eqn. (A1).    22 

 23 

Consider the scenario that        .   In this case, we have                                         . 24 

If                       , we have                         too, suggesting that 
         and 

         .   In 25 

this case, similarly, we can increase    to increase    and also     until (a)       or (b)     , 26 

whichever occurs first.  As mentioned above, (a) will occur first.    27 

If                        , we have                       , suggesting that 
         and 

         .   In this 28 

case, we can decrease    to increase    and also     until (a)       or (b)     , whichever occurs 29 

first.  If (a) occurs first, the solution becomes the format of Eqn. (A1).  If (b) occurs first, now we fix 30     .  Then    is a constant.  According to (C2a),    decreases with   .  Given that, we can decrease    31 

to increase    until (a)       or (b)     .  For the (b) case, notice that when    approaches  , the 32 

RHS of (C2a) becomes a very large number.  Therefore, it infers that (a) will occur first.   33 

 34 

If                       , and                        , we have that 
         and 

         .  In this case, 35 

we can increase    to increase     (but    will decrease) until (a)      or (b)     .  Note that (a) and 36 

(b) will occur simultaneously according to (C2a).  This reduces to Case (i).   37 



 

27 

 

 1 

Thus, in Case (ii), the solution can be improved to increase    , and thus the total flow.   2 

 3 

Part II: in this part, we will perform a marginal analysis for    for a two-lane highway to obtain more 4 

insights.   5 

 6 

As presented in Section 5, for the correlation case, we consider a two-lane highway.  Assume that    (  ) 7 

is a function of    (  ); i.e.,           and          .  Let    denote the total flow when both lanes 8 

reach their respective physical lane capacities.  Then, we can formulate an optimization problem to 9 

maximize    (objective function) with respect to    and    (decision variables): 10                                                                                                 (D1) 11 

subject to the flow conservation and physical boundaries of   ,   , and  : 12                            ,                                                                        (D2) 13       ,                                                                                (D3a) 14       ,                                                                                (D3b) 15      .                                                                                   (D3c) 16 

Note that this is not a convex optimization problem because the constraint for the flow conservation 17 

(Eqn. (D2)) is not necessarily convex (notice that    and    are functions of    and   ).  Next we 18 

conduct a marginal analysis for   .   19 

Notice that from (D2), for a given   value and specified       , and        functions, using numerical 20 

method, we can obtain a feasible solution domain of (     ), denoted by π; i e ,  21 

                                                              .                 (D4) 22 

We take the derivative of the flow conservation (D2) in respect to   , which results in: 23                                             ,                                                                     (D5) 24 

Clearly,    is a function of    but its format is too complex to have the explicit form.  Let          .  We 25 

have  26 

                                                                            .              (D6) 27 

In the similar spirit, we take the derivative of   ,    and    in respect to   , and obtain the results below: 28                                                                                                        (D7a) 29                             .                                                                                  (D7b) 30                                                                   .                               (D8) 31 

Note that 32                      ,                                                               (D9a) 33 

                      ,                                                              (D9b) 34 

where     (   ) is the derivative of    (  ) in respect to    (  ).  35 

From the perspective of meaningful physical interpretation, here we assume that      ,      , and  36              .  37 

 38 



 

28 

 

Next, we aim to see the possible values of 
      .  From flow conservation (D2), there are three possible 1 

relations between    and   : 2 

 Case (1):         3 

 Case (2):         4 

 Case (3):         5 

 6 

In Case (1),    is determined, given below: 7                                                                                                     (D10) 8 

Next, we analyze Case (2) and (3).   9 

 10 

Analysis for Case (2) 11 

There are three subcases illustrated below.    12 

Case (2-1): if     , from (D7-D9) we have  
                     and  

        .  In this case, we should 13 

increase    to increase   ,   , and    in   (the feasible solution domain of (     ).  Namely, we should 14 

increase    to the maximum value in the feasible domain defined by the following conditions: 15                                            ,                                                                         (D11) 16 

where    is given in (D6).  This domain is equivalent to the following after plugging (D6): 17 

  
                                                          

