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Abstract

Most existing visual search systems are deployed based

upon fixed kinds of visual features, which prohibits the fea-

ture reusing across different systems or when upgrading

systems with a new type of feature. Such a setting is ob-

viously inflexible and time/memory consuming, which is in-

deed mendable if visual features can be “translated” across

systems. In this paper, we make the first attempt towards vi-

sual feature translation to break through the barrier of us-

ing features across different visual search systems. To this

end, we propose a Hybrid Auto-Encoder (HAE) to translate

visual features, which learns a mapping by minimizing the

translation and reconstruction errors. Based upon HAE, an

Undirected Affinity Measurement (UAM) is further designed

to quantify the affinity among different types of visual fea-

tures. Extensive experiments have been conducted on sev-

eral public datasets with sixteen different types of widely-

used features in visual search systems. Quantitative results

show the encouraging possibilities of feature translation.

For the first time, the affinity among widely-used features

like SIFT and DELF is reported.

1. Introduction

Visual features serve as the basis for most existing vi-

sual search systems. In a typical setting, a visual search

system can only handle pre-defined features extracted from

the image set offline. Such a setting prohibits the reusing

of a certain kind of visual feature across different systems.

Moreover, when upgrading a visual search system, a time-

consuming step is needed to extract new features and to

build the corresponding indexing, while the previous fea-

tures and indexing are simply discarded. Breaking through

such a setting, if possible, is by any means very beneficial.

For instance, the existing features and indexing can be ef-

ficiently reused when updating old features with new ones,
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Figure 1. Two potential applications of visual feature translation.

Top: In cross-feature retrieval, Feature A is translated to Feature

AB, which can be used to search images that are represented and

indexed by Feature B. Bottom: In the merger of retrieval systems,

Feature A used in System A is efficiently translated to Feature AB,

instead of the expensive process of re-extracting entire dataset in

System A with Feature B.

which can significantly save the time and memory cost. For

another instance, images can be efficiently archived with

only respective features for cross-system retrieval. These

examples are detailedly depicted in Fig. 1.

However, feature reusing is not an easy task. Various di-

mensions and diverse distributions of different types of fea-

tures prohibit reusing features directly. Therefore, a feature

“translator” is needed to transform across different types of

features, which, to our best knowledge, remains untouched

in the literature. Intuitively, given a set of images extracted

with different types of features, one can leverage the feature

pairs to learn the corresponding feature translator.

In this paper, we make the first attempt to investigate vi-
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Figure 2. The overall flowchart of the proposed visual feature translation. In Stage I, different handcrafted or learning-based features are

extracted from image set for training. In Stage II, the mappings from source features to target features are learned by our HAE with the

encoders Es, Et and the decoder D. Then the encoder Es and the decoder D are used in inference. In Stage III, the UAM is calculated to

quantify the affinity among different types of visual features, which is further visualized by employing the Minimum Spanning Tree.

sual feature translation. Concretely, we propose a Hybrid

Auto-Encoder (HAE) that learns a mapping from source

features to target features by minimizing the translation and

reconstruction errors. HAE consists of two encoders and

one decoder. In training, the source and target features are

encoded into a latent space by corresponding encoders. Fea-

tures in this latent space are sent to a shared decoder to

produce the translated features and reconstructed features.

Then the reconstruction and translation errors are mini-

mized by optimizing the objective function. In inference,

the encoder of source features and the shared decoder are

used for translation. The proposed HAE further provides

a way to characterize the affinity among different types of

visual features. Based upon HAE, an Undirected Affinity

Measurement (UAM) is further proposed, which provides,

also for the first time, a quantification of the affinity among

different types of visual features. We also discover that

UAM can predict the translation quality before the actual

translation happens.

We train HAE on the Google-Landmarks dataset [16]

and evaluate in total 16 different types of widely-used fea-

tures in visual search community [2, 4, 19, 21, 29, 36, 41,

44, 52]. The tests of feature translation are conducted on

three benchmark datasets, i.e., Oxford5k [40], Paris6k [37],

and Holidays [18]. Quantitative results show the encour-

aging possibility for feature translation. In particular, HAE

works relatively well for feature pairs such as V-CroW to V-

SPoC (e.g., 0.1 mAP decrease on the Oxford5k benchmark)

and R-rMAC to R-CroW (e.g., 1.8 mAP decrease on the

Holidays benchmark). Interestingly, visual feature transla-

tion provides some intriguing results (see Fig. 4 later in our

experiments). For example, when translating from SIFT to

DELF, characteristics like rotation or viewpoint invariance

can be highlighted, which provides a new way to absorb

merits of handcrafted features to learning-based ones.

In short, our contributions can be summarized as below:
• We are the first to address the problem of visual feature

translation, which fills in the gaps between different

types of features.

• We are the first to quantify the affinity among different

types of visual features in retrieval, which can be used

to predict the quality of feature translation.

