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Abstract The implementation of the nonlinear tuned
vibration absorber (NLTVA) for the suppression of
shimmy vibration in towed wheels is addressed in
this study. We adopt a modified straight tangent tyre
model of a single-degree-of-freedom towed wheel sys-
tem with an attached NLTVA. Stability analysis illus-
trated that the NLTVA can significantly improve the
stability of the equilibrium of the wheel. Bifurcation
analysis highlighted the existence of large bistable
regions, which undermines the system’s safety. How-
ever, numerical continuation analysis, coupled with
a dynamical integrity investigation, revealed that the
addition of an intentional softening nonlinearity in the
absorber restoring force characteristic enables the com-
plete suppression of the bistable regions, also reduc-
ing the amplitude of shimmy oscillations in the unsta-
ble region. Quasiperiodic motions were also identified;
however, their practical relevance seems marginal.
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1 Introduction

Shimmy is a common name for the lateral-torsional
vibrations of a towed wheel. It is one of the most
common stability problems in vehicle dynamics, which
affects several types of vehicles, such as motorcycles
and bicycles [1–6], trailers [7–11] and aircraft land-
ing gears [12–16]. The vibrations are generated by the
dynamically varying forces in the tyre-road contact,
and they can arise at various speeds [17]. Although the
issue has already been studied for several decades [18],
it is still a relevant problem considering the numerous
accidents involving trailers undergoing shimmy vibra-
tions [11].

Referring to aircraft, landinggears have several tech-
nical requirements, which make them prone to undergo
shimmy vibrations. Namely, they must be light, since
during the flight landing gear is just a dead weight;
they must be long enough to allow a sufficient rotation
of the aircraft during take-off; they should be able to
absorb the energy of landing impact, which requires
shock absorbers with a considerable stroke in order to
limit the load occurring during landing [19]. All these
requirements result in relatively slender landing gears,
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which are therefore prone to undergo undesired vibra-
tions, if not properly designed [20–22].

The tuned mass damper (TMD), or dynamic vibra-
tion absorber, is a device consisting of a small mass
attached to a host structure through a spring and a
damper [23]. If properly tuned, the TMD can miti-
gate vibrations in various dynamical systems [24,25].
It is mainly implemented in civil structures, such as tall
and slender buildings [26–28] and suspended bridges
[29–32], where it suppresses wind-induced vibrations
and prevents structural failure in the case of earth-
quakes. However, it is also adopted in other fields,
such as for the mitigation of vibrations in wind tur-
bines [33,34], elimination of the squeal in braking sys-
tems [35,36], stability improvement in boring bars for
turning machining [37–39], train-generated vibrations
suppression [40], mitigation of pitch and roll oscilla-
tions of floating bodies [41].

The TMD is appealing for shimmy oscillation sup-
pression in landing gear because of its limited weight
requirements, particularly if compared to other devices
to suppress shimmy, such as shimmydampers [42], bob
masses [12,43] and inerters [1]. Several studies [12,44]
tried to estimate the effectiveness of the TMD for sup-
pressing shimmy oscillations in landing gears. These
studies focused mainly on the system’s stability analy-
sis; indeed, they proved that a properly tuned TMD can
significantly reduce the aircraft velocity range present-
ing shimmy oscillations. This aspect is reexamined in
the present study.

Apart from stability, a number of studies [11,14,
45,46] illustrated that nonlinear dynamical phenomena
are particularly relevant for shimmy dynamics and, if
overlooked, they might lead to unexpected behaviours,
mining the safe operation of the device at hand.

This study aims to assess the performance of the
so-called nonlinear tuned vibration absorber (NLTVA)
[47] for suppressing shimmy instabilities. The NLTVA
is a specific type of dynamic vibration absorber with
linear properties analogous to those of a classical TMD.
However, its nonlinear restoring force function also
possesses a nonlinear characteristic, which, in general,
can be arbitrarily chosen [24]. In this study, the linear
and nonlinear behaviours of the system, encompassing
a trailing wheel with an attached NLTVA, are studied
separately. First, the absorber’s linear coefficients are
optimized through a stability analysis; then, an analy-
sis of the system’s nonlinear behaviour is exploited to
optimize the absorber’s nonlinear restoring force coef-

Fig. 1 Top view of the mechanical model of the trailing wheel
with an attached NLTVA

ficient and provide a comprehensive understanding of
the system’s global dynamics.

