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Abstract— The main contribution of this paper is a novel
stereo-based algorithm which serves as a tool to examine the
viability of stereo vision solutions to the simultaneous localisation
and mapping (SLAM) for large indoor environments. Using
features extracted from the scale invariant feature transform
(SIFT) and depth maps from a small vision system (SVS) stereo
head, an extended Kalman filter (EKF) based SLAM algorithm,
that allows the independent use of information relating to depth
and bearing, is developed. By means of a map pruning strategy
for managing the computational cost, it is demonstrated that
statistically consistent location estimates can be generated for
a small (6 m x 6 m) structured office environment, and in a
robotics search and rescue arena of similar size. It is shown
that in a larger office environment, the proposed algorithm
generates location estimates which are topologically correct, but
statistically inconsistent. A discussion on the possible reasons
for the inconsistency is presented. The paper highlights that,
despite recent advances, building accurate geometric maps of
large environments with vision only sensing is still a challenging
task.

I. BACKGROUND AND MOTIVATION

In mobile robotics, the incremental construction of a map

of an unknown environment while concurrently generating

an estimate for the location of the vehicle is known as

the simultaneous localization and mapping (SLAM) problem.

Significant progress has been made, in the past few years,

in addressing a range of issues associated with the SLAM

problem (see for example, [1], [2], [3], [4], [5], [6], [7] and

the references therein).

The advances made over the years towards solving the

SLAM problem are indeed related to performance improve-

ments in both sensors and computer hardware. For indoors

robots in particular, the SLAM problem was initially addressed

mostly using sonars, and then came the ubiquitous laser

range finder, which has proved a breakthrough in autonomous

mobile navigation. Laser sensors provide accurate 2D depth

measurements (extendable to 3D with additional tilting units),

and many SLAM-related algorithms have been devised based

on data obtained specifically from laser range finders.

Wide availability of low cost, low power light-weight

cameras as well as maturity of computer vision algorithms

have made real-time vision processing much more practical in

recent times, and consequently there has been an increasing

interest in visually based navigation systems in the robotics

community. Vision SLAM in particular has seen many ad-

vances in recent years [8], [9], [11]. Cameras are interesting

as they provide a wealth of geometric information from an

unmodified scene, as well as perceptual information such as

textures and colours, which can be matched by few other

sensors. A low-cost and lightweight vision based solution to

the SLAM problem in an indoor setting is of great value,

particularly for robotic search and rescue scenarios.

Both monocular and stereo pairs have been used for mobile

robot’s vision-based mapping and navigation. The former

can not directly retrieve depth information from the scene,

therefore traditional Bayesian techniques to solve the SLAM

problem such as the EKF can not be readily used with

information from single cameras [13]. Special landmark ini-

tialization techniques have been proposed in the literature

to overcome this, thus enabling a full Gaussian estimate of

its estate and the application of EKF [14], [15], [16]. An

interesting solution with mono-vision SLAM is provided by

vSLAM [17], where SIFT features [18] are combined into

landmarks to populate a visual database. These are in turn

employed by a Kalman filter to build a map, onto which the

robot localises itself by means of a particle filter. vSLAM has

been demonstrated to provide navigation capabilities to indoor

mobile robots operating in relatively small environments, for

example, in a two bedroom apartment. Reliance of odometry

for landmark initialisation (in effect providing the scale which

is not observable from a bearing only sensor) is certain to make

it unsuitable where wheel slip may be significant, for example

in case of indoor search and rescue scenarios. Svedman [19]

reports on using information from two cameras with vSLAM

in an attempt to remove the need to drive the robot and take

a number of sequential frames. Davison [9] uses a template

to introduce features with known geometric relationships to

determine the scale and completely avoid the use of odometry.

The demonstrations so far has only been on relatively small

environments and with hand-waved sensing where the camera

is manoeuvred to maximise the information gain.

