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Abstract. In this paper, we present a scheme of stochastic hybrid sys-
tem which introduces randomness to the deterministic framework of the
traditional hybrid systems by allowing the flow inside each invariant set of
the discrete state variables to be governed by stochastic differential equa-
tion (SDE) rather than the deterministic ones. The notion of embedded
Markov chains is proposed for such systems and some illustrative exam-
ple from high way model is presented. As an important application, these
ideas are then applied to the state space discretization of one dimensional
SDE to obtain the natural discretized stochastic hybrid system together
with its embedded MC. The invariant distribution and exit probability
from interval of the MC are studied and it is shown that they converge
to their counterparts for the solution process of the original SDE as the
discretization step goes to zero. As a result, the discretized stochastic
hybrid system provides a useful tool for studying various sample path
properties of the SDE.



1 Introduction

In the conventional formulation of hybrid system (See, for example, [6]), there is
no place for randomness. Although the deterministic framework captures many
characteristics of the real systems in practice, in other cases, the missing flavor of
randomness will indeed be a fatal flaw because of the inherent uncertainty in the
environment of most real world applications. The idea of introducing stochastic
hybrid system is not new. Different researchers have tried to propose different
models from their own perspectives. For the most recent and relevant literature,
the readers are referred to [1, 5, 10, 2, 11, 9]. The most important difference lies
in where to introduce the randomness.

One obvious choice is to replace the deterministic jumps between discrete
states by random jumps governed by some prescribed probabilistic law. Hence
the evolution of the discrete states constitutes a time homogeneous Markov
chain. The question remained then is when does such jump occur? In [1], the
jumps occur every ǫ time, and the effect when ǫ → 0 is studied. In [10], however,
the transitions follow a continuous time Markov process. In both papers, the
discrete random transitions are assumed to be independent of the continuous
dynamics, therefore the models can actually be better viewed as an extension of
Markov process with some continuous states attached whose evolutions follow
state-dependent deterministic differential equations.

Another choice is to replace the deterministic dynamics inside the invariant
set of each discrete state by a stochastic differential equation (SDE). Therefore,
even if we keep the deterministic discrete transition part, starting from a fixed
initial state, different guards can be activated depending on the realization of
the solution stochastic process, thus different discrete transitions occur randomly.
More general models can be proposed by blending the above two choices.

This paper is organized as following: in Section 2, we will try to give a general
definition of stochastic hybrid system based on the second choice mentioned
above. An example will be shown in Section 3 together with its analysis. In
Section 4, the idea will be applied to a more general problem, in which we will
approximate the solution of the SDE in R

1 by the stochastic hybrid automata
obtained from state space discretization. And finally we will discuss the special
case of gradient system in the last section. The proofs of the theorems are not
included due to the limit of space and will appear in subsequent paper.

2 General Definition

Definition 1 (Stochastic Hybrid System). A stochastic hybrid system (or
automata) is a collection H = (Q,X,Inv, f, g, G,R) where

– Q is a discrete variable taking countably many values in Q = {q1, q2, · · · };
– X is a continuous variable taking values in X = R

N for some N ∈ N;
– Inv : Q → 2X assigns to each q ∈ Q an invariant open subset of X;
– f, g : Q × X → TX are vector fields;
– G : E = Q × Q → 2X assigns to each e ∈ E a guard G(e) such that



• For each e = (q, q′) ∈ E, G(e) is a measurable subset of ∂Inv(q) (possibly
empty);

• For each q ∈ Q, the family {G(e) : e = (q, q′) for some q′ ∈ Q} is a
disjoint partition of ∂Inv(q).

– R : E × X → P(X) assigns to each e = (q, q′) ∈ E and x ∈ G(e) a
reset probability kernel on X concentrated on Inv(q′). Here P(X) denote the
family of all probability measures on X. Furthermore, for any measurable set
A ⊂Inv(q′), R(e, x)(A) is a measurable function in x.

Remark 1. The measurability assumption on R in the preceding definition is
made to ensure that the events we encounter later are measurable w.r.t. the
underlying σ-field, hence their probabilities make sense.

