

Aalborg Universitet

Towards Why-Not Spatial Keyword Top-k Queries

A Direction-Aware Approach

Chen, Lei; Li, Yafei; Xu, Jianliang; Jensen, Christian S.

Published in:
IEEE Transactions on Knowledge and Data Engineering

DOI (link to publication from Publisher):
10.1109/TKDE.2017.2778731

Publication date:
2018

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Chen, L., Li, Y., Xu, J., & Jensen, C. S. (2018). Towards Why-Not Spatial Keyword Top-k Queries: A Direction-
Aware Approach. IEEE Transactions on Knowledge and Data Engineering, 30(4), 796-809.
https://doi.org/10.1109/TKDE.2017.2778731

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: August 26, 2022

https://doi.org/10.1109/TKDE.2017.2778731
https://vbn.aau.dk/en/publications/906695ff-2c24-4ff6-a379-b553afbfc436
https://doi.org/10.1109/TKDE.2017.2778731

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

Towards Why-Not Spatial Keyword Top-k
Queries: A Direction-Aware Approach

Lei Chen, Yafei Li, Jianliang Xu, Senior Member, IEEE, and Christian S. Jensen, Fellow, IEEE

Abstract—With the continued proliferation of location-based services, a growing number of web-accessible data objects are
geo-tagged and have text descriptions. An important query over such web objects is the direction-aware spatial keyword query that
aims to retrieve the top-k objects that best match query parameters in terms of spatial distance and textual similarity in a given query
direction. In some cases, it can be difficult for users to specify appropriate query parameters. After getting a query result, users may
find some desired objects are unexpectedly missing and may therefore question the entire result. Enabling why-not questions in this
setting may aid users to retrieve better results, thus improving the overall utility of the query functionality. This paper studies the
direction-aware why-not spatial keyword top-k query problem. We propose efficient query refinement techniques to revive missing
objects by minimally modifying users’ direction-aware queries. We prove that the best refined query directions lie in a finite solution
space for a special case and reduce the search for the optimal refinement to a linear programming problem for the general case.
Extensive experimental studies demonstrate that the proposed techniques outperform a baseline method by two orders of magnitude
and are robust in a broad range of settings.

Index Terms—Why-not questions, spatial keyword top-k queries, query refinement.

F

1 INTRODUCTION

W EB objects are becoming increasingly content-rich.
In particular, the continued proliferation of location-

based services (LBS) and the increasing number of web
objects with both textual keywords and spatial location
information combine to give prominence to spatial keyword
queries [3], [7], [15]. Among them, considering the direction-
aware search requirements from many LBS users, a direction-
aware spatial keyword top-k query [10], [25], [26] takes a
user location, a set of keywords, and a search direction as
arguments and retrieves the k objects in the search direction
that are ranked highest according to a ranking function that
considers both spatial proximity and textual similarity. It is
relevant to take into account the query direction in a number
of scenarios. For example, a user walking to a supermarket
may want to find an ATM in his/her walking direction,
or a user on a high-way may want to find a gas station
or restaurant in his/her general travel direction (i.e., the
right front region in right-driving countries); in role-playing
games with a first-person perspective, players may want to
search the battlefield information such as weapon stores and
medical stations in the angle of view.

However, there may be cases where users are not fully
aware of the appropriate direction to feed to a spatial
keyword top-k query; it may be difficult for a user to specify
the direction that best captures the intent of her query.
After a user issues a (direction-aware) spatial keyword top-

• L. Chen, Y. Li and J. Xu are with the Department of Computer Science,
Hong Kong Baptist University, Kowloon Tong, Hong Kong. L. Chen is
also with Huawei Noah’s Ark Lab, Hong Kong, and Y. Li is also with the
School of Information Engineering, Zhengzhou University, Zhengzhou,
China.
E-mail: {lchen, yafeili, xujl}@comp.hkbu.edu.hk.

• C. S. Jensen is with the Department of Computer Science, Aalborg
University, Denmark.
E-mail: csj@cs.aau.dk.

k query and receives the result, the user may find the query
result is not as expected and that some desirable objects are
unexpectedly missing from the result. This may lead the
user to question the overall result and to wonder whether
other unknown objects that are relevant to the query are also
missing. To enhance the utility of the query functionality,
it is relevant to provide explanations about desired but
missing objects and to automatically suggest a refined query
that includes the desired objects in its result. The motivation
and significance of this functionality is illustrated by two
examples.
Example 1. After a busy day of sightseeing, Bob wants to

have dinner nearby before walking back to the hotel, which
is on the downhill side. He issues a query to find the top-3
nearby “Sushi” restaurants. Surprisingly, he finds that the
result contains only restaurants that are on the uphill side;
and a restaurant on the downhill way to the hotel that he
visited yesterday is not in the result. Bob questions the overall
result. Are the returned restaurants really the best, or do
better options exist? Should the restaurants be searched in
the general direction of his way to the hotel? How can he add
a search direction so that the missing restaurant and possibly
other good options appear in the result?

Example 2. In preparation for attending an overseas conference,
Clair issues a query to find the top-3 hotels that are near the
conference location and are in the direction of the old town.
She is surprised that the result contains only local hotels that
are unknown to her and that a well-known international hotel
in the vicinity is not in the result. Clair wonders whether
the exclusion occurs because the search direction is not set
properly and how the query direction can be modified so that
the expected hotel, as well as potentially other good hotels,
appear in the result?

lt
Typewritten Text

lt
Typewritten Text
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

lt
Typewritten Text

lt
Typewritten Text

lt
Typewritten Text

lt
Typewritten Text

lt
Typewritten Text

lt
Typewritten Text

lt
Typewritten Text

lt
Typewritten Text

lt
Typewritten Text

lt
Typewritten Text

lt
Typewritten Text

lt
Typewritten Text

lt
Typewritten Text

lt
Typewritten Text

lt
Typewritten Text

lt
Typewritten Text

lt
Typewritten Text

lt
Typewritten Text

lt
Typewritten Text

lt
Typewritten Text

lt
Typewritten Text

lt
Typewritten Text

lt
Typewritten Text

lt
Typewritten Text

lt
Typewritten Text

lt
Typewritten Text

lt
Typewritten Text

lt
Typewritten Text

lt
Typewritten Text

lt
Typewritten Text

lt
Typewritten Text

lt
Typewritten Text

lt
Typewritten Text

lt
Typewritten Text

lt
Typewritten Text

lt
Typewritten Text

lt
Typewritten Text

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2

A common pattern in the above scenarios is that the user
wants to know why an expected object does not appear in a
result. This type of functionality relates to the query quality
and is called why-not functionality [6]. Three typical solu-
tion models exist: (1) manipulation identification [6], which
identifies query operators that prevent missing objects from
being included in a result; (2) database modification [22], [23],
which updates the original database so that the query can
revive missing objects; and (3) query refinement [9], [11], [21],
[36], which revises the original query so that missing objects
can enter the result. We adopt the query refinement model
to answer why-not questions on direction-aware spatial
keyword top-k queries. The previous works adjust the pref-
erences between spatial proximity and textual relevance [9]
or suggest more accurate query keywords [11] to get the
inclusion of missing objects in the query result. In this
paper, we address the problem from a new perspective, i.e.,
modifying the query direction as motivated by the above
examples.

We aim to minimally modify users’ initial queries to
reintroduce the expected but missing objects into the query
result. To this end, we consider the problem in both the
special case, where the initial query is a traditional spatial
keyword top-k query without a query direction, and the
general case, where a query direction is specified initially. To
achieve an efficient solution to this problem, we prove that
the best refined query direction lies in a finite solution space
for the special case, and we reduce the search for the best
refined queries into solving linear programming problems
for the general case. Furthermore, we extend proposed algo-
rithms to support why-not questions with multiple missing
objects.

The main contributions of this paper are summarized as
follows:
• We identify a novel direction-aware why-not spatial

keyword top-k query and formulate it as a query
refinement problem. To the best of our knowledge,
we are the first to study this problem.

• We provide a detailed problem analysis and pro-
pose efficient query refinement algorithms to answer
direction-aware why-not questions by reducing solu-
tion spaces for both the special case and the general
case.

• We extend the proposed algorithms to support why-
not questions with multiple missing objects.

• We perform extensive experiments on real-life data-
sets to evaluate the performance of the proposed
algorithms. The results indicate that the algorithms
are efficient in a broad range of settings. In particular,
the proposed solution is two orders of magnitude
faster than a baseline method.

The rest of the paper is organized as follows. Section 2
reviews related work. Section 3 introduces preliminaries and
defines the direction-aware why-not spatial keyword query
problem. Sections 4 and 5 present the problem analysis and
solutions in the two different cases. We extend the algo-
rithms to support queries with multiple missing objects in
Section 6. The experimental studies are covered in Section 7.
Finally, we conclude in Section 8.

2 RELATED WORK

To the best of our knowledge, no prior studies consider
why-not questions on spatial keyword top-k queries from
the perspective of query direction refinement. In the fol-
lowing, we survey studies on spatial keyword queries and
why-not queries separately, and we relate the studies to the
setting of this paper.

2.1 Spatial Keyword Query Processing
A spatial keyword query retrieves the most relevant spa-
tial web objects with respect to both spatial proximity
and textual relevance. A number of indexing and query
processing techniques have been proposed for this query.
The IR-tree [15], [27], [37] is a widely used index structure
that integrates R-trees and inverted files. To quickly prune
the search space, it supports simultaneous estimation of
spatial distance and textual similarity during index access.
The IR2-tree [16] is another hybrid index that combines
R-trees with superimposed text signatures. This index is
applicable when the keywords serve as a Boolean filter.
Rocha-Junior and Nørvåg [34] study the spatial keyword
query on road networks. To rank the objects considering
both network distance and textual similarity, inverted files
are employed to index the documents of the web objects
lying on a segment of the road network. A comprehensive
comparison of existing spatial keyword indexing techniques
is available [7].

