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Towards Vision-Based Impedance Control for the Contact Inspection of

Unknown Generically-Shaped Surfaces with a Fully-Actuated UAV

Ramy Rashad, Davide Bicego, Ran Jiao, Santiago Sanchez-Escalonilla, and Stefano Stramigioli

Abstract— The integration of computer vision techniques for
the accomplishment of autonomous interaction tasks repre-
sents a challenging research direction in the context of aerial
robotics. In this paper, we consider the problem of contact-
based inspection of a textured target of unknown geometry
and pose. Exploiting state of the art techniques in computer
graphics, tuned and improved for the task at hand, we designed
a framework for the projection of a desired trajectory for the
robot end-effector on a generically-shaped surface to be in-
spected. Combining these results with previous work on energy-
based interaction control, we are laying the basis of what we
call vision-based impedance control paradigm. To demonstrate
the feasibility and the effectiveness of our methodology, we
present the results of both realistic ROS/Gazebo simulations
and preliminary experiments with a fully-actuated hexarotor
interacting with heterogeneous curved surfaces whose geometric
description is not available a priori, provided that enough visual
features on the target are naturally or artificially available to
allow the integration of localization and mapping algorithms.

Keywords: Vision-Based Impedance Control, Aerial Physical
Interaction, Contact-Based Inspection, Aerial Robotics.

I. INTRODUCTION

The flourishing research on aerial robotics conducted in

the last decade has progressively matured an increasing in-

terest towards the study of unmanned aerial vehicles (UAVs)

actively interacting with the surrounding environment [1],

giving birth to the novel branch of aerial physical interaction,

often also referred to as aerial manipulation. Apart from

the scientific desire of solving new challenging theoretical

problems, a relevant explanation for the springing of this

new research focus is to be found in the exponentially

growing demand in the market for aerial robots capable of

accomplishing operations which are beyond typical passive

visual inspection tasks, since they involve the exchange of

energy between the robots and the environment. Examples

of such operations include the contact-based inspection and

maintenance of sensible sites and infrastructures, the trans-

portation, assembling and decommissioning of structures,

and tele-manipulation tasks with haptic feedback. Considered
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Fig. 1: Photo of our fully-actuated aerial robot scanning an

unknown curved surface prior to interaction.

the relevance of such applications, many international syner-

gies aimed to advance in this topic have been established. In

the scope of the European Union, this gave birth to several

collaborative projects like, e.g., Aeroarms1, Aeroworks2,

Spectors3, and Aerial-core4, just to mention some.

In the view of endowing aerial robots with the manip-

ulation capability and the dexterity needed to fulfill the

particular interaction task at hand, different directions have

been explored, which can be classified in two main ap-

proaches. The first one foresees to cope with the under-

actuation of typical UAVs with collinear rotors (like the

well-known quadrotors, which can exert forces only along

one direction w.r.t. the body frame), i.e., their inability to be

commanded to follow arbitrary trajectories in their full (6D)

configurations space, by equipping them with articulated

robotic arms and exploiting the increased number of degrees

of freedom (DoFs) to accomplish the task at hand. Paradigms

of this kind have been fostered, e.g., in [2]–[4]. Depending

on the number of the additional DoFs, the load may be

manipulated independently from the motion of the platform.

However, it is not possible for the robot to rapidly exert

forces in arbitrarily-chosen directions of the space while

keeping a pre-specified decoupled orientation.

On the other hand, the philosophy of the second paradigm,

established in the more recent years, is to act on the actuator

arrangement of the aerial platform rather then (exclusively)

on its arm. By tilting the propellers from the classical

collinear disposition in particular ways, it is possible to

decouple, at least partially, the rotational dynamics from the

1http://www.aeroarms-project.eu
2http:///www.aeroworks2020.eu/
3https://spectors.eu/
4https://aerial-core.eu/
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translational one, i.e., the robot gets the means to translate

without the need to re-orient itself or, in a complimentary

way, to hover while maintaining different non-flat orienta-

tions. This is achieved at the cost of an increased energy

consumption, spent to generate the required internal forces

to produce that motion. Systems of this kind are traditionally

referred to as fully-actuated, and proved to be much more

effective for physical interaction tasks compared to under-

actuated ones, thanks to their improved dexterity and the

partial decoupling of the generated forces and moments [5]–

[8]. As a consequence, mechanical over-complications and

additional weight in the arm design can be avoided and

the interaction can take place also with simple rigid tools,

following the flying end-effector paradigm fostered in [6].