Definition 2 (Stochastic Execution). A stochastic process (X(t), Q(t)) ∈
X × Q is called a stochastic execution iff there exists a sequence of stopping
times τ0 = 0 ≤ τ1 ≤ τ2 ≤ · · · such that for each n ∈ N,

– In each interval [τn, τn+1), Q(t) ≡ Q(τn) is constant, X(t) is a (continuous)
solution to the SDE:

dX(t) = f(Q(τn), X(t)) dt + g(Q(τn), X(t)) dBt ,

where Bt is the standard Brownian motion in R;
– τn+1 = inf{t ≥ τn : X(t) 6∈ Inv(Q(τn))};
– X(τ−

n+1) ∈ G(Q(τn), Q(τn+1)) where X(τ−
n+1) denotes limt↑τn+1

X(t);

– The probability distribution of X(τn+1) given X(τ−
n+1) is governed by the law

R(en, X(τ−
n+1)), where en = (Q(τn), Q(τn+1)) ∈ E.

Definition 3 (Embedded Markov Process). In the notation of the previous
definition, define Qn , Q(τn), Xn , X(τn). Then {(Qn, Xn), n ≥ 0} is called
the embedded Markov process for the stochastic execution (X(t), Q(t)).

Under these definitions, for example, a typical stochastic execution starts
from (Q0, X0) and the continuous state X(t) evolves according to the SDE

dX(t) = f(Q0, X(t)) dt + g(Q0, X(t)) dBt, X(0) = X0

until time τ1 when X(t) first hits ∂Inv(Q0). Then depending on the hitting
position X(τ−

1 ), (say, X(τ−
1 ) ∈ G(e) where e = (Q0, Q1) for some Q1 ∈ Q), the

discrete state jumps to Q(τ1) = Q1 and the continuous state is reset randomly to
X(τ1) = X1 according to the conditional probability distribution R(e,X(τ−

1 ))(·)
and the same process is repeated with (Q1, X1) replacing (Q0, X0) and so on.

Lemma 1. {(Qn, Xn)} defined above is indeed a Markov process with transition
probability:

P (Qn+1 = q′, Xn+1 ∈ dx′|Qn = q, Xn = x) =

∫

y∈G(e)

R(e, y)(dx′)P (Yx(η) = dy) ,

(1)



where e = (q, q′), Yx(t) is the solution to the SDE

dY (t) = f(q, Y (t)) dt + g(q, Y (t)) dBt, Y (0) = x ,

and η = inf{t ≥ 0 : Yx(t) 6∈ Inv(q)} is the first escape time of Yx(t) from Inv(q).

Lemma 2. If the reset kernel R((q, q′), x) = R(q′) does not depend on q nor x,
then {Qn} itself is a Markov chain (MC) with transition probability (n ≥ 1):

P (Qn+1 = q′|Qn = q) =

∫

x∈Inv(q)

P (Yx(η) ∈ G(e))R(q)(dx) , (2)

where e, Yx, η is defined in the previous lemma. For n = 0, the transition proba-
bility depends on the initial distribution of X(0).

Remark 2. The condition in Lemma 2 is fairly restrictive and excludes many
general stochastic hybrid systems. The point of imposing this condition is to
make calculation tractable. Furthermore, as we will see in the later sections, this
special class of systems is still rich enough to admit many important applications.

The reason we introduce the embedded MC is that in most cases, it is hard
if not impossible to get an explicit expression of the stochastic execution for a
stochastic hybrid system. If all we are interested in is the reachability analysis of
the discrete states transitions, then {Qn} will capture all the necessary informa-
tion. This is the case if a subset of the discrete states is defined to be the “bad”
states and a controller is designed to minimize the probability of reaching these
states within a given time horizon. Or alternatively, some states are defined to be
safe and we want to maximize the probability that the execution will remain in
these states for as long as possible. At first sight these observation does not seem
to be applicable in general, since in most cases, the definition of bad states and
safe states involve both the discrete and continuous states. However, by breaking
up the corresponding invariant sets and adding more discrete states and trivial
reset kernels, we can always reduce the original system to a new one satisfying
the above conditions, at least in the case when the support of any reset kernel
is contained exclusively in safe or bad set.