Despite the increased cost, using a stereo camera is ad-

vantageous as it makes the system fully observable in that

the sensor provides enough information (range and bearing)

to compute the full three-dimensional state of the observed

landmarks. Some approaches rely on 2D projections of the

features, such as the vertical edges corresponding to corners

and door frames as proposed in [10], which are subsequently



tracked using an EKF. This type of visual feature represen-

tation is not sufficiently distinctive, and require ellaborate

data association solutions to reject spurious matches. More

recently, a stereo pair has been used in [11] with scale-invariant

image features to solve the full 3D SLAM problem based

on a Kalman filter framework. This work has demonstrated

good results for a robot moving in a small room approx-

imately 10x10 m2. However, as cross-correlations are not

fully maintained, and it only relies on local estimates, the

algorithm is not globally consistent and will diverge when

the area to be explored is large [1]. Precisaly to address the

global localisation problem, the authors have recently extended

the algorithm [12] by proposing a submapping strategy which

relies on highly specific SIFT features to locally correct the

odometry, and the global alignment of the submaps. Yet the

backward correction step is constrained to the actual closure

of the loop to correct for the effects of drifts and slippage,

and results are still restricted to the same small room than

in the previous paper. Three-dimensional metric maps are

also obtained using stereo in [20] by implementing a Rao-

Blackwellised particle filter to counteract for the sensitivity of

EKF to outliers in landmark detection. A motion model based

purely on visual odometry is also used, effectively generalising

the problem to unconstrained 3D motion. Feature management

and computational complexity, which grows exponentially

with the number of particles, is likely to make this strategy

infeasible in a large environment. Other approaches rely on

iterative minimization algorithms from vision techniques such

as ICP to perform local 3D alignments to solve the SLAM

problem [21], which produce good results when restricted to

fairly structured environments. Similar limitation are reported

in [22], where 3D line segments become landmarks suitable to

be used in a particle filter implementation where each particle

also carries with it an EKF.

In this paper a number of innovations to overcome some of

the inherent issues associated with stereo vision based SLAM

algorithms are presented. For all its obvious advantages, even

after meticulous calibration, stereo depth information of mea-

surements beyond a few meters is generally not accurate to be

fully relied upon. Also, range densities are entirely dependent

on the textures of the surfaces being observed, so that positive

stereo correlation of arbitrary visual features in a scene can

not be guaranteed. Bearing to features, on the other hand, is

a relatively reliable visual measurement: a known feature at

infinity in fact provides accurate information on the orientation

of a robot even when the estimate of the robot position is

relatively inaccurate. In the approach presented in this paper,

bearing and disparity to features on the camera image extracted

through the SIFT algorithm are used. Unlike the range and

bearing from a stereo head, bearing and disparity to a given

feature can be treated as two independent measurements. It

is thus possible to update the robot and feature states, even

when only the bearing information is reliable. Performing

an update using the bearing information first also enables

reliable rejection of outliers due to errors in the disparity

measurement, without sacrificing the information contained

Fig. 1. Stereo-equipped vehicle and feature projection on 2D world
coordinate.

in the bearing measurement. Data association, particularly

when the feature density is high and the quality of the range

information is poor is also a significant issue in SLAM. Use

of SIFT descriptors together with a bearing innovation gate is

used to overcome this problem. A map management strategy

to eliminate features that are not frequently re-observed is used

to address the computational cost issues.

The remainder of this paper is organised as follows: Sec-

tion II summarises the mathematical framework employed

in the study of the SLAM problem. Section III reviews the

relevant aspects of the SIFT algorithm, with a discussion of

data association issues in SLAM. Then, the proposed method-

ology for the solution to the visual-based SLAM problem is

presented in Section IV. Detailed experimental setup, results

obtained and a discussion are provided in Sections V and VI

respectively. Finally, Section VII summarises the contribution

of this paper.

II. THE SLAM PROBLEM FORMULATION

The setting for the SLAM problem is that of a vehicle with

a known kinematic model, starting at an unknown location,

moving through an environment containing a population of

features or landmarks. The vehicle is equipped with a sensor

that can take measurements of the relative location between

any individual landmark and the vehicle itself.

