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Abstract

Studies have shown that a dominant class of questions

asked by visually impaired users on images of their sur-

roundings involves reading text in the image. But today’s

VQA models can not read! Our paper takes a first step to-

wards addressing this problem. First, we introduce a new

“TextVQA” dataset to facilitate progress on this important

problem. Existing datasets either have a small proportion

of questions about text (e.g., the VQA dataset) or are too

small (e.g., the VizWiz dataset). TextVQA contains 45,336

questions on 28,408 images that require reasoning about

text to answer. Second, we introduce a novel model archi-

tecture that reads text in the image, reasons about it in the

context of the image and the question, and predicts an an-

swer which might be a deduction based on the text and the

image or composed of the strings found in the image. Con-

sequently, we call our approach Look, Read, Reason & An-

swer (LoRRA). We show that LoRRA outperforms existing

state-of-the-art VQA models on our TextVQA dataset. We

find that the gap between human performance and machine

performance is significantly larger on TextVQA than on

VQA 2.0, suggesting that TextVQA is well-suited to bench-

mark progress along directions complementary to VQA 2.0.

1. Introduction

The focus of this paper is endowing Visual Question An-

swering (VQA) models a new capability – the ability to read

text in images and answer questions by reasoning over the

text and other visual content.

VQA has witnessed tremendous progress. But today’s

VQA models fail catastrophically on questions requiring

reading!1 This is ironic because these are exactly the ques-

tions visually-impaired users frequently ask of their assis-

tive devices. Specifically, the VizWiz study [5] found that

up to 21% of these questions involve reading and reasoning

about the text captured in the images of a user’s surround-

1All top entries in the CVPR VQA Challenges (2016-18) struggle to

answer questions in category requiring reading correctly.

 

   

  

Figure 1: Examples from our TextVQA dataset that require VQA

models to understand text embedded in images to answer the ques-

tions correctly. Ground truth answers are shown in green and the

answers predicted by a state-of-the-art VQA model (Pythia [17])

are shown in red. Clearly, today’s VQA models fail at answering

questions that involve reading and reasoning about text in images.

ings – ‘what temperature is my oven set to?’, ‘what denom-

ination is this bill?’.

Consider the question in Fig. 1(a) – ‘What does it say

near the star on the tail of the plane?’ from the TextVQA

dataset. With a few notable exceptions, today’s state-of-

art VQA models are predominantly monolithic deep neu-

ral networks (without any specialized components). Con-

sider what we are asking such models to learn to answer

this question – the model must learn to

• realize when the question is about text (‘What . . . say?’),

• detect image regions containing text ( ‘15:20’, ‘500’ ),
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• convert pixel representations of these regions (convolu-

tional features) to symbols (‘15:20’) or textual representa-

tions (semantic word-embeddings),

• jointly reason about detected text and visual content, e.g.

resolving spatial or other visual reference relations (‘tail of

the plane . . . on the back’) to focus on the correct regions.

• finally, decide if the detected text needs to be ‘copy-

pasted’ as the answer (e.g. ‘16’ in Fig. 1 (c)) or if the

detected text informs the model about an answer in the

answer space (e.g. answering ‘jet’, in Fig. 1(a))

When laid out like that, it is perhaps unsurprising why

today’s models have not been able to make progress on

reading questions – simply put, despite all the strengths of

deep learning, it seems hopelessly implausible that all of the

above skills will simply emerge in a monolithic network all

from the distant supervision of VQA accuracy.

Fortunately, we can do more than just hope. Optical

Character Recognition (OCR) is a mature sub-field of com-

puter vision. A key thesis of this work is the following –

we should bake in inductive biases and specialized com-

ponents (e.g. OCR) into models to endow them with the

different skills (e.g. reading, reasoning) required by the all-

encompassing task of VQA.

Specifically, we propose a new VQA model that includes

OCR as a module. We call it Look, Read, Reason & Answer

(LoRRA). Our model architecture incorporates the regions

(bounding boxes) in the image containing text as entities

to attend over (in addition to object proposals). It also in-

corporates the actual text recognized in these regions (e.g.