Different variants of the spatial keyword query have
been studied. Chen et al. [13] consider a query that retrieves
the web objects which contain the query keywords and
whose page footprints intersect with a query footprint.
Zhang et al. [40], [41] investigate an m-closest keywords
(mCK) query to retrieve the spatially closest objects that
match user-specified keywords. To efficiently evaluate this
query, the bR*-tree and virtual bR*-tree are proposed to
augment each node with a bitmap and a set of MBRs for
the keywords. Cao et al. [4] introduce a query that finds the
top-k spatial web objects ranked according to both prestige-
based relevance and location proximity. Another study [5]
proposes a query that retrieves a group of nearby spatial
web objects whose keywords cover the query keywords
and that have the lowest inter-object distances. Further, Fan
et al. [18] study the spatial keyword similarity search in
regions of interest. Li et al. [28] explore a spatial approximate
string query that is a range query augmented with a string
similarity predicate. Bouros et al. [2] identify the pairs of
objects from a spatio-textual database that are both spatially
close and textually similar. Another study [38] integrates
the social influence into traditional spatial keyword search
to improve answer quality. More recently, Lee et al. [31]
study the processing and optimizations for main memory
spatial keyword queries. Choudhury et al. [14] aim to find
an optimal location and a set of keywords that maximize the
size of bichromatic reverse spatial textual k nearest neigh-
bors. Shi et al. [35] study location-based keyword search on
RDF data. Lin et al. [29] and Xie et al. [39] aim to find the
query keyword sets and the query locations, respectively, to
make a target object in the result of a spatial keyword top-k
query. Direction-aware spatial keyword queries have been
investigated [25], [26], the aim being to find the spatially

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 3

closest objects in a given query direction that cover all query
keywords. However, none of the above studies address the
why-not spatial keyword query problem.

2.2 Why-Not Query Processing
To improve the usability of database systems, the con-
cept of explaining a null answer to a database query was
presented by Motro [32], [33], and the why-not problem
was first introduced by Chapman and Jagadish [6]. Ex-
isting approaches towards answering why-not questions
can be classified into three main categories. Chapman and
Jagadish [6] use manipulation identification to identify query
operators that eliminate users’ desired but missing objects
on Select-Project-Join (SPJ) queries. Other studies [22], [23]
study the why-not questions on SPJ queries and SPJUA
(SPJ + Union + Aggregation) queries by adopting a database
modification approach, which updates the original database
so that the missing objects become part of query results.
Tran and Chan [36] propose to retrieve missing objects
through query refinement, which aims to prompt users how
to revise their query parameters to revive their expected
objects in the query results. He and Lo [21] employ the
query refinement to answer why-not questions on top-k
preference queries. They aim to make missing objects enter
the result by minimally modifying the original query, where
a penalty function measuring the amount of modifications
is adopted. More recently, the query refinement model has
been applied to answer why-not questions on different
queries and data settings, including social image search [1],
reverse skyline queries [24], reverse top-k queries [19], and
metric probabilistic range queries [8].

In previous work [9], [11], we study the why-not spa-
tial keyword queries from different perspectives. In one
study [9], we propose techniques that help users adjust the
preferences between the spatial distance and textual simi-
larity; in another [11], we provide users with more precise
query keywords. These two why-not functionalities have
been integrated into a spatial keyword query system [12].
However, these studies do not consider query direction
refinement and are unable to suggest more accurate query
directions that better capture users’ query intent, which is
the focus of this paper.

3 PRELIMINARIES AND PROBLEM FORMULATION

In this section, we formalize the problem of direction-aware
why-not spatial keyword top-k queries.

3.1 Spatial Keyword Top-k Queries
Let D denote a database of spatial objects. Each object o ∈ D
is associated with a pair (loc, doc), where o.loc is the object’s
spatial location and o.doc is a set of keywords that describes
the object.

A spatial keyword top-k query q takes four parameters
(loc, doc, ~w, k). Here q.loc is the query location, q.doc is a
set of query keywords, q.k denotes the number of objects
to retrieve, and q.~w = 〈ws, wt〉, where 0 ≤ ws, wt ≤ 1 and
ws +wt = 1, denotes the user’s preferences between spatial
proximity and textual relevance. The query retrieves the top-
k objects from D ranked according to a scoring function that

aggregates the spatial distance and textual similarity into an
overall scoring value. For broad applicability, we adopt a
widely used ranking function [15]:

ST (o, q) = ws · (1− SDist(o, q)) + wt · TSim(o, q), (1)

where SDist(o, q) denotes the Euclidean distance between
o.loc and q.loc, and TSim(o, q) denotes the textual similarity
between o.doc and q.doc. The spatial distance SDist(o, q) is
normalized into the range [0, 1] by dividing the maximum
possible distance between two objects in D. The textual
similarity TSim(o, q) can be computed using an information
retrieval model [17], such as the language model, cosine
similarity, Jaccard similarity, or BM25, and is also assumed
to be normalized into the range [0, 1]. Without loss of
generality, we adopt the language model [9], [15] in this
paper. The larger score computed by Eqn. 1 denotes the
higher relevance an object to the query.

Given a query q, the rank of an object o is given in terms
of Eqn. (1) as follows:

R(o, q) = |{o′ ∈ D | ST (o′, q) > ST (o, q)}|+ 1 (2)

With this definition of rank, the spatial keyword top-k
query is defined as follows:

Definition 1. Spatial Keyword Top-k Query. A spatial
keyword top-k query q returns a set R of k objects from
D, where ∀o ∈ R (∀o′ ∈ D −R (ST (o, q) ≥ ST (o′, q))),
or in terms of object ranking, ∀o ∈ R (∀o′ ∈ D −
R (R(o, q) ≤ R(o′, q))).

While the spatial keyword top-k query has been exten-
sively studied, direction-aware search, which is demanded
in many LBS scenarios, has recently received more atten-
tion [20], [25], [26]. In a direction-aware spatial keyword top-
k query, an object can be a result only if it is located in a
certain direction of a query location. A direction is defined
in terms of rays emanating from the query location. Without
loss of generality, we assume that the objects are mapped to
a Cartesian coordinate system. We delineate a direction by
the angles between two rays and the positive direction of the
x-axis. The direction d in a query is a range (α, β), denoting
that the query is interested only in objects in the direction
(α, β).1 That is, a query’s direction is an angular space. As
such, a direction-aware spatial keyword top-k query qd is a
5-tuple (loc, doc, ~w, k, d).

Definition 2. Direction-Aware Spatial Keyword Top-k
Query. Let Dd denote the objects in D that are located
in the angular region d = (α, β), and let R(o, q, d)
denote the rank of an object o under a query qd. A
direction-aware spatial keyword top-k query qd returns
a set R of k objects from Dd, where ∀o ∈ R (∀o′ ∈
Dd −R (R(o, q, d) ≤ R(o′, q, d))).

In other words, instead of considering the whole
database D, a direction-aware spatial keyword query con-
siders only the objects in a directional range as candidates

1. A direction (α, β) is the angular space passed through by rotation
from α to β counterclockwise. We use open or closed intervals to denote
whether a boundary direction is included. For the sake of presentation,
we convert all directions to the space where −π < α ≤ π and α ≤ β ≤
α+ 2π. We say a direction θ ∈ (α, β), if ∃n ∈ Z, θ + 2nπ ∈ (α, β).

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 4

q

o5

o6

o4

α

π
6

ST (o, q)

o1 0.72

o2 0.3

o3 0.58

o4 0.65

o5 0.43

o6 0.83

(a) (b)

β

π
3

o1

o2
o3

Fig. 1. Top k and Direction-Aware Top-k Spatial Keyword Query

for the query result. We note that the traditional spatial
keyword top-k query can be treated as a direction-aware
query with a direction of [0, 2π).
Example 3. Fig. 1 shows an example of the top-k and the

direction-aware top-k spatial keyword queries, where (a) shows
the locations of the query and objects, while (b) lists the
ranking score of each object. Consider a top-2 query. A
traditional query returns the objects with the highest scores
among all the objects, i.e., o6 and o1. However, if the query has
a direction, say, (π6 ,

π
3), the query considers only the objects in

this direction and returns the top-2 objects among them, i.e.,
o1 and o3.

3.2 Direction-Aware Why-Not Spatial Keyword Query
When issuing a direction-aware spatial keyword query q =
{loc, doc, ~w, k0, d0}, it might be difficult for a user to specify
a direction d0 that best captures the query intent. Due to
an improper setting of the query direction, after the user
receives a query result, the user may find that one or more
desired objects are unexpectedly missing. These missing
objects imply the user’s actual direction requirement. Then,
the user may pose a follow-up why-not question with a set
M = {m1,m2, ...,mj} of desired but missing objects, asking
why these expected objects are missing and seeking a refined
query q′ = {loc, doc, ~w, k′, d′} that includes the missing
objects in its result. As simply modifying the direction in the
initial query may not be able to revive the missing objects,
the enlargement of k is also considered [9], [11], [19], [21],
[24]. Many possible modifications of these two parameters
may yield a qualified query retrieving the missing objects.
We prefer the one that modifies the initial query minimally.
To formalize this, we adopt a penalty model [11], [19], [21]
that quantifies the modification as a weighted sum of the
changes of parameters ∆k and ∆d. The penalty of a refined
query q′ against the initial query q is defined as follows:

Penalty(q, q′) = λ · ∆k

∆kmax
+ (1− λ) · ∆d

∆dmax
, (3)

where λ ∈ [0, 1] is a user preference on modifying k versus
d. Here, ∆kmax and ∆dmax denote the maximum possible
modifications of k and d, respectively. They are used to nor-
malize ∆k and ∆d into the range [0, 1]. Since their settings
would vary in different cases, we leave their definitions to
the coverage of the corresponding cases in Sections 4 and 5.
We have ∆k = max (0, k′ − k0), since k′ can remain as k0

if a refined k′ is smaller than k0. As the query direction d
is an angular space between the start angle α and the end
angle β, we measure the modification from d0 = (α0, β0) to
d′ = (α′, β′) in terms of how much d0 is rotated and how

much the size of d0 is changed, i.e., ∆r and ∆s. Formally,
∆d is defined as follows:

∆d = γ ·∆r + (1− γ) ·∆s

= γ · |α
′ + β′

2
− α0 + β0

2
|

+(1− γ) · |(β′ − α′)− (β0 − α0)|

(4)

The rotation of the direction ∆r is determined by the differ-
ence between the angular bisectors, i.e., α′+β′

2 and α0+β0

2 .
Finally, γ ∈ [0, 1] is used to balance the changes to the
rotation and the size of the direction.

