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Abstract

Motivation: Recently, peptides have emerged as a promising class of pharmaceuticals for various diseases
treatment poised between traditional small molecule drugs and therapeutic proteins. However, one of the key
bottlenecks preventing them from therapeutic peptides is their toxicity toward human cells, and few available
algorithms for predicting toxicity are specially designed for short-length peptides.

Results: We present ToxIBTL, a novel deep learning framework by utilizing the information bottleneck principle and
transfer learning to predict the toxicity of peptides as well as proteins. Specifically, we use evolutionary information
and physicochemical properties of peptide sequences and integrate the information bottleneck principle into a
feature representation learning scheme, by which relevant information is retained and the redundant information is
minimized in the obtained features. Moreover, transfer learning is introduced to transfer the common knowledge
contained in proteins to peptides, which aims to improve the feature representation capability. Extensive experimen-
tal results demonstrate that ToxIBTL not only achieves a higher prediction performance than state-of-the-art
methods on the peptide dataset, but also has a competitive performance on the protein dataset. Furthermore, a
user-friendly online web server is established as the implementation of the proposed ToxIBTL.

Availability and implementation: The proposed ToxIBTL and data can be freely accessible at http://server.wei-group.
net/ToxIBTL. Our source code is available at https://github.com/WLYLab/ToxIBTL.

Contact: yexiucai@cs.tsukuba.ac.jp or weileyi@sdu.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The therapeutic potential of peptide-based drugs has gained un-
precedented interest during the past decade and their development
is both strong and rapid. In general, peptides are defined as
short chains with 50 or fewer amino acids, and it is one of the bio-
molecules that determine and control biological functions, there-
by playing a crucial role in treating various pathological
conditions (Fosgerau and Hoffmann, 2015; Gohil and
Thirugnanasambandan, 2021). When compared with small mole-
cules, peptides offer higher biological activity and selectivity,
which result in relatively fewer side effects. Simultaneously, com-
pared with proteins, peptides have smaller sizes and are more ac-
cessible and cheaper to manufacture using chemical methods
(Craik et al., 2013; Haggag et al., 2018). Therefore, these charac-
teristics make peptides evolve as promising therapeutic agents. Up
to now, more than 80 peptide-based drugs have been approved in
the market for treating a variety of diseases, including diabetes,
cancer, chronic pain, osteoporosis, infectious diseases and mul-
tiple sclerosis (Muttenthaler et al., 2021).

The importance of peptides as key biological mediators, along
with their remarkable potency, selectivity and moderate production
costs, was established (Craik et al., 2013; Muttenthaler et al., 2021).
However, peptides as a type of bio drugs have several intrinsic
weaknesses, which prevent them from being directly used as con-
venient therapeutics, such as toxicity, immunogenicity and stability
(Gupta et al., 2013, 2015). Great efforts have been made to over-
come the limitations on the immunogenicity and stability (Ansari
and Raghava, 2010; Chen et al., 2012; El-Manzalawy et al., 2008;
Gentilucci et al., 2010; Saha and Raghava, 2006). However, for the
toxicity of peptides, to date, there are fewer proposed methods con-
sidering this limitation, which is essential for facilitating their thera-
peutic application.

The most direct and effective way to identify the toxicity of a
peptide is through biological experiments in a wet lab, which are ex-
pensive, labor-intensive and time-consuming, particularly with the
great growth of potential therapeutic peptides. Moreover, the results
obtained from animal trials generally offer little guidance to human
toxicity reactions (Mumtaz and Pohl, 2012). Instead of the biologic-
al experiments, computation-assisted identification methods have
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been proposed to analyze the toxicity of peptides. These methods
can be roughly divided into two categories: similarity-based meth-
ods and machine learning-based methods. The similarity-based
methods use alignment search tools to measure the local and global
pairwise sequence similarity, such as BLAST (Altschul et al., 1997),
or infer sequence toxicity from homologous ones (Negi et al., 2017).
However, there are several drawbacks in such methods. First, pepti-
des of interest need to have homologous toxic ones. Second, the per-
formance will drop dramatically when processing large amounts of
data. Third, e-value cutoff and an arbitrary sequence similarity need
to be set, which can affect prediction performance.

In contrast to the similarity-based methods, the machine
learning-based methods focus on capturing discriminative informa-
tion related to toxicity, using both positive and negative samples, to
predict the peptide toxicity (Manavalan et al., 2019a, b; Su, et al.,
2020). For example, ClanTox employs the 545-dimension features
derived from primary sequences as inputs, and trains a predictor
based on boosted stump classifiers for analyzing animal toxins
(Naamati et al., 2009). ToxinPred combines a support vector ma-
chine (SVM) and various statistical features of peptide sequences to
discriminate toxic peptides from non-toxic ones (Gupta et al.,
2013). These two methods have made great contributions to the de-
velopment of peptide toxicity prediction. However, capturing dis-
criminative features to represent the inherent characteristics of
peptides is the key to construct a powerful computational predictor,
which is still the challenge for the performance improvement of ma-
chine learning-based methods (Li and Liu, 2020; Wei et al., 2021).
Additionally, in the process of extracting features, these two meth-
ods do not consider the sequence-order information and the position
dependency in a sequence, which are critical for amino acid sequen-
ces analysis and nucleic acid sequences analysis (Li et al., 2017; Liu
et al., 2015). Therefore, it is highly desirable to incorporate them
into computational methods to extract more discriminative features
for amino acid sequences.