3 A Simple Example

To clarify the above concepts, consider the following simple example. Two cars,
labeled 1 and 2 with car 2 in the lead, are moving from left to right on a highway
(see Figure 1). Due to various random factors such as road condition, wind, and
the presence of human operators, the motions of both cars are stochastic. If
we absorb all the randomness into the motion of car 1 and ignore the possible
occurrence of emergency braking, then the motion of car 2 can be modeled as
having a constant speed v2. Let ∆x be the distance between the two cars. Let
d0 > d1 > d2 > d3 > 0 be four thresholds. We propose the following hybrid
control scheme for car 1 (see the diagram in Figure 2): It consists of 3 discrete
states {1, 2, 3} corresponding to chasing, keeping and braking respectively.
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Fig. 1. A two-car platoon on the highway

1. Chasing: In this stage, ∆x ≥ d2, and car 1 will try to catch car 2 at speed
v1 > v2. So the perturbed motion of car 1 is governed by ẋ1 = v1 + dBt,
where Bt is a standard 1-D BM;

2. Keeping: In this stage d3 ≤ ∆x ≤ d1, and car 1 will try to move at v2 under
the perturbation dBt;

3. Braking: If ∆x ≤ d3, then car 1 will brakes according to some prescribed
procedure until ∆x = d0. For simplicity, we ignore the presence of noise
during braking.
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Fig. 2. Diagram for the stochastic hybrid system

The invariant sets and guards for each discrete state are also shown in Fig-
ure 2. The reset kernels are trivial, or more precisely, R(e, x) is concentrated at
x for any e = (q, q′) ∈ E and any x ∈ G(e). It is easily seen that H satisfies the
condition of Lemma 2. Hence the successive visits to the discrete states {Qn} is
a MC. Actually its probability transition matrix is

P =





0 1 0
p 0 1 − p
1 0 0



 ,



where p = (d2 − d3)/(d1 − d3). The first and third row of P is obvious and the
second row follows from ([3]):

Lemma 3. Let Bt be a standard BM starting from 0. For a < 0 < b, define
Ta = inf{t ≥ 0 : Bt = a}, Tb = inf{t ≥ 0 : Bt = b}. Then P (Ta < Tb) = b

b−a

and E(Ta ∧ Tb) = −ab. Here Ta ∧ Tb denotes min(Ta, Tb).

Calculation shows that the stationary distribution for P is ( 1
3−p

, 1
3−p

, 1−p
3−p

).
Therefore the fraction of time the system spends in each discrete state is pro-
portional to:

(
ET1

3 − p
,

ET2

3 − p
,

(1 − p)ET3

3 − p
) ,

where ET1 = (d0 − d2)/(v1 − v2), ET2 = (d1 − d2)(d2 − d3), ET3 = t3 are the
expected sojourn time in each discrete state respectively.

In practice, we want to maximize the time the stochastic hybrid system
spends in the keeping state and minimize the time it spends in the braking state.
This can be done by adjusting the thresholds d0, d1, d2, d3 properly. Sometimes
this choice is restricted by other physical constraints. However, we can always use
more thresholds and thus more complex stochastic hybrid controller to achieve
the goal within the various physical constraints. This technique will be illustrated
in the next section.

4 State Discretization of 1-D Stochastic Differential

Equation

4.1 Motivation and Definition

Consider the following stochastic differential equation in R:

dX(t)

dt
= f(X(t)) + dBt, X(0) = 0 , (3)

where f : R → R is smooth and dBt is white noise with spectral density 1.
Define a series of stopping times τn inductively as: τ0 = 0, τn = inf{t ≥ τn−1 :
|X(t) − X(τn−1)| = δ}, n = 1, 2, 3, · · · . Let Sn = X(τn). Then {Sn} is a MC
taking values in δ · Z. Sn captures many sample path properties of the solution
process X(t), for example, whether X(t) is recurrent. or less obviously, whether
X(t) crosses an interval of length less than δ infinitely many times,

Define τt = supn{τn : τn ≤ t} and let Yt = X(τt). Then Yt is piecewise
constant with value Sn in time interval [τn, τn+1). Define Z(t) to be the solution
process to the stochastic differential equation:

dZ(t)

dt
= f(Yt) + dBt . (4)

Comparing equation (3) and (4) and noticing that during time interval [τn, τn+1),
|X(t)− Yt| ≤ δ by the definition of τn’s and f is continuous, we can expect that
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Fig. 3. Discretization of state space

as δ → 0, Z(t) approaches X(t) in distribution, hence Z(t) is a good approxima-
tion to X(t) which is often impossible to calculate explicitly. However, it is still
difficult to solve equation (4) since Yt depend on the original solution process
X(t) through τn’s and Sn’s. So to solve equation (4), theoretically we still have
to solve equation (3) first.