Based on the above, the direction-aware why-not spatial
keyword query is defined as follows:

Definition 3. Direction-Aware Why-Not Spatial Keyword
Top-k Query. Given a set D of spatial objects, a missing
object set M , an original direction-aware spatial key-
word query q = (loc, doc, ~w, k0, d0), the direction-aware
why-not spatial keyword top-k query returns the refined
query q′ = (loc, doc, ~w, k′, d′), with the lowest penalty
according to Eqn. (3) and the result of which includes all
objects in M .

3.3 Baseline Algorithm

We consider refining the direction d0 and the result cardinal-
ity k0 to achieve the inclusion of the missing objects. Only
refined pairs (k′, d′) that satisfy Lemma 1 are candidates for
the best refined query.

Lemma 1. Given an initial query q and a set M of missing
objects, a pair of a modified direction and a refined
result cardinality (d′, k′) can be a candidate for the best
refined query if and only if (i) ∀mi ∈ M (θmi ∈ d′),
where θmi denotes mi’s angle; and (ii) k′ = R(M, q, d′);
or R(M, q, d′) ≤ k′ ≤ k0, where R(M, q, d′) =
maxmi∈MR(mi, q, d

′).

Proof. The proof is straightforward and hence omitted.

According to Lemma 1, given a refined direction d′, we
can always set k′ = R(M, q, d′) to achieve the minimum
penalty. In other words, if we fix parameter d′, k′ can be set
accordingly. This observation inspires a baseline solution as
follows: (i) enumerate all possible refined directions; (ii) for
each candidate direction, process a direction-aware spatial
keyword top-k query to determine the ranks of the missing
objects; (iii) compute the penalty of each candidate direction
and return the one with the minimum penalty.

Two key challenges exist in this baseline solution. First,
the number of possible directions is generally infinite, mak-
ing enumeration impossible. One way to overcome this
issue is to sample part of the candidate refined direc-
tions [19], [21]. Nevertheless, it is hard to guarantee the
solution quality, and the baseline may fail to find the optimal
solution. Second, the baseline needs to invoke a spatial-
keyword query for each enumerated direction, where high
computation and I/O costs are incurred. As such, the base-
line algorithm might be inefficient and inapplicable to the
general case. In the following sections, we develop more
efficient solutions based on a careful problem analysis. We
aim to invoke the spatial keyword query only once during

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 5

the why-not query processing. We consider a single missing
object in Sections 4 and 5, and we extend the algorithms to
support multiple missing objects in Section 6.

4 ANSWERING WHY-NOT QUESTIONS: A SPE-
CIAL CASE

In this section, we assume a single missing object and study
the direction-aware why-not problem for the special case,
where the initial query is a traditional query with no query
direction. This case may occur when users do not at first
realize their query direction requirements; or they do not
indicate a query direction, possibly because they would
like the system to add the direction as a direction is more
difficult to specify than it is to point out some expected
result object(s).

4.1 Case Analysis
Recall that the traditional spatial keyword top-k query can
be treated as a query with a direction of [0, 2π). Actually,
it can be represented by a direction-aware query with a
direction in {d | d = [α, α + 2π),−π < α ≤ π}. In other
words, the bisector of the direction can be any ray around
the query location. Therefore, for a refined direction (α′, β′),
we can always find an α0 that makes α′+β′

2 = α0+β0

2 .
Thus, the modification in rotating the initial direction can
be treated as 0, and ∆d can be rewritten as follows:

∆d = 2π − (β′ − α′) (5)

Thus, the maximum possible modification of the direc-
tion is ∆dmax = 2π, which is obtained when α′ = β′.
Moreover, ∆kmax can be estimated as R(m, q, d0) − k0,
where R(m, q, d0) denotes the rank of the missing object
m under the initial query, as a very naive method to revive
the missing object is to increase k0 until m is included in the
result without adjusting the direction. As such, the penalty
function becomes:

Penalty(q, q′) = λ · ∆k

R(m, q, d0) − k0
+ (1 − λ) · 2π − (β′ − α′)

2π
(6)

To achieve the minimum penalty, for a given k′, the largest
direction that could rank the missing object within top-k′ is
preferred.

4.2 Ranking Updates and Direction Modifications
To answer the direction-aware why-not query, we make
two observations. First, after the initial query is issued, the
ranking score of each object is a constant. Second, the query
direction works as a filter, where only the objects in the
query direction are candidates for the result. Therefore, the
rank of the missing object in the refined query is determined
by the number of objects in the refined query direction that
ranks better. As mentioned, the query direction d of the
spatial keyword query has a start angle α and an end angle
β. To determine a refined direction, we need to identify its
start and end angles. Given a start angle α′ of a refined
direction, the following theorem holds.
Theorem 1. Consider an initial query q, a missing object m,

and a refined start angle α′. Let θm denote the angle of

q

m α′β1

β2

o1
o2

o3o4o5

q

m α1β′

o1

o2
o3

o4

o5 α2

(a) (b)

o6 o6

Fig. 2. A candidate end (start) direction for a given α′ (β′)

m w.r.t. q. If a direction (α′, β′) is a candidate for the
best refined query, it holds that: (i) θm ∈ (α′, β′); and (ii)
there exists an object owith angle β′ such that ST (o, q) >
ST (m, q).

Proof. The first condition is obviously necessary. It ensures
that the missing object is in the query direction. We prove
the second condition by contradiction. Assume that β′

is a candidate end angle and that no object with angle
β′ scores higher than the missing object m under the
initial query q. Then there are only two cases: there exists
objects that rank higher than m in (β′, α′ + 2π]; or no
object ranks higher than m in (β′, α′+ 2π]. In the former
case, let o′ be the first object that ranks higher than m in
(β′, α′ + 2π], and let θo′ denote its angle w.r.t. q. Let β′′

be any angle in (β′, θo′). Since ∀o ∈ (β′, θo′) (ST (o, q) ≤
ST (m, q)), the rank of the missing object would be the
same in the directions (α′, β′) and (α′, β′′). Thus, ∆k
is identical for the end angles β′ and β′′. However,
as (α′, β′) ⊂ (α′, β′′), ∆dβ′ > ∆dβ′′ . According to
Eqn. (6), for a given k′, a larger direction is preferred. The
penalty for the end angle β′ exceeds that of β′′. Thus, β′

cannot be a candidate end angle for start angle α′, which
contradicts our assumption. Similarly, in the latter case,
any angle in (β′, α′ + 2π] would have a smaller penalty
than β′ so that β′ cannot be a candidate end angle. Thus,
Theorem 1 holds.

Similarly, for a given refined end angle β′, the refined
start angle α′ should be set to β′ − 2π, or should be the
angle of an object that ranks higher than the missing object
under the initial query.

Example 4. In Fig. 2, the objects that have ranking scores higher
than the missing object m under the initial query are marked
as black points and the others are marked in grey. In Fig. 2(a),
for start angle α′, when increasing the end angle β′ from β1 to
β2, the rank of m in the direction (α′, β′) remains unchanged.
But as the size of the direction increases, according to Eqn. (6),
the penalty for the refined direction (α′, β′) keeps decreasing.
Consequently, no end angle between β1 and β2 can yield the
best refined direction. The case is similar for the candidate start
angles when a refined end angle β′ is given (See Fig. 2(b)).

These observations yield the following proposition for
the candidate refined directions:

Proposition 1. A refined direction (α′, β′) can result in the
best refined query if: (i) θm ∈ (α′, β′); and (ii) both the
start angle α′ and the end angle β′ have an object that

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 6

q

θ[1]

θ[2]

θ[3]θ[4]

θ[5]

θ[6]
m Candidate directions for k′ = 3:

1: (θ[1], θ[4])

2: (θ[2], θ[5])

3: (θ[3], θ[6])

Fig. 3. Candidate directions for a given refined k′

ranks higher than the missing object under the initial
query.

Proposition 1 limits the candidate directions to a finite set
and thus enables enumeration. We also note that the rank of
the missing object m in a direction (α′, β′) is determined by
the number of objects that have higher ranking scores than
m, hereafter called m’s dominators, in the direction. These
dominator objects are determined when the initial query is
issued. Thus, instead of processing a spatial keyword query
to compute the rank of the missing object for each candidate
direction, we can first identify m’s dominators and then
determine m’s rank by counting how many of them are in
each candidate direction.

4.3 Answering Why-Not
Based on the above discussions, we present the proposed
algorithm for answering direction-aware why-not questions
in the special case. The pseudo-code is given in Algorithm 1.

We first compute the rank of the missing object under the
initial query, i.e., R(m, q, d0), and we record m’s dominators
(Line 1). This can be done by slightly modifying the underly-
ing spatial keyword top-k algorithm (e.g., [37]) by changing
the stop condition from retrieving k objects to retrieving the
missing object. We then invoke the function CalDirection to
calculate the angles of the missing object and its dominators
w.r.t. the initial query q (Lines 2–4). The function CalDirection
confines the angles of the objects within the range (−π, π].
For ease of presentation, we assume no m’s dominators
locate at the query location. The algorithm can be adapted
easily to support this case by treating all such dominators
to be in any direction. Next, m’s dominators are sorted in
clockwise order according to their angles w.r.t. the missing
object’s angle, i.e., in ascending order of (θm−θ[i]+2π)%2π
(Line 5).2

Afterwards, we initialize the currently seen best re-
fined query with the basic one that simply modifies k0

to R(m, q, d0) (Line 6). We then enumerate each possible
refined k′ in increasing order (Line 7). At k′, if merely
modifying k0 to k′ results in a penalty larger than the
minimum obtained so far, the process is terminated (Lines
8–10). The range of a possibly refined k′ is from k0 to
R(m, q, d0) − 1, since for k′ < k0, the candidate directions
for k′ would be contained in that of k0 and hence cannot
achieve a smaller penalty. For each possibly refined k′, we
check the candidate directions that rankm as a top-k′ object.
These candidate directions are enumerated in ascending
order of the number of m’s dominators located to the right
of m (Line 11). For an enumerated number i, we set the
start angle α′ and the end angle β′ as the extreme cases

2. We use % to denote the modular operation throughout the paper.

of θ[i + 1] and θ[(R(m, q, d0) − 1) − (r − i − 1)], respec-
tively, to obtain its smallest penalty (Lines 12–13). The end
angle β′ is further computed to satisfy the constraint that
α′ ≤ β′ ≤ α′+2π (Line 13). We then compute their penalties
and examine whether they are better than the currently seen
best refined query (Lines 14–16).