Recently, compared with other machine learning methods, deep
learning methods have achieved remarkable performance in the field
of bioinformatics (Ye et al., 2020), such as drug-target interaction
prediction (Chu et al., 2021; Zeng et al., 2020), RNA secondary
structure prediction (Sato et al., 2021; Singh et al., 2021) and pro-
tein fold recognition (Li and Liu, 2020; Liu et al., 2020). In our pre-
vious work (Wei et al., 2021), we proposed a deep learning-based
method, called ATSE, which used structural and evolutionary infor-
mation based on graph neural networks and the attention mechan-
ism for peptide toxicity prediction and achieved high prediction
accuracy (ACC). However, in this method, position-specific scoring
matrixes (PSSMs) containing evolutionary information need to be
searched by using PSI-BLAST in a big database (Altschul et al.,
1997), which is time-consuming. Searching PSSMs in different data-
bases with different sizes will obtain different results, which is also a
limitation of ATSE. Moreover, Pan et al. (2020) propose ToxDL, a
deep learning-based model that is effective to classify toxic and non-
toxic proteins with diverse lengths by employing both sequence in-
formation and protein domain knowledge. However, this method is
not specially designed for peptides and needs to search protein
domains of a given protein for embeddings.

Despite the great progress made so far, there is still a need to de-
velop a more accurate method for peptide toxicity prediction to re-
duce the number of misclassified samples and thus improve the
confidence of the predicted toxic peptides. To overcome the afore-
mentioned shortcomings, we propose, in this study, a novel deep
learning-based model, called ToxIBTL, to effectively predict the tox-
icity of both peptides and proteins by adopting both information
bottleneck principle and transfer learning technique. We make sev-
eral significant contributions which can be summarized as follows:

1. Our model automatically learns the latent evolutionary informa-

tion embedding in the BLOSUM62 (BLOcks SUbstitution

Matrix) matrix of a peptide (or protein) by using a hybrid net-

work CNN_BiGRU composing of convolutional neural network

(CNN) and bidirectional gated recurrent unit (BiGRU), which

can sufficiently capture both local and long-distance correlations

in a sequence. Simultaneously, we use FEGS (Feature Extraction

based on Graphical and Statistical features; Mu et al., 2021)

model to generate physicochemical features for a sequence.

These features are employed together to represent a peptide (or

protein) sequence.

2. We adopt the information bottleneck principle to supervise the

feature learning for finding the better concise latent representa-

tion from the obtained features, which tends to retain as much

as relevant information for predicting the label while removing

noisy information.

3. To address the problem of peptide data scarcity, transfer learn-

ing is used to transfer common toxic information learned from

the large protein dataset to the small peptide dataset, thereby

improving the prediction performance.

4. Our model can predict the toxicity of peptides with short lengths

as well as proteins with long lengths.

Comparative experimental results show that our proposed
ToxIBTL leads to a new state-of-the-art performance on the peptide
dataset and generates a competitive performance on the protein
dataset compared with several existing methods, indicating the ef-
fectiveness of our model in predicting the toxicity of peptides and
proteins. Finally, an online web server of ToxIBTL is implemented
and made publicly accessible at http://server.wei-group.net/
ToxIBTL.

2 Materials and methods

2.1 Benchmark dataset
In this study, we use two benchmark datasets to evaluate the per-
formance of our proposed model for predicting the toxicity of pro-
teins and peptides. The first dataset established by Pan et al. (2020)
is employed to build models for predicting protein toxicity. It con-
tains 4472 toxic animal proteins used as positive samples and 6341
non-toxic animal proteins used as negative samples. Each sequence
in the testing set has a similarity < 40% to that in the training set,
meanwhile, there are no protein sequences with the same domain
from the Pfam clans (El-Gebali et al., 2019) between these two sets.

The second benchmark dataset created in our previous work
(Wei et al., 2021) is used to build models for peptide toxicity predic-
tion, which consists of 3864 samples with a range of 10–50 residues.
The positive samples in this dataset are toxic peptide sequences,
which are experimentally validated. Similarly, the negative samples
are non-toxic peptide sequences, which have the same number as the
positive ones. The sequence similarity between any two peptide
sequences is less than 90%, which can avoid the evaluation bias
introduced by sequence similarity. For training, about 85% of toxic
and non-toxic peptides are randomly selected to fine-tune our model
for predicting the toxicity of the peptide, and the remaining peptides
are adopted as testing set to evaluate the performance of the fine-
tuned model. A statistical summary of these two datasets used in
this study is shown in Table 1.