A necessary step for an autonomous interactive aerial robot

is to be able to perceive the environment it will interact with.

Achieving consistent and repeatable interaction behavior

requires a prior knowledge of the environment’s geometric

properties, which is not suitable for autonomous robots in

unstructured environments. A solution for that is combining

computer-vision with interaction control techniques.

The topic of vision-based interaction control is already

known in the literature of industrial ground manipulators and

its study has led to the accomplishment of a wide spectrum of

interesting tasks. In the view of automatizing labor-intensive

works, the authors in [9] proposed a combination of vision-

based and impedance control to perform polishing of flat sur-

faces like, e.g., walls. A similar approach has been fostered

also in [10], where the authors achieved the tracking of a

desired force on a non-planar surface of unknown geometry.

Following this line of thoughts, a semi-autonomous robotic

pen-drawing system has been presented in [11].

On the other hand, despite the compelling breakthroughs

recently delivered by the research related to computer vi-

sion and state estimation (see [12] for a broad overview)

considerable effort has still to be made to integrate these

techniques with interaction control in the field of aerial

robotics. As a matter of fact, impressive experimental results

of aerial robots interacting with the environment have been

demonstrated in [5], [6], [13], [14], which however rely on

partial a priori knowledge of the interaction target. Towards

the direction of vision-aided interaction, the authors in [8]

exploit depth servoing to locally reconstruct the normal

directions of a ceiling vault and use an impedance-controlled

omni-directional UAV to perform punctual interaction tasks.

Driven by the aim to exploit vision algorithms in more

global way w.r.t. the object and to extend the nice results

presented in [8], in this paper we outline a novel vision-

based interaction planner which allows to design a complete

desired trajectory for the robot end-effector on the surface

of unknown objects endowed, naturally or artificially, with

features. Thanks to the successful integration of such method

with a geometric impedance controller [7], we present nu-

merical and preliminary experimental results of a fully-

actuated UAV interacting with arbitrarily-shaped surfaces.

In this paper, we consider the challenging task of in-

specting by contact the surface of an unknown physical

Fig. 2: Illustration of the employed curve projection idea,

showing the desired curve γd(θ) in blue, and the projected

curve γp(θ) in orange, where θ is the curve parameter.

object by means of a fully-actuated aerial robot, a hexarotor

in the specific case, endowed with a simple rigid tool.

The accomplishment of this operation represents a proof of

concept towards the tackling of a wide set of meaningful use-

case applications like, e.g., the remote detection of cracks on

a gas pipeline or on the blade of a wind-mill, referring to

an industrial scenario, or the autonomous cleaning/painting

of tall buildings, in an civil context. Differently from other

approaches in the field of aerial interaction, we do not require

any a priori model of the object, apart from an initial guess

of its position and bounding box. More specifically, the

contributions presented in this paper are the following:

• the integration of a computer graphics algorithm for the

projection of any 2D desired path specified by the user

onto an unknown generic interaction surface without the

need to analytically reconstruct it, and of an energy-

based impedance controller for exerting a force;

• realistic numerical simulations in ROS/Gazebo, showing

the effectiveness of our approach in different scenarios;

• preliminary experimental tests with a fully-actuated

UAV interacting with planar and curved surfaces.

The paper outline is structured as follows: In Sec. II we

provide the details of the vision based interaction methodol-

ogy. To validate our approach, we present the results of both

numerical simulations and real experiments in Sec. III and in

Sec. IV, respectively. A brief description of the fully-actuated

aerial robot used in the experimental validation is included

in Sec. IV. Finally, in Sec. VI, we outline the conclusion and

provide hints for future work.

II. VISION BASED INTERACTION METHOD

A. Problem Formulation

In this work, we consider the problem of an aerial robot

physically interacting with a single target of unknown pose

and geometry, as shown in Figs. 1–2. The interaction task

of the aerial robot consists in sliding over the object surface.

The task is defined in terms of a desired curve and wrench

profile to be tracked by the UAV along the target surface.

With reference to Fig. 2, this desired path is a parameterized

curve γd defined in the end-effector’s frame. The goal is then

to project this desired curve onto the target’s surface. The

interaction planner then commands the UAV’s end-effector
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to the projected curve γp on the surface and aligns the end-

effector axis with the surface normal.