‘15:20’) as information (in addition to visual features) that

the model learns to reason over. Finally, our model includes

a mechanism to decide if the answer produced should be

‘copied’ over from the OCR output (in more of a generation

or slot-filling flavor), or should be deduced from the text

(as in a standard discriminative prediction paradigm popu-

lar among existing VQA models). Our model learns this

mechanism end-to-end. While currently limited in scope

to OCR, our model is as an initial step towards endowing

VQA models with the ability to reason over unstructured

sources of external knowledge (in this case text found in

a test image) and accommodate multiple streams of infor-

mation flow (in this case predicting an answer from a pre-

determined vocabulary or generating an answer via copy).

One reason why there has been limited progress on VQA

models that can read and reason about text in images is be-

cause such questions, while being a dominant category in

real applications for aiding visually impaired users [5], are

infrequent in the standard VQA datasets [3, 10, 51] because

they were not collected in settings that mimic those of vi-

sually impaired users. While the VizWiz dataset [13] does

contain data collected from visually impaired users, the ef-

fective size of the dataset is small due to 58% of the ques-

tions being “unanswerable”. This makes it challenging to

study the problem systematically, train effective models, or

even draw sufficient attention to this important skill that cur-

rent VQA models lack.

To this end, we introduce the TextVQA dataset. It con-

tains 45,336 questions asked by (sighted) humans on 28,408

images from the Open Images dataset [27] from categories

that tend to contain text e.g. “billboard”, “traffic sign”,

“whiteboard”. Questions in the dataset require reading and

reasoning about text in the image. Each question-image pair

has 10 ground truth answers provided by humans.

Models that do well on this dataset will not only need to

parse the image and the question as in traditional VQA, but

also read the text in the image, identify which of the text

might be relevant to the question, and recognize whether a

subset of the detected text is directly the answer (e.g., in

the case of ‘what temperature is my oven set to?’) or addi-

tional reasoning is required on the detected text to answer

the question (e.g., ‘which team is winning?’).

We show that LoRRA outperforms existing state-of-the-

art VQA models on the TextVQA dataset. Overall, our con-

tributions are:

• We introduce a novel dataset (TextVQA) containing

questions which require the model to read and reason

about the text in the image to be answered.

• We propose Look, Read, Reason & Answer (LoRRA): a

novel model architecture which explicitly reasons over the

outputs from an OCR system when answering questions.

• LoRRA outperforms existing state-of-the-art VQA mod-

els on our TextVQA dataset.

2. Related work
Visual Question Answering. VQA has seen numerous

advances and new datasets since the first large-scale VQA

dataset was introduced by Antol et al. [3]. This dataset

was larger, more natural, and more varied than earlier VQA

datasets such as DAQUAR [31] or COCO-QA [38] but had

linguistic priors which were exploited by models to answer

questions without sufficient visual grounding. This issue

was addressed by Goyal et al. [10] by adding complemen-

tary triplets (Ic, q, ac) for each original triplet (Io, q, ao)

where image Ic is similar to image Io but the answer for

the given question q changes from ao to ac. To study vi-

sual reasoning independent of language, non-photo-realistic

VQA datasets have been introduced such as CLEVR [18],

NLVR [42] and FigureQA [21]. Wang et al. [45] introduced

a Fact-Based VQA dataset which explicitly requires exter-

nal knowledge to answer a question.

Text based VQA. Several existing datasets study text de-

tection and/or parsing in natural everyday scenes: COCO-

Text [43], Street-View text [44] IIIT-5k [33] and ICDAR

2015 [22]. These do not involve answering questions about

the images or reasoning about the text. DVQA [20] as-

sesses automatic bar-chart understanding by training mod-

els to answer questions about graphs and plots. The Multi-
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Figure 2: Overview of our approach Look, Read, Reason & Answer (LoRRA). Our approach looks at the image, reads its text, reasons

about the image and text content and then answers, either with an answer a from the fixed answer vocabulary or by selecting one of the

OCR strings s. Dashed lines indicated not jointly-trained components. The answer cubes on the right with darker color have more attention

weight. The OCR token “20” has the highest attention weight in the example.