The state of the system xv(k) consists on the position and

orientation of the vehicle together with the position of all

landmarks. The motion of the vehicle through the environment

is modelled by a conventional discrete-time state transition

equation or process model:




x(k + 1)
y(k + 1)
φ(k + 1)



 =





x(k) + ∆T × Vv × cos φ
y(k) + ∆T × Vv × sin φ
φ(k) + ∆T × ωv



 (1)

where Vv corresponds to the vehicle linear velocity, and ωv

is the angular velocity. The vehicle is equipped with a sensor



that can obtain observations of the bearing zβ and disparity

zd of landmarks with respect to the vehicle according to:

[

zβ

zd

]

=





arctan
(

yf−yv−br×sin φ−cr×cos φ

xf−xv−br×cos φ+cr×sin φ

)

− φ

−db × f
br−sin φ×(yf−yv)−cos φ×(xf−xv)



 (2)

The Kalman filter is the sensor fusion technique used in

the approach to SLAM presented in this paper. The reader is

referred to [1] and the references therein for further details

about EKF SLAM. In essence, the filter recursively computes

estimates for a state x(k) which is evolving according to

the process model and which is being observed according

to the observation model. The Kalman filter computes an

estimate which is equivalent to the conditional mean x̂(p|q) =
E [x(p)|Zq] (p ≥ q), where Zq is the sequence of obser-

vations taken up until time q. The error in the estimate is

denoted x̃(p|q) = x̂(p|q) − x(p). The Kalman filter also

provides a recursive estimate of the covariance P(p|q) =

E
[

x̃(p|q)x̃(p|q)
T
|Zq

]

in the estimate x̂(p|q).

Note that unlike in traditional formulations where either the

range and bearing from the robot to a feature or the Cartesian

coordinates of a feature relative to the robot [11] is used as

observations, the disparity and the bearing to a feature can be

treated as two independent measurements.

III. VISUAL FEATURES PROCESSING

In the work proposed here, an efficient mechanism to detect

and represent stable local features was required. An immensely

popular choice drawn from computer vision as a fundamental

component of many image registration and object recognition

algorithms is SIFT [11], [18]. Whilst not the only one, a recent

comparative study [23] of several local descriptors showed

that the best matching results were obtained using the SIFT

mechanism, which was identified as the most resistant to

common image deformations. This made it the sensible choice

for our research, and the work of other researchers working

on SLAM also seem to agree with this judgement (see [8],

[11] and [12] for instance).

A. Data association with SIFT

The main strength of SIFT is to produce a compact (128th

dimensional) landmark descriptor that allows quick compar-

isons with other regions, and is rich enough to allow these

comparisons to be highly discriminatory. This is particularly so

as the descriptor representation is designed to avoid problems

due to boundary effects, i.e., smooth changes in location,

orientation and scale do not cause radical changes in the

feature vector. Furthermore, while the representation was not

designed to be explicitly invariant to affine transformations ,

it is nevertheless surprisingly resilient to deformations such as

those caused by perspective effects [23]. The location of each

keypoint in the image is specified by 4 floating point numbers

[x, y, s, o] giving subpixel row and column location, scale, and

orientation (in radians from -PI to PI) respectively.

The evident matching performance of the descriptors is what

makes them an ideal candidate to the on-going problem in

Fig. 2. Corresponding keypoints which show the robustness of SIFT to
changes in view point.

Fig. 3. Matched keypoints between a stereo pair of images in the rescue
arena.

SLAM of robust data association. In particular when the pose

estimate of the vehicle is in gross error, which means that

despite the fact the vehicle might be in an area already mapped,

loop closure solely based on the traditional geometry-based

nearest neighbour innovation gating is not feasible, resulting

in wrong re-mapping and erroneous global locations [8].

Figure 2 shows the relative insensitivity of SIFT to changes

in viewpoint from the same scene by correctly matching

corresponding keypoints. This is also applicable to image pairs

obtained from the stereoscopic sensor, as seen in Figure 3.