One way to get out of this loop is to use the fact that X(t) can be approx-
imated by Z(t), hence τn’s and Sn’s can also be approximated by the corre-
sponding random variables defined from Z(t). This will lead to the discretized
stochastic hybrid system (DSHS) defined below.

Definition 4 (Discretized Stochastic Hybrid System). The discretized
stochastic hybrid system for equation (3) is H = (Q,X,Inv, f, g, G,R) where
Q = Z, X = R, and
— Inv(k) = ((k − 1)δ, (k + 1)δ) for any k ∈ Q;
— f(k, ·) = f(kδ), g(k, ·) = 1 are constant functions;
— G(k, k−1) = {(k−1)δ}, G(k, k+1) = {(k+1)δ} are singletons and G(k, l) = ∅
for all other l;
— Reset kernels are trivial.

Since H satisfies the condition of Lemma 2, {Qn} defined as in Section 2 is
a MC. By discussion at the beginning of this section, it is expected that {Qn}
approximates the MC {Sn} defined from the solution X(t) to equation (3). (In
the following development, we will use Hδ to stress the dependency of H on the
discretization step δ only if necessary).

Obviously the probability transition matrix Q for {Qn} satisfies: Qi,j = pi,
if j = i + 1; Qi,j = qi = 1 − pi if j = i − 1 and Qi,j = 0 otherwise. Such a chain
is called a death and birth chain and we will calculate pk’s and qk’s as follows:
The solution to the stochastic differential equation dY (t) = f(kδ) dt + dBt with
initial condition Y (0) = kδ is Y (t) = kδ +f(kδ)t+Bt, i.e. the BM starting from
kδ and with drift µ = f(kδ). If we use Bµ

t to denote the BM starting from 0 and
with drift µ, then

pk = P (Bµ
t reaches δ before it reaches − δ) . (5)

So the problem becomes calculating the exit distribution of Bµ
t from (−δ, δ). We

will derive the probability in a more general setting. Assume µ 6= 0 since the case
when µ = 0 has already been considered in Lemma 3. Let a < 0 < b. Denote
Ta = inf{t ≥ 0 : Bµ

t = a}, Tb = inf{t ≥ 0 : Bµ
t = b}.



Lemma 4. Bµ
t first exits (a, b) from b with probability

P (Tb < Ta) =
e−2µa − 1

e−2µa − e−2µb
. (6)

Therefore by taking a = −δ, b = δ and µ = f(kδ), we have pk = φ[δf(kδ)]
where φ is the monotonically increasing function defined by

φ(x) =
e2x − 1

e2x − e−2x
, x 6= 0 . (7)

For a plot of function φ, see Figure 4.

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

φ(
x
)

Fig. 4. Plot of φ

4.2 Recurrence vs. Stability

Having obtained the probability transition matrix Q, the natural question we will
ask ourselves is: what is the relation between the deterministic part of differential
equation (3), i.e.

dx

dt
= f(x), x(0) = 0 , (8)

and the embedded MC {Qn}? For (8) we have notions such as equilibrium and
various kinds of stability. What are their counterparts for {Qn}? Intuitively if
equation (8) has a globally stable equilibrium then the sample paths of {Qn}
should also be centered around the equilibrium most of the time even if the start-
ing point is far away, thus stability in some probabilistic sense can be expected.
It turns out that the notions of recurrence and transience are good candidates
for this. Assume MC {Qn} is irreducible, i.e. starting from any state, there is a
positive probability of jumping to any other state in finite steps.