In addition, to better understand the difference intuitively be-
tween the training set and the testing set, we visualize the data distri-
bution from two aspects. One is the number of each amino acid type
shown in Figure 1 and Supplementary Figure S1, the other is the

Table 1. Overview of the two benchmark datasets

Dataset Number of positives Number of negatives

Protein Training set 4413 5671

Testing set 59 670

Peptide Training set 1642 1642

Testing set 290 290
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distribution of sequence length shown in Figure 2 and
Supplementary Figure S2.

2.2 The proposed method architecture
In this section, we introduce the proposed ToxIBTL architecture for

predicting peptide toxicity based on the information bottleneck
principle and transfer learning, as shown in Figure 3. The workflow
of ToxIBTL mainly contains three steps, including sequence encod-

ing, optimization and classification. In the first step, to encode the
evolutionary information, we convert raw sequences to evolutionary

profiles and feed them into the hybrid network CNN_BiGRU to
automatically capture latent local and global information; simultan-
eously, to capture physicochemical information, raw sequences are

sent into the FEGS model to obtain graphical features and statistical
features. In the second step, we directly concatenate the evolutionary

and physicochemical features and use the information bottleneck
principle to optimize the concatenated features. In the third step, the
optimized features are used to determine the sequence as toxic or

non-toxic one. Through the proposed ToxIBTL, we first train a
model on the protein dataset; then, the pre-trained model is trans-

ferred to fine-tune a new model on the peptide set. The hyperpara-
meters of ToxIBTL are given in Supplementary Material.

2.3 Sequence encoding
2.3.1 CNN_BiGRU network

Previous studies illustrate that extracting the evolutionary information

of proteins contributes to protein sequence analysis, especially to ana-
lyzing proteins with low sequence similarities (Liu et al., 2020). As
shown in Figure 3B, the standard BLOSUM62 scoring matrix is

adopted to encode peptide (or protein) sequences, which is developed
by analyzing the frequencies of amino acid substitutions in clusters of

related proteins. Within each cluster, the amino acid sequences are at
least 62% identical when two proteins are aligned. The score in
BLOSUM62 matrix reflects the chance that one amino acid is substi-

tuted for another in a cluster. Given a peptide (or protein) sequence P,
each residue is encoded by the corresponding row of this matrix.
Therefore, a sequence P can be represented as the following matrix:

BLOSUM62 ¼

p1;1 p1;2 � � � p1;20

p2;1 p2;2 � � � p2;20

..

. ..
. . .

. ..
.

pl;1 pl;2 � � � pl;20

2
66664

3
77775; (1)

where l is the length of sequence P and 20 is the number of standard

amino acids.
In order to extract the latent discriminative features hiding in

evolutionary information derived from the BLOSUM62 matrix, a

hybrid network is designed, called CNN_BiGRU that consists of
CNN and BiGRU, to effectively capture the contextual and semantic
information of peptide (or protein) sequences. Specifically, the

BLOSUM62 matrix of a peptide (or protein) sequence is fed into a
2D convolutional layer with a non-linear activation function (e.g.
relu) to extract the local correlation between amino acids through

the local perceptual domain. Afterward, the output of the convolu-
tional layer is taken as the input of the BiGRU layer to obtain the
long and short dependency information amongst extracted local cor-

relation and capture sequence-order effects (Li et al., 2017).
Notably, due to different lengths among sequences, following

the same protocol in the study (Pan et al., 2020), all input sequences
are truncated to a maximum length of 1002 to meet the input re-
quirement of neural networks. For sequences < 1002 in length,

zero-padding is performed. It’s worth noting that in the BiGRU, the
pack_padded_sequence, a function in Pytorch, is used to make sure
BiGRU will not perform the calculation on padding elements, and

then the hidden vector of the last valid input is picked up as the rep-
resentation for a sequence. So, it not only reduces unnecessary calcu-
lations, but also avoids the impact of padding bits on the sequence

feature representation. Moreover, the dropout technique is intro-
duced to reduce the risk of overfitting.

2.3.2 FEGS model

Feature representation is a critical step for developing a precise predic-
tion model (Li and Liu, 2020; Tan et al., 2019). In order to better repre-

sent each peptide (or protein) sequence to encompass the perspective of
its biophysical and biochemical properties, FEGS, a feature extraction
model of protein sequence using the physicochemical properties of

amino acids and statistical information of protein sequences, is intro-
duced to extract the graphical and statistical features of peptide (or pro-
tein) sequences. As shown in Figure 3C, we can get a 578-dimensional

feature vector to represent a peptide (or protein) sequence.
For the graphical feature encoding, 158 physicochemical properties

of amino acids are effectively used to transform a peptide (or protein)

sequence into a 158-dimensional numerical vector, which are selected
from the AAindex database (Kawashima and Kanehisa, 2000). First,
the 20 amino acids are ranked in ascending order according to their

physicochemical indices. Second, the ranked 20 amino acids are sequen-
tially positioned on the circumference of the bottom of a right circular
cone of height 1 according to the following formula:

w aið Þ ¼ cos
2pi

20
; sin

2pi

20
;1

� �
; i ¼ 1; 2; . . . ; 20; (2)

where ai denotes one of the ranked 20 amnio acids. Subsequently,
400 amino acid pairs are arranged on the underside of the right cir-

cular cone according to the following formula:

x aiajð Þ ¼ w aið Þ þ
1

4
w ajð Þ � w aið Þ
� �

; i; j ¼ 1; 2; . . . ; 20; (3)

where w aiajð Þ represents one of the 400 amino acid pairs.
Based on the above right circular cone, the 3D graphical curve of

a given peptide (or protein) sequence P ¼ p1p2 . . . pl can be con-
structed. Extend the origin S0ð0; 0; 0Þ to the point S1ðx1; y1; z1Þ cor-
responding to the first amino acid p1, and then the point S1 is

extended to the point S2 x2; y2; z2ð Þ corresponding to the second
amino acid p2, and so on. The coordinate of the point Siðxi; yi; ziÞ is
determined by the following formula:

Fig. 1. The amino acids distribution of toxic and non-toxic peptides in the training

set and the testing set. (A) Distribution map in the peptide training set. (B)

Distribution map in the peptide testing set

Fig. 2. The length distribution of toxic and non-toxic peptides in the training set and

testing set. (A) Distribution map in the peptide training set. (B) Distribution map in

the peptide testing set
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/ pið Þ ¼ / pi�1ð Þ þ w pið Þ þ
X

a1 ;a22 A; C; D;...;Yf g
fa1a2

x a1a2ð Þ; (4)

where / p0ð Þ ¼ ð0;0; 0Þ, pi is the ith amino acid, and fa1a2
represents

the frequency of the amino acid pair a1a2 occurring in the sequence
P. Then, the 3D graphical curve S of the sequence P is obtained.
Afterward, a nonnegative symmetric matrix M is computed for the
graphical curve, whose each off-diagonal entry mi; jði 6¼ jÞ is a quo-
tient of the Euclidean distance between points Si and Sj in the
graphical curve and the sum of geometrical lengths of edges be-
tween Si and Sj along the graphical curve, and the diagonal ele-
ments are set to zero. The largest eigenvalue of the matrix M is
computed and divided by the length of the corresponding sequence
to characterize the corresponding graphical curve. Since each phys-
icochemical property corresponds to a graphical curve, a 158-

dimensional vector can be generated as the graphical features for a
peptide (or protein).

The statistical features consist of two classical and interpretable
feature descriptors as follows:

1. Amino acid composition reflects the frequency of 20 different

amino acids occurring in a peptide (or protein) sequence. It can

generate a 20-dimensional feature vector and be computed as

follows:

f tð Þ ¼ N tð Þ
L

; t 2 A; C; D; E; . . . ;Yf g; (5)

where NðtÞ is the number of amino acid type t and L is the

length of a peptide (or protein) sequence.

Fig. 3. The flowchart describes the overall implementation of the proposed transfer learning approach for predicting peptide toxicity. (A) The architecture of proposed

ToxIBTL. We first train a model from scratch on the protein set, then fine-tune the pre-trained model on the peptide set to classify toxic and non-toxic peptides. (B) The archi-

tecture of the CNN_BiGRU network. (C) The pipeline of the FEGS model
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2. Dipeptide composition calculates the frequency of each type of

amino acid pair in a peptide (or protein) sequence, which

describes the fraction of amino acids and their local order. It has

a 400-dimensional feature vector and is defined as follows:

f a; bð Þ ¼ Nab

L� 1
; a; b 2 A; C; D; E; . . . ;Yf g; (6)

where Nab is the number of amino acid pairs formed by amino acid

types a and b.

2.4 Optimization
To represent a peptide (or protein) sequence, we linearly combine the
evolutionary features extracted from CNN-BiGRU network with the

physicochemical features from FEGS model. However, the combined
features from different views may contain noisy and redundant infor-
mation thereby causing poor predictive results. To extract more dis-

criminative features, the information bottleneck (Tishby et al., 2000),
an approach based on information theory, is introduced to maximize
the mutual information between the label Y and the learned represen-

tation Z to make sure the learned Z is maximally informative about
Y, while simultaneously minimizing the mutual information between

the learned Z and the original sequence representation X to filter out
irrelevant information as much as possible. Note that X denotes the
combined features; Y is the label of X; Z is learned from X by the in-

formation bottleneck principle. Following the study (Alemi et al.,
2016), our goal can be formulated as the following function:

max
Z

I Y; Zð Þ � bI X; Zð Þ; (7)

where b is a parameter to control the tradeoff between accuracy and

complexity. Low b corresponds to high mutual information between
Z and Y, and low compression. The function I is defined as the mu-

tual information between two random variables A and B as follows:

I A; Bð Þ ¼
ð

da db p a; bð Þlog
pða; bÞ

pðaÞpðbÞ ; (8)

where a and b are instances of random variables A and B, respective-
ly; pða; bÞ is the joint probability distribution of A and B; pðaÞ and
pðbÞ are the marginal probability distributions of A and B,

respectively.
Following the solution for mutual information terms described

in the study (Alemi et al., 2016), we assume p ZjX; Yð Þ ¼ pðZjXÞ
according to the Markov chain Y $ X$ Z. So, the first term in

Equation (7) can be expressed as:

I Y; Zð Þ ¼
ð

dy dzp y; zð Þlog
pðy; zÞ

pðyÞpðzÞ ¼
ð

dy dzp y; zð Þlog
p yjzð Þ
p yð Þ

:

(9)

Since p yjzð Þ is intractable, we use q yjzð Þ, which can be learned

by our network, to approximate p yjzð Þ. Since KL-divergence be-
tween p yjzð Þ and q yjzð Þ is always positive, we have:

I Y;Zð Þ �
Ð

dy dz p y; zð Þlog
q yjzð Þ
p yð Þ

¼
Ð

dy dz p y; zð Þlog q yjzð Þ �
Ð

dy p yð Þlog p yð Þ:
(10)

The term �
Ð

dyp yð ÞlogpðyÞ denotes the entropy of the label Y,
which does not affect our optimization, so it can be ignored.

Employing the Markov assumption, p y; zð Þ can be rewritten as
p y; zð Þ ¼

Ð
dx p x; y; zð Þ ¼

Ð
dx pðxÞpðyjxÞpðzjxÞ, and then the first

term of our objective becomes:

I Z;Yð Þ �
ð

dx dy dz p xð Þp yjxð Þp zjxð Þlogq yjzð Þ: (11)

For the term I X; Zð Þ, it can be written as:

I Z;Xð Þ ¼
Ð

dz dx p z; xð Þlog
p zjxð Þ
p zð Þ

¼
Ð

dz dx pðz; xÞ log pðzjxÞ �
Ð

dz p zð Þlog p zð Þ:
(12)

Similarly, we use r zð Þ to approximate p zð Þ and use the property
of KL-divergence between p zð Þ and r zð Þ, then we can have:

I Z; Xð Þ �
ð

dz dxp xð Þp zjxð Þlog
p zjxð Þ
r zð Þ

: (13)

Combine Equations (7), (11) and (13), we can obtain:

I Z;Yð Þ � bI Z;Xð Þ �
Ð

dx dy dz p xð Þp yjxð Þp zjxð Þlog q yjzð Þ

�
Ð

dz dxp xð Þp zjxð Þlog
p zjxð Þ
r zð Þ

¼ L :
(14)

Here, the Monte Carlo sampling method (Shapiro, 2003) is used
to approximate the integral over x and y. Therefore, L can be
approximated as:

L � 1

N

XN
i¼1

ð
dz p zjxið Þlogq yijzð Þ � bp zjxið Þlog

p zjxið Þ
r zð Þ

" #
; (15)

where N is the number of the sampled data. Assume p zjxð Þ ¼
Nðzjf lðxÞ; f r xð ÞÞ as an encoder, where f l and f r are two multilayer
perceptions (MLPs) that learn the mean l and the covariance r
(after a softplus function transform) for , respectively. Especially,
each MLP has k neurons and k is the dimension of l and r. Then,
the reparameterization trick (Kingma and Welling, 2013) is used to
make z ¼ f l xð Þ þ f r xð Þe, where e is a Gaussian random variable and
z is our final latent representation to characterize a sequence, whose
dimension is k. Next, supposing that the KL-divergence can be com-
puted between p zjxð Þ and r zð Þ, put all the above together and our
objective function (i.e. Equation 15) can be rewritten as follows:

LIB ¼
1

N

XN

i¼1
½E��pð�Þð�logqðyijziÞÞ þ bKL p zjxið Þ; r zð Þ

� �� �
: (16)

Note that the first term in Equation (16) is the cross-entropy be-
tween z and y, and then backpropagation algorithm can be directly
applied to LIB to update network parameters, which let us get a
compressive and accurate latent representation that contained more
relevant information and less superfluous information. Therefore,
we take LIB as the loss function of our model to obtain the latent
feature vector z for improving prediction performance.

2.5 Classification
This step mainly employs a fully connected layer and a sigmoid layer.
The latent feature vector z learned by information bottleneck principle is
forwarded into the fully connected layer with a relu activation function,
and then a sigmiod layer is employed to perform classification as follows:

output ¼ sigmoid relu wzþ bð Þð Þ; (17)

sigmoid sð Þ ¼ 1

1þ e�s
; (18)

where w stands for the weights of the fully connected layer and b
stands for the corresponding bias. The values of output are probabil-
ities ranging from 0 to 1. If the probability value is > 0:5, the se-
quence belongs to the toxic peptide (or protein) class, and vice versa.

2.6 Transfer learning
Transfer learning is a machine learning methodology that aims at storing
the knowledge learned from a task with a large number of available
labeled data and applying it to a different but related task with a small set
of data (Zhuang et al., 2021). Therefore, for a new task, instead of starting
the learning process from scratch, we can start with the patterns learned
from a related task. Here, the protein dataset is used to pre-train the neural
network architecture shown in Figure 3A. Next, transfer learning is per-
formed by further fine-tuning the pre-trained model on the peptide data-
set as shown in Figure 3. During transfer learning, we change the number

1518 L.Wei et al.
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of neurons in the penultimate fully connected layer and the parameter b in
lost function, whereas other hyperparameters in networks remain un-
changed as changing them does not yield better predictive performance. In

addition, all the weights in network layers are fine-tuned without freezing
any weights of certain layers because using all weights to fine-tune the pre-

trained model performs better than freezing certain layers.