With the assumption that the target surface is endowed

with enough visual features, we use images from an on-

board camera to reconstruct the object, instead of relying

on an a priori computer-aided design (CAD) model. To

recover information about the 3D structure of the target, one

could use simultaneous localization and mapping (SLAM)-

algorithms to approximately gain a spatial representation of

the target as well as an estimate of the UAV’s pose relative to

it. We choose as SLAM algorithm ORB-SLAM2 [15] due to

its robust properties identified in the comparative study [16],

and its support for stereo and RGB-D cameras. The ORB-

SLAM2 algorithm extracts visual features (referred to as

ORBs) from the camera images and locates their relative

position with respect to the estimated camera pose. The

output of ORB-SLAM2 is an estimated pose of the camera

and a point-cloud, where each point corresponds to the ORB

features identified on the surface of the target object.

The key problem now is projecting the desired curve onto

the point-sampled surface of the target object, in addition to

estimating the normal directions to the surface.

B. Proposed Method

The problem of projecting a point/curve onto a parametric

or implicit surface is a well studied problem in the computer-

graphics community. Using the point-cloud generated by

ORB-SLAM2, one possible solution is to reconstruct the

surface from the sampled points and then use one of the

traditional techniques to project the desired curved onto the

reconstructed surface and estimate its normals. However,

there are several limitations for the implementation of the

aforementioned solution on point clouds generated visually

on an aerial robot. First, the errors introduced due to the

surface reconstruction methods of the noisy point cloud

will affect the projected curve. Second, traditional surface

reconstruction methods often fail for large and complex point

clouds. Moreover, it requires high computational power and

memory space which are usually scarce in small-scale UAVs.

An alternative solution is to project the curve directly

to the point cloud without reconstructing the surface. In

fact, point-projection algorithms onto point clouds are used

as a lower-level modules in some surface reconstruction

algorithms [17]. We opt for this curve-projection method

in our architecture, and use for that purpose the directed

projection (DP) algorithm proposed by [18] with a slight

modification for increasing computational efficiency for the

considered interaction application, cf. Sec. III-A.

The overall interaction planning architecture is depicted

in Fig. 3. The desired curve γd(θ) ∈ R
2 and desired normal

force profile fd(θ) ∈ R are specified by the user, where

θ ∈ [a, b] is the curve parameter for some a, b ∈ R . The

user also is required to specify the normal direction n̂ ∈ S2

for which the curve is to be projected. Let CN = {ξi ∈
R

3|i ∈ {1, · · · , N}} denote the set of unorganized data

points representing the sampling of the target object’s surface

generated through ORB-SLAM2. We suppose the point cloud

CN to have a non-uniform distribution with possibly noise.

The curve γd is projected by discretizing it to a sequence

of points Nc such that {ξdes,k} = {γd(a), · · · , γd(b)}, for

k ∈ {1, · · · , Nc}. The DP algorithm is then used to find

the projection point, referred to as the footpoint, of each

ξdes,k along the known projection direction n̂ onto the point-

sampled surface encoded in the point cloud CN .

C. Curve Projection Algorithm

In the following, we present a summary of the directed

projection algorithm used for finding the footpoint of a

sampled number of points of the desired curve γd. Consider

the test point ξdes with an associated projection direction n̂.

Each point ξi ∈ CN is associated with a positive weight

αi that takes into account both the distance between ξi
and ξdes as well as the deviation of the point ξ from the

projection direction n̂. The corresponding footpoint ξproj of

ξdes is expressed as

ξproj = ξproj(t) = ξdes + t̃n̂, (1)

where the parameter t̃ ∈ R is chosen to minimize the

weighted sum

E(t̃) =

N
∑

i=1

αi ‖ ξproj(t̃)− ξi ‖
2 . (2)

The optimal parameter t̃∗ is given by [18]

t̃∗ =
β − ξ⊤desn̂

‖ n̂ ‖2
, β =

c⊤n̂

c0
, (3)

where

c0 =

N
∑

i=1

αi ∈ R
+, c =

N
∑

i=1

αiξi ∈ R
3. (4)

The choice of the weights αi affects significantly the

performance of the projection algorithm. We used the same

weight function suggested by [18], i.e.