2 Mathematical model

The mechanical system under study consists of a sus-
pension modelled as a one-degree-of-freedom (DoF)
system, also known as the “trailing wheel model”.
As illustrated in Fig. 1, the system comprises a wheel
mounted on a trailing arm. The arm can swivel about
a vertical rotation axis, which moves at a given veloc-
ity V along a straight path. The model includes a yaw
damping and stiffness, characterized by the linear coef-
ficients cψ and kψ , respectively. Although this is one
of the simplest models capable of exhibiting shimmy
vibrations, it is sufficient to investigate the general
efficiency of the NLTVA in the linear and nonlinear
domains, which is the objective of this study.

TheNLTVA is attached to the trailingwheel through
a viscoelastic element, and it can rotate around the axis
of rotation of the suspension. The viscoelastic connec-
tion generates a torque acting between the NLTVA and
the trail, proportional to their relative angular position
and velocity.

Different approaches exist for modelling the tyre-
ground contact, having various levels of complexity,
such as the Von Schlippe [48], the straight tangent
[18], and the brush [49] tyre models. Intending to pro-
vide a general understanding of the performance of
an NLTVA, we adopt the rather simple model pro-
vided by Pacejka’s Magic Formula [46,50–52], which
considers the elasticity of the wheel assuming quasi-
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steady-state tyre deformation and evaluates nonlinear
force and self-aligning-torque characteristics in a semi-
empirical way.

The dynamics of the mechanical system is modelled
by the following system of differential equations:

It ψ̈ + cψψ̇ + kψψ + ca
(
ψ̇ − ϕ̇

) + ka (ψ − ϕ)

+ knl (ψ − ϕ)3 = Mz − eFy

σ α̇′ + V cos(ψ)α′ = V sin(ψ) + (e − a) ψ̇ + σα′2ψ̇
Iaϕ̈ + ca

(
ϕ̇ − ψ̇

) + ka (ϕ − ψ) + knl (ϕ − ψ)3 = 0,

(1)

whereψ is the yaw angle of the wheel, ϕ is the rotation
angle of the NLTVA and α′ is the tyre deformation
angle, i.e. the angle between the velocity direction and
the tyre orientation at ground level. Fz and Mz are the
lateral force and moment acting on the wheel, which
depend on α′ according to [50]

Fy = D sin
(
C tan−1 (

(1 − E) Bα′

+E tan−1 (
Bα′)))

Mz = −tp Fy,

tp = Dt cos
(
Ct tan

−1 (
(1 − Et ) Btα

′

+Et tan
−1 (

Btα
′)))

,

(2)

where B, C , D, E , Bt , Ct , Dt , Et are empirical param-
eters defined in [50,53]. Namely, B and Bt are the stiff-
ness factors, C and Ct are the shape factors, D and Dt

are the peak values, and E and Et are the curvature
factors. σ is the relaxation length, which is defined as
σ = σ0 exp

(−α′2), as proposed in [53], in order to
take into account nonlinear effects of the relaxation
length, neglected in [50] due to linearization. tp is the
pneumatic trail, which is the offset of the tyre lateral
forcewith respect to thewheel centre in the longitudinal
direction. cψ and kψ are the yaw damping and stiffness
coefficients, respectively. It is the yawmoment of iner-
tia, calculated at the hinge as It = Iz + e2m, where e is
the mechanical trail,m is the systemmass, and Iz is the
yawmassmoment of inertia with respect to its centre of
mass. a is half of the tyre contact length, V is the tow-
ing velocity, ca and ka are the absorber damping and
stiffness coefficients, respectively, Ia is the absorber
mass moment of inertia and knl is the absorber nonlin-

Table 1 Main parameter values utilized for the system under
study (unless differently indicated in specific figures)

Parameter Value Parameter Value

Iz 0.5 B −8.3823

m 1 C 1.1930

cψ 0.08 D −1

kψ 15 E −1.003

σ0 1.2 Bt 8.964

e 1 Ct 1.18

a 0.4 Dt 0.2

Ia 0.025 Et −1.609

ear stiffness. Parameters used in this study are in a non-
dimensional form, according to the procedure detailed
in [12]; length is non-dimensionalized with respect to
the unloaded tyre radius Rref, mass with respect to the
landing gear unsprung mass mref, force with respect to
the nominal tyre load Fref, time is expressed in seconds
(tref = 1 s) and angles in radians (ψref = 1 rad). Sys-
tem parameters, except those related to the absorber,
are the same as those considered in [12,53], and they
are representative of an aircraft landing gear, as better
detailed in [12]. The relation

Freft2ref
mrefRref

= 500 (3)

is assumed, which is valid for a wide range of twin-
wheeled landinggears [12]. The absorbermassmoment
of inertia is assumed to be 5% of Iz , acknowledging
practical constraints, while ca and ka must be tuned for
optimizing absorber performance. knl is the absorber’s
nonlinear stiffness, initially set at zero.