    .                                                                         (D12) 18 

If     , from (D7-D9) we have 
                    but it is uncertain whether 

       is larger or smaller 19 

than 0. 20 

Case (2-2):     , and 
        .  In this case, to increase    we should increase    to the maximum 21 

value in the feasible domain defined by the following conditions: 22 

   
                                                    ,                                                                      (D13) 23 

where    is given in (D6) and 
       is given in (D8).  This domain is equivalent to the following after 24 

plugging (D6) and (D8): 25 

  
                                                                                  .                                     (D14) 26 

Case (2-3):     , and 
        .  In this case, to increase    we should decrease    to the minimum 27 

value in the feasible domain defined by the following conditions: 28 



 

29 

 

   
                                                     ,                                                                       (D15) 1 

where    is given in (D6) and 
       is given in (D8).  This domain is equivalent to the following after 2 

plugging (D6) and (D8): 3 

  
                                                                                .                                              (D16) 4 

 5 

The feasible domains for the three subcases can be obtained numerically, and with that, the optimal 6 

solution of (  ,   ) to the maximum    can be obtained numerically too.   7 

 8 

Analysis for Case (3) 9 

 10 

The analysis for Case (3) is symmetric to Case (2) and the feasible domains and optimal solutions can be 11 

obtained in the similar way.   12 

 13 

Note that with the optimal solutions from the three cases, we need to compare their maximum    to 14 

select the final optimal solution of (  ,   ).   15 

 16 

One can see that the feasible domains and the optimal solutions depend on the        functions and 17 

they are usually too complex to have the explicit analytical form, even assuming the simplest linear form 18 

of       .   19 

  20 
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(a) 1 

 2 
(b) 3 

 4 
 5 

7 Fig. 2-1: (a) Fundamental diagram; (b) illustration of inter-vehicle spacing characteristics 6 
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(a)                                                                          (b) 1 

  2 
  (c)                                                                          3 

  4 
 5 

8 Fig. 2-2: (a) Capacity change with various   (             ); (b) Capacity change with 6 

various   (           ); (c) Capacity change with various    (              ). 7 
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 1 
 2 

9 Fig. 3-1: Sketch of two-lane framework.  3 
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(a)         (b) 1 

 2 
 3 

Fig. 3-2: (A, R) policy: (a)         under various   (             ); (b) impacts of    on         and       4 

(      ).  5 
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(a)         (b) 1 

 2 
 3 

(c) 4 

 5 
 6 

Fig. 3-3: (M, R) policy (             ): (a)      under various    (vertical line denotes           ) ; 7 

(b)         under various  ; (c) comparison of         and        .  8 
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(a)            (b) 1 

 2 
 3 

(c)            (d) 4 

 5 
 6 

10 Fig. 3-4: (A,M) policy (             ): (a)      under various   ; (b)         under various  ; (c) 7         under various   ;(c) comparison of        ,        , and        .  8 
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 2 

11 Fig. 3-5: Feasible policies under various demand.  3 
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(a)           (b) 1 

 2 
(c) 3 

    4 

12 Fig. 3-6: Valid domain for          (                    : (a) low demand (
 
        ); (a) 5 

medium demand (
 
        ); (c) high demand (

 
         ).  6 
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(a)                (b) 1 
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 (c) 3 
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13 Fig. 3-7: Valid domain for          (                    : (a) low demand (
 
        ); (a) 5 

medium demand (
 
        ); (c) high demand (

 
         ).  6 

 7 

  8 

(M, R)

(M, A)

(A, R)

(A, M)

(R, M)

(R, A)

     

  

  



 

39 

 

(a)                                                                                         (b) 1 

2 
(c)                                                                              3 

 4 
 5 

14 Fig. 3-8: Solution to capacity under various  : (a) scenario of      ; (a) scenario of      ; (c) 6 

scenario of      . 7 
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(a)                                                                                       (b)  1 

    2 
(c)                                                                                         3 

    4 
 5 

Fig. 5-1: Four functions for       : (a) linear function (                ,              ); (b) 6 

convex function (                 ,               ); (c) concave function (           7       ,                ).   8 
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(a)                                                                                       (b)  1 

  2 
  (c)                                                                                       (d)  3 

  4 
(e)                                                                                       (f)  5 

  6 
Fig. 5-2: Feasible domains and optimal solution with correlated    and       : (a-b) linear function 7 

(                ,              ); (c-d) convex function (                 ,        8        ); (e-f) concave function (                 ,                );       for (a, c, e) and 9       for (b, d, f).   10 
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