Algorithm 1 Answering Why-Not Questions: Special Case
INPUT: Original query q = (loc, doc, ~w, k0, d0 = [−π, π)),

Missing object m, Penalty option λ
OUTPUT: Best refined query q′ = (loc, doc, ~w, k′, d′)

1: compute R(m, q, d0) and record m’s dominators in set
S

2: θm ← CalDirection(q,m)
3: for each oi ∈ S
4: θ[i]← CalDirection(q, oi)
5: sort θ[i] in clockwise order w.r.t. θm
6: d′ ← d0, k′ ← R(m, q, d0), pc ← λ
7: for r ← k0 to R(m, q, d0)− 1 do
8: ∆k ← r − k0

9: if λ · ∆k
R(m,q,d0)−k0 ≥ pc then

10: return q′ ← (loc, doc, ~w, k′, d′)
11: for i← 0 to r − 1 do
12: α′ ← θ[i+ 1]
13: β′ ← α′+ ((θ[(R(m, q, d0)−1)− (r− i−1)]− θ[i+

1] + 2π)%2π)
14: compute the penalty p for the current candidate

direction according to Eqn. (6)
15: if p < pc then
16: k′ ← r, d′ ← (α′, β′), pc ← p
17: return q′ ← (loc, doc, ~w, k′, d′)

Function CalDirection(q, o)
INPUT: Original query q, object o
OUTPUT: θo // the direction of o w.r.t. q

18: X ← o.x− q.x, Y ← o.y − q.y
19: if X = 0 then
20: if Y < 0 then return −π/2
21: else return π/2
22: θo ← Arctan(Y/X)
23: if X < 0 and Y ≥ 0 then
24: θo ← θo + π
25: if X < 0 and Y < 0 then
26: θo ← θo − π
27: return θo

Example 5. Take Fig. 3 as an example. Assume that the initial
query q is a traditional spatial keyword top-3 query. Six
objects dominate m w.r.t. q, i.e., R(m, q, d0) = 7. This
makes m missing from the top-3 result. We first identify these
m’s dominators and compute their angles. To easily locate
the candidate directions, we sort m’s dominators clockwise
according to their angles w.r.t. m’s angle. The very basic
refined query is a top-7 query with no query direction. We
enumerate each possible refined k′, which is from 3 to 6. For
each k′, we find the candidate directions that rank m as top-
k′ according to Proposition 1 and compute their penalties to

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 7

check whether they are better than the known refined queries.
For example, the candidate directions that give m a rank of 3
are: (θ[1], θ[4]), (θ[2], θ[5]) and (θ[3], θ[6]).

We next analyze the time complexity of the proposed
algorithm.

Theorem 2. The time complexity of Algorithm 1 is
O(SKT (r)+r2), where r = R(m, q, d0) denotes the rank
of the missing object under the initial query and SKT (r)
denotes the time complexity of a spatial keyword top-k
query in retrieving the top-r objects.

Proof. The algorithm has two phases: (i) compute the initial
rank of the missing object; (ii) find the best refined query.
The first phase takes advantage of an existing spatial
keyword top-k querying algorithm and has time com-
plexityO(SKT (r)). For the second phase, we enumerate
each possible refined k′ from k0 to r− 1. For each k′, we
need to verify k′ candidate directions. Thus, in the worst
case, the time complexity of this phase is O(r2).

Optimizations: We remark that optimizations can be ap-
plied to both phases in the processing of a why-not query.
To speed up the computation of the initial rank of m, we
buffer the result and internal data structures of the initial
query and proceed to process it if a follow-up why-not
question is posed. For the second phase, we enumerate
each possible refined k′ in increasing order so that we can
stop the enumeration early if the penalty of the next k′ in
modifying k0 exceeds that of the currently seen best refined
query.

5 ANSWERING WHY-NOT QUESTIONS: GENERAL

CASE

We proceed to study how to answer why-not questions on
general direction-aware spatial keyword queries. Here, ini-
tial queries are specified with search direction requirements.
In response to a follow-up why-not question, the system
provides the user with a more precise direction so that the
refined query can retrieve more useful results.

5.1 Case Analysis
Recall that we aim to find the refined query that minimally
modifies the initial query and achieves the inclusion of the
user’s expected but missing object in its result. Eqn. (3)
quantifies the penalty of a refined query when modifying
the direction d0 = (α0, β0) and the parameter k0. Unlike the
special case in Section 4, the bisector of the initial direction is
fixed in the general case, i.e., α0+β0

2 . According to Eqn. (4),
the maximum possible modification of the direction is as
follows:

∆dmax = γ ·π+(1−γ) ·Max{β0−α0, 2π− (β0−α0)} (7)

This is obtained when both rotating the initial direction and
changing the size of d0 reach the maximum values, i.e., π
and Max{β0 − α0, 2π − (β0 − α0)}, respectively.

The reason why an expected object m is missing from
the result of an initial query q = (loc, doc, ~w, k0, d0) can be
discussed in two scenarios: (i) m is in q’s query direction d0,

q q q

m
m m

α0 α0
α0β0β0β0

1© 2© 3©θm θm θm

Fig. 4. Cases of the reason about m’s missing

but has a worse rank than k0, i.e., R(m, q, d0) > k0; (ii) m is
outside q’s direction d0. Fig. 4 illustrates an expected object
m missing from a query result in different cases. Assume
that the initial query q is a top-2 query and the points in the
figure denote the objects that have better ranking scores than
m w.r.t. q. Obviously, case 1© belongs to scenario (i), as m is
in the query direction but has a rank of 3. We further divide
scenario (ii) into two sub-cases, i.e., 2© and 3©, according
to the “distance” of m’s angle (i.e., θm) to α0 and β0. We
measure the “distance” as the length of the direction interval
from β0 to θm or from θm to α0. In 2©, θm is closer to β0,
since (θm−β0 +2π)%2π is smaller than (α0−θm+2π)%2π.
In 3©, θm is closer to α0.

Next, we analyze the problem in these cases.

5.1.1 Case 1©
Here the missing object is in the query direction. In other
words, the missing object m does have a rank R(m, q, d0)
under the initial query. Thus, one very basic refined query
that can revive m is to keep the initial direction (i.e.,
∆d = 0) and simply enlarge k0 to R(m, q, d0). Accord-
ing to Lemma 1, we must set k′ = R(m, q, d0) to ob-
tain the smallest penalty, and its corresponding ∆k =
R(m, q, d0) − k0. Any other refined queries with ∆d > 0
and ∆k ≥ R(m, q, d0) − k0 have larger penalties and have
no chance to be the best refined query. Hence, the maximum
possible modification to k is ∆kmax = R(m, q, d0)− k0. As
such, the penalty function for the why-not problem in Case
1© is the following:

Penalty(q, q′) = λ · ∆k

R(m, q, d0)− k0

+ (1− λ) · ∆d

γ · π + (1− γ) ·Max{β0 − α0, 2π − (β0 − α0)}
(8)

Like the special case in Section 4, the ranking score of
each object remains unchanged for the refined query. The
rank of the missing object m is determined by the number
of objects that dominate m in the refined direction. Similar
to the special case, we can first find the objects that have a
ranking score larger than m in all directions, then determine
the best direction for each possible refined k′, and finally
return the one with the smallest penalty. Nevertheless, to
avoid exploring all query directions around the query loca-
tion, we prove that the best refined direction belongs to a
small search space.

Theorem 3. Consider an initial query q with direction d0 =
(α0, β0) and a missing object m in d0. Let θm be the
angle of m w.r.t. q. A direction (α′, β′) can result in the

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 8

best refined query if: (i) θm ∈ (α′, β′); and (ii) (α′, β′) ⊂
[θm − (β0 − α0), θm + (β0 − α0)].

Proof. The first condition is obviously necessary. It ensures
that the missing object m is in the refined query di-
rection. Proving the second condition is equivalent to
proving that (a) α′ ∈ [θm − (β0 − α0), θm], and (b)
β′ ∈ [θm, θm + (β0 − α0)]. We prove these two by
contradiction.
(a) Assume α′ < θm − (β0 − α0) and α′ is a candidate
start angle for the best refined query. Then, the possible
refined end angle β′ can be considered in two cases: β′ ∈
[θm, 2β0 − θm] or β′ ∈ (2β0 − θm, α′ + 2π].
In the first case, consider a refined start angle α′′ =
θm−(β0−α0) and compare the two refined queries with
directions [α′, β′] and [α′′, β′]. Since both [α′, β′] and
[α′′, β′] have sizes no less than the size of the initial di-
rection and [α′′, β′] ⊂ [α′, β′], ∆s[α′′,β′] < ∆s[α′,β′]. And
for rotating the initial direction, ∆r[α′′,β′] − ∆r[α′,β′] =

|α
′′+β′

2 − α0+β0

2 |− |α
′+β′

2 − α0+β0

2 | = α′−α′′

2 < 0. Hence,
∆r[α′′,β′] < ∆r[α′,β′]. Combining these two facts, we
can deduce that ∆d[α′′,β′] < ∆d[α′,β′]. Moreover, since
[α′′, β′] is a subset of [α′, β′], the dominators ofm located
in [α′′, β′] must also exist in [α′, β′], which infers that the
refined k′ for [α′′, β′] is no larger than that for [α′, β′].
Therefore, it follows that ∆k[α′′,β′] ≤ ∆k[α′,β′]. As both
∆d[α′′,β′] ≤ ∆d[α′,β′] and ∆k[α′′,β′] ≤ ∆k[α′,β′], the
penalty of the refined query with the refined direction
[α′′, β′] would be smaller. Thus, α′ < θm − (β0 − α0)
cannot be a candidate start angle for an end angle
β′ ∈ [θm, 2β0 − θm].
In the second case, consider a refined direction with
α′′ = θm − (β0 − α0) and β′′ = 2β0 − θm. As both
[α′′, β′′] and [α′, β′] are larger than the initial direc-
tion and [α′′, β′′] ⊂ [α′, β′], ∆s[α′′,β′′] < ∆s[α′,β′]

and ∆k[α′′,β′′] ≤ ∆k[α′,β′]. In addition, ∆r[α′′,β′′] =

| θm−(β0−α0)+2β0−θm
2 − α0+β0

2 | = 0 ≤ ∆r[α′,β′]. Thus,
the refined query with direction [α′′, β′′] would have a
smaller penalty. Any direction [α′, β′] with α′ < θm −
(β0 − α0) and β′ ∈ (2β0 − θm, α′ + 2π] has no chance to
be the best refined direction.
The proof of (a) follows.
The proof of (b) is similar and hence omitted in the
interest of space.