We remark on some of the assumptions and limita-
tions of the model adopted. Only motions in the hori-
zontal plane and in a straight line are considered; the
camber angle, castor angle, turn slip and longitudinal
slip are all assumed equal to zero; the vertical load
and the towing velocity are constant. Drag forces are
neglected. Besides, other vibration modes, apart from
yaw motion, which do affect the system stability [11],
are also neglected. Regardless of these simplifications,
the implementedmodel is able to capture the essence of
shimmy vibrations and enables us to qualitatively and
quantitatively evaluate the performance of the TMD,
as detailed in the next sections.

123



8976 G. Habib, A. Epasto

3 Trailing wheel system: dynamical behaviour
analysis

At first, we study the stability of the trivial solution
of the trailing wheel without the vibration absorber.
Accordingly, the system of equations is reduced to

It ψ̈ + cψψ̇ + kψψ = Mz − eFy

σ α̇′ + V cos(ψ)α′ = V sin(ψ) + (e − a) ψ̇ + σα′2ψ̇.

(4)

3.1 Stability analysis

In order to study the system’s trivial solution stabil-
ity, we linearize the system around the trivial solution,
reducing it to the form ẋ = Ax, where

x =
⎡

⎣
ψ

ψ̇

α′

⎤

⎦ and A =
⎡

⎢
⎣

0 1 0

− kψ

It
− cψ

It
−C f α(e+tp0)

It
V
σ0

(e−a)
σ0

− V
σ0

⎤

⎥
⎦ ,

(5)

C f α = B ·C · D is the cornering stiffness, while tp0 =
tp

(
α′ = 0

) = Dt .
The stability of the trivial solution can be directly

studied by identifying the real part of the eigenvalues
of A. If they are all negative, the solution is asymp-
totically stable; otherwise, it is unstable (excluding the
case of non-hyperbolic equilibrium). However, an ana-
lytical expression of the stability chart can be obtained
by applying the Routh-Hurwitz criterion to the charac-
teristic polynomial of A, that is

a3λ
3 + a2λ

2 + a1λ + a0 = 0, (6)

where

a3 = 1

a2 = cψ

It
+ V

σ0

a1 = C f α (Dt + e) (e − a) + cψV + kψσ0

Itσ0

a0 =
(
C f α (Dt + e) + kψ

)
V

Itσ0
.

(7)

The system is stable if ai > 0, for i = 0, . . . , 3, and
H2 = a2a1−a3a0 > 0. Solving these inequalities with
respect to V—and assuming parameter values compat-
ible with a realistic engineering system—shows that
the inequalities ai > 0 are always verified for V > 0
and e > 0. While H2 > 0 provides the following con-
ditions for stability:

V <
1

2cψ It

(
C f α (Dt + e) (a − e + σ0) It−c2ψσ0

−
( (

c2ψσ0 − C f α(Dt + e)(a − e + σ0)It
)2

−4c2ψσ0 It (kψσ0 − C f α(a − e)(Dt + e))
)1/2)

(8)

V >
1

2cψ It

(
C f α (Dt + e) (a − e + σ0) It−c2ψσ0

+
( (

c2ψσ0 − C f α(Dt + e)(a − e + σ0)It
)2

−4c2ψσ0 It (kψσ0 − C f α(a − e)(Dt + e))
)1/2)

.

(9)

Stability diagrams in the V, e space (towing velocity
andmechanical trail), obtained from these two inequal-
ities, are depicted in Fig. 2.

Figure2a, b illustrate the effect of variations of cψ

and kψ on the stability, respectively. In general, the triv-
ial solution is unstable for low velocities, although it is
stable for V very close to zero. If the mechanical trail
e is larger than 1.6, the system is stable for any towing
velocity V , regardless of the stiffness kψ and damping
cψ coefficient values. For cψ �= 0, a critical mechanical
trail value can be recognized, for which a larger range
of towing velocity generates instability. For the param-
eter values considered, it is at e ≈ 0.7. As commonly
observed in mechanical systems, increasing the damp-
ing reduces the unstable region. However, the effect is
more significant at the higher boundary of the unsta-
ble region, while the lower boundary is only slightly
affected by variations of cψ .

Considering that a realistic landing gear has a non-
dimensional stiffness coefficient kψ ≈ 15 [12], Fig. 2b
shows that this stiffness provides an unstable area prac-
tically identical to a systemwith quasi-zero stiffness. In
other words, the stiffness of the trailing wheel does not
contribute to stabilizing the system. In order to improve
the stability of the systemby stiffening the landing gear,
the stiffness coefficient should be increased by one or
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Fig. 2 Stability charts of
the trailer’s trivial solution
in the V, e space. a Effect of
variations of cψ (kψ = 15),
b effect of variations of kψ

(cψ = 0.08). Shaded area:
stable, clear area: unstable.
Parameter values are as in
Table 1
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two orders of magnitudes, which is clearly impractical
fromanengineeringperspective.Nevertheless, increas-
ing the stiffness might reduce the amplitude of limit
cycle oscillations (LCOs) in the case of instability, an
aspect which is not investigated here.