αi =
1

1+ ‖ ei ‖2‖ ei ∧ n̂ ‖2
, ei = ξi − ξdes ∈ R

3, (5)

with ∧ denoting the vector (cross) product in R
3. Intuitively,

the weight function (5) is maximum (αi = 1) if ξdes is on

the point cloud (ei = 0) or when ξi lies onto the projection

axis n̂ (ei ∧ n̂ = 0).

The projection algorithm is achieved through an iterative

procedure as described in Algorithm 1. In the original DP

algorithm in [18], a working point cloud Ck is constructed

(which is initially equal to CN ), and gradually reduced by

removing from it points that have low weights. However, in

our case we initialize Ck in a different way, discussed in

Sec. III-A. After the weights {αi} are calculated for points

in Ck, the mean (αmean) and maximum (αmax) weight of

the point cloud is computed. The points that are removed in

3
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Aerial 

Robot

Fig. 3: Block diagram of our vision-based impedance framework. Each camera image I is used by ORB-SLAM2 to produce

a point cloud CN in space. The interaction planner uses the point cloud together with the projection direction n̂ and the

desired pose profile γd to compute the projected curve γp and the surface normals n̂p along the curve. The output of the

interaction planner is the desired configuration HI
D.

the j-th iteration are the ones with corresponding weights

less than αlim which is calculated as [18]

αlim =











αmean +
αmax − αmean

10− j
j < 9,

αmean +
αmax − αmean

2
otherwise.

(6)

The algorithm iterates until the distance between the current

projection estimation ξproj and the current test point ξtest is

less than a threshold ǫ or αmax = 1. In the opposite case,

the test point is moved to the current estimation ξproj and the

new iteration starts with the smaller working point cloud with

weights smaller than αlim. When the algorithm terminates,

it returns the footpoint ξproj of the desired point ξdes,k. The

process can be repeated for each point of the desired curve

to be projected.

The surface normals are estimated using the work of

[19] by estimating the normal of the tangent plane on the

surface. The plane is constructed by least-square fitting of

a specified number of cloud points near ξdes,k. Note that in

our framework only the normals along γp are relevant which

eliminates the need to compute the normals of the whole

point cloud.

D. Impedance Controller and Control Allocation

After the projected curve γp(θ) ∈ R
3 and the surface

normal directions along the curve n̂p(θ) ∈ S2 are calculated,

the desired pose and wrench trajectories are computed as

follows: The user specifies a function θ(t) that is used to

convert the projected curve and normals to time-trajectories.

The end-effector’s desired position ξID(t) ∈ R
3 is calculated

by

ξID(t) = γp(t)− δoff (t)n̂p(t), (7)

where δoff ∈ R
+ is a positive offset specified into the target

object to allow for a compliant force exertion.

The end-effector’s desired orientation is denoted by

RI
D(t) ∈ SO(3). By choosing the x̂D axis of RI

D to be

aligned with the surface normal, a degree of freedom is

Algorithm 1: Point Projection Algorithm onto Point

Cloud
1 Get point cloud CN , projection direction n̂, selection cylinder radius

ρcyl, and desired curve point ξdes,k

2 for i = 1, · · · , N do

3 Select ξi that lies within the selection cylinder
4 Build working point cloud Ck with Nk points

5 ξtest = ξdes,k

6 for j = 1, · · · , jmax do

7 for i = 1, · · · , Nk do

8 Calculate αi by (5)

9 Calculate ξproj by (1,3,4)
10 Calculate αmax, αmean, and αlim (6)
11 if ‖ ξtest − ξproj ‖≤ ǫ or αmax = 1 then

12 return

13 for i = 1, · · · , Nk do

14 if αi < αlim then

15 remove ξi from Ck

16 ξtest = ξproj

remaining to be specified by the user in choosing a desired

roll angle φdes. Then we can compute RI
D(t) by

RI
D = (x̂D, ẑD ∧ x̂D, ẑD),

x̂D(t) = −n̂p(t),

ẑD(t) =
x̂D(t) ∧ ŷD(t)

‖ x̂D(t) ∧ ŷD(t) ‖
,

ŷD(t) = (0, cos(φdes(t)), sin(φdes(t)))
⊤.

The methodology used in this work for the UAV to interact

with the environment is geometric impedance control on

SE(3), which was derived in [20] using the port-Hamiltonian

formalism. In what follows, we provide a summary of the

controller.