Theorem 3 reduces the search space for the refined direc-
tions to a smaller candidate space, making the processing of
the why-not query more efficient. We denote this Candidate
Space as CS (d′), i.e., CS (d′) = [θm − (β0 − α0), θm + (β0 −
α0)].

5.1.2 Case 2©
Similar to Case 1©, the search space for Case 2© can
be reduced by Theorem 4 to a smaller candidate space
CS (d′) = [α0 − (θm − β0), θm + (β0 − α0)].

Theorem 4. Consider an initial query q with a direction d0 =
(α0, β0) and a missing objectm outside d0. Let θm denote
the angle of m w.r.t. q. If (θm − β0 + 2π)%2π < (α0 −

(a) Case 1 (b) Case 2
q

m

q

θm θm αL
βU

αL βU

α0
β0 α0 β0

m

bd0

Fig. 5. The candidate space of refined directions

θm + 2π)%2π, a direction (α′, β′) can result in the best
refined query if: (i) θm ∈ (α′, β′); and (ii) (α′, β′) ⊂ [α0−
(θm − β0), θm + (β0 − α0)].

Proof. We omit the proof since it is similar to that of
Theorem 3.

Unlike Case 1©, in this case the expected but missing
object is outside the initial direction. The expected object
is filtered out by d0 and does not have a rank under the
initial query. It is thus impossible to revive the missing
object by simply enlarging k without modifying the initial
direction. Nevertheless, Theorem 4 implies that the refined
direction belongs to CS (d′). That is, the rank of m can
only be influenced by the objects in CS (d′) that score better
than m. The refined k′ can never exceed the rank of the
missing object in the whole candidate direction space. Thus,
we set the maximum possible refined k′ to be the rank
of m in CS (d′), denoted by R(m, q,CS (d′)). As this rank
could be smaller than k0, to normalize ∆k and avoid the
denominator ∆kmax being 0, the maximum modification on
k is given as follows:

∆kmax = max{R(m, q,CS (d′))− k0, 1}

Thus, the penalty function for the why-not problem in
Case 2© is represented as follows:

Penalty(q, q′) = λ · ∆k

max{R(m, q,CS (d′))− k0, 1}

+ (1− λ) · ∆d

γ · π + (1− γ) ·Max{β0 − α0, 2π − (β0 − α0)}
(9)

5.1.3 Case 3©
Case 3© is symmetric to Case 2© except that the candidate
space for the refined direction in this case is CS (d′) = [θm−
(β0 − α0), β0 + (α0 − θm)].

Example 6. Fig. 5 illustrates the candidate space for refined
directions, i.e., CS (d′) = [αL, βU], in Case 1© and 2©. For
Case 1©, the lower bound αL of the start angle is obtained
by rotating the initial query direction clockwise until the
end direction β0 reaches θm, then the corresponding α0 is
αL; the upper bound βU of the end angle is obtained in a
similar way by rotating d0 counterclockwise until α0 reaches
θm. For Case 2©, while βU is also obtained similarly, αL is
actually the symmetrical angle of m′s angle θm w.r.t. bd0 ,
where bd0 is the bisector of the initial query direction d0, i.e.,
αL+θm

2 = α0+β0

2 .

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 9

Algorithm 2 Answering Why-not Questions: General Case
INPUT: Original query q = (loc, doc, ~w, k0, d0),

Missing object m, Penalty Option λ, γ
OUTPUT: Best refined query q′ = (loc, doc, ~w, k′, d′)

1: θm ← CalDirection(q,m)
2: identify which case the problem falls into according to

the relationship between θm and d0

3: compute the corresponding CS (d′)← [αL, βU]
4: determine R(m, q,CS (d′)) and record m’s dominators

in set S
5: if Case 1© then
6: ∆kmax ← R(m, q, d0)− k0 // R(m, q, d0) is obtained

by counting how many objects in S are in d0

7: d′ ← d0, k′ ← R(m, q, d0), pc ← λ
8: else
9: ∆kmax ← max{R(m, q,CS (d′))− k0, 1}

10: d′ ← CS (d′), k′ ← R(m, q,CS (d′))
11: pc ← penalty(q, q′)
12: for each oi ∈ S
13: θ[i]← CalDirection(q, oi)
14: sort θ[i] in clockwise order w.r.t. θm
15: θ[0]← θm, θ[|S|+ 1]← θm
16: for r ← 1 to R(m, q,CS (d′)) do
17: ∆k ← max{r − k0, 0}
18: if λ · ∆k

∆kmax
≥ pc then

19: return q′ ← (loc, doc, ~w, k′, d′)
20: for i← 1 to r do
21: if θ[i− 1] /∈ [αL, θm] break
22: α′U ← θ[i − 1], θ′L ← θ[i − 1] + (θ[|S| − (r − i) +

1]− θ[i− 1] + 2π)%2π
23: if θ[i] ∈ [αL, θm] then
24: α′L ← θ[i]
25: else
26: α′L ← αL
27: if θ[|S| − (r − i)] ∈ [θm, βU] then
28: β′U ← θ[i−1]+(θ[|S|−(r−i)]−θ[i−1]+2π)%2π
29: else
30: β′U ← θ[i− 1] + (βU − θ[i− 1] + 2π)%2π
31: solve the linear programming problem with the

objective function as ∆d and with the constraints as: (i)
α′ ∈ (α′L, α

′
U]; (ii) β′ ∈ [β′L, β

′
U)

32: [α′, β′]← the point that minimizes ∆d
33: compute the penalty p for the current candidate di-

rection according to the corresponding penalty function
34: if p < pc then
35: k′ ← r, d′ ← [α′, β′], pc ← p
36: k′ ← max{k′, k0}
37: return q′ ← (loc, doc, ~w, k′, d′)

5.2 Answering Why-Not

The above discussions analyze the why-not query problem
in different cases and provide theorems that reduce the
search space. Based on this, we propose an algorithm for
solving direction-aware why-not questions in the general
case. The pseudo-code is given in Algorithm 2. First, we
identify which case the problem falls into according to

m

θm θ[1]
θ[2]

θ[3] θ[4]

αLβU

q

(a) Range 1

θm θ[1]
θ[2]

θ[3] θ[4]

αLβU

q

m

(b) Range 2

Fig. 6. Ranges of α and β that rank m at 2

the relationship between θm and d0 (Line 2). Then the
candidate search space CS (d′), the maximum possible ∆k,
and the initially refined (d′, k′) for the corresponding case
are computed accordingly (Lines 3–11). Next, we enumerate
each possible refined k′ and compute the refined query with
the smallest penalty for each of them (Lines 16–35). Finally,
we return the best one as the result (Line 37).

Unlike the special case in Section 4, the refined start and
end angles do not have to be angles of dominators of the
missing object. Instead, a candidate refined direction d′ =
[α′, β′] that ranks the missing object at a given k′ belongs to
several range pairs of α′ and β′. See Fig 6 as an example.
With either pair of α′ ∈ (θ[1], θm], β′ ∈ [θ[4], θ[3]) or α′ ∈
(θ[2], θ[1]], β′ ∈ [θm, θ[4]), the missing object m has a rank
of 2. More generally, let CS (d′) = [αL, βU], and let S be
the set of m’s dominators in the candidate search space. We
denote the angle of each object oi in S as θ[i] and sort them
clockwise w.r.t θm. Let t be the number of objects in S and in
the direction [αL, θm]. For a given k′, the possible α′ ranges
can be enumerated as (θ[i], θ[i − 1]] ∩ [αL, θm], 1 ≤ i ≤
min{k′, t + 1}, where θ[0] is set as θm. The corresponding
β′ range for an α′ range can then be selected accordingly by
ensuring that k′ − 1 dominators of m exist in [α′, β′]. There
are at most k′ such α′ and β′ range pairs for a given k′. For
example, in Fig. 6, there are two such pairs that rank m at 2,
as discussed above.

To compute the optimal refined query for a given k′,
we solve a linear programming problem for each range pair
of α′ and β′, with the objective function set as the corre-
sponding penalty function (Line 31). Given an initial query q
and a refined k′, ∆k is determined. Minimizing the penalty
function is equivalent to minimizing ∆d. Specifically, the
linear programming problem of finding the optimal refined
direction for a range pair of α′ and β′ that ranks the missing
object m at a given rank k′ can be modeled as follows:3

min ∆d = γ · |α
′+β′

2 − α0+β0

2 |
+(1− γ) · |(β′ − α′)− (β0 − α0)|

s.t.


α′ ∈ (θ[i], θ[i− 1]]

β′∈ [θ[i−1]+(θ[|S|−(k′−i)+1]−θ[i−1]+2π)%2π,

θ[i−1]+(θ[|S|−(k′−i)]−θ[i− 1]+2π)%2π),

where i ∈ Z and 1 ≤ i ≤ min{k′, t+ 1}, and α0 and β0 are
the start and end angles of the initial query’s direction. Note
that the β′ range is computed in a way that ensures that it
satisfies the constraint β′ ∈ [α′, α′ + 2π).