For a quantitative analysis of the figure, we remind
that the distance is normalizedwith respect to thewheel
radius. Therefore, if we consider, for instance, a wheel
with a radius of 30cm, V = 100 corresponds to a
velocity of 30m/s.

The analytical expression of the stability chart
enables us to perform a much more sophisticated
parameter analysis, which, however, is out of the scope
of this paper.

3.2 Bifurcation analysis and global behaviour

An analysis of the system’s eigenvalues reveals that
pairs of complex conjugate eigenvalues have their real
part becoming positive at the loss of stability. This
implies the occurrence ofAndranov-Hopf bifurcations.
These bifurcations are then analysed utilizing the cen-
tre manifold reduction technique, as better explained
in [54,55]. The main steps of the procedure consist of
the transformation of the linear part of the system into
its Jordan normal form, reduction of the dynamics of
the system to a two-dimensional space through a centre
manifold reduction, elimination of non-resonant terms
through a near identity transformation and, finally, a
transformation in polar coordinates. The intermediate
passages of the procedure are omitted for the sake of
brevity. All these steps provide the system’s equations

of motion in their normal polar form, i.e.

ṙ = r
(
λV (V − Vcr) + ρr2

)
, (10)

where Vcr is the critical velocity at which the system
loses stability, λV is the derivative of the real part of the
eigenvalues related to the stability loss, with respect to
V (that is, the bifurcation parameter), and r is the ampli-
tude of oscillation in the subspace of the centre man-
ifold. ρ is the so-called Poincaré-Lyapunov constant
which characterizes the bifurcation. The bifurcation is
supercritical for ρ < 0 and subcritical for ρ > 0; for
ρ = 0 the system undergoes a so-called Bautin bifur-
cation [54].

The analysis was performed along the whole sta-
bility boundary for the parameter values indicated in
Table 1. Results illustrate that the Poincaré-Lyapunov
constantρ is negative alongmost of the stability bound-
ary, except in a small region for very small velocities
and large mechanical trail e (Fig. 3a). This implies
that the bifurcations are mostly supercritical, except
for that specific region. From an engineering perspec-
tive, this reduces the probability that stable solutions,
different from the trivial one, exist in the stable region.
This occurrence was verified by adopting theMATLAB
toolbox DynIn [56], which aims at iteratively estimate
the dynamical integrity [57] of the trivial equilibrium
by performing several simulations. However, no sta-
ble solution, different from the trivial one, was found
in the proximity of the unstable region. The computa-
tion revealed only a slight reduction in the dynamical
integrity in the proximity of the subcritical bifurcations,
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which does not seem particularly relevant. Accord-
ingly, the figure illustrating this result is omitted. Fig-
ure3c illustrates the bifurcation diagram for mechani-
cal trail e = 1; thefigurewas obtained through anumer-
ical continuation technique via the MATLAB toolbox
MatCont [58]. Apart from confirming the analytical
results, the figure shows that the LCOs have a much
larger amplitude for low than for high velocities.

4 System with attached NLTVA

The paper’s main objective is to analyse the effective-
ness of the NLTVA for suppressing shimmy vibrations
in a towed wheel, which is studied in this section. The
analysis is divided into two stages. First, we identify the
absorber parameter valueswhichminimize the unstable
region, considering a given set of parameter values for
the trailing wheel. This can be done directly by study-
ing the system’s stability in Eq. (1). Then, the system’s
global behaviour is investigated, utilizing a combina-
tion of numerical continuation, direct time integration,
and local bifurcation analysis. This second step will
enable us to set the nonlinear restoring force coeffi-
cient which minimizes the region of existence of LCOs
and their amplitude. The same optimization strategy
was successfully implemented for tuning the NLTVA
in other applications [38,55,59].

4.1 Stability analysis

First, we linearise the equations ofmotion in (1) around
the trivial solution, obtaining a system of the form ẏ =
By, where

y = [
ψ ψ̇ α′ ϕ ϕ̇

]ᵀ
(11)

and

B =

⎡

⎢⎢⎢
⎢⎢
⎣

0 1 0 0 0

− kψ+ka
It

− cψ+ca
It

−C f α(e+tp0)
It

ka
It

ca
It

V
σ0

(e−a)
σ0

− V
σ0

0 0
0 0 0 0 1
ka
Ia

ca
Ia

0 − ka
Ia

− ca
Ia

⎤

⎥⎥⎥
⎥⎥
⎦

.