The impedance control law Wc consists of the sum of

an energy shaping wrench Wes and a damping injection

wrench Wdi. The control wrench component Wdi is added

to implement a virtual linear damper connected between

the UAV’s frame ΨB and the inertial frame ΨI such that

4



Preprint version, final version at http://ieeexplore.ieee.org/ Accepted for publication at 2020 IEEE/RSJ IROS

0

4

0.5

1

3.5

z

1.5

3

2

2.5

y

2

1.5 1

1

x

0
0.5

0 -1

0

4

0.5

1

3.5

z

1.5

3

2

2.5

y

2

1.5 1

1

x

0
0.5

0 -1

0

4

0.5

1

3.5

z

1.5

3

2

2.5

y

2

1.5 1

1

x

0
0.5

0 -1

0

4

0.5

1

3.5

z

1.5

3

2

2.5

y

2

1.5 1

1

x

0
0.5

0 -1

Fig. 4: Projection algorithm tested with different trajectories and heterogeneous surfaces.

energy of the closed-loop system is damped in free-flight.

The role of Wes is to add energy to the UAV to compensate

the gravitational potential energy and to implement a virtual

spatial nonlinear spring connected between the end-effector

frame ΨE and the virtual desired frame ΨD. For small

deviations between ΨE and ΨD, the spring control law

behaves as a linear spring, decoupled in its axes. Therefore,

if Kt,x denotes the translational stiffness gain along the x̂D

axis, choosing the offset δoff by

δoff (t) =
fd(t)

Kt,x

, (8)

could (ideally) change the force exerted by the UAV on the

environment.

The control for the robot is derived such that it outputs

the desired control wrench WB
c on the vehicle’s body. Then,

in a model-based manner, the desired propellers’ thrust λ

are computed by the inverse of the mapping M (i.e. λ =
M−1WB

c ), where the platform specific map M , known as

allocation map (see [7]), is well defined in our case thanks

to the full-actuation of the robot.

III. SIMULATION RESULTS

A. Matlab Results

In order to improve the performance and the robustness

of the original DP algorithm presented in Sec. II-C before

integrating it in our vision-based interaction framework, we

Fig. 5: Our modified version of the projection algorithm

during execution. For each of the point to be projected, only

a subset of entire point cloud is used (cf. the green points).

performed preliminary tests in a Matlab environment. In

order to decrease the computational load of the algorithm

when dealing with big point clouds, we observed that to

project a sampled point ξdes,k of γd, it is not needed to take

into account the entire point cloud CN but it is possible

to consider just a subset Ck of it, which should intuitively

depend on ξdes,k and on the direction n̂. Our choice has been

to define Ck as the set of points obtained intersecting CN

with a virtual cylinder centered on ξdes,k and aligned with

n̂. The radius ρcyl of the cylinder is a function of the point

cloud, i.e., it should guarantee that Ck is not empty. If this

happens, Ck can be re-initialized with CN . Fig. 5 depicts

the execution of the modified projection algorithm.

It is worth to remark that this shrewdness does not only

decrease the computational time of the algorithm, but also

improves its robustness. As a matter of fact, by limiting the

query set in this way, only the point closed to the “true”

projection are considered, thus guaranteeing a better outlier

rejection and, as a consequence, a more precise projection.

However, when dealing with a pre-scanned 3D object, it

could still happen that some points on the backside surface

are considered, as shown in Fig. 5 (cf. the red points). To

deal with this side effect, we further modify the algorithm

in order to discard the furthest points based on an adaptive

threshold. The resulting algorithm was extensively tested in

different scenarios providing good results, as shown in Fig. 4.

B. Gazebo Results

To assess the validity our approach upon unknown surfaces

in a more realistic scenario, the overall vision-based interac-

tion framework was implemented and extensively tested in

a simulation environment based on Gazebo [21], the RotorS

plugin [22], and a software-in-the-loop (SITL) version of the

PX4 software [23]. The SITL receives the same commands

through through ROS, as the real experimental setup. This

significantly reduces the time required to validate the theory

with real experiments and helps with tuning the different

gains present in the control system. The simulated robot

is a fully-actuated hexarotor, cf. [7], also employed in the

experimental validation. In the aforementioned scenario, we

modeled the interaction target as a cylindric solid object

whose surface is endowed with multiple features, cf. Fig. 6a.