3. For clarify of the presentation, here we omit the criteria that α′ ∈
[αL, θm] and β′ ∈ [θm, βU].

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 10

m1
m2

θm[2] θm[1]

q

m1
m2

θm[2] θm[1]

q
(a) (b)

Fig. 7. An example of multiple missing objects

Example 7. Fig. 6 shows an example, where two range pairs
of α and β rank m at 2. The first pair is α′ ∈ (θ[1], θm]
and β′ ∈ [θ[4], θ[3]) (Fig. 6(a)). To ensure that the refined β′

is in [α′, α′ + 2π), the range of β′ is measured from θm, i.e.,
[θm+(θ[4]−θm+2π)%2π, θm+(θ[3]−θm+2π)%2π). The
optimal refined α′ and β′ in this range are then computed by
solving the linear programming problem of minimizing ∆d. It
is computed similarly for the second range pair of α′ and β′

(Fig. 6(b)). By comparing these two results, we then find the
best α′ and β′ that rank m at 2.

We give the time complexity of Algorithm 2 in the next
theorem.

Theorem 5. Let r = R(m, q,CS (d′)) denote the rank of
the missing object in the candidate search space, and
let DSKT (r) denote the time complexity of a direction-
aware spatial keyword top-k query in retrieving the
top-r objects. Algorithm 2 has a time complexity of
O(DSKT (r) + r2).

Proof. The proof is similar to that of Algorithm 1. The
difference is that in Algorithm 2, we enumerate the
possible k′ from 1 to r, and for each k′, there exist
at most k′ range pairs of refined α′ and β′. We need
to solve a linear programming problem for each range
pair. Nevertheless, the time complexity of solving such a
linear programming problem is constant, as the optimal
point is always on the vertices of the convex polygon.
Thus, the time complexity of computing the refined
query is also O(r2).

Optimizations: The optimizations proposed in Section 4 are
also applicable to Algorithm 2.

6 HANDLING MULTIPLE MISSING OBJECTS

Next, we extend the proposed algorithms to support why-
not queries with a set M of missing objects. Recall that we
refine the query direction d and the result cardinality k to
revive the missing objects. As the query direction works as
a filter, only the objects in the direction are considered as
candidates for a query result. To achieve the inclusion of
all missing objects, it is a basic requirement that the refined
direction d′ covers all missing objects, i.e., ∀mi ∈ M (θmi ∈
d′). Another requirement is that, the refined k′ should be
able to get the inclusion of the missing object with the
worst rank in the refined d′, i.e., k′ ≥ R(M, q, d′), where
R(M, q, d′) = Maxmi∈MR(mi, q, d

′).
With these observations, the already proposed algo-

rithms are extended to support multiple missing objects

as follows: (i) find the sufficient directions ds’s that cover
all the missing objects; (ii) for each sufficient direction ds,
enumerate the possible refined k′ to find the optimal refined
query; (iii) determine the best refined query by comparing
the optimal refined queries for all sufficient directions. Let
θm[i] denote the angle of a missing object mi in M and
sort the objects in increasing order of their angles. Assume
θm[0] = θm[|M |]. A sufficient direction that covers all the
missing objects in M is defined as [θm[i], θm[i − 1]], where
1 ≤ i ≤ |M |. See Fig. 7(a) for an example. Here, the
missing object set is M = {m1,m2}, and the dominators of
the worst ranked object in M are marked as black points.
Next, ds1 = [θm[1], θm[2]] and ds2 = [θm[2], θm[1]] are
two possible sufficient directions for M . Consider ds1 =
[θm[1], θm[2]]. To find the best refined query, we enumerate
the possible refined k′ starting from R(M, q, ds1), i.e., 3.
The process of finding the optimal refined direction for a
refined k′ is the same as that for a single missing object,
i.e., comparing the directions with start and end angles
as the angles of the dominators in the special case and
solving linear programming problems in the general case.
We need to find the optimal refined direction for each
sufficient direction of M , as users’ preferences of modifying
k vs. d and the distributions of the dominators of the worst
ranked missing object vary. See Fig. 7(b) for an example.
Assume a top-2 query is initially issued. If we only consider
the sufficient direction [θm[1], θm[2]], the smallest refined k′

equals R(M, q, [θm[1], θm[2]]) = 6. In contrast, the smallest
refined k′ for another sufficient direction, i.e., [θm[2], θm[1]],
is only 2, which incurs a smaller penalty for modifying k.

Theorem 6. Let r = R(M, q, [−π, π)) denote the lowest rank
of the missing objects in the whole database and SKT (r)
denote the time complexity of a spatial keyword top-k
query retrieving the top-r objects. The time complexity
of the why-not algorithm for a set M of missing objects
is O(SKT (r) + |M | · r2).

Proof. As we need to consider all sufficient directions, a
traditional spatial keyword top-k query needs to be
processed to compute the dominators of the objects in
M in all directions. Moreover, an optimal refined query
is sought for each sufficient direction. If no two missing
objects are in the same direction, there are |M | sufficient
directions for a missing object set M . Thus, the overall
time complexity is O(SKT (r) + |M | · r2).

Optimizations: In addition to the optimizations that we
proposed for a single missing object, we enumerate the
sufficient directions in increasing order of the ranks of the
worst ranked object among all missing objects in them, i.e.,
R(M, q, ds), so that we can early stop the enumeration if
the smallest refined k′ for the next ds, i.e., R(M, q, ds), has
a larger penalty in modifying k than the penalty of the
currently seen best refined query.

7 EMPIRICAL STUDY

This section evaluates the effectiveness and efficiency of the
proposed algorithms.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 11

7.1 Experimental Setup

7.1.1 System Setup and Metrics
Our experiments are all conducted on a PC with an Intel
Core i5 2.7GHz CPU and 8GB memory running Windows
7 OS. The algorithms are implemented in Java, and the
maximum main memory of the Java Virtual Machine is set
to 4GB. The proposed why-not query techniques are appli-
cable to any direction-aware spatial keyword top-k query
algorithm. In our experiments, we extend an existing algo-
rithm [15] to process direction-aware spatial keyword top-k
queries using the language model by examining whether
each accessed MBR or object is in the query direction. The
index structure adopted, i.e., the IR-tree, is disk-resident.
The page size is set to 4KB and the capacity of a node is
set to 100. Note that the proposed algorithms for processing
why-not questions are independent of the algorithm for
the direction-aware spatial keyword search. For each set
of experiments, we randomly generate 1,000 queries and
report the average CPU time.

7.1.2 Datasets
We study the performance of the proposed algorithms using
two real datasets, EURO and GN. Both are used widely
in spatial keyword related research [5], [9], [11], [30]. Each
dataset contains a number of objects with a spatial loca-
tion and a set of keywords. EURO is a dataset of points
of interest such as ATMs, hotels, and stores in Europe
(www.allstays.com); and GN is obtained from the US Board
on Geographic Names (geonames.usgs.gov) and contains a
set of geographic objects. Table 1 gives more details about
the datasets.

TABLE 1
Dataset Information

Dataset EURO GN
Total # of objects 162,033 1,868,821

Total # of distinct words 35,315 222,407
Avg. # of words per object 18 4

7.1.3 Parameters
We evaluate the performance of our algorithms when vary-
ing different parameters. Table 2 lists these parameters,
where the default values are highlighted in bold. By default,
the why-not question is issued for a missing object that
ranks at 10·k0+1 under the initial query without taking into
account a query direction. As such, the missing object might
be located inside or outside the user-specified query direc-
tion. As a default, we fix the weighting factor γ in Eqn. (4)
to 0.5 to balance the changes between the rotation and the
size of a refined direction. For each set of experiments, the
parameters are set to their default values unless specified
otherwise.

7.2 Experimental Results

7.2.1 Baseline vs. Algorithm 1
We first compare Algorithm 1 against the baseline method
presented in Section 3.3. Note that the baseline method is
workable for the special case only, since it is impossible
to enumerate an infinite number of candidate directions

TABLE 2
Parameter Setting

Parameter Setting
k0 1, 3, 10, 30, 100

of keywords 2, 4, 6, 8, 16

~w
<0.1, 0.9>,<0.3, 0.7>,

<0.5,0.5>,<0.7, 0.3>,<0.9, 0.1>

R(m, q, [−π, π)) 11, 31, 101, 301, 1001
size of d0 π

6
,π
3

, π
2

, π, 2π
of missing objects 1, 3, 10, 30

in the general case. Thus, in this set of experiments, the
initial query is a traditional spatial keyword top-10 query
with no query direction. The candidate directions for the
baseline algorithm are obtained according to Proposition 1.
Fig. 8 shows the runtime of the algorithms under different
penalty options, where PMK stands for “Prefer Modifying
K (λ = 0.1)”; PMD stands for “Prefer Modifying Direction
(λ = 0.9)”; and NM stands for “Never Mind (λ = 0.5)”. As
we can see, Algorithm 1 outperforms the baseline method
by two orders of magnitude. That is mainly because the
baseline method needs to invoke a spatial keyword top-k
query to determine the rank of the missing object for each
candidate direction, which incurs high computation cost. In
contrast, Algorithm 1 is able to calculate the penalty of a
candidate direction in constant time.

 1

 10

 100

 1000

 10000

 100000

PMK NM PMD

R
un

ni
ng

 ti
m

e
(m

s)

Different methods (EURO)

Baseline
Algorithm 1

(a) Running Time (EURO)

 10

 100

 1000

 10000

 100000

 1e+006

PMK NM PMD

R
un

ni
ng

 ti
m

e
(m

s)

Different methods (GN)

Baseline
Algorithm 1

(b) Running Time (GN)

Fig. 8. Varying penalty options (Baseline vs. Algorithm 1)

In the remaining experiments, we examine the perfor-
mance of the algorithm (i.e., Algorithm 2) proposed for the
general case. We do not include the baseline algorithm for
comparison since, as explained above, it does not work for
the general case.

7.2.2 Varying k0

In this set of experiments, we investigate how different
values of the parameter k0 under the initial query affects
the performance of the algorithm. In our setting, the rank
of the missing object under the initial query varies with
k0, i.e., R(m, q, [−π, π)) = 10 · k0 + 1. For instance, when
an initial top-3 query is issued, the corresponding why-
not question seeks to revive the object ranked at 31 in
the database w.r.t. the initial query. Fig. 9 plots the results.
Recall that the proposed algorithm consists of two phases,
i.e., i) computing the initial rank of the missing object and
ii) finding the best refined query. Both of the two phases
take more time when the missing object has a worse rank.
In our setting, the rank of the missing object gets worse
when k0 increases; hence, the runtime of the algorithm
increases with k0. However, the algorithm scales well with
the increase of k0. For instance, when k0 = 10, the missing

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 12

object ranks at 1001; the algorithm is able to process the
why-not query within 400ms and 1.8s on datasets Euro and
GN, respectively.