(12)

Since obtaining an explicit analytical expression of
the stability boundary is extremely complicated—if

not impossible— the system’s stability is studied by
numerically evaluating the real part of the eigenvalues
ofmatrixB. If any of them is larger than zero, the trivial
position of the system is unstable.

Four parameters characterize theNLTVA: itsmoment
of inertia Ia, its damping coefficient ca and its linear
and cubic stiffness coefficients ka and knl, respectively.
It is well-known from the literature that the higher the
absorber inertia, the better its performance. However,
practical constraints usually limit its value, as is clearly
the case for aeronautic applications. For this reason, we
decided to fix Ia at 5 % of the moment of inertia of the
trailing wheel, i.e. Ia = Iz/20. The absorber’s cubic
stiffness knl does not affect the stability of the triv-
ial solution but only the nonlinear behaviour. There-
fore, it is not involved in this first step of optimization.
Accordingly, we are left with only two parameters to
be optimized: ka and ca. Having to optimise only two
parameter values, brute force optimization is computa-
tionally feasible. The optimization functions discussed
below are computed for each couple of ca and ka values
in a given range.

We optimise the parameters according to three dif-
ferent criteria. Namely, referring to the range of towing
velocities which generates instability, we look for the
set of absorber’s parameter values which minimizes
the maximal value of that velocity range (vmax), max-
imises theminimal value of the range (vmin), or reduces
its extent (�v). The optimisation is performed for a
fixed configuration of the primary system, correspond-
ing to the values indicated in Table 1.As a reference,we
notice that, without the absorber, the system is unstable
for V ∈ [0.225, 89.71].

In order to give a better physical insight, we intro-
duce the parameter γ = ωa/ω1 = √

ka It/(Iakψ),
which represents the ratio of the NLTVA natural fre-
quency divided by the yaw natural frequency of the
trailing wheel. Clearly, it is equivalent to optimizing
γ or ka. The result of the optimization is presented
in Fig. 4. A red dot in the figure marks the optimal
configuration for the three cases. Figure4a shows that,
despite the small inertia of theNLTVA, vmax can be dra-
matically reduced from 89.71 to 5.478, with a reduc-
tion of almost 94 %. This improvement is obtained for
ka = 0.4030 (γ = 1.270) and ca = 0.01393 (ζa =
ca/

(
2
√
Iaka

) = 0.06938). Interestingly, this result
illustrates that the natural frequency of the NLTVA
should be larger than the natural frequency of the trail-
ing wheel. Besides, it is not required for the NLTVA to
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Fig. 3 a Poincaré-Lyapunov constant along the stability bound-
ary; b stability chart of the system without NLTVA, solid lines:
supercritical bifurcations, dashed lines: subcritical bifurcations;

c bifurcation diagram for e = 1, red lines: analytical results,
black lines: numerical results. Parameter values are as in Table
1. (Color figure online)

Fig. 4 Stability performance of the NLTVA for various lin-
ear stiffness and damping coefficient values. a Maximal tow-
ing velocity generating instability; b minimal towing velocity

generating instability; c range of towing velocities generating
instability. Parameter values are as in Table 1

have a particularly large damping coefficient, simpli-
fying its practical realization.

Figure4b depicts the minimal value of the unstable
velocity range, which can be increased from 0.225 to
3.1816. In relative terms, this corresponds to an impres-
sive improvement of 1314 %; in absolute terms, vmin

is increased by 2.96. The NLTVA parameter values
required are ka = 0.3692 (γ = 1.215), ca = 0.01322
(ζa = 0.06882); comparing these values with the pre-
vious case, the damping coefficient is practically iden-
tical, while the NLTVA’s natural frequency is slightly
smaller.

Finally, Fig. 4c depicts the extent of the veloc-
ity range generating instability �v, which, for the
case without absorber, is 89.48. Properly choosing the
NLTVAparameters,�v can be reduced to 4.74, with an
improvement of 94.7%. The optimal ka and ca parame-
ter values are exactly the same as for the case of Fig. 4a
for the considered resolution.