Output Model (MOM) introduced in DVQA uses an OCR

module to read chart specific content. Textbook QA (TQA)

[24] considers the task of answering questions from middle-

school textbooks, which often require understanding and

reasoning about text and diagrams. Similarly, AI2D [23]

contains diagram based multiple-choice questions. Note

that these works all require reasoning about text to answer

questions, but in narrow domains (bar charts, textbook dia-

grams, etc.). The focus of our work is to reason and answer

questions about text in natural everyday scenes. MemexQA

[16] introduces a VQA task which involves reasoning about

the time and date at which a photo/video was taken, but this

information is structured and is part of the meta data.

Visual Representations for VQA Models. VQA mod-

els typically use some variant of attention to get a represen-

tation of the image that is relevant for answering the ques-

tion [2, 7, 30, 47, 48, 51, 17]. Object region proposals and

the associated features are generated by using a detection

network which are then spatially attended to, conditioned on

a question representation. In this work, we extend the repre-

sentations that a VQA model reasons over. Specifically, in

addition to attending over object proposals, our model also

attends over the regions where text is detected.

Copy Mechanism. A core component of our proposed

model is its ability to decide whether the answer to a ques-

tion should be an OCR token detected in the image, or if

the OCR tokens should only inform the answer to the ques-

tion. The former is implemented as a “copy mechanism”

– a learned slot filling approach. Our copy mechanism is

based on a series of works on pointer generator networks

[11, 39, 32, 12, 34]. A copy mechanism provides networks

the ability to generate out-of-vocabulary words by pointing

at a word in context and then copying it to the generated

result. This approach has been used for a variety of tasks in

NLP such as summarization [11, 34, 39], question answer-

ing [46], language modelling [32], neural machine transla-

tion [12], and dialog [37].

3. LoRRA: Look, Read, Reason & Answer

In this section, we introduce our novel model architec-

ture to answer questions about images which require read-

ing the text in the images to answer the questions.

We assume we get an image v and a question q as input,

where the question consists of L words w1, w2, . . . , wL. At

a high level, our model contains three components: (i) a

VQA component to reason and infer the answer based on

the image v and the question q (Sec 3.3); (ii) a reading com-

ponent which allows our model to read the text in the image

(Sec 3.2); and (iii) an answering module which either pre-

dicts from an answer space or points to the text read by the

reading component (Sec. 3.3). The overall model is shown

in Fig. 2. Note that, the OCR module and backbone VQA

model and can be any OCR model and any recent attention-

based VQA model. Our approach is agnostic to the internal

details of these components. We detail the exact implemen-

tation choices and hyper parameters in Sec. 3.4.

3.1. VQA Component

Similar to many VQA models [7, 17], we first embed

the question words w1, w2, . . . , wL of the question q with a

pre-trained embedding function (e.g. GloVe [36]) and then

encode the resultant word embeddings iteratively with a re-

current network (e.g. LSTM [15]) to produce a question em-

bedding fQ(q). For images, the visual features are repre-

sented as spatial features, either in the form of grid-based

convolutions and/or features extracted from the bounding

box proposals [1]. We refer to these features as fI(v) where

fI is the network which extracts the image representation.

We use an attention mechanism fA over the spatial fea-

tures [4, 7], which predicts attentions based on the fI(v)
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and fQ(q) and gives a weighted average over the spatial

features as the output. We then combine the output with the

question embedding. At a high level, the calculation of our

VQA features fV QA(v, q) can be written as:

fV QA(v, q) = fcomb(fA(fI(v), fQ(q)), fQ(q)) (1)

where fcomb is the combination module (
⊗

) in Fig. 2.

Assuming we have a fixed answer space of a1, . . . , aN ,

we use a feed-forward MLP fc on the combined embed-

ding fV QA(v, q) to predict probabilities p1, . . . , pN where

the probability of ai being the correct answer is pi.

3.2. Reading Component

To add the capability of reading text from an image, we

rely on an OCR model which is not jointly trained with our

system. We assume that the OCR model can read and return

word tokens from an image, e.g. [6, 41]. The OCR model

extracts M words s = s1, s2, ..., sM from the image which

are then embedded with a pre-trained word embedding, fO.

Finally, we use the same architecture as VQA component to

get combined OCR-question features, fOCR. Specifically,

fOCR(s, q) = fcomb(fA(fO(s), fQ(q)), fQ(q)) (2)

This is visualized in Fig. 2. Note that the parameters of the

functions fA and fcomb are not shared with the VQA model

component above but they have the same architecture, just

with different input dimensions. During weighted attention

as the features are multiplied by weights and then averaged,

the ordering information gets lost. To provide the answer

module with the ordering information of the original OCR

tokens, we concatenate the attention weights and the final

weight-averaged features. This allows the answer module to

know the original attention weights for each token in order.