 0

 100

 200

 300

 400

 500

1 3 10 30 100

R
un

ni
ng

 ti
m

e
(m

s)

k0 (EURO)

PMK
NM
PMD

(a) Running Time (EURO)

 0

 500

 1000

 1500

 2000

1 3 10 30 100

R
un

ni
ng

 ti
m

e
(m

s)
k0 (GN)

PMK
NM
PMD

(b) Running Time (GN)

Fig. 9. Varying k0

7.2.3 Varying the number of query keywords
We next evaluate the effect of different numbers of query
keywords. Fig. 10 plots the results. Intuitively, the number of
query keywords only affects the first phase of the algorithm,
i.e., computing the missing object’s rank in the candidate
search space. As having more query keyword requires more
time to compute the textual similarities between the query
keywords and index tree nodes/objects, the runtime shows
an increasing tendency when the number of query key-
words increases.

 0

 50

 100

 150

 200

2 4 6 8 16

R
un

ni
ng

 ti
m

e
(m

s)

Number of keywords (EURO)

PMK
NM
PMD

(a) Running Time (EURO)

 0

 200

 400

 600

 800

 1000

 1200

 1400

2 4 6 8 16

R
un

ni
ng

 ti
m

e
(m

s)

Number of keywords (GN)

PMK
NM
PMD

(b) Running Time (GN)

Fig. 10. Varying # query keywords

7.2.4 Varying ~w.
The weighting vector ~w allows users to set their prefer-
ences between spatial proximity and textual relevance when
issuing a spatial keyword top-k query. We evaluate the
performance of the proposed algorithm by varying ~w in this
set of experiments. Different settings of ~w also only affect
the algorithm in the first phase. As we can see from Fig. 11,
the query time decreases when ws in ~w is increased. The
reason is that, a smaller ws means a higher weight to textual
relevance, which lowers the importance of spatial proximity
in the ranking function. Consequently, the pruning ability
of the IR-tree decreases and more tree nodes need to be
accessed.

7.2.5 Varying the size of d0

Next, we investigate the performance of the algorithm when
varying the initial query direction d0. In the experiments,
queries with different initial direction sizes, from π

6 to 2π,
are generated randomly. The average query time is shown in
Fig. 12. A larger d0 results in a larger candidate space CS (d′)
for the refined query directions. As the processing of a
direction-aware spatial keyword query consumes more time

 10

 100

 1000

0.1 0.3 0.5 0.7 0.9

R
un

ni
ng

 ti
m

e
(m

s)

ws (EURO)

PMK
NM
PMD

(a) Running Time (EURO)

 100

 1000

 10000

0.1 0.3 0.5 0.7 0.9

R
un

ni
ng

 ti
m

e
(m

s)

ws (GN)

PMK
NM
PMD

(b) Running Time (GN)

Fig. 11. Varying ws in ~w

for a larger search space, the time for computing the rank
of the missing object in a larger candidate space increases.
This explains why the runtime increases with the size of
d0. Nevertheless, the algorithm scales well as d0 increases.
For example, the running time only increases 20% when the
direction varies from π

6 to 2π.

 0

 50

 100

 150

 200

π/6 π/3 π/2 π 2π

R
un

ni
ng

 ti
m

e
(m

s)

d0 (EURO)

PMK
NM
PMD

(a) Running Time (EURO)

 0

 200

 400

 600

 800

 1000

π/6 π/3 π/2 π 2π

R
un

ni
ng

 ti
m

e
(m

s)

d0 (GN)

PMK
NM
PMD

(b) Running Time (GN)

Fig. 12. Varying the size of d0

7.2.6 Varying the initial rank of the missing object
We also study the performance of our algorithm when
issuing why-not questions for missing objects with different
ranks in the initial query. In the experiments, a default
top-10 query is used. We ask five why-not questions with
the missing object being the one ranked at 11, 31, 101,
301, and 1001, respectively. Fig. 13 shows the results. As
expected, the spatial keyword top-k query consumes more
time to compute the rank of the missing object that ranks
worse under the initial query. Moreover, a worse ranked
missing object results in many more dominators and thus
produces more candidate directions, which makes the phase
of finding the best refined query take longer as well. These
are the reasons for that the runtime increases when the
missing object’s rank gets worse.

It is interesting to observe that the result of this set
of experiments is quite similar to that of varying k0. This
suggests that the initial rank of the missing object affects the
performance of the algorithm significantly while k0 has little
effect.

 0

 50

 100

 150

 200

 250

 300

 350

11 31 101 301 1001

R
un

ni
ng

 ti
m

e
(m

s)

Rank of missing object (EURO)

PMK
NM
PMD

(a) Running Time (EURO)

 0

 200

 400

 600

 800

 1000

 1200

 1400

11 31 101 301 1001

R
un

ni
ng

 ti
m

e
(m

s)

Rank of missing object (GN)

PMK
NM
PMD

(b) Running Time (GN)

Fig. 13. Varying the initial rank of the missing object

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 13

7.2.7 Varying the number of missing objects

We next consider the performance of the algorithm when
changing the number of missing objects. The initial query
is a top-10 query with a direction of size π

3 . Missing objects
are selected randomly among the objects ranked between 11
and 101 in the whole database w.r.t. the initial query. Fig. 14
shows that the query time increases with more missing
objects. The reason is that having more missing objects
produces a larger candidate search space for the refined
directions. Nevertheless, the increase of the query time is
only moderate. This is because only the missing object with
the worst initial rank has an impact on the performance.

 0

 50

 100

 150

 200

1 3 10 30

R
un

ni
ng

 ti
m

e
(m

s)

number of missing objects (EURO)

PMK
NM
PMD

(a) Running Time (EURO)

 300

 400

 500

 600

 700

 800

1 3 10 30

R
un

ni
ng

 ti
m

e
(m

s)

number of missing objects (GN)

PMK
NM
PMD

(b) Running Time (GN)

Fig. 14. Varying # missing objects

7.2.8 Scalability

In the last set of experiments, we study the scalability of the
proposed algorithm. To do so, we randomly select different
numbers of objects from the datasets to test the performance
of the algorithm with different dataset sizes. All parameters
for the queries are set to the default values. Fig. 15 plots
the results. In our setting, the initial rank of the missing
object does not change when the dataset size increases,
which means that the cost of the phase that finds the best
refined query is unaffected. However, the cost of processing
a spatial keyword top-k query increases with the dataset
size. This is the reason why the query time of the proposed
algorithm is sublinear to the increase of dataset size.

 0

 20

 40

 60

 80

 100

 120

 140

30K 60K 90K 120K 150K

R
un

ni
ng

 ti
m

e
(m

s)

Data size (EURO)

PMK
NM
PMD

(a) Running Time (EURO)

 0

 100

 200

 300

 400

 500

 600

 700

 800

300K 600K 900K 1200K 1500K

R
un

ni
ng

 ti
m

e
(m

s)

Data size (GN)

PMK
NM
PMD

(b) Running Time (GN)

Fig. 15. Varying dataset size

Impact of Penalty Options: From all of the above experimental
results, we may observe that the user’s penalty preference
(i.e., PMK, NM, or PMD) has very small impact on the per-
formance of the proposed algorithms under the considered
parameter settings. This is because the penalty preference
λ only affects the second phase of the algorithms. Since we
enumerate the possible refined k′ settings in an increasing
order, a larger λ can help stop the enumeration earlier. This
explains the overall trend of the query time with different
penalty option settings: PMK>NM>PMD.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we have studied the problem of answering
why-not questions in the context of direction-aware spatial
keyword top-k queries by refining users’ query directions.
We aim to minimally modify users’ initial queries to revive
their expected but missing objects. We have tackled the
problem in two cases. Based on insightful problem anal-
ysis, we proved that the solution space is a finite set of
candidates for the special case where no initial query di-
rection is specified, and we provided a linear programming
solution for the general case. We have also extended the
proposed algorithms to support multiple missing objects.
Extensive experiments with real datasets demonstrate that
the proposed algorithms are scalable and are of superior
performance compared to a baseline method under a wide
range of system settings.

As for future work, we plan to investigate the refine-
ment of the query location to make this line of work more
complete. We also plan to study the relevant why questions
to explain to users why some particular objects appear in
a query result. Based on this, we would like to build an
integrated framework that supports the answering of why-
not/why questions on spatial keyword top-k queries while
considering different parameters, including the refinement
of the preference weighting vector, the query keyword set,
the query direction, and the query location in a concerted
fashion.

ACKNOWLEDGMENTS

This work is supported by HK-RGC Grants 12201615,
12244916, and 12200817. The work of Yafei Li is supported
by NSFC Grant 61602420.

REFERENCES

[1] S. S. Bhowmick, A. Sun, and B. Q. Truong, “Why Not, WINE?:
Towards answering why-not questions in social image search,” in
Proc. 21st ACM Int. Conf. on Multimedia, pp. 917–926, 2013.

[2] P. Bouros, S. Ge, and N. Mamoulis, “Spatio-textual similarity joins,”
Proc. VLDB Endowment, vol. 6, no. 1, pp. 1–12, Nov. 2012.

[3] X. Cao, L. Chen, G. Cong, C. S. Jensen, Q. Qu, A. Skovsgaard,
D. Wu, and M. L. Yiu, “Spatial Keyword Querying,” in 31st
International Conference ER, pp. 16–29, 2012.

[4] X. Cao, G. Cong, and C. S. Jensen, “Retrieving top-k prestige-based
relevant spatial web objects,” Proc. VLDB Endowment, vol. 3, no.
1–2, pp. 373–384, Sep. 2010.

[5] X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi, “Collective spatial
keyword querying,” in Proc. ACM SIGMOD Int. Conf. Manage. Data,
pp. 373–384, 2011.

[6] A. Chapman and H. V. Jagadish, “Why not?,” in Proc. ACM
SIGMOD Int. Conf. Manage. Data, pp. 523–534, 2009.