• The proposed scheme innovates in several detailed de-

signs, such as the HAE for training the translator and

the UAM for quantifying the affinity. The source code

and meta-data are released online1.
The rest of this paper is organized as follows. Section

2 reviews the related work. The proposed feature transla-

tion and feature relation mining algorithms are introduced

in Section 3. Quantitative experiments are given in Section

4. Finally, we conclude this work in Section 5.

1https://github.com/hujiecpp/VisualFeatureTranslation
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2. Related Work

Visual Feature. Early endeavors mainly include holis-

tic features (e.g., color histogram [15] and shape [7]) and

handcrafted local descriptors [6, 20, 30, 31, 33, 39, 47, 49],

such as SIFT [29] and ORB [45]. Then, different aggre-

gation schemes (e.g., Fisher Vector [36] and VLAD [19])

are proposed to encode local descriptors. Along with the

proliferation of neural networks, deep visual features have

dominated visual search [1, 4, 5, 12, 16, 21, 32, 41, 43, 52],

for instance, the local feature DELF [16] and the global fea-

ture produced by GeM [41] pooling are both prominent for

representing images. Detailed surveys of visual features can

be found in [50, 55].

Transfer Learning. Transfer learning [35, 51] aims to

improve the learning of the target task using the knowledge

in source domain. It can be subdivided into: instance trans-

fer, feature transfer, parameter transfer, and relation trans-

fer. Our work relates to, but is not identical with, the feature

transfer. Feature transfer [3, 9, 11, 13, 24, 27, 34, 42, 53]

is usually based on the hypothesis that the source domain

and target domain have some shared characteristics. It aims

to find a common feature space for both source and target

domains, which serves as a new representation to improve

the learning of the target task. For instance, the Structural

Corresponding Learning [8] uses pivot features to learn a

mapping from features of both domains to a shared fea-

ture space. For another instance, Joint Geometrical and Sta-

tistical Alignment [54] learns two coupled projections that

project features of both domains into subspaces where the

geometrical and distribution shifts are reduced. More re-

cently, deep learning has been introduced into feature trans-

fer [25, 26, 28, 46], in which neural networks are used to

find the common feature spaces. In contrast, the visual fea-

ture translation aims to learn a mapping to translate features

from the source space to the target space, and the translated

features are used directly in the target space.

3. Visual Feature Translation

Fig. 2 shows the overall flowchart of the proposed visual

feature translation. Firstly, source and target feature pairs

are extracted from image set for training in Stage I. Then,

feature translation based on HAE is learned in Stage II. Af-

ter translation, the affinity among different types of features

is quantified and visualized in Stage III.

3.1. Preprocessing

As shown in Stage I of Fig. 2, we prepare the source and

target features for training the subsequent translator. For the

handcrafted features such as SIFT [29], the local descriptors

are extracted by the designed procedures firstly. These lo-

cal descriptors are then aggregated by encoding schemes to

produce the global features. For the learning-based features

Algorithm 1 The Training of HAE

Input: Feature sets Vs and Vt, decoders Es, Et and en-

coder D parameterized by θEs
, θEt

and θD.

Output: The learned translator Es and D.

1: while not convergence do

2: Get Zs by Zs = Es(Vs).
3: Get Zt by Zt = Et(Vt).
4: Get Vst by translation: Vst = D(Zs).
5: Get Vtt by reconstruction: Vtt = D(Zt).
6: Optimize the Eq. 1.

7: end while

8: return Es and D.

such as V-MAC [44, 52], the feature maps are extracted by

neural networks firstly, followed by a pooling layer or en-

coding schemes to produce the feature vectors. In our set-

tings, we investigate in total 16 different types of features, a

detailed table of which can be found in Table 1. The feature

sets are arranged to form 16× 16 feature set pairs (Vs,Vt),
where Vs denotes the set of source features and Vt denotes

the set of target features. The implementation is detailed in

Section 4.1.

3.2. Learning to Translate

To achieve the task of translating different types of fea-

tures, a Hybrid Auto-Encoder (HAE) is proposed, which is

shown in Stage II of Fig. 2. For training HAE, the source

features Vs and the target features Vt are input to the model

which outputs the translated features Vst and the recon-

structed features Vtt.

Formally, HAE consists of two encoders Es, Et and one

decoder D. In training, vs ∈ Vs is encoded into the latent

feature zs ∈ Zs by the encoder Es, and the same for vt ∈ Vt

into zt ∈ Zt by Et. The latent features zs and zt are then

decoded to obtain the translated feature vst ∈ Vst and the

reconstructed feature vtt ∈ Vtt by the shared decoder D.

We define the Euclidean distance as E(x, y) = ‖x − y‖2.

The Es, Et and D are parameterized by θEs
, θEt

and θD,

which is learned by minimizing the following loss function:

L(θEs
, θEt

, θD) =Evst∈Vst,vt∈Vt
[E(vst, vt)]

+Evtt∈Vtt,vt∈Vt
[E(vtt, vt)],

(1)

where we define the first item as the translation error and

the second item as the reconstruction error.

In the processing of the feature translation, only Es and

D are used to translate features from Vs to Vt. The algo-

rithm for training the HAE is summarized as Alg. 1.

We then get the following characteristics for our visual

feature translation:

Characteristic I: Saturation. The performance of trans-

lated features is difficult to exceed that of the target features.

3006



This phenomenon is inherent in the feature translation pro-

cess. According to Eq. 1, the translation and reconstruc-

tion errors are minimized after optimizing. However, they

are difficult to approach zero due to the information loss

brought by the architecture of Auto-Encoder.