Features with spurious existence, and those which don’t lie in

the camera epipolar line can therefore be eliminated, and only

surviving features that appear in both left and right images are

then allowed to be initialized and integrated into the SLAM

feature database. Furthermore, matches across a stereo pair

can be used to generate an approximate range estimate to

the features. This is particularly useful during the feature

initialization step and when the stereo algorithm does not

return disparity values due to lack of texture.

In an indoor environment, the potential is high for scenes

or regions in an image that are very similar in appearance.

Therefore it is conceivable that SIFT produces many incorrect



matches in an indoor scene. Use of the Bayesian innovation

gate traditionally used in the Kalman filter estimator in con-

junction with the SIFT descriptor was found to solve this

problem.

IV. THE VISUAL-SLAM ALGORITHM

The algorithm for visual-SLAM as used in the experiments

can be described as follows:

1) Initialization: set up a world coordinate frame at the

initial robot location.

2) Initialization: obtain a stereo image pair of the scene

from the camera and run SIFT on both left and right

images.

3) Initialization: taking the left as the reference image,

find matches by looking for the descriptor vector in

the right image with closest Euclidean distance. Some

further thresholding is carried out as suggested in [11]

to keep only the most unique and distinctive features,

discarding the feature if it is considered to be too similar

to more than one keypoint. Potential mismatches are

further filtered out by enforcing keypoints to remain on

epipolar lines.

4) Initialization: taking disparity as the horizontal pixel

difference between the left and right matches, together

with the (pixel) position of the features in the image

and the camera intrinsic parameters, triangulate to obtain

and estimate of the 2D coordinates relative to the robot.

Compute the feature coordinates in the world frame and

incorporate this into the state vector.

5) Loop: predict robot motion using information from the

encoders. Get stereo images and perform feature match-

ing as in Step 2 and 3. Calculate a dense disparity map.

A commercial stereo package is used for this purpose

(see Section V-C below). Given the matched descriptors,

search for positive associations with landmarks already

in the current map, in a similar fashion to Step 3 above

except epipolar restrictions are not exploited.

6) Loop: if an association is found, further validate this

by first computing the bearing innovation and using a

bearing innovation gate of 2σ. Range innovation of the

feature is also calculated here to make sure the tentative

match is indeed consistent: if range innovation is less

than 20% of the predicted range, the feature becomes

part of the matched list of bearing to features for later

batch update.

7) Loop: extract the disparity from a 3x3 pixel window

around the feature location in the image plane. Select

the median disparity of this window as the disparity for

the feature. Predict an expected range for all the features

for which a stereo disparity is available and use a gate

to reject observations that are incorrect or regarded as

out of the reliable range of the stereo sensor.

8) Loop: use a batch bearing update followed by a batch

disparity update to generate new estimates for the feature

and robot locations.

Fig. 4. The mobile platform with the mounted stereo and laser sensors.

9) Loop: initialise unmatched features using the procedure

given in Step 4

10) Loop: map management. Some form of map main-

tenance needs to be implemented as the number of

observed features can grow very large and tracking them

all can become computationally very expensive. This is

particularly true when many of the features might never

be re-observed. A two-fold process has been devised to

only retain the most significant point features: firstly,

only after a predetermined number of frames (around 5

based on experimental results) are re-observed beacons

regarded as a permanent features. Beacons that fail this

test are deleted from the state vector and the state

covariance matrix as described in [24]. How often map

management needs to be carried out depends mostly on

the processing power and memory available, as well as

the run itself - longer runs need to prune more often. In

our experience, performing map management every 20

to 30 frames was sufficient to produce a manageable

map. These two values, as well as the number of

successful hits to a feature before it is included in the

map (3 to 5 in our experiments), are arbitrary and at

the moment based on a trade-off between map density

and accuracy, and computational complexity. We are

currently investigating how to automatically adjust these

parameters on the run. The median of the number of

hits seems like a reasonable option, so that the least

significant 50% of landmarks can be pruned at spaced

intervals.