Stability charts corresponding to theoptimal absorber
configurations are represented in Fig. 5. The dashed
line refers to the system without absorber. Despite the
NLTVA being tuned for a specific mechanical trail
(e = 1), the unstable region is significantly smaller
also for other values of e. We also note that the unstable
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Fig. 5 Stability charts of
the trivial solution of the
system in the V, e space. a
Minimized maximal towing
velocity V generating
instability (at e = 1),
absorber parameter values:
ka = 0.4030 (γ = 1.270),
ca = 0.01393
(ζa = 0.06938). b
Maximized minimal towing
velocity V generating
instability (at e = 1),
absorber parameter values:
ka = 0.3692 (γ = 1.215),
ca = 0.01322
(ζa = 0.06882). Ia = Iz/20.
Shaded area: stable, clear
area: unstable. Parameter
values are as in Table 1

region is divided into two parts for both optimal cases.
In Fig. 5a, vmax is minimized by pushing the lower
unstable region below e = 1, while in Fig. 5b, for max-
imizing vmin, the upper unstable region is pushed above
e = 1. In both figures, the direct comparison between
the systemwith and without absorber clearly shows the
absorber’s effectiveness. Aiming to obtain the same
effect by increasing the system’s damping instead of
using an absorber would require a huge damping coef-
ficient, which is hardly realizable in practice.

In Fig. 6, the sensitivity of the NLTVA performance
with respect to variations of its stiffness and damp-
ing coefficients is shown. The figures are obtained by
selecting the optimal NLTVA parameter values accord-
ing to the minimal vmax and allowing variations of
either γ or ca. As visible in Fig. 6a, variations of γ of
10% increase vmax from 5.478 to either 19.27 (increas-
ing γ ) or to 32.5 (decreasing γ ). Conversely, as illus-
trated in Fig. 6b, increasing ca by 10 %, vmax becomes
5.857, while decreasing it by 10 %, vmax is 11.45. This
result means that the absorber’s performance is much
more sensitive to variations of its natural frequency
rather than its damping. From an engineering perspec-
tive, the realisation of the NLTVA is facilitated since
accurately tuning the natural frequency is much easier
than tuning the damping coefficient [60].

We note that, for the optimal absorber parameter
values, the system is stable for e = 1 and V > 5.478;
however, it is also very close to the unstable region for
V ≈ 9, as visible in Fig. 5a. Accordingly, to have a

safer design, it is convenient to select a stiffness value
slightly larger than the optimal one to lower that bound-
ary.

4.2 Bifurcation analysis

The value of the absorber nonlinear stiffness coeffi-
cient knl is completely irrelevant with respect to the
system’s stability. Therefore, the parameter was not
included in the optimization performed in the previ-
ous section. However, it can have an important effect
on the system’s global behaviour and on the bifurca-
tions occurring at the loss of stability. Accordingly, a
bifurcation analysis is performed to study the system’s
local nonlinear behaviour and optimize knl.

The bifurcation analysis of the system with the
attached NLTVA is limited to the optimal absorber
parameter values forminimizing vmax, i.e. ka = 0.4030
(γ = 1.270) and ca = 0.01393 (ζa = ca/

(
2
√
Iaka

) =
0.06938). The mechanical trail e is fixed to 1 since the
optimization was obtained for that value. The analy-
sis was performed as for the case of the system without
absorber in Sect. 3.2. All parameters are treated as con-
stant numerical values, except for the velocity V , that is
the bifurcation parameter, and the NLTVA cubic stiff-
ness coefficient knl.

The analysis provided the followingPoincaré-Lyapu-
nov coefficients for the lower and the upper stability
boundaries:
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Fig. 6 Stability charts of
the trivial solution of the
system in the V, γ a and
V, ca b spaces. a
ca = 0.01393; b
ka = 0.4030 (γ = 1.270);
Ia = Iz/20. Shaded area:
stable, clear area: unstable.
Parameter values are as in
Table 1

ρlower = 0.0007302 + 0.02810 knl (13)

ρupper = 0.01142 + 0.2583 knl. (14)

For a linear absorber (knl = 0), ρ is positive both at the
lower and upper limits, implying that the Andranov-
Hopf bifurcations are subcritical. However, for both
stability boundaries, a sufficiently large softening char-
acteristic of the absorber’s restoring force (knl < 0)will
make both bifurcations supercritical. In particular, for
the stability boundary at low speed, it is required to
have knl < −0.02599, while for the one at high speed
knl < −0.04421.

The accuracy of the analytical bifurcation analysis
is verified by direct comparison with results obtained
through numerical continuation, as illustrated in Fig. 7.
Numerical results (thick black lines) were obtained
via the MATLAB toolbox MatCont [58]. The numer-
ical and analytical results display an excellent match-
ing in the vicinity of the bifurcations, confirming both
approaches’ validity. In particular, we note that for
knl = −0.04421, the Andranov-Hopf bifurcation at
higher speed has a transition between subcritical and
supercritical characteristic—which corresponds to a
Bautin bifurcation [54]—and the emerging branch of
limit cycles is almost vertical (Fig. 7b). The corre-
sponding curve computed numerically bends to the
right, meaning that high-order terms lead to a sub-
critical behaviour for this limit case. A similar phe-
nomenon, not illustrated here, is experienced for knl <

−0.02599 at the lower stability boundary.
From an engineering perspective, this result hints

that, in the vicinity of the bifurcation, but in the stable
region, the dynamical integrity of the trivial solution is

most probably bounded. This might cause unexpected
shimmy oscillations in parameter regions judged safe
from the stability analysis,making it practically unsafe.
The transition of the Andranov-Hopf bifurcation from
subcritical to supercritical suggests that a softening
characteristic of the absorber most probably increases
the dynamical integrity of the trivial solution. However,
this conjecture should be verified by analysing the sys-
tem’s global dynamics.