Definition 5 (Recurrent and Transient MC). A MC {Qn} on a countable
state space S is called recurrent if and only if starting from any state x ∈ S, it
will return to x in finite time with probability 1, or more precisely, if and only if

P (Tx < ∞|Q0 = x) = 1 ∀x ∈ S ,

where Tx , inf{n ≥ 1 : Qn = x}. Otherwise {Qn} is called transient.

Definition 6 (Positive Recurrent MC). A recurrent MC {Qn} on a count-
able state space S is called positive recurrent if and only if E[Tx|Q0 = x] < ∞
for all x ∈ S.

An important characteristic of a positive recurrence chain is that its invariant
distribution exists and is unique ([3]). In general, positive recurrence implies
recurrence, but not the other way around, since symmetric random walk on
integer grid Z is an example of recurrent but not positive recurrent chain.

Now consider the MC {Qn} obtained in subsection 4.1. Obviously it is irre-
ducible. Let {Q+

n } and {Q−
n } be the MC’s obtained by observing {Qn} on the

subset N
+ = {0, 1, 2, · · · } and N

− = {0,−1,−2, · · · } respectively. Both {Q+
n }

and {Q−
n } are irreducible. The following lemma justifies our interest in them.

Lemma 5. {Qn} is (positive) recurrent iff both {Q+
n } and {Q−

n } are (positive)
recurrent respectively. Furthermore, if π+ is the stationary distribution of {Q+

n }
on N

+, π− is the stationary distribution of {Q−
n } on N

−, then π , απ+ + (1 −
α)π− is the stationary distribution of {Qn} on Z, where

α =
π−(0)p0

π−(0)p0 + π+(0)q0
.

Notice that the transition matrix Q+ has the property Q+(i, j) = 0 when
|i−j| > 1, hence it is a death and birth chain. The following lemma is a standard
result from probability theory (see [3]):

Lemma 6. {Q+
n } is recurrent if and only if

∑∞
m=0

∏m
j=1 qj/pj = ∞, {Q+

n } is

positive recurrent if and only if
∑∞

m=0

∏m
j=1 pj−1/qj < ∞ (here p0 = 1). In the

latter case, the stationary distribution π+ of {Q+} is:

π+(i) =
i

∏

j=1

pj−1

qj

/ ∞
∑

m=0

m
∏

j=1

pj−1

qj

, i = 0, 1, 2, · · ·

Note the products are interpreted as 1 whenever m = 0.

Similar argument for {Q−
n } can be established by symmetry. Assembling

Lemma 5, Lemma 6, equation (7) together, we get

Theorem 1 (Recurrence of DSHS). The embedded MC {Qn} of the dis-
cretized stochastic hybrid system of (3) is recurrent if and only if

∞
∑

m=0

m
∏

j=1

1 − exp[−2δf(jδ)]

exp[2δf(jδ)] − 1
= ∞ and

∞
∑

m=0

−1
∏

j=−m

exp[2δf(jδ)] − 1

1 − exp[−2δf(jδ)]
= ∞ .

(9)



{Qn} is positive recurrent if and only if

∞
∑

m=0

m
∏

j=1

φ[δf((j − 1)δ)]

1 − φ[δf(jδ)]
< ∞ and

∞
∑

m=0

−1
∏

j=−m

1 − φ[δf((j + 1)δ)]

φ[δf(jδ)]
< ∞ .

(10)

In the latter case, the stationary distribution π of {Qn} is given by Lemma 5.

4.3 Boundary between Recurrence and Transience

From Theorem 1, it is evident that whether {Qn} is (positive) recurrent depends
only on the “tail” of function f , i.e. the asymptotic behavior of f(x) when
x → ±∞. In general, we have

Lemma 7 (Comparison Lemma). Suppose f, g : R → R are two smooth
vector fields such that

f(x) > g(x), f(−x) < g(−x) for x sufficiently large,

Then if {Qn(f)} is (positive) recurrent, so is {Qn(g)}. Conversely, if {Qn(g)}
is transient, {Qn(f)} is also transient.

Inspired by [3], let us look at f of the form

f(x) =











Cx−r x ≥ M

−C(−x)−r x ≤ −M

do not care |x| < M

(11)

for some constant C and r > 0. Note we have deliberately made f to be an odd
function outside (−M,M) such that the corresponding MC {Q+

n } and {Q−
n } are

mirror image of each other. So by Lemma 5 we need only to consider one of
them, say, {Q+

n }. If C ≤ 0, then by the Comparison Lemma and the previous
paragraph, {Qn} is recurrent, so we assume C > 0 here.