[7] Lisi Chen, G. Cong, C. S. Jensen, and D. Wu, “Spatial keyword
query processing: An experimental evaluation,” Proc. VLDB En-
dowment, vol. 6, no. 3, pp. 217–228, 2013.

[8] Lu Chen, Y. Gao, K. Wang, C. S. Jensen and G. Chen, “Answering
why-not questions on metric probabilistic range queries,” in Proc.
IEEE 32nd Int. Conf. Data Eng., pp. 767–778, 2016.

[9] Lei Chen, X. Lin, H. Hu, C. S. Jensen, and J. Xu, “Answering why-
not questions on spatial keyword top-k queries,” in Proc. IEEE 31st
Int. Conf. Data Eng., pp. 279–290, 2015.

[10] Lei Chen, Y. Li, J. Xu, and C. S. Jensen, “Direction-Aware Why-Not
Spatial Keyword Top-k Queries,” in Proc. IEEE 33rd Int. Conf. Data
Eng., pp. 107–110, 2017 (short paper).

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 14

[11] Lei Chen, J. Xu, X. Lin, C. S. Jensen and H. Hu, “Answering why-
not spatial keyword top-k queries via keyword adation,” in Proc.
IEEE 32nd Int. Conf. Data Eng., pp. 697–708, 2016.

[12] Lei Chen, J. Xu, C. S. Jensen, and Y. Li, “YASK: A why-not question
answering engine for spatial keyword query services,” Proc. VLDB
Endowment, vol. 9, no. 13, pp. 1501–1504, Sep. 2016.

[13] Y.-Y. Chen, T. Suel, and A. Markowetz, “Efficient query processing
in geographic web search engines,” in Proc. ACM SIGMOD Int.
Conf. Manage. Data, pp. 277–288, 2006.

[14] F. M. Choudhury, J. S. Culpepper, T. Sellis and X. Cao, “Maxi-
mizing bichromatic reverse spatial and textual k nearest neighbor
queries,” Proc. VLDB Endowment, vol. 9, no. 6, pp. 456–467, Jan.
2016.

[15] G. Cong, C. S. Jensen, and D. Wu, “Efficient retrieval of the top-k
most relevant spatial web objects,” Proc. VLDB Endowment, vol. 2,
no. 1, pp. 337–348, Aug. 2009.

[16] I. De Felipe, V. Hristidis, and N. Rishe, “Keyword search on spatial
databases,” in Proc. IEEE 24th Int. Conf. Data Eng., pp. 656–665, 2008.

[17] C. Manning, P. Raghavan, and H. Schutze, “Introduction to
Information Retrieval,” Cambridge University Press, 2008.

[18] J. Fan, G. Li, L. Zhou, S. Chen, and J. Hu, “SEAL: Spatio-textual
similarity search,” Proc. VLDB Endowment, vol. 5, no. 9, pp. 824–835,
May 2012.

[19] Y. Gao, Q. Liu, G. Chen, B. Zheng, and L. Zhou, “Answering why-
not questions on reverse top-k queries,” Proc. VLDB Endowment,
vol. 8, no. 7, pp. 738–749, Feb. 2015.

[20] X. Guo, Y. Ishikawa, Y. Xie, A. Wulamu, “Reverse direction-based
surrounder queries for mobile recommendations,” World Wide Web,
vol. 20, no. 5, pp. 885–913, 2017.

[21] Z. He and E. Lo, “Answering why-not questions on top-k queries,”
in Proc. IEEE 30th Int. Conf. Data Eng., pp. 750–761, 2012.

[22] M. Herschel and M. A. Hernández, “Explaining missing answers
to SPJUA queries,” Proc. VLDB Endowment, vol. 3, no. 1–2, pp. 185–
196, Sep. 2010.

[23] J. Huang, T. Chen, A. Doan, and J. F. Naughton, “On the
provenance of non-answers to queries over extracted data,” Proc.
VLDB Endowment, vol. 1, no. 1, pp. 736–747, Aug. 2008.

[24] M. S. Islam, R. Zhou, and C. Liu, “On answering why-not
questions in reverse skyline queries,” in Proc. IEEE 29th Int. Conf.
Data Eng., pp. 973–984, 2013.

[25] M.-J. Lee, D.-W. Choi, S. Kim, H.-M. Park, S. Choi, and C.-W.
Chung, “The direction-constrained k nearest neighbor query -
Dealing with spatio-directional objects,” GeoInformatica, vol. 20, no.
3, pp. 471–502, 2016.

[26] G. Li, J. Feng, and J. Xu. “DESKS: Direction-aware spatial keyword
search,” in Proc. IEEE 28th Int. Conf. Data Eng., pp. 474-485, 2012.

[27] Z. Li, K. C. K. Lee, B. Zheng, W.-C. Lee, D. L. Lee, and X. Wang,
“IR-tree: an efficient index for geographic document search,” IEEE
Trans. Knowl. Data Eng., vol. 23, no. 4, pp. 585–599, Apr. 2011.

[28] F. Li, B. Yao, M. Tang, and M. Hadjieleftheriou, “Spatial approxi-
mate string search,” IEEE Trans. Knowl. Data Eng., vol. 25, no. 6, pp.
1394–1409, Jun. 2013.

[29] X. Lin, J. Xu, and H. Hu, “Reverse keyword search for spatio-
textual top-k queries in location-based services,” IEEE Trans. Knowl.
Data Eng., vol. 27, no. 11, pp. 3056–3069, Nov. 2015.

[30] J. Lu , Y. Lu, and G. Cong, “Reverse spatial and textual k nearest
neighbor search,” in Proc. ACM SIGMOD Int. Conf. Manage. Data,
pp. 349–360, 2010.

[31] T. Lee, J. Park, S. Lee, S. Hwang, S. Elnikety, and Y. He, “Processing
and optimizing main memory spatial-keyword queries,” Proc.
VLDB Endowment, vol. 9, no. 3, pp. 132–143, Nov. 2015.

[32] A. Motro, “Query generalization: A method for interpreting null
answers,” in Proc. Int. Expert Database Workshop, pp. 597–616, 1984.

[33] A. Motro, “SEAVE: A mechanism for verifying user presupposi-
tions in query systems,” ACM Trans. Inf. Syst., vol. 4, no. 4, pp.
312–330, 1986.

[34] J. B. Rocha-Junior and K. Nørvåg, “Top-k spatial keyword queries
on road networks,” in Proc.15th Int. Conf. Extending Database
Technology, pp. 168–179, 2012.

[35] J. Shi, D. Wu, and N. Mamoulis, “Top-k relevant semantic place
retrieval on spatial RDF data,” in Proc. ACM SIGMOD Int. Conf.
Manage. Data, pp. 1977–1990, 2016.

[36] Q. T. Tran and C. Chan, “How to ConQueR why-not questions,”
in Proc. ACM SIGMOD Int. Conf. Manage. Data, pp. 15–26, 2010.

[37] D. Wu, G. Cong, and C. S. Jensen, “A framework for efficient
spatial web object retrieval,” The VLDB Journal, vol. 21, no. 6, pp.
797–822, Dec. 2012.

[38] D. Wu, Y. Li, B. Choi, and J. Xu, “Social-aware top-k spatial key-
word search,” in Proc. IEEE 15th Int. Conf. Mobile Data Management,
pp. 235–244,2014.

[39] X. Xie, X. Lin, J. Xu, and C. S. Jensen. “Reverse Keyword-based
Location Search,” in Proc. IEEE 33rd Int. Conf. Data Eng., pp. 375–
386, 2017.

[40] D. Zhang, Y. M. Chee, A. Mondal, A. K. H. Tung, and M. Kitsure-
gawa, “Keyword search in spatial databases: Towards searching
by document,” in Proc. IEEE 25th Int. Conf. Data Eng., pp. 688–699,
2009.

[41] D. Zhang, B. C. Ooi, and A. K. H. Tung, “Locating mapped
resources in web 2.0,” in Proc. IEEE 26th Int. Conf. Data Eng., pp.
521–532, 2010.

Lei Chen received his BEng degree from the
College of Computer Science and Technol-
ogy in South China University of Technology,
Guangzhou, China, in 2012, and his PhD de-
gree in Computer Science from Hong Kong Bap-
tist University, Hong Kong, in 2016. He is cur-
rently a researcher at Huawei Noah’s Ark Lab,
Hong Kong. His research interests include spa-
tial databases, query processing, and applied
machine learning.

Yafei Li is an assistant professor in the
School of Information Engineering, Zhengzhou
University, Zhengzhou, China. He holds a
visiting position in the database research
group (http://www.comp.hkbu.edu.hk/∼db) at
Hong Kong Baptist University. He received his
PhD degree in Computer Science from Hong
Kong Baptist University in 2015. His research in-
terests include mobile and spatial data manage-
ment, location-based services, and smart city

computing.

Jianliang Xu is a professor in the Department of
Computer Science, Hong Kong Baptist Univer-
sity. He received his BEng degree in computer
science and engineering from Zhejiang Univer-
sity, Hangzhou, China and his PhD degree in
computer science from Hong Kong University of
Science and Technology. He held visiting posi-
tions at Pennsylvania State University and Fu-
dan University. His research interests include
big data management, mobile computing, data

security and privacy. He has published more than 150 technical papers
in these areas. He has served as a program co-chair/vice chair for a
number of major international conferences including IEEE ICDCS 2012,
IEEE CPSNA 2015, and WAIM 2016. He is an Associate Editor of IEEE
TKDE and PVLDB 2018.

Christian S. Jensen is an Obel professor of
computer science at Aalborg University, Den-
mark. He was recently at Aarhus University for
three years and at Google Inc. for one year. His
research concerns data management and data-
intensive systems, and its focus is on tempo-
ral and spatio-temporal data management. He
has received several national and international
awards for his research. He is an editor-in-chief
of the ACM Transactions on Database Systems

(TODS) and was an editor-in-chief of The VLDB Journal from 2008
to 2014. He is an ACM and an IEEE fellow, and he is a member of
the Academia Europaea, the Royal Danish Academy of Sciences and
Letters, the Danish Academy of Technical Sciences, and the EDBT
Endowment, as well as a trustee emeritus of the VLDB Endowment.

	tmp.1520559217.pdf.kDAZT