3 Model performance assessment

3.1 Evaluation metrics
In this study, the protein toxicity prediction task suffers from severe class
imbalance, which is not capable to be evaluated with regular ACC.

Therefore, we use the same four metrics in the study (Pan et al., 2020) to
evaluate the performance of our model, including the F1_score, the
Matthews correlation coefficient (MCC), the area under the receiver

operating characteristic curve (auROC) and the are under the precision-
recall curve (auPRC). For the peptide toxicity prediction task without
the class-imbalanced issue, seven sets of commonly used metrics are

employed to evaluate the prediction results, including sensitivity (SN),
specificity (SP), false discovery rate (FDR), ACC, MCC, auROC and

auPRC. The metrics mentioned above are defined as follows:

SN ¼ TP

TPþ FN

SP ¼ TN

TNþ FP

FDR ¼ FP

TPþ FP

ACC ¼ TPþ TN

TPþ TNþ FPþ FN

F1�score ¼ 1þ 2TP

FPþ FN

MCC ¼ TP� TN� FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞ � ðTPþ FNÞ � ðTNþ FPÞ � ðTNþ FNÞ

p

;

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

(19)

where TP (true positive) and TN (true negative) represent the num-
bers of correctly predicted positives and negatives, respectively. FP

(false positive) and FN (false negative) are the numbers of wrongly
predicted positives and negatives, respectively. SN and SP are
employed to measure the positive and negative predictive ability of a
classifier. FDR reflects the percentage of FPs among all the predicted
positives. MCC, F1_score and ACC are adopted to evaluate the
overall prediction performance of a classifier. In addition, the ranges
of auROC and auPRC are from 0.5 to 1. The higher the score, the
better the prediction performance of the model.

3.2 Performance comparison with existing methods on

protein dataset
To evaluate the effectiveness of our proposed model, we compare it
with existing methods on the protein dataset, including alignment-
based methods [BLAST (Altschul et al., 1997), BLAST-score,
InterProScan (Jones et al., 2014), Hmmsearch (Potter et al., 2018)],
machine learning-based methods [ClanTox (Naamati, et al., 2009),
ToxinPred (i.e. ToxinPred-RF and ToxinPred-SVM) (Gupta et al.,
2013)] and deep learning-based methods [ToxDL (Pan et al.,
2020)]. They employed different features for identifying toxic pro-
teins, including multiple sequence alignment-based features,
sequence-based features and protein domain-based features. More
details about them can be found in Supplementary Material. Their
predictive results are listed in Table 2.

As can be seen from Table 2, except for ToxDL, ToxIBTL
achieves the best performance with the F1_score, MCC, auROC and
auPRC of 0.830, 0.816, 0.953 and 0.847, respectively. Specifically,
the F1_score, MCC, auROC and auPRC of the proposed predictor
are 3–64.5%, 1.5–50.9%, 0.5–8.5% and 2.9–23.5% higher than
other predictors. This result demonstrates that ToxIBTL can capture
more effective information related to toxicity than the alignment-
based methods and the machine learning-based methods. When
compared with ToxDL, ToxIBTL improves upon the F1_score from
0.809 to 0.830 (a relative improvement of 2.6%) and improves
upon the MCC from 0.793 to 0.816 (a relative improvement of
2.9%), whereas the values of auROC and auPRC of ToxIBTL are
lower, which indicates that ToxIBTL can achieve competitive per-
formance to ToxDL. In addition, the standard deviation of each

Table 2. Predictive performance of various methods on protein dataset

Method F1_score MCC auROC auPRC

BLAST 0.800 0.801 — —

BLAST-score 0.789 0.775 0.868 0.818

InterProScan 0.347 0.402 — —

Hmmsearch 0.185 0.307 — —

ClanTox 0.620 0.604 0.903 0.612

ToxinPred-RF 0.667 0.638 0.948 0.716

ToxinPred-SVM 0.677 0.648 0.938 0.712

ToxDL 0.809 (60:022Þ 0.793 (60:024) 0.989 ð60:002Þ 0.913 ð60:014Þ
ToxIBTL (this study) 0.830 (60:007) 0.816 (60:008) 0.953 ð60:001Þ 0.847 60:002ð Þ

Note: For a fair comparison, we report the average after experimenting 10 times for ToxIBTL. The best performance amongst all methods is denoted as

boldface.