At the beginning of the presented simulation, the aerial

robot starts from a stationary initial configuration and is man-

ually moved around the object of interest, whose position and

5
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(a)

(b)

Fig. 6: The UAV and the target in the simulated environment

in Gazebo (a) with a snapshot in RVIZ of the successful

execution of the vision-based interaction planner (b).

bounding-box are supposed to be known, in order to scan the

target object (phase 1). The implicit surface reconstruction

is achieved from a stereo camera attached to the hexarotor’s

frame by extracting a dense point cloud of the environment

using ORB-SLAM2 [15]. To obtain the projected curve and

the estimated normal directions on the interaction surface, the

interaction planning algorithm module is activated and the

desired path for the robot end-effector, defined by the user

in its frame, is projected on the extracted point cloud along

the specified direction (phase 2). As the path is parametrized

in time, the resulting trajectory is autonomously tracked

by the robot under the energy-based impedance controller.

The correct execution of the projection algorithm can be

appreciated from the snapshot of Fig. 6b, which depicts the

scene in the ROS 3D visualization tool RVIZ, showing the

aerial robot’s frame, the desired trajectory and its projection

on the surface, and the associated normal vectors needed to

define the robot orientation during the interaction.

IV. PRELIMINARY EXPERIMENTAL RESULTS

In this section, we experimentally validate the proposed

vision-based interaction framework using a fully-actuated

aerial robot. After a brief description of the aerial platform,

the results of two different validation tests are presented and

discussed. The interested reader can find the footage of such

experiments in the supplementary video.

A. Setup Description

Our fully-actuated aerial robot was developed in-house

based on an off-the-shelf carbon fiber frame with a diameter

(rotor hub to rotor hub) of 0.68 m and a nominal total

mass less than 2 kg, without batteries. For the generation

of thrust, the system uses 11-inch propellers driven by six

CM-2217 brushless motors with DYS SN40A electronic

speed controllers. Each rotor has the capability to produce a

maximum thrust of 12.5 N.

The vehicle is equipped with a Pixhawk 2.1 flight con-

troller with integrated sensors. The Pixhawk runs the PX4

software [23], which handles interfacing to the sensors and

actuators in addition to providing a modular framework

which allows adding new control schemes. We augment the

original PX4 software with custom-made modules that en-

ables the control of fully-actuated multi-rotors. This involves

modifying the PX4 control allocation module, and low-level

orientation controllers. Using a multi-sensor fusion algorithm

[24], the sensor data provided by the inertial measurement

unit in the Pixhawk is fused together with the external pose

information from the Optitrack motion capture system to

provide reliable estimates of the UAV configuration HI
B and

the body twist T
B,I
B . We denote by HI

B ∈ SE(3) the pose

of the body-fixed frame ΨB with respect to the inertial-fixed

frame ΨI , and by T
B,I
B the twist (generalized velocity) of

ΨB with respect to ΨI , expressed in ΨB .

With reference to Fig. 3, the software of the multi-

sensor fusion, the interaction planner, ORB-SLAM2, and

the geometric impedance controller runs on a Linux PC

exploiting the Robot Operating Systems (ROS) as middle-

ware and interfacing with the PX4 software via serial USB

communication at a rate of 150Hz.

The experimental setup differs from the simulation for

what concerns the sensor source used by ORB-SLAM2 for

the point cloud extraction. Instead of a stereo camera, it

uses an Intel RealSense D435 RGB-D camera. Apart from

this hardware detail, the rest of the architecture remain

unchanged. Finally, although ORB-SLAM2 provides an es-

timate of the camera pose (which can be related to the UAV

pose), we do not use this information for the UAV control. As

a matter of fact, we use the Optitrack motion capture system

both in the state estimation and as a ground-truth for our

vision-based framework at this preliminary stage, focusing

only on indoor scenarios. We accomplish that by comparing

the estimated camera pose and the measured camera pose

(by Optitrack). Consequently, an error in the camera pose

will also affect the estimation of the target surface.

B. Experiment Scenario and results

The validation scenario for our vision-based framework is

an interaction experiment with a textured surface, as shown

in Fig. 1 and in Fig. 6a. In particular, as inspection targets we

used both a tilted board and a panel with cylindrical shape.