Proposition 1. Assuming C > 0. The DSHS {Qn} corresponding to f in (11)
is recurrent if r > 1 or if r = 1 and C < 0.5. {Qn} is transient if r < 1 or if
r = 1 and C > 0.5.

Note the above conclusion is independent of the discretization step δ. Next we
will discuss the boundary of positive recurrence. Suppose f is of the form:

f(x) =











−Cx−r x ≥ M

C(−x)−r x ≤ −M

do not care |x| < M

(12)

where C, r are positive constants. A similar argument generates:

Proposition 2. Assuming C > 0. The DSHS {Qn} corresponding to f in (12)
is positive recurrent if r < 1 or if r = 1 and C > 0.5. {Qn} is not positive
recurrent if r > 1 or if r = 1 and C < 0.5.



5 DSHS of Gradient System
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Fig. 5. DSHS for a gradient system

If equation (8) is a gradient system ([8]) of the form:

dx

dt
= f(x) = −∇V (x) (13)

for some V ∈ C2(R), then each local minimum of V (x) is an equilibrium of (13)
and in the embedded MC {Qn} of the corresponding DSHS, states in the vicinity
of each equilibrium constitute an strongly interacting group (SIG) in the sense
that in any typical execution of {Qn}, once the state jumps into an SIG, it will
stay inside it for a relatively long period before jumping to another SIG. (See
Figure 5). In many applications it is often the case that we want to choose some
suitable control so as to make the system evolve inside some desired valleys for
as long as possible while avoiding some undesired trap.

Under this setting, the conclusion of Proposition 1 and Proposition 2 in the
last subsection translates into: {Qn} is recurrent (transient) if V (x) approaches
−∞ slower (faster) than − 1

2 ln(|x|) as |x| → ∞ respectively; {Qn} is (not) pos-
itive recurrent if V (x) approaches ∞ faster (slower) than 1

2 ln(|x|) as |x| → ∞
respectively. Therefore instead of the clear cut boundary between stability and
non-stability in the deterministic system, the DSHS have a blurred boundary
between positive recurrence and transience, with V (x) growing asymptotically
between − 1

2 ln(|x|) and 1
2 ln(|x|) corresponding to recurrent but not positive re-

current {Qn}. In this subsection, we will always assume that V (x) is chosen such
that for δ small enough, the corresponding {Qn} is positive recurrent and hence
has a stationary distribution π. We will elaborate on the asymptotic behavior of
π as δ → 0 and reveal its relation with V (x).



From Lemma 5 and Lemma 6, π can be written as: π(i) = απ+(i) + (1 −
α)π−(i) for all i ∈ Z with

α =
π−(0)φ[δf(0)]

π−(0)φ[δf(0)] + π+(0)(1 − φ[δf(0)])

and

π+(i) =
i

∏

j=1

φ[δf((j − 1)δ)]

1 − φ[δf(jδ)]

/ ∞
∑

m=0

m
∏

j=1

φ[δf((j − 1)δ)]

1 − φ[δf(jδ)]
,

π−(i) =
−1
∏

j=−i

1 − φ[δf((j + 1)δ)]

φ[δf(jδ)]

/ ∞
∑

m=0

−1
∏

j=−m

1 − φ[δf((j + 1)δ)]

φ[δf(jδ)]
, ∀i ∈ Z .

(14)

This messy-looking expression takes an especially simple form as δ → 0. To
reveal this, for each δ > 0 denote πδ the stationary distribution of {Qn} for
the discretized stochastic hybrid system Hδ with discretization step δ. Define
function uδ : R → R as: uδ(x) = πδ(k)/δ, if x ∈ [kδ, (k + 1)δ) for some k ∈ Z.
Then it can be easily checked that uδ satisfies:

∫ ∞
−∞ uδ(x) dx = 1, and uδ has

roughly the same shape as πδ. Therefore the discrete distribution πδ is converted
to a continuous density function uδ. Moreover,

Lemma 8. Suppose V (x) is chosen such that πδ exists for δ > 0 small enough.
Then

lim
δ→0

uδ(y)

uδ(x)
= e−2[V (y)−V (x)] ∀x, y ∈ R .