11) Loop again (back to Step 5).

V. EXPERIMENTAL SETUP

A. Robotic platform

To test the validity of the approach data was collected

with an ActiveMedia Pioneer 2DX robot mounted with an

stereoscopic camera, as depicted in Figure 4. The robot was

also equipped with a SICK LMS200 laser rangefinder to

evaluate the outcome of the vision based SLAM algorithm

by superimposing them with range and bearing measurements

of the environment.

The robot was driven through two distinctively different

unmodified environments:



• a highly structured, low-texture open space office envi-

ronment, with around 1.5 m height partitions, narrow

corridors and research students happily crammed in there.

• an arena being used to simulate search and rescue

scenarios, with rubble and debris from a collapsed-like

building, as pictured in Figure 3.

The robot was used to capture real-life stereo images,

odometric poses and laser scan measurements at around 4Hz

whilst being driven at speeds of 0.2 − 0.3 m/sec. Stereo

and pose logged data was then processed by the algorithm

described earlier in Section IV

B. Stereoscopic headset

The stereo head used is the STH-MDCS from Videre De-

sign, a compact, low-power colour digital stereo head with an

IEEE 1394 digital interface. It consists of two 1.3 megapixel,

progressive scan CMOS imagers mounted in a rigid body, and

a 1394 peripheral interface module, joined in an integral unit.

Wide-angle lenses (FoV = 100 degrees) were fitted for this

exercise (narrow angle lenses were also tested with poorer

results as a lesser number of good quality distinctive features

were picked up). The camera was mounted at the front and

top of the vehicle at a constant orientation, looking forward.

Images obtained were restricted to greyscale 320x240 pixels.

C. Software environment

The widely used Player open source robotics architecture,

running under Linux, was the software of choice to interface

with the robotic platform and the sensors to perform the

synchronous data collection and actual control of the robot.

The SRI Small Vision System (SVS) software was employed

to calibrate the stereo head and perform stereo correlation

within the Player framework.

VI. RESULTS AND DISCUSSION

Stereo SLAM results are shown in Figures 5, 6 and 7.

In the first example, the robot is driven in the office envi-

ronment around two adjacent partitions in an area of around

6x6 m2, closing an outer and inner loop. A similar run in an

unstructured experimental search and rescue arena is shown

in Figure 6, which covers an area of approximately 7x7 m2.

The longer run shown in Figure 7 stretches over approximately

6x18 m2 in the office environment with many interweaving

loops, covering a total travelled distance of approximately

150 m. The landmarks locations are shown as red stars. The

landmarks that appear in the open spaces are those due to

features detected on the ceiling. The filter was tuned based on

a short run in the office environment by selecting the process

and measurement noises using information obtained from the

laser as the ground truth, and our previous experiences with

laser-based SLAM on the same Pioneer platform. The same

noise parameters were then used in all subsequent experiments.

We currently assume σ2
v = 0.0056 and σ2

ω = 0.0056 for

process errors in velocity and turn rate respectively, a bearing

observation error of σ2
b = 0.0056, and in accordance with [11]

a disparity variance of σ2
d = 1.0.

Fig. 5. Short office run: SLAM in pink. Odometry in green, ground truth
from laser ICP in cyan. Walls from superimposed laser scans using SLAM
poses. Stars in red are landmarks.

Fig. 6. Short search and rescue arena run: SLAM in pink. Odometry in
green, ground truth from laser ICP in cyan. Walls from superimposed laser
scans using SLAM poses. Stars in red are landmarks.