Characteristic II: Asymmetry. The convertibility of trans-

lation is discrepancy between A2B and B2A (We abbrevi-

ate A2B for the translation from features A to features B,

etc.). The networks for translating different types of fea-

tures are by nature asymmetry. HAE relies on the transla-

tion error and reconstruction error, which is not the same

between A2B and B2A.

Characteristic III: Homology. In general, homologous

features tend to have high convertibility. In contrast, the

convertibility is not guaranteed for heterogenous features.

Homologous features refer to the features extracted by the

same extractor but encoded or pooled by different methods

(e.g., DELF-FV [16, 36] and DELF-VLAD [16, 19], or V-

CroW [21] and V-SPoC [4]), and the heterogenous features

refer to the features extracted by different extractor. This

characteristic is analyzed in details in Section 4.2.

3.3. Feature Relation Mining

HAE provides a way to quantify the affinity between fea-

ture pairs. Therefore, the affinity among different types of

features can be quantified as the Stage III shown in Fig. 2.

First, we use the difference between translation and recon-

struction errors as a Directed Affinity Measurement (DAM)

and calculate the directed affinity matrix M which forms

a directed graph for all feature pairs. Second, in order

to quantify the total affinity among features, we design

an Undirected Affinity Measurement (UAM) by employ-

ing M . The calculated undirected affinity matrix U is sym-

metry, which forms a complete graph. Third, we visualize

the local similarity between features by using the Minimum

Spanning Tree (MST) of the complete graph.

Directed Affinity Measurement. We assume that af-

ter optimizing, for Eq. 1, the reconstruction error is smaller

than the translation error. This intuitive assumption is veri-

fied later in Section 4.3. Then, we can find that:

L ≥Evst∈Vst,vt∈Vt
[E(vst, vt)]

−Evtt∈Vtt,vt∈Vt
[E(vtt, vt)] ≥ 0.

(2)

According to this inequation, when minimizing L, the trans-

lation error is forced to approximate the reconstruction er-

ror. If translation error is close to reconstruction error, we

think the translation between source and target features is

similar to the reconstruction of target features, which in-

dicates the source and target features have high affinity.

Therefore, we regard the difference between the translation

and reconstruction errors as the affinity measurement. We

use Ms→t to represent the DAM between Vs and Vt. The

Algorithm 2 Affinity Calculation and Visualization

Input: The number of different types of features n, the

feature pairs (Vs,Vt) and the translator Es, D.

Output: The directed affinity matrix M and the undirected

affinity matrix U .

1: for i = 1 : n, j = 1 : n do

2: Calculate Mi→j by Eq. 3.

3: end for

4: for i = 1 : n, j = 1 : n do

5: Calculate Ri→j and Ci→j by Eq. 4 and Eq. 5.

6: end for

7: Calculate U by Eq. 6.

8: Generate the MST based on U by Kruskal’s algorithm.

9: Visualize the MST.

10: return M,U .

calculation of the element at row s and column t of M is

defined as follows:

Ms→t =Evst∈Vst,vt∈Vt
[E(vst, vt)]

−Evtt∈Vtt,vt∈Vt
[E(vtt, vt)].

(3)

Undirected Affinity Measurement. Due to the asym-

metry characteristic, M is asymmetric, which is unsuit-

able to be the total affinity measurement of feature pairs.

We then resort to designing an Undirected Affinity Mea-

surement (UAM) to quantify the overall affinity among dif-

ferent types of features. Specifically, we treat A2B and B2A

as a unified whole, therefore the rows and columns of M are

considered consistently. For the rows of M , the element at

row i and column j of the matrix R with normalized rows

is defined as:

Ri→j =
Mi→j −min(Mi→:)

max(Mi→:)−min(Mi→:)
, (4)

where min(Mi→:) and max(Mi→:) are the minimum and

maximum of the row i, and Ri→j is normalized to [0, 1].
In a similar way, for the columns of M , the element

at row i and column j of the matrix C with normalized

columns is defined as:

Ci→j =
Mi→j −min(M:→j)

max(M:→j)−min(M:→j)
, (5)

where min(M:→j) and max(M:→j) are the minimum and

maximum of the column j, and Ci→j is normalized to [0, 1].
The undirected affinity matrix U is defined as follows:

U =
1

4
(R+RT + C + CT ). (6)

If Uij has a small value, feature i and feature j are similar,

and vice versa.
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Figure 3. The visualization of the MST based on U with popular visual search features. The length of edges is the average value of

the results on Holidays, Oxford5k and Paris6k datasets. The images are the retrieval results for a query image of the Pantheon with

corresponding features in the main trunk of the MST. The close feature pairs such as R-SPoC and R-CroW have similar ranking lists.

The Visualization. We use the Minimum Spanning Tree

(MST) to visualize the relationship of features based on U .

The Kruskal’s algorithm [23] is used to find MST. This al-

gorithm firstly creates a forest G, where each vertex is a

separate tree. Then the edge with minimum weight that con-

nects two different trees is recurrently added to the forest G,

which combines two trees into a single tree. The final out-

put forms an MST for the complete graph. The MST helps

us to understand the most related feature pairs (connected

by an edge), as well as their affinity score (the length of

the edge). The overall procedure is summarized as Alg. 2.

The visualization result of the affinity among popular visual

features with a query example can be found in Fig. 3.