3.3. Answer Module

With a fixed answer space, the current VQA models are

only able to predict fixed tokens which limits the generaliza-

tion to out-of-vocabulary (OOV) words. As the text in im-

ages frequently contains words not seen at training time, it is

hard to answer text-based questions based on a pre-defined

answer space alone. To generalize to arbitrary text, we take

inspiration from pointer networks which allow pointing to

OOV words in context [11, 39, 32, 12, 34]. We extend

our answer space through addition of a dynamic component

which corresponds to M OCR tokens. The model now has

to predict probabilities (p1, . . . , pN , . . . , pN+M ) for N+M

items in the answer space instead of the original N items.

We pick the index with the highest probability pi as the

index of our predicted answer. If the model predicts an in-

dex larger than N (i.e., among the last M tokens in answer

space), we directly “copy” the corresponding OCR token

as the predicted answer. Hence, our answering module can

VQA 2.0 Accuracy

Model test-dev

BUTD [1] 65.32

Counter [50] 68.09

BAN [25] 69.08

Pythia v0.1 [17] 68.49

Pythia v0.3 (Ours) 68.71

Pythia v0.3 + LoRRA (Ours) 69.21

VizWiz Accuracy

Model test

BAN[25] 51.40

Pythia v0.3 (Ours) 54.72

Table 1: Single model VQA 2.0 and VizWiz performance in %.

Our revised implementation of Pythia, v0.3, with LoRRA outper-

forms or is comparable to state-of-the-art.

be thought of as “copy if you need” module which allows

answering from the OOV words using the OCR tokens.

With all of the components, the final equation fLoRRA

for predicting the answer probabilities can be written as:

fLoRRA(v, s, q) = fMLP ([fV QA(v, q); fOCR(s, q)]) (3)

where [; ] refers to concatenation and fMLP is a two-layer

feed-forward network which predicts the binary probabil-

ities as logits for each answer. We opt for binary cross

entropy using logits instead of calculating the probabili-

ties through softmax as it allows us to handle cases where

the answer can be in both the actual answer space and the

OCR tokens without penalizing for predicting either one

(the likelihood of logits is independent of each other). Note

that if the model chooses to copy, it can only produce one

of the OCR tokens as the predicted answer. 8.9% of the

TextVQA questions can be answered only by combining

multiple OCR tokens; we leave this as future work.

3.4. Implementation Details

Our VQA component is based on the VQA 2018 chal-

lenge winner entry, Pythia v0.1 [17]. Our revised im-

plementation, Pythia v0.3, with slight changes in hyper-

parameters (e.g. size of question vocabulary, hidden dimen-

sions) achieves state-of-the-art VQA accuracy for a single

model (i.e. w/o ensemble) as shown in Tab. 1 on both VQA

v2.0 dataset [9] and VizWiz dataset [13]. The revised de-

sign choices are discussed in [40].

Pythia [17, 40] is inspired from the detector-based

bounding box prediction of the bottom-up top-down atten-

tion network [1] (VQA winner 2017), which in turn has a

multi-modal attention mechanism similar to the VQA 2016

winner [7], which relied on grid-based features.

In Pythia, for spatial features fI(v), we rely on both grid

and region based features for an image. The grid based

features are obtained by average pooling 2048D features

8320



(a) Question: which processor

Brand is featured on the top left?

Answer: intel

(b) Question: which brand are the 

crayons?

Answer: crayola

(c) Question: what is the name of the 

bose speaker style in these boxes?

Answer: freestyle

(d) Question: what is the license 

number?

Answer: cu58 ckk

Figure 3: Examples from TextVQA. Questions require inferring hidden characters (“intel”), handling rotated text (“crayola”), reasoning

(“bose” versus “freestyle”) and selecting among multiple texts in image “cu58 ckk” versus “western power distribution”).

from the res-5c block of a pre-trained ResNet-152 [14].