The interaction planner executes two phases; the first is

scanning the unknown target to get a dense point cloud. The

assumption of high density features is needed for a correct
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(a) Planar tilted surface

(b) Curved half-cylinder surface

Fig. 7: Exp. result: validation of the vision-based interaction

planner for two target surfaces, showing the desired curve

(green) in a plane fixed to the UAV’s end-effector (black

line). The projected curve (blue) onto the point cloud and

the surface normals (red) are also shown.

operation of ORB-SLAM2, but might be alleviated by choos-

ing another SLAM algorithm. This phase is done by manual

operation of the UAV, while extending it to autonomous

scanning is a topic of future work. The second phase is

projecting the desired curve, namely the (sampled) circle

shown in Fig. 6b, using the aforementioned DP algorithm.

Finally, the normal directions along the curve are calculated.

The results of the projection in Fig. 7 shows the robustness

of our framework to the incompleteness and noise of the

sampled surface. In particular, it should be appreciated that

our approach eliminates the need to explicitly reconstruct

the target’s surface, which is a challenging task to perform

relying only on-board computational capabilities.

In order to indirectly validate the accuracy of the con-

structed point cloud, we present in Fig. 8 the 3D position

of the camera estimated by ORB-SLAM2 as well as the

one measured by the motion capture system. Initially the

estimation error was zero, as ORB-SLAM2 was initialized

with the actual camera pose. The UAV takes off at about

t = 30s. After about 170 s of scanning the surface, the error

decreases to an average norm of 10 cm due to some loop

closure detected by ORB-SLAM2. As showcased in Fig. 8,

the estimation error is mainly in the z-direction.
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(b) Curved half-cylinder surface

Fig. 8: Exp. results: the Cartesian components of the es-

timated camera position (dashed red) by ORB-SLAM2 and

the ground truth position (solid blue) captured by OptiTrack.

V. EVALUATION

This section describes some of the limitations present in

our vision-based interactive planner and lists some possible

adverse scenarios that might cause loss in the performance.

Following the block diagram in Fig. 3, three main building

blocks can be observed: the vision-based perception module

(left), the interaction planner (middle) and the geometric

impedance controller (right). Each of these blocks influence

the final result of the presented approach and, therefore, its

own limitations are inherited in the overall solution. The

perception module chosen for our experiments consists of

an Intel RealSense D435 RGB-D camera feeding Orbslam 2,

the go-to algorithm for localization and point-cloud building.

This type of system uses the visible features present in the

environment for mapping and localization purposes. As a

consequence, environments that are poor in features would

not suffice our intention. This limitation can be circumvented

by adding permanent or temporal artificial features to the

surface of interest (cf. Fig. 1). An additional pitfall of RGB-

D cameras are surfaces that are highly or poorly reflective,

which can cause false readings in the depth sensor.

The proposed interaction planner algorithm presented in

Sec. II assumes the viability of the curve projection on

the surface and a perfect disturbance rejection to satisfy

both pose and force profiles. Some situations in which this

algorithm might fail are, e.g., projection on surfaces which

cannot contain the target curve or with projection vector

parallel to the surface of concern, and scenarios with strong

7
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external disturbances jeopardizing the interaction.

Lastly, the employed geometric impedance controller

(Sec. II-D) could in principle be used to interact with any

surface geometry as long as it satisfies the maximum roll and

pitch angles of the UAV [20]. Moreover, the controller adopts

the assumption of interaction with a passive environment. A

violation of this assumption will not guarantee the contact-

stability peculiar to this kind of controller.

All in all, the main contribution of this work should be

considered the interaction planner module in addition to

the vision-based interaction control framework as a whole,

whereas some modules can be replaced by alternatives, e.g.

different SLAM or interaction control algorithms.

VI. CONCLUSION

In this paper, we have presented a vision-based impedance

control framework for the accomplishment of aerial interac-

tion tasks which involve the physical contact with unknown

textured surfaces. Thanks to our approach, an user-defined

trajectory for the robot end-effector can be projected on an

arbitrarily-shaped target surface, which can subsequently be

inspected by the exertion of a contact force using impedance

control. The presented results obtained in preliminary exper-

imental validations with a fully-actuated hexarotor validate

our approach and open the way to new research questions,

which call for solutions to more advanced problems.

Future work includes the integration of computer vision

algorithms for the state estimation in a visual servoing

fashion and the use of pure on-board computation in order

to target preliminary validation in outdoor scenarios. In this

perspective, additional effort is still to be done to tackle the

interaction with feature-less targets. Moreover, performing

autonomous scanning, projection and interaction is a very

promising direction. Some preliminary work in this direction

has been reported in [25]. Finally, we are interested in

exploring the integration of machine learning techniques to

improve the robustness of our approach.
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