4. Experiments

We show the experiments in this section. First, we in-

troduce the experimental settings. Then, the translation per-

formance of our HAE is reported. Finally, we visualize and

analyze the results of relation mining.

4.1. Experimental Settings

Training Dataset. The Google-Landmarks dataset [16]

contains more than 1M images captured at various land-

marks all over the world. We randomly pick 40,000 images

from this dataset to train HAE, and pick 4,000 other images

to train PCA whitening [4, 17] and creating the codebooks

for local descriptors.

Test Dataset. We use the Holidays, Oxford5k and

Paris6k datasets for testing. The Holidays dataset [18] has

1,491 images with various scene types and 500 query im-

ages. The Oxford5k dataset [37] consists of 5,062 images

which have been manually annotated to generate a compre-

hensive ground truth for 55 query images. Similarly, the

Paris6k dataset [38] consists of 6,412 images with 55 query

images. Since the scalability of retrieval algorithms is not

our main concern, we do not use the disturbance dataset

Flickr100k [38]. Recently, the work in [40] revisited the la-

bels and queries on both Oxford5k and Paris6k. Because the

images remained the same, which does not affect the char-

acteristics of features, we do not use the revisited datasets

as our test datasets. The mean average precision (mAP) is

used to evaluate the retrieval performance. We translate the

source features of reference images to the target space, and

the target features of query images are used for testing.

Features. L1 normalization and square root [2] are

applied to SIFT [29]. The original extraction approach

(at most 1,000 local representations per image) is applied

to DELF [16]. The codebooks of FV [36] and VLAD

[19] are created for SIFT and DELF. We use 32 com-

ponents of Gaussian Mixture Model (GMM) to form the

codebooks of FV and the dimension of this feature is re-

duced to 2,048 by PCA whitening. The aggregated features

are termed as SIFT-FV and DELF-FV. We use 64 central

points to form the codebooks of VLAD and the dimension
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Holidays Oxford5k Paris6k

DELF-FV [16, 36] 83.42 73.38 83.06

DELF-VLAD [16, 19] 84.61 75.31 82.54

R-CroW [21] 86.38 61.73 75.46

R-GeM [41] 89.08 84.47 91.87

R-MAC [44, 52] 88.53 60.82 77.74

R-rGeM [41] 89.32 84.60 91.90

R-rMAC [52] 89.08 68.46 83.00

R-SPoC [4] 86.57 62.36 76.75

V-CroW [21] 83.17 68.38 79.79

V-GeM [41] 84.57 82.71 86.85

V-MAC [44, 52] 74.18 60.97 72.65

V-rGeM [41] 85.06 82.30 87.33

V-rMAC [52] 83.50 70.84 83.54

V-SPoC [4] 83.38 66.43 78.47

SIFT-FV [2, 29, 36] 61.77 36.25 36.91

SIFT-VLAD [2, 29, 19] 63.92 40.49 41.49

Table 1. The mAP (%) of target features.

of this feature is also reduced to 2,048 by PCA whiten-

ing. The aggregated features are termed as SIFT-VLAD

and DELF-VLAD. For off-the-shelf deep features, we use

ImageNet [10] pre-trained VGG-16 (abbreviated as V) [48]

and ResNet101 (abbreviated as R) [14] to produce the fea-

ture maps. The max-pooling (MAC) [44, 52], average-

pooling (SPoC) [4], weighted sum-pooling (CroW) [21],

and regional max-pooling (rMAC) [52] are then used to

pool the feature maps. The extracted features are termed

as V-MAC, V-SPoC, V-CroW, V-rMAC, R-MAC, R-SPoC,

R-CroW and R-rMAC, respectively. For fine-tuned deep

features, we consider the generalized mean-pooling (GeM)

and regional generalized mean-pooling (rGeM) [41]. The

extracted features are termed as V-GeM, V-rGeM, R-GeM

and R-rGeM, respectively.

Network Architecture. The task-specific network ar-

chitectures of HAE have a fixed latent feature space of 510

dimension. The parameter settings of encoder which con-

sists of fully-connect layers with ReLU-based activation

function are 2048-2048-2048-510 or 512-512-510 for en-

coding the features with 2048 or 512 dimension. The pa-

rameter settings of the decoder are in reverse of that of en-

coder, depending on the dimension of the output features.

The output features are L2 normalized. We use Multi-Layer

Perceptron (MLP) as our baseline, whose architecture are

2048-2048-2048 or 512-512-512 for encoding the features

with 2048 or 512 dimension, and the encoders are in re-

verse. We used Adam [22] optimizer to minimize the ob-

jective function for all feature pairs, where the learning rate

is set as 0.00001.

4.2. Translation Results

Quantitative Evaluation. The performance of target

features is shown in Table 1. We use the mAP difference

between target and translated features to show the transla-

tion results. As shown in Table 2, we use a color map which

is normalized according to the minimum (white) and maxi-

mum (colored) values to show results of each dataset. From

the result, we find although there are still few differences

between datasets, the trend of the colored values is almost

the same.

For further analyzing, the results can be divided into

three groups: high convertibility, inferior convertibility and

low convertibility. Firstly, the high convertibility results ap-

pear mostly in the translation between homologous features.