We need the following notion to ensure that uδ converges to a probability
density.

Definition 7 (Tightness). A family {uα, α ∈ Λ} of probability densities in-
dexed by Λ is tight if and only if for each ǫ > 0, there exists an M such that
∫ M

−M
uα(x) dx > 1 − ǫ for all α ∈ Λ.

Theorem 2. Suppose V (x) is chosen such that πδ exists for δ > 0 small enough
and the resulting {uδ, δ > 0} is tight, then

∫ ∞
−∞ e−2V (x) dx < ∞ and

uδ(x) → u0(x) ,
e−2V (x)

∫ ∞
−∞ e−2V (y) dy

as δ → 0 ,

where the convergence is pointwise.

Shown in Figure 6 are the plots of uδ for different δ when V (x) = (x4 +
20(x− 5) + c(x− 5)2)/100 and c = 275. Here we choose δ = 40/N , i.e. [−20, 20]
is discretized into N subintervals. Notice that the convergence speed is fast: even
if the discretization is coarse, the resulting uδ is still close to the final limit. In
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Figure 6, the two local minimums are at roughly the same level. By changing
the value of c slightly, we can make one valley slightly deeper than the other.
However, due to the exponential inverse relation of u0 to V , this small change
will be considerably amplified in u0.

It is expected that the limiting distribution u0 in Theorem 2 will also be
the stationary distribution of the original stochastic differential equation: dXt =
−∇V (Xt)dt + dBt in the sense that if X(0) is distributed as u0 independently
of {Bt}, then for any t > 0, the solution process Xt has the same distribution.
We illustrated this in the following example.

Example 1. (Ornstein-Uhlenbeck process) Solution Xt to the SDE dXt =
µXt + σdBt is called the Ornstein-Uhlenbeck precess ([7]). Consider the case
when σ = 1, µ = −a for some a > 0. Then by Ito formula, Xt = X0e

−at +
∫ t

0
e−a(t−s)dBs. If X0 is Gaussian N(0, σ) independently of {Bt}, then for each

t > 0, Xt is also Gaussian with mean 0 and variance 1
2a

+ (σ2 − 1
2a

)e−2at. Let
σ2 = 1

2a
, then we can see that Xt has stationary distribution N(0, 1√

2a
) with

density function predicted by Theorem 2.

Next we will discuss the limit behavior of first exit distribution of MC {Qn}
from an interval. Consider MC {Q+

n } obtained in subsection 4.2.

Lemma 9. Suppose i1 < i0 < i2 are nonnegative integers. Then the probability
that Q+

n starting from i0 hits i2 first than it hits i1 is:

i0−1
∑

m=i1+1

m
∏

j=i1+1

qj

pj

/ i2−1
∑

m=i1+1

m
∏

j=i1+1

qj

pj

. (15)

Suppose a, b, c ∈ R and a < b < c. For each δ > 0, define iδa = [a/δ],
iδb = [b/δ], iδc = [c/δ]. Then for the corresponding embedded MC {Qn}, the
probability Piδ

b

(Tiδ
c

< Tiδ
a
) can be calculated by Lemma 9. The next theorem

characterize the limiting behavior of such probability when δ → 0.



Theorem 3. Using the same notation as in the above paragraph. Then as δ → 0,

Piδ

b

(Tiδ
c

< Tiδ
a
) →

∫ b

a
e−2V (x) dx

∫ c

a
e−2V (x) dx

.

It can be shown that the above asymptotic expression coincides with the
corresponding probability of the original diffusion process (see [4]). Furthermore,
under some proper assumptions, the expected escape time from an interval of
the embedded MC can be studied as well and can be shown to converge to
the corresponding value of the original diffusion process. Therefore the DSHS
presents a powerful tool for studying the sample path properties of the SDE, at
least when the discretization step is small enough.

The advantage of having closed form formulae for various properties of the
stochastic hybrid systems is that it can greatly facilitate the design and evalua-
tion of such systems. These topics will be pursued in future work.
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