The region based features are extracted from fc6 layer of

an improved Faster-RCNN model [8] trained on the Visual

Genome [28] objects and attributes as provided in [1]. Dur-

ing training, we fine-tune the fc7 weights as in [17].

We use pre-trained GloVe embeddings with a custom vo-

cabulary (top ∼77k question words in the VQA 2.0) for the

question embedding [36]. The fQ module passes GloVe

embeddings to an LSTM [15] with self-attention [49] to

generate a sentence embedding for the question. For OCR,

we run the Rosetta OCR system [6] to provide us word

strings s1, ..., sN . OCR tokens are first embedded using

pretrained FastText embeddings (fO) [19], which can gen-

erate word embeddings even for OOV tokens.

In fA, the question embedding fQ(q) is used to obtain

the top-down i.e. task-specific attention on both fO(s) OCR

tokens features and fI(v) image features. The features are

then averaged based on the attention weights to get a final

feature representation for both the OCR tokens and the im-

age features. The final grid-level and region-based features

are concatenated in case of image features. For the OCR

tokens, attention weights are concatenated to the final at-

tended features as explained in 3.1. Finally, in fcomb(x, y),
the two feature embeddings in consideration are fused using

element-wise/hadamard product, ⊗, of the features. The

fused features from fOCR(s, q) and fV QA(v, q) are con-

catenated and passed through an MLP to produce logits.

4.

To study the task of answering questions that require

reading text in images, we collect a new dataset called

TextVQA which is publicly available at https://textvqa.org.

In this section, we start by describing how we selected the

images that we use in TextVQA. We then explain our data

collection pipeline for collecting the questions and the an-

swers. Finally, we provide statistics and an analysis of the

dataset. Snapshots of the annotation interface and detailed

instructions can be found in the supplementary material.
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Figure 4: Distribution of first four words in questions in TextVQA.

Most questions start with “what”.

Figure 5: (Left) Wordcloud for majority answers in TextVQA.

Frequently occurring answers include yes, brand names, “stop”

and city names. (Right) Wordcloud for OCR tokens predicted by

Rosetta. Note the overlap with answers on brand names (lg), cities

(london) and verbs (stop).

4.1. Images

We use Open Images v3 dataset [27] as the source of our

images. In line with the goal of developing and studying

VQA models that reason about text, we are most interested

in the images that contain text in them. Several categories

in Open Images fit this criterion (e.g., billboard, traffic sign,

whiteboard). To automate this process of identifying cate-
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(a) Number of questions with a particular ques-

tion length. We see that average question length

(7.16) is higher in TextVQA compared to others.
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(b) Number of majority answers with a par-

ticular length. Average answer length (1.7) is

high and answer can contain long paragraph and

quotes.
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(c) Number of images with a particular num-

ber of OCR tokens. Average number of tokens is

around 3.14. In TextVQA, 10x more images con-

tain OCR text than others.

(d) Text of top 15 most occurring questions in

TextVQA. Most of the top questions start with

“what”.
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(f) Similar to 6e, plot shows total occurrences for

500 most common majority answers with mark-

ers for particular ranks.

Figure 6: Question, Answer and OCR statistics for TextVQA. We show comparisons with VQA 2.0 [10] and VizWiz [13].

gories that tend to have images with text in them, we se-

lect 100 random images for each category (or all images

if max images for that category is less than 100). We run a

state-of-the-art OCR model Rosetta [6] on these images and

compute the average number of OCR boxes in a category.

The average number of OCR boxes per-category were nor-

malized and used as per-category weights for sampling the

images from the categories.

We collect TextVQA’s training and validation set from

Open Images’ training set while test set is collected from

Open Images’ test set. We set up a three stage pipeline for

crowd-sourcing our data. In the first stage, annotators were

asked to identify images that did not contain text (using a

forced-choice “yes”/“no” flag). Filtering those (and noisy

data from annotators) out resulted in 28,408 images, which

from the basis of our TextVQA dataset.

4.2. Questions and Answers

In the second stage, we collect 1-2 questions for each im-

age. For the first question, we show annotators an image and

ask them to provide a question which requires reading the

text to answer. Specifically, they were told to ‘Please ensure

that answering the question requires reading of the text in

the image. It is OK if the answer cannot be directly copied

from the text but needs to be inferred or paraphrased.’