For example, when translating from V-CroW to V-SPoC,

the mAPs drop 3.8, 0.1, 0.3 on the Holidays, Oxford5k

and Paris6k datasets, respectively. Secondly, the inferior

results are found between heterogenous features such as R-

based features and V-based features. For example, when

translating from R-GeM to V-GeM, the mAPs decrease 5.7,

11.3, 2.3 on the three datasets, respectively. Another exam-

ple is the translation from V-rGeM to R-rMAC, the mAPs

decrease 12.4, 7.1, 5.8 on the three datasets, respectively.

Thirdly, the low convertibility results also emerge between

heterogenous features. For example, when translating from

SIFT-FV to DELF-FV, the performance is not high. An-

other example is the translation from DELF-VLAD to R-

GeM, in which the former is extracted by Resnet50 and the

latter is extracted by Resnet101. We explain it from the

different depth of network architectures, different training

procedures and different encoding/pooling schemes.

The average mAP difference of HAE compared with

MLP on three datasets is shown in Table 3. From the re-

sults, we can see MLP has a very unstable performance. In

contrast, HAE with appropriate dimension of latent feature

performs better than MLP, due to the regularization effect

brought by the “bottleneck” architecture (which enforces

encoder to learn the most valuable information for decoder).

Qualitative Evaluation. Some cross-feature retrieval

results are shown in Fig. 4. The first column shows a suc-

cessful translation from V-CroW to V-SPoC, the ranking

lists are almost the same. The second column shows an infe-

rior translation from R-GeM to V-GeM. Interestingly, when

querying an image of the Arc de Triomphe at night, the im-

ages of the Arc de Triomphe during the day are retrieved

by the translated features and get high ranks, which inspires

the integration of feature translation to improve cross-modal

retrieval. The most exciting result lies in the third column:

although the translation from SIFT-FV to DELF-FV suffers

a low performance, the characteristics like rotation or view-

point invariance can be highlighted by translation, which

well bridges the merits of the handcrafted features to the

learning-based features. For example, the images from the

bottom view of the Eiffel Tower and the Arc de Triomphe

get high ranks (both at Rank@4). The rotated images of

them also have high ranks (at Rank@7 and Rank@3). Then,

in the fourth column, we show these characteristics do not

symmetrically exist in the reverse translation from DELF-
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R-CroW 12.9 16.2 1.2 8.6 4.9 7.4 3.2 2.6 8.8 13.1 17.9 10.5 8.2 8.5 32.6 38.4

R-GeM 10.2 13.4 6.4 1.8 5.5 2.1 3.0 5.0 6.7 5.7 12.6 5.3 7.1 8.8 33.5 38.1

R-MAC 12.7 15.1 2.8 8.1 4.1 7.7 1.8 2.7 6.2 12.3 8.8 10.3 4.6 7.3 38.5 41.7

R-rGeM 11.3 12.8 4.5 2.1 6.0 1.7 2.7 5.5 9.3 6.7 13.7 4.7 5.8 9.9 35.8 40.0

R-rMAC 11.6 14.8 1.8 8.6 4.3 8.0 2.0 3.3 7.6 10.6 11.6 8.9 5.2 9.5 37.2 40.6

R-SPoC 12.6 15.7 1.4 9.1 5.1 8.0 2.9 2.6 8.1 13.0 18.7 11.0 7.8 8.2 31.5 36.7

V-CroW 18.8 20.0 15.1 17.7 14.8 18.4 12.1 15.3 2.6 9.8 3.0 9.8 2.2 3.8 35.2 38.1

V-GeM 17.8 19.6 18.3 14.0 21.0 15.2 13.5 20.1 6.8 3.5 6.7 2.8 5.9 9.8 34.8 38.4

V-MAC 33.5 36.7 33.7 34.6 31.1 35.3 22.2 35.8 11.4 18.9 6.7 20.9 7.3 15.2 46.9 50.5

V-rGeM 18.0 19.9 17.2 15.0 20.2 12.7 12.4 17.5 8.9 2.4 9.9 1.4 5.8 10.4 35.4 37.4

V-rMAC 23.3 26.1 21.5 25.9 21.5 23.3 14.1 22.9 6.6 12.8 4.7 12.6 3.6 9.9 42.8 45.1

V-SPoC 17.2 18.0 13.6 16.8 14.7 16.5 11.1 13.4 1.8 10.3 5.7 8.1 3.6 2.2 30.9 36.6

SIFT-FV 55.9 63.8 61.2 68.5 69.5 66.6 57.1 59.3 59.5 60.8 63.4 60.3 59.4 54.9 3.7 4.9

SIFT-VLAD 57.9 63.6 61.4 69.7 70.7 67.3 56.0 60.9 60.5 59.7 64.8 60.4 60.4 55.9 1.6 5.9

DELF-FV 4.8 9.5 15.5 30.8 22.2 28.8 18.5 16.3 11.7 22.1 18.4 20.2 21.2 8.2 30.3 33.2

DELF-VLAD 5.2 4.2 10.4 27.0 11.8 25.5 13.7 9.7 8.4 19.6 22.8 17.4 17.9 7.9 26.8 30.1

R-CroW 27.2 27.2 2.1 24.4 5.2 21.3 8.3 2.8 16.8 27.1 21.1 21.3 20.3 15.3 27.9 30.6