4.3 Global behaviour

The system’s global dynamics is investigated by com-
bining a numerical continuation analysis with direct
estimation of the trivial solution’s dynamical integrity.

The numerical continuation of the periodic solutions
emerging at the Andranov-Hopf bifurcations was per-
formed through the MatCont toolbox [58] by advanc-
ing the curves already shown in Fig. 7 for higher ampli-
tudes. The result is depicted in Fig. 8. The figure illus-
trates how the branches of periodic solutions arising at
the bifurcations merge, forming a unique branch. For
knl = 0, the periodic solution branch experiences two
folds, one on the right of the unstable region and one
on its left. This scenario, quite common for subcritical
Andranov-Hopf bifurcations, implies that the dynam-
ical integrity of the system’s trivial solution is limited
for velocity values between the folds and theAndranov-
Hopf bifurcations, while between the two Andranov-
Hopf bifurcations it is unstable. On the left-hand side
of the unstable region, the fold is very close to the sta-
bility boundary (fold at V = 0.68, stability boundary
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Fig. 7 Bifurcation
diagrams of the system with
the attached NLTVA. Solid
lines: stable, dashed lines:
unstable solutions. Black
lines: numerical results,
magenta lines: analytical
results. Primary system
parameter values are as in
Table 1; ka = 0.4030,
ca = 0.01393 and
knl = −0.1, −0.05926,
−0.04421, 0, 0.025.
(Color figure online)
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Fig. 8 Bifurcation diagram
of the system with the
attached NLTVA. Solid
lines: stable, dashed lines:
unstable solutions. Red and
green dots mark
Neimark-Sacker and fold
bifurcations, respectively;
red and green lines mark the
loci of Neimark-Sacker and
fold bifurcations,
respectively. Quasiperiodic
solutions, omitted in the 3D
plot, are marked in blue.
Primary system parameter
values are as in Table 1;
ka = 0.4030, ca = 0.01393
and knl = −0.1, −0.05926,
−0.04421, −0.031,
−0.025, 0, 0.025. (Color
figure online)
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at V = 0.75); conversely, the right fold is relatively far
from the stability boundary (fold at V = 13.3, stabil-
ity boundary at V = 5.48), making the unsafe region
decidedly relevant from a practical perspective. Indeed,
the unsafe region (between the stability boundaries and
the fold bifurcations) is larger than the unstable region
itself.

Imposing knl < 0, the two folds move towards the
centre, reducing the extent of the unsafe region. The
left-hand side unsafe region disappears when the cor-
respondingAndranov-Hopf bifurcation turns supercrit-
ical. This is not the case for the right-hand side unsafe
region. The transition between subcritical and super-
critical occurs for knl = −0.04421, and for that value,
the fold bifurcation is at V = 8.81. A continuation of
the fold bifurcations (green line in Fig. 8) illustrates that
the unsafe region disappears for knl = −0.0574, i.e.

when it occurs at the same velocity of the stability loss.
The fold completely disappears for knl < −0.05926.

The numerical continuation also showed that, for
knl sufficiently small, the periodic solutions lose sta-
bility through a couple of Neimark-Sacker bifurca-
tions, generating quasiperiodic solutions. The nature
of the quasiperiodic solutions is verified in Fig. 9.
The Poincaré sections of the steady-state solution
display closed curves in the phase space, which is
a clear mark of a quasiperiodic solution (red line
in Fig. 9). The blue lines in Fig. 8a, representing
the maximal ψ amplitude of the quasiperiodic solu-
tions, were obtained through direct numerical simula-
tions. Although this kind of motion is detrimental, the
quasiperiodic motion’s amplitude is not significantly
larger than the one of the unstable periodic motions.
Besides, quasiperiodicmotions exist only for velocities
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within the unstable region, therefore already marked as
unsafe from the stability analysis. Accordingly, these
quasiperiodic motions do not seem particularly rele-
vant from an engineering perspective. The red curves
in Fig. 8 are the locus of the Neimark-Sacker bifur-
cations, also obtained through the MatCont toolbox.
According to this curve, Neimark-Sacker bifurcations
exist for knl ≤ −0.0306.