To collect a second question that is different from the

first, we show annotators the first question and ask them

to come up with a question that requires reasoning about

the text in the image and has a different answer. Follow-

ing VQA [3, 10] and VizWiz [13] datasets, we collect 10

answers for each question.

To ensure answer quality, we gave annotators instruc-

tions similar to those used in [3, 13] when collecting the

VQA and VizWiz datasets. In addition, to catch any poor

quality data from earlier steps, we give annotators these four

options: (i) no text in image; (ii) not a question; (iii) answer-

ing the question doesn’t require reading any text in image;

and (iv) unanswerable, e.g. questions involving speculation

about the meaning of text. We remove the questions where

a majority of workers marked any of these flags. Addition-

ally, we use hand-crafted questions for which we know the

correct answers to identify and filter out bad annotators.

4.3. Statistics and Analysis

We first analyze the diversity of the questions that we

have in the dataset. TextVQA contains 45,336 questions of

which 37,912 (83.6%) are unique. Fig. 6a shows the distri-

bution of question length along with the same statistics for

the VQA 2.0 and the VizWiz datasets for reference. The

average question length in TextVQA is 7.18 words which

is higher than in VQA 2.0 (6.29) and VizWiz (6.68). We

also note that the minimum question length is 3 words.

Workers often form questions which are longer to disam-

biguate the response (e.g. specifying where exactly the text
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is in the image, see Fig. 3). Fig. 6d shows top 15 most

occurring questions in the dataset with their count while

Fig. 6e shows top 500 most occurring questions with their

counts. We can see the uniform shift from common ques-

tions about “time” to questions occurring in specific situa-

tions like “team names”. Fig. 4 shows sunburst for first 4

words in questions. We also observe that most questions

involve reasoning about common things (e.g. figuring out

brand names, cities and temperature). Questions often start

with “what”, frequently inquiring about “time”, “names”,

“brands” or “authors”.

In total there are 26,263 (49.2%) unique majority an-

swers in TextVQA. The percentage of unique answers in

TextVQA is quite high compared to VQA 2.0 (3.4%) and

VizWiz (22.8%). All 10 annotators agree on the most com-

mon answer for 22.8% questions, while 3 or more annota-

tors agree on most common answer for 97.9% questions.

Fig. 5 (left) shows a word cloud plot for the majority an-

swers in the dataset. The answer space is diverse and in-

volves brand names, cities, people’s names, time, and coun-

tries. Note that this diversity makes it difficult to have a

fixed answer space – a challenge that most existing VQA

datasets do not typically pose. The most common answer

(“yes”) is the majority answer for only 4.71% of the dataset

and “yes/no” (majority answer) questions in total only make

up 5.55% of the dataset. The average answer length is 1.58

(Fig. 6b). In a few occurrences where the text in the image

is long (e.g., a quote or a paragraph), the answer length is

high. Fig. 6f shows the frequency of top 500 most com-

mon answers. The gradual shift from brands to rare cities is

depicted. We also note that the drop in TextVQA for num-

ber of answers of a particular answer length is more gradual

than in VQA 2.0 which drops sharply after answer length

Finally, we analyze the OCR tokens produced by the

Rosetta OCR system [6]. In Fig. 6c, we plot number of

images containing “x” number of OCR tokens. The peak

between 4 and 5 shows that a lot of images in our dataset

contain a good number of OCR tokens. In some cases, when

the system is unable to detect text we get 0 tokens but those

cases are restricted to ∼1.5k images and we manually ver-

ified that the images actually do contain text. Fig. 5 (right)

shows a word cloud of OCR tokens which shows they do

contain common answers such as brand names and cities.

5. Experiments

We start by explaining our baselines including both

heuristics and end-to-end trained models which we compare

with LoRRA. We divide TextVQA into train, validation and

test splits with size 34,602, 5,000, and 5,734, respectively.