R-GeM 19.3 15.8 1.5 2.6 0.9 3.1 5.1 3.4 12.8 11.3 18.6 11.2 14.9 12.5 31.6 33.9

R-MAC 30.5 28.0 8.0 26.4 5.8 25.8 9.8 6.9 17.6 27.9 20.6 26.8 23.9 18.3 30.6 33.3

R-rGeM 17.8 16.5 1.4 3.8 1.1 2.9 4.8 1.5 11.4 11.8 19.2 9.6 14.6 13.2 29.7 32.2

R-rMAC 26.5 24.6 0.9 21.0 1.3 19.1 4.9 1.5 15.3 22.4 17.1 18.9 16.4 15.3 28.2 31.8

R-SPoC 25.9 24.6 2.1 22.8 4.4 20.6 7.0 1.8 15.3 24.5 21.7 20.8 19.5 13.6 27.0 29.9

V-CroW 23.5 23.2 13.6 32.3 19.0 33.8 14.6 14.8 1.0 19.2 0.3 17.6 6.2 0.1 26.7 31.2

V-GeM 17.1 11.9 11.3 17.3 15.9 16.1 9.1 12.3 3.2 2.2 4.7 1.0 6.5 4.6 29.3 34.0

V-MAC 40.0 40.4 33.2 46.8 29.1 52.0 30.2 33.6 9.9 26.1 5.4 32.4 10.5 14.4 30.9 36.3

V-rGeM 18.1 13.4 9.7 21.6 16.0 17.0 7.1 10.8 3.8 4.1 6.8 1.9 6.3 7.1 25.8 29.7

V-rMAC 31.3 32.9 21.4 38.4 20.3 39.0 18.4 22.0 3.7 17.1 0.9 16.9 1.3 5.1 27.6 32.9

V-SPoC 24.7 22.5 14.8 38.3 17.9 36.4 17.0 16.0 2.1 19.1 3.5 17.3 6.6 0.5 24.6 30.6

SIFT-FV 65.3 67.9 55.4 80.9 56.2 79.5 61.0 57.2 61.0 77.1 56.4 75.3 64.1 59.2 9.5 13.5

SIFT-VLAD 63.4 67.3 57.0 81.2 56.5 79.7 61.4 57.2 59.9 76.6 56.5 75.2 63.2 57.6 10.2 9.8

DELF-FV 3.7 6.0 9.5 20.1 14.1 18.8 13.4 13.4 7.2 13.4 17.9 13.5 13.7 6.3 14.5 16.5

DELF-VLAD 6.4 3.3 8.9 18.0 13.0 16.0 11.5 10.7 5.5 12.3 19.1 12.9 13.7 6.5 15.0 19.0

R-CroW 16.8 17.3 4.0 17.4 6.0 15.1 8.9 4.9 11.0 14.4 18.4 13.5 14.9 11.1 17.6 22.7

R-GeM 10.7 8.3 0.2 3.5 1.9 2.9 0.6 1.1 2.7 2.3 5.7 4.0 7.6 3.9 19.4 20.5

R-MAC 18.9 18.8 4.7 15.9 7.9 14.2 9.0 6.5 12.3 14.2 18.0 13.8 18.1 12.2 20.6 25.2

R-rGeM 9.3 9.4 2.7 3.5 1.1 3.2 1.1 0.4 3.4 3.7 7.0 3.9 6.6 3.8 17.1 20.7

R-rMAC 14.2 13.6 0.2 13.7 3.4 10.4 4.9 0.9 6.9 9.6 11.9 8.9 9.8 7.1 18.2 22.0

R-SPoC 15.2 15.2 3.3 17.1 5.1 14.3 8.0 3.6 10.0 13.6 15.8 12.7 13.2 9.7 16.8 22.0

V-CroW 18.1 20.0 10.4 22.9 13.9 23.2 13.9 13.5 1.0 10.9 1.7 9.6 5.0 0.3 19.3 21.6

V-GeM 10.6 12.2 7.4 11.4 8.0 11.3 6.7 10.0 1.8 1.9 1.4 2.0 4.8 2.3 13.5 17.7

V-MAC 29.6 33.0 24.9 31.4 24.7 34.6 23.6 29.3 8.7 15.1 7.3 16.3 9.7 9.2 26.8 30.4

V-rGeM 10.9 12.8 6.2 12.3 6.8 12.3 5.8 6.5 1.2 3.3 3.1 1.2 4.8 1.7 12.6 16.0

V-rMAC 21.4 24.2 12.9 25.0 19.5 22.3 15.4 14.9 1.7 9.7 1.0 8.5 2.7 1.8 20.0 24.2

V-SPoC 16.9 21.8 11.6 23.8 14.2 25.6 14.1 13.8 2.5 13.2 2.7 12.7 6.5 1.6 15.4 19.7

SIFT-FV 59.8 64.0 59.3 82.2 67.3 78.9 62.3 61.7 63.0 71.6 63.0 68.9 66.9 60.1 8.8 10.0

SIFT-VLAD 58.7 60.7 60.7 80.5 67.4 78.2 63.5 61.4 62.3 70.9 63.6 68.7 65.8 59.1 5.9 10.2

Table 2. The mAP(%) difference between target and translated features on three public datasets: Holidays (Green), Oxford5k (Blue) and

Paris6k (Brown) in the first, second and third blocks, respectively.