We also remark that introducing a softening nonlin-
earity reduces the amplitude of the stable periodic solu-
tions within the unstable region, which is practically
desirable. However, softening nonlinearity generally
has a destabilizing effect, as also suggested in this sys-
tem by the appearance ofNeimark-Sacker bifurcations.
Additionally, nonlinearity can always generate unex-
pected dynamical phenomena, a condition that rarely
can be ruled out a priori. Therefore, the absolute value
of knl should be kept as small as possible, providing
that the unsafe region is eliminated or minimized.

In order to obtain a more comprehensive picture of
the system’s global dynamics, the dynamical integrity
of the stable trivial solution was computed [57], this
enables us to quantify the robustness of the equi-
librium against external perturbations, and verify if
other undetected solutions exist. For this purpose, the
local integritymeasure (LIM)was implemented, which
corresponds to the radius of the largest hypersphere
entirely included in the basin of attraction of the solu-
tion and centred in it [61]. The LIM was computed
through the algorithm proposed in [56] and the rela-
tive MATLAB toolbox DynIn. Results are depicted in
Fig. 10. Figure10 confirms the results obtained with
the bifurcation analysis and the numerical continua-
tion, i.e. hardening nonlinearity (knl > 0) is detrimen-
tal concerning the system dynamical integrity while
softening nonlinearity (knl < 0) is beneficial. Indeed,
a relatively small softening nonlinearity can make the
trivial solution practically globally stable (within the
limit of validity of the mechanical model considered).
Figure10a, b show a similar trend of the limit of the
unsafe regions on the left and the right of the unstable
area.

According to our computation, the LIM slightly
decreases for excessively large knl absolute values. This
effect is not related to the existence of other attractors
but to the fact that, for large values of the differen-
tial rotation of the NLTVA |ψ − φ|, the restoring force
becomes negative if the cubic term is negative, causing
static losses of stability. This is a limitation of themath-

ematical model adopted since, in general, it is unrea-
sonable to devise an NLTVA with a negative restoring
force. Accordingly, except for the dark regions, the sys-
tem can be considered globally stable within the valid-
ity of the adopted mathematical model.

5 Conclusions

This study addressed the implementation of a dynamic
vibration absorber for suppressing shimmy vibrations
in a towed wheel, specifically focusing on a simpli-
fied model of an aircraft landing gear. Nevertheless,
the model is highly general and can be applied to
other applications as well [46]. The vibration absorber
considered is the nonlinear tuned vibration absorber
(NLTVA) [47], which is a nonlinear extension of the
widely used tuned mass damper.

The analysis showed that the NLTVA can signifi-
cantly improve the system’s stability. However, bifur-
cation and global analysis also revealed the existence of
unsafe regions where a stable trivial solution coexists
with a stable periodic solution, and their extent is sig-
nificant. This phenomenon mines the functional safety
of the system and highlights that a stability analysis is
insufficient to assess it.

An analysis of the system’s dynamical integrity
illustrated that, in these unsafe regions, the trivial solu-
tion’s dynamical integrity is quite small. However, the
analysis also revealed that introducing a softening non-
linearity in the absorber stiffness can reduce and even-
tually eliminate these unsafe regions, while also reduc-
ing the amplitude of the periodic solutions in the unsta-
ble region. Overall, the results obtained are promising
towards the practical implementation of theNLTVA for
shimmy suppression.

As a limitation of the approach used, it should be
noted that the adopted tyre model may not always cor-
rectly capture the system’s nonlinear dynamics, as illus-
trated in [45]. Therefore, it is necessary to validate the
results throughmore sophisticated tyre models, such as
the brush tyre model [52]. Additionally, analysing the
NLTVA for shimmy suppression in rigid wheel models
[62] would further enhance our understanding of the
real potential of this technical solution.

Practical limitations of the system, such as the fabri-
cation of a vibration absorber with a specific nonlinear
characteristic [63–65], or the space and weight require-
ment of the NLTVA in comparison to other shimmy
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Fig. 9 Time series (a) and
phase space representation
(b) of the system dynamics
in correspondence of a
quasiperiodic solution. The
red dots mark the Poincaré
section for ψ = 0. Primary
system parameter values are
as in Table 1; ka = 0.4030,
ca = 0.01393 and
knl = −0.04421. (Color
figure online)
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Fig. 10 Estimated LIM of
the trivial equilibrium for
various knl and V values.
Primary system parameter
values are as in Table 1;
ka = 0.4030 and
ca = 0.01393. The trivial
solution is stable in all the
range considered in the
figure

suppression solutions [12], were not analysed in this
study. These aspects will be the subject of future stud-
ies.
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