Table 3. Predictive performance of various methods on peptide dataset

Methods SN SP FDR ACC MCC

ClanTox 0.855 0.888 0.132 0.872 0.743

ToxinPred-RF 0.918 60:016ð Þ 0.904 ð60:018Þ 0.094 60:017ð Þ 0.911 ð60:010Þ 0.823 ð60:021Þ
ToxinPred-SVM 0.893 ð60:012Þ 0.924 ð60:016Þ 0.077 ð60:015Þ 0.909 ð60:011Þ 0.817 ð60:023Þ
Only-GNN 0.869 ð60:008Þ 0.898 ð60:006Þ 0.112 (60:005) 0.885 60:002ð Þ 0.778 ð60:003Þ
Only-CNN_BiLSTM 0.947 ð60:012Þ 0.895 ð60:019Þ 0.114 ð60:017Þ 0.919 ð60:007Þ 0.840 ð60:012Þ
ATSE 0.965 (60:003) 0.940 (60:003) 0.068 ð60:003Þ 0.952 ð60:002Þ 0.903 (60:004)

ToxIBTL (This study) 0.963 (60:003) 0.954 (60:002) 0.046 ð60:002Þ 0.960 ð60:002Þ 0.921 (60:003)

Note: For a fair comparison, we report the average after experimenting 10 times for ToxIBTL. The best performance amongst all methods is denoted as boldface.
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metric of the proposed method is lower than ToxDL, indicating that
ToxIBTL can achieve more stable performance.

3.3 Performance comparison with existing methods on

peptide dataset
In this section, we compare the proposed ToxIBTL with several
state-of-the-art methods specially designed for peptide toxicity pre-
diction, including ClanTox, ToxinPred (ToxinPred-RF and
ToxinPred-SVM), ATSE (Wei et al., 2021) and ATSE’s variants
(Only-GNN and Only-CNN_BiLSTM). More details about them
can be found in Supporting Information. The comparative results
are presented in Table 3. From Table 3, we can see that ToxIBTL
outperforms all the competing methods in terms of SP, FDR, ACC
and MCC. To be specific, ToxIBTL achieves an SP of 0.954, an
ACC of 0.960 and an MCC of 921, which generates a relative im-
provement over the runner-up ATSE of 1.49%, 0.84% and 1.99%,
respectively, and reduces FDR from 0.068 to 0.046 (a relative reduc-
tion of 32.35%). For SN, ToxIBTL is 0.963, whereas ATSE obtains
0.965. The difference between them is very small, indicating the
abilities of these two methods to predict positive samples are very
close.

These results discussed above demonstrate that ToxIBTL can ex-
tract more accurate and effective toxicity-specific features to charac-
terize peptide sequences for distinguishing both toxic peptides and
non-toxic ones. There are two main reasons for the outstanding per-
formance of our model. First, compared with machine learning-
based methods using handcrafted features to build predictors, which
depend on the limited knowledge of peptides, ToxIBTL can not only
automatically capture high-latent features by data driving, but also
learn context-sensitive information of sequence by fuzing both CNN
and BiGRU, which is critical for sequence analysis. Second, com-
pared with ATSE and its variants, on one hand, ToxIBTL introduces
transfer learning to apply common and generalizable knowledge
learned from proteins to peptides, which addresses the problem of
small data on toxic peptides, on the other hand, ToxIBTL adopts
the information bottleneck principle to find a better representation
that contains more relevant information for predicting toxicity and
less superfluous information that interferes with predicting results.
Therefore, there is no surprise that ToxIBTL achieves the best per-
formance when combining transfer learning strategy and informa-
tion bottleneck principle.

To intuitively illustrate the superiority of ToxIBTL, we display
the ROC and PR curves obtained from different methods in

Figure 4. Figure 4B and D shows a partial zoomed-in view of
Figure 4A and C, respectively. We can observe that the auROC and
auPRC of the proposed method are 0.983 and 0.980, respectively,
which are 0.7–10.7% and 1.5–15.6% higher than other methods.
These comparative results further suggest its ability to perform bet-
ter with unknown both toxic and non-toxic peptides when com-
pared with the existing methods.

3.4 Effectiveness analysis of information bottleneck

principle
To explore the effectiveness of introducing information bottleneck
principle in our feature learning scheme, on the peptide dataset, we
perform comparison experiments on four feature representations,
including the output of the CNN_BiGRU, the output of FEGS
model, the combination of the above two feature representations,
and the feature representation obtained after optimization. For con-
venience discussion, we denote these four feature representations in
turn as CNN_BiGRU_F, FEGS_F, CNN_BiGRUþFEGS_F and
OptimaizedF. We use six common classifiers, including random for-
est (RF), SVM (with RBF kernel), Gaussian naive Bayes (GNB),
LightGBM (Ke et al., 2017), logistic regression (LR) and k-nearest
neighbors (KNN), to carry out comparison experiments. Notably,
we employ the 10-fold cross-validation technique to perform com-
parison experiments. The results are presented in Figure 5.

From Figure 5, it can be seen that compared with the other fea-
ture representations, OptimizedF exhibits the best overall predictive
performance on each classifier in terms of SN, SP, ACC and MCC,
especially on the classifiers RF and GNB, which indicates the effect-
iveness of using information bottleneck principle to integrate differ-
ent features, leading to a more effective and discriminative feature
representation that better suits to most common classifiers. Note
that CNN_BiGRUþFEGS_F, obtained by concatenating two fea-
tures directly, achieves slightly better performance than
CNN_BiGRU_F, even though containing evolutionary and physico-
chemical information. The possible reason is that the directly con-
catenated features contain more irrelevant and noisy information,
which poses a bad effect on classification and hinders the generation
of stable and significant performance. Therefore, we apply the infor-
mation bottleneck principle to effectively fuze evolutionary informa-
tion and physiochemical information, containing in
CNN_BiGRUþFEGS_F, to maintain relevant information as much
as possible and filter out superfluous information, which can lead to
a more accurate and discriminative feature representation (i.e.