Although there are some errors present, the SLAM estimate

is significantly superior to that obtained from dead-reckoning

as expected. This is particularly apparent in the long run in

Figure 7, where odometry falls mostly outside of the detail

shown here (features have been removed to make the figure

more readable). The approximate geometry of the environ-

ments recovered by superimposing laser range scans using

the robot poses generated by the SLAM algorithm closely

resembles the actual maps, thereby provide a qualitative in-

dication of the validity of the robot location estimates. The

apparent thickness of the boundaries of the workspace is small



Fig. 7. Long office run: SLAM in pink. Odometry in green (mostly off
figure), ground truth from laser ICP in cyan. Walls from superimposed laser
scans using SLAM poses. Landmarks not shown.

indicating that the shape of the robot trajectory generated by

SLAM is locally consistent. This is also true in the longer

run office environment, although accumulated errors increase

more significantly as the robot travels further away from its

initial point, hence producing less consistent geometric maps.

Discontinuities are due to errors present before loop closures

which result in sudden jumps in the robot location estimates.

Loop closures were facilitated by the ability of SIFT to reliably

associate new features to their previously seen counterparts.

Thus the algorithm developed appears to be adequate to enable

a robot to navigate in unknown indoor environments.

Figure 8 shows a histogram of matches between observa-

tions and the landmarks in the final map. This forms the basis

of the map management strategy described in Section IV.

Clearly, a large number of features have not been repeatedly

observed and may be deleted from the map without incurring

a significant loss of information. Figure 9 shows errors in the

robot location estimates (x, y, φ) together with the associated

95% confidence limits for the three experimental runs. At loop

closures, indicated by the sudden reductions in the confidence

limits, the position errors are in the range of 0.2 m. However,

it is clear that the filter estimates for the long office run

(subplot c) are statistically inconsistent as the error in the robot

location estimate is predominantly outside the 95% confidence

limits. Even using larger than expected values for measurement

noises, it was not possible to tune the estimator to achieve a

statistically consistent result. As the process model used in the

EKF has been proven using laser-based localisation as well
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Fig. 8. Histogram of matched landmarks.

as SLAM, this points to an inadequate measurement model,

although the model used in this paper, as depicted by Figure 1,

is geometrically straightforward and is based on the current

literature on vision-based SLAM. The non-Gaussian nature of

the depth observations, particularly due to the short base-line

of the stereo setup used is perhaps the most significant factor

contributing to this error. Significant unmodelled variations

in the disparity measurement due to poor texture, spacial

discontinuities that are not properly captured by the validation

based on a 3x3 pixel patch and errors in the stereo calibration

could also be contributing factors. We are currently in the

process of examining these possibilities.

VII. CONCLUSIONS

A solution to the simultaneous localisation and mapping

problem in an unmodified indoor environment has been pre-

sented. The approach, which uses an extended Kalman filter,

assumes the availability of simultaneous visual information

from two cameras, from which depth information is extracted.

A measurement model that separates the information contained

in the disparity and the bearing measurement is utilised,

making it straightforward to exploit the bearing measurements

when depth information is not available or seems unreliable.

Data association based on a combination of SIFT descriptors

and a Bayesian innovation gate has been exploited to enable

loop closure even when the feature density is high and

nearest neighbour data association on its own is impractical.

A map management strategy to eliminate features that do not

significantly contribute information to the estimator has also

been implemented.

Results have been presented which demonstrate the viability

of the innovations proposed to obtain reasonable estimates of

robot locations and maps in two distinctively different small

indoor environments, an office and a search and rescue arena,

based on visual cues. Although location estimates that may be

adequate for autonomous navigation were also obtained for

longer runs, these were shown to be statistically inconsistent.



(a)

(b)

(c)

Fig. 9. 2σ error plots for the short office (a), rescue arena (b) and long
office environment (c).

Further work is required to investigate the reasons for these

errors. We believe that the statistical inconsistency was not

apparent in the published literature because the experiments

reported in previous publications either did not compare the

location estimates generated with the ground truth or were

conducted in small areas. Therefore, reliable generation of

accurate geometric maps for larger indoor environments using

vision only sensing still poses a significant challenge.

Further work is currently underway to test the algorithm

on-line in a search and rescue mobile robot, and to naturally

extend the estimation problem to 3D pose estimation. Further-

more, studying the 2D/3D SLAM problem when the odometry

from wheel encoders is completely unreliable, or non-existent,

is also planned.
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