FV to SIFT-FV. We explain it from the limited representa-

tive ability of the SIFT-FV.

4.3. Relation Mining Results

After calculating the directed affinity matrix M and the

undirected affinity matrix U , we average the values of the

three datasets and draw the heat maps. As shown in Fig. 5

(left), the values of directed affinity matrix M verify our

assumption that the reconstruction error is smaller than the

translation error as all the values are positive. As shown in

Fig. 5 (right), the positions of light and dark colors are al-

most the same as that of the translation results in Table 2,

which indicates the UAM can be used to predict the trans-

lation quality between two given features. To study the re-

lationship between features better, we visualize the MST

based on U as Fig. 3. The images are the ranking lists for

a query image with corresponding features. Since the re-

sults of leaf nodes connected in the MST (e.g. R-CroW and

R-SPoC) are very similar, we mainly show the results of

nodes in the trunk of the MST. The closer features return
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(a) V-CroW to V-SPoC

Query

Query

(b) R-GeM to V-GeM

Query

Query

(c) SIFT-FV to DELF-FV 

Query

Query

(d) DELF-FV to SIFT-FV

Query

Query

Figure 4. The retrieval results for querying images of the Eiffel Tower (up) and the Arc de Triomphe (down) with the target features and

the translated features. The images are resized for better view and the interesting results are colored by red bounding boxes.
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DELF-FV 1.5 5.9 72.0 85.8 73.6 86.0 77.9 72.7 9.8 17.4 18.5 15.3 16.1 9.7 43.1 46.9

DELF-VLAD 4.8 1.7 71.8 85.7 73.1 86.0 77.4 72.4 9.4 14.5 20.1 13.9 16.9 9.0 43.3 47.1

R-CroW 76.7 77.3 1.1 83.3 3.5 15.2 4.6 1.6 11.2 18.3 19.7 14.9 13.6 10.9 42.8 47.0

R-GeM 76.9 77.2 71.2 1.0 58.8 0.9 9.4 72.7 7.0 6.6 12.7 5.9 9.7 7.0 43.2 47.0

R-MAC 77.0 77.5 2.9 65.6 2.3 84.9 4.0 3.6 12.7 18.6 15.8 16.9 14.8 12.5 43.2 47.2

R-rGeM 77.7 76.8 4.0 1.2 69.4 0.9 3.2 22.9 7.5 7.3 15.3 5.4 9.2 7.7 43.2 46.8

R-rMAC 76.1 76.7 0.6 25.7 0.1 10.5 1.1 0.2 9.9 15.7 14.1 12.3 10.0 9.4 43.1 47.0

R-SPoC 76.8 77.3 0.7 82.0 3.0 15.2 4.2 1.4 10.3 17.3 18.8 14.1 12.3 9.7 42.9 46.9

V-CroW 21.3 25.1 14.8 24.7 17.1 27.8 15.5 15.0 0.9 11.1 0.1 10.0 3.2 0.3 43.1 46.5

V-GeM 16.6 23.2 18.7 15.3 27.7 15.2 12.6 22.0 1.8 1.2 0.2 0.7 3.4 2.8 43.1 46.2

V-MAC 44.6 66.4 53.1 71.8 51.5 69.9 37.0 62.7 8.7 16.4 3.5 17.9 6.9 10.6 43.3 46.9

V-rGeM 20.7 24.3 14.2 18.7 20.3 13.6 10.3 12.9 3.0 2.6 3.5 1.1 3.4 3.2 43.0 46.3

V-rMAC 29.3 42.1 22.9 34.1 24.3 32.7 17.8 22.3 2.8 11.9 1.3 10.2 1.5 3.6 42.2 46.1

V-SPoC 19.6 22.6 13.3 26.9 16.3 25.3 15.8 14.4 1.9 12.5 2.0 10.7 4.9 0.9 41.1 45.8

SIFT-FV 78.3 79.1 72.9 87.0 74.2 87.0 78.6 73.8 59.8 74.6 67.8 77.1 76.2 57.3 4.1 12.6

SIFT-VLAD 78.0 78.8 72.9 87.0 73.9 86.8 78.5 73.6 59.6 77.1 67.9 80.6 77.6 57.9 8.6 4.3

DELF-FV 3.4 6.6 13.7 23.4 19.0 21.8 15.0 15.5 10.1 16.5 19.1 15.6 15.3 9.4 28.2 30.7

DELF-VLAD 5.2 3.5 11.7 21.4 15.4 19.7 13.1 12.2 8.1 15.3 21.0 13.8 14.3 8.9 27.5 30.7

R-CroW 18.9 20.2 2.4 16.8 5.4 14.6 6.8 3.4 12.2 18.2 19.1 15.1 14.5 11.7 26.0 30.6

R-GeM 13.4 12.5 2.6 2.6 1.5 2.7 2.9 3.1 7.4 6.4 12.3 6.9 9.8 8.4 28.2 30.8

R-MAC 20.7 20.6 5.2 16.8 5.9 15.9 6.8 5.4 12.0 18.1 15.8 16.9 15.5 12.6 29.9 33.4

R-rGeM 12.8 12.9 1.1 3.2 2.0 2.6 2.9 2.2 8.0 7.4 13.3 6.1 9.0 9.0 27.6 31.0

R-rMAC 17.4 17.7 1.0 14.4 3.0 12.5 3.9 1.9 9.9 14.2 13.5 12.3 10.5 10.6 27.9 31.5