The TextVQA questions collected from Open Images v3’s

training set were randomly split into training and valida-

tion sets. There is no image overlap between the sets. For

our approach, we use a vocabulary SA of size 3996, which

Accuracy(%)

Model Val Test

Human 85.01 86.79

OCR UB 37.12 36.52

LA UB 48.46 48.16

LA+OCR UB 67.56 68.24

Rand 100 0.22 0.20

Wt. Rand 100 0.27 0.26

Majority Ans 4.48 2.63

Random OCR 7.72 9.12

OCR Max 9.76 11.60

Accuracy(%)

Model Vocab Val Test

Q LA 8.09 8.70

I LA 6.29 5.58

Pythia (I+Q) LA 13.04 14.0

+O LA 18.35 –

+O+C n/a 20.06 –

+LoRRA LA 26.23 –

+LoRRA SA 26.56 27.63

BAN (I+Q) LA 12.30 –

+LoRRA SA 18.41 –

Table 2: Evaluation on TextVQA. (Left) Accuracies for various

heuristics baselines, which show that using OCR can help in

achieving a good accuracy on TextVQA. LA+OCR UB refers to

maximum accuracy achievable by models using LoRRA with our

OCR tokens. (Right) Accuracies of our trained baselines and ab-

lations in comparison with our model LoRRA. I denotes usage of

image features, Q question features, O OCR tokens’ features, and

C copy mechanism. LA and SA refer to use of large and short

vocabulary, respectively. Models with LoRRA outperform VQA

SoTA (Pythia, BAN) and other baselines.

contains answers which appear at least twice in the training

set. For the baselines that don’t use the copy mechanism,

this vocabulary turns out to be too limited. To give them

a fair shot, we also create a larger vocabulary (LA), con-

taining the 8000 most frequent answers. Upper Bounds

and Heuristics. These mainly evaluate the upper bounds

of what can be achieved using the OCR tokens detected by

our OCR module and benchmark biases in the dataset. We

test (i) OCR UB: the upper bound accuracy one can get if

the answer can be build directly from OCR tokens (and can

always be predicted correctly). OCR UB considers combi-

nations of OCR tokens upto 4-grams. (ii) LA UB: the upper

bound accuracy by always predicting the correct answer if

it is present in LA. (iii) LA+OCR UB: (i) + (ii) - the upper

bound accuracy one can get by predicting the correct answer

if it is present in either LA or OCR tokens. (iv) Rand 100:

the accuracy one can get by selecting a random answer from

top 100 most frequent answers (v) Wt. Rand 100: the ac-

curacy of baseline (iv) but with weighted random sampling

using 100 most occurring tokens’ frequencies as weights.

(vi) Majority Ans: the accuracy of always predicting the

majority answer “yes” (vii) Random OCR token: the ac-

curacy of predicting a random OCR token from the OCR

tokens detected in an image (viii) OCR Max: accuracy of

always predicting the OCR token that is detected maximum

times in the image (e.g., “crayola” in Fig. 3 (b)).

Baselines.2 We make modifications to the implementa-

tion discussed in Sec. 3.4 for our baselines which include

(i) Question Only (Q): we only use the fQ(q) module of

LoRRA to predict the answer and the rest of the features

are zeroed out. (ii) Image Only (I): similar to Q, we only

2Code for experiments is available at https://textvqa.org/code
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use image features fI(v) to predict answers. Q and I do not

have access to OCR tokens and predict from LA.

Ablations. We create several ablations of our approach

LoRRA by using the reading component and answering

module in conjunction and alternatively. (i) I+Q: This ab-

lation is state-of-the-art for VQA 2.0 and doesn’t use any

kind of OCR features; we provide results on Pythia v0.3

and BAN [25] in Tab. 1; (ii) Pythia+O: Pythia with OCR

features as input but no copy module or dynamic answer

space; (iii) Pythia+O+C: (ii) with the copy mechanism but

no fixed answer space i.e. the model can only predict from

the OCR tokens. Abbreviation C is used when we add the

copy module and dynamic answer space to a model.

Our full model corresponds to LoRRA attached to

Pythia. We also compare Pythia+LoRRA with small an-

swer space (SA) to a version with large answer space (LA).

We also provide results on LoRRA attached to BAN [25].

Experimental Setup. We develop our model in PyTorch

[35]. We use AdaMax optimizer [26] to perform back-

propagation [29]. We predict logits and train using binary

cross-entropy loss. We train all of our models for 24000

iterations with a batch size of 128 on 8 GPUs. We set the

maximum question length to 14 and maximum number of

OCR tokens to 50. We pad rest of the sequence if it is less

than the maximum length. We use a learning rate of 5e-

2 for all layers except the fc7 layers used for fine-tuning

which are trained with 5e-3. We uniformly decrease the

learning rate to 5e-4 after 14k iterations. We calculate val

accuracy using VQA accuracy metric [10] at every 1000th

iteration and use the model with the best validation accu-

racy to calculate the test accuracy. All validation accuracies

are averaged over 5 runs with different seeds.