R-SPoC 17.9 18.5 2.3 16.3 4.9 14.3 6.0 2.7 11.1 17.1 18.7 14.9 13.5 10.5 25.1 29.5

V-CroW 20.2 21.1 13.0 24.3 15.9 25.1 13.5 14.5 1.6 13.3 1.7 12.3 4.5 1.4 27.1 30.3

V-GeM 15.2 14.6 12.3 14.2 15.0 14.2 9.8 14.2 3.9 2.6 4.3 1.9 5.7 5.6 25.9 30.0

V-MAC 34.3 36.7 30.6 37.6 28.3 40.6 25.3 32.9 10.0 20.0 6.5 23.2 9.2 12.9 34.9 39.1

V-rGeM 15.7 15.4 11.0 16.3 14.3 14.0 8.4 11.6 4.6 3.3 6.6 1.5 5.6 6.4 24.6 27.7

V-rMAC 25.4 27.7 18.6 29.7 20.4 28.2 15.9 20.0 4.0 13.2 2.2 12.7 2.5 5.6 30.2 34.1

V-SPoC 19.6 20.8 13.4 26.3 15.6 26.2 14.1 14.4 2.1 14.2 4.0 12.7 5.6 1.4 23.6 29.0

SIFT-FV 60.3 65.2 58.7 77.2 64.3 75.0 60.1 59.4 61.2 69.8 60.9 68.2 63.5 58.1 7.3 9.5

SIFT-VLAD 60.0 63.9 59.7 77.1 64.9 75.1 60.3 59.8 60.9 69.1 61.6 68.1 63.1 57.5 5.9 8.6

Table 3. The average mAP difference (%) of MLP (Green) and

HAE (Blue) on three datasets.

more similar ranking lists, which indicates the rationality of

our affinity measurement from the other perspective.

5. Conclusion

In this work, we present the first attempt to investigate

visual feature translation, as well as the first attempt at

quantifying the affinity among different types of features

in visual search. In particular, we propose a Hybrid Auto-

Encoder (HAE) to translate visual features. Based on HAE,

we design an Undirected Affinity Measurement (UAM) to
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Figure 5. The heat maps of the directed affinity matrix M (left)

and the undirected affinity matrix U (right), the values are the av-

eraged results on Holidays, Oxford5k and Paris6k datasets.

quantify the affinity. Extensive experiments have been con-

ducted on several public datasets with 16 different types of

widely-used features in visual search. Quantitative results

prove the encouraging possibility of feature translation.
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Pérez. Aggregating local descriptors into a compact image

representation. In CVPR, 2010.

[20] Herve Jegou, Cordelia Schmid, Hedi Harzallah, and Jakob

Verbeek. Accurate image search using the contextual dis-

similarity measure. PAMI, 2010.

[21] Yannis Kalantidis, Clayton Mellina, and Simon Osindero.

Cross-dimensional weighting for aggregated deep convolu-

tional features. In ECCV, 2016.

[22] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. In ICLR, 2014.

[23] Joseph B Kruskal. On the shortest spanning subtree of a

graph and the traveling salesman problem. AM MATH SOC,

1956.

[24] Jingen Liu, Mubarak Shah, Benjamin Kuipers, and Silvio

Savarese. Cross-view action recognition via view knowledge

transfer. In CVPR, 2011.

[25] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael I

Jordan. Learning transferable features with deep adaptation

networks. In ICML, 2015.

[26] Mingsheng Long, Jianmin Wang, Yue Cao, Jiaguang Sun,

and S Yu Philip. Deep learning of transferable representation

for scalable domain adaptation. TKDE, 2016.

[27] Mingsheng Long, Jianmin Wang, Guiguang Ding, Jiaguang

Sun, and Philip S Yu. Transfer joint matching for unsuper-

vised domain adaptation. In CVPR, 2014.

[28] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I

Jordan. Deep transfer learning with joint adaptation net-

works. In ICML, 2017.

[29] David G Lowe. Distinctive image features from scale-

invariant keypoints. IJCV, 2004.

[30] Jiřı́ Matas Michal Perďoch, Ondřej Chum. Efficient repre-

sentation of local geometry for large scale object retrieval.

In CVPR, 2009.

[31] Krystian Mikolajczyk, Tinne Tuytelaars, Cordelia Schmid,

Andrew Zisserman, Jiri Matas, Frederik Schaffalitzky, Timor

Kadir, and Luc Van Gool. A comparison of affine region

detectors. IJCV, 2005.

[32] Joe Yue-Hei Ng, Fan Yang, and Larry S Davis. Exploiting

local features from deep networks for image retrieval. In

CVPRW, 2015.

[33] David Nister and Henrik Stewenius. Scalable recognition

with a vocabulary tree. In CVPR, 2006.

[34] Sinno Jialin Pan, Ivor W Tsang, James T Kwok, and Qiang

Yang. Domain adaptation via transfer component analysis.

TNN, 2011.

[35] Sinno Jialin Pan, Qiang Yang, et al. A survey on transfer

learning. TKDE, 2010.

[36] Florent Perronnin, Yan Liu, Jorge Sánchez, and Hervé
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