Results. Tab. 2 shows accuracies on both heuristics (left)

and trained baselines and models (right). Despite collecting

open-ended answers from annotators, we find that human

accuracy is 85.01%, consistent with that on VQA 2.0 [10]

and VizWiz [13]. While the OCR system we used is not

perfect, the upper-bound on the validation set that one can

achieve by correctly predicting the answer using these OCR

tokens is 37.12%. This is higher than our best model, sug-

gesting room for improvement to reason about the OCR to-

kens. LA UB is quite high as they contain most commonly

occurring questions. This accuracy on VQA 2.0 validation

set with 3129 most common answers is 88.9% which sug-

gests uniqueness of answers in TextVQA and limits of a

fixed answer space. The difference between LoRRA and

LA+OCR UB of 41% represents the room for improvement

in modelling with current OCR tokens and LA. Majority an-

swer (“yes”) gets only 4.48% on test set. Random baselines,

even the weighted one, are rarely correct. Random OCR

token selection and maximum occurring OCR token selec-

tion (OCR Max) yields better accuracies compared to other

heuristics baselines.

Question only (Q) and Image only (I) baseline get 8.09%

and 6.29% validation accuracies, respectively, which shows

that the dataset does not have significant biases w.r.t. im-

ages and questions. I+Q models - Pythia v0.3 [40] and

BAN [25], which are state-of-the-art on VQA 2.0 and

VizWiz only achieve 13.04% and 12.3% validation accu-

racy on TextVQA, respectively. This demonstrates the in-

ability of current VQA models to read and reason about text

in images. A jump in accuracy to 18.35% is observed by

feeding OCR tokens (Pythia+O) into the model; this sup-

ports the hypothesis that OCR tokens do help in predict-

ing correct answers. Validation accuracy of 20.06 achieved

by Pythia+O+C by only predicting answers from OCR to-

kens, further bolsters OCR importance as it is quite high

compared to our Pythia v0.3 [40]. Our LoRRA (LA) with

Pythia model outperforms all of the ablations. Finally, a

slight modification which allows the model to predict from

the OCR tokens more often by changing the fixed answer

space LA to SA further improves performance. Validation

accuracy for BAN [25] also improves to 18.41% by adding

LoRRA. This suggests that LoRRA can help state-of-the-art

VQA models to perform better on TextVQA.

While LoRRA can reach up to 26.56% accuracy on the

TextVQA’s validation set, there is a large gap to human per-

formance of 85.01% and LA+OCR UB of 67.56%.

Interestingly, when adding LoRRA to Pythia it improves

accuracy from 68.71 to 69.21 on VQA 2.0 [9] (see Tab. 1),

indicating the ability of our model to also exploit reading

and reasoning in this more general VQA benchmark.

6. Conclusion

We explore a specific skill in Visual Question Answering

that is important for applications involving aiding visually

impaired users – answering questions about everyday im-

ages that involve reading and reasoning about text in these

images. We find that existing datasets do not support a sys-

tematic exploration of the research efforts towards this goal.

To this end, we introduce the TextVQA dataset which con-

tains questions which can only be answered by reading and

reasoning about text in images. We also introduce Look,

Read, Reason & Answer (LoRRA), a novel model archi-

tecture for answering questions based on text in images.

LoRRA reads the text in images, reasons about it based on

the provided question, and predicts an answer from a fixed

vocabulary or the text found in the image. LoRRA is agnos-

tic to the specifics of the underlying OCR and VQA mod-

ules. LoRRA significantly outperforms the current state-of-

the-art VQA models on TextVQA. Our OCR model, while

mature, still fails at detecting text that is rotated, a bit un-

structured (e.g., a scribble) or partially occluded. We be-

lieve TextVQA will encourage research both on improv-

ing text detection and recognition in unconstrained environ-

ments as well as on enabling the VQA models to read and

reason about text in images.
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