Fig. 4. ROC and PR curves of different methods. (A) ROC curves of the proposed ToxIBTL and competing methods. (B) It shows the same as (A), but zoomed-in on an inter-

esting region. (C) PR curves of proposed ToxIBTL and competing methods. (D) It shows the same as (C), but zoomed-in on an interesting region
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Fig. 5. Ten-fold cross-validation metrics comparison results of CNN_BiGRU_F, FEGS_F, CNN_BiGRUþFEGS_F and OptimaizedF based on six common classifiers. (A)

Results on RF. (B) Results on SVM. (C) Results on GNB. (D) Results on LightGBM. (E) Results on LR. (F) Results on KNN

Fig. 6. t-SNE visualization of the feature space. (A) Visualization of CNN_BiGRU_F. (B) Visualization of FEGS_F. (C) Visualization of CNN_BiGRUþFEGS_F. (D)

Visualization of OptimaizedF. The positive samples and negative samples are shown in blue and yellow colors, respectively
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OptimizedF) to better classify both toxic peptides and non-toxic
ones. Moreover, after using the information bottleneck principle,
the dimension of OptimizedF is smaller than that of
CNN_BiGRUþFEGS_F, which not only reduces the training time
but also avoids the ‘curse of dimensionality’. To summarize, the
comparison experiments on common classifiers highlight the im-
portance and requisite to employ the information bottleneck prin-
ciple to integrate comprehensive feature encodings into a
consolidated framework for further enhancing the model
performance.

To more intuitively explain the effectiveness of the informa-
tion bottleneck principle, we use t-SNE (Van der Maaten and
Hinton, 2008) to project the four representations of each se-
quence into a 2D space for visualization. The results are illus-
trated in Figure 6. As shown in Figure 6B, although the clustering
effect is the worst, the distribution of positive and negative sam-
ples can still be observed roughly, demonstrating that FEGS_F
also captures some relevant information. From Figure 6A and C,
we can see that after concatenating CNN_BiGRU_F and FEGS_F
directly, there is a slight improvement in the clustering effect.
With the optimization of the information bottleneck principle, as
shown in Figure 6D, two categories distribute more clearly and
compactly, which indicates the strong ability of the information
bottleneck principle to retain relevant information for predicting
peptide toxicity while discarding the redundant information in the rep-
resentation. Furthermore, it also increases the interpretability of our
model from the perspective of feature learning strategy.

3.5 Effectiveness of transfer learning
To investigate whether transfer learning can improve predictive per-
formance with small data, we compare ToxIBTL with the direct
training method that directly utilizes our designed neural network to
train the predictive model on the peptide dataset. The comparative
results are displayed in Figure 7. As shown in Figure 7, we can see
that compared with the direct training method, ToxIBTL achieves
an obvious improvement in terms of six metrics (i.e. SP, SN, ACC,
MCC, auROC and auPRC). Specifically, the ACC and MCC of
ToxIBTL are 0.960 and 0.921, which are 2% and 4.1% higher than
the direct training method. The results demonstrate that transfer
learning is a useful strategy and can increase the model power for
identifying toxic and non-toxic peptides. The possible reason is that
transfer learning can effectively transfer common knowledge from
proteins with a large amount of data to peptides and obtain a more
discriminative feature representation to represent intrinsic character-
istics of peptides. Therefore, due to the limited data, the identifying
power of the direct training method is relatively lower.

3.6 Analysis of the impact of peptide length on

performance
To study the impact of peptide length on the performance of predic-
tors, we compare the misclassification rate of various predictors,
including ClanTox, ToxinPred-RF, ToxinPred-SVM, Only-GNN,
Only-CNN_BiLSTM, ATSE and ToxIBTL, toward toxic peptides
and non-toxic peptides of diverse length (length 2 ½10, 20], [21, 30],
[31, 40], [41, 50]). This study is conducted on the peptide testing
set. The results are displayed in Figure 8. From Figure 8A, we can
see that ClanTox, ToxinPred-RF, ToxinPred-SVM and Only-GNN
have relatively higher rates of misclassification for shorter toxic pep-
tides, which indicates they are highly biased toward longer toxic
peptides. As a result, they classify more short-length peptides as
non-toxic ones. For Only-GNN and Only-CNN_BiLSTM, apart
from the length2 21; 30½ 	, they all achieve great performance in
other length intervals. For length 2 [10, 20], the proposed ToxIBTL
can predict the toxicity of peptides accurately, and for other length
intervals, it also achieves relatively lower misclassification rates
compared with other predictors.

From Figure 8B, it can be seen that ClanTox and ToxinPred-RF
are biased toward non-toxic peptides for length 2 10; 20½ 	. In the
case of ToxinPred-SVM and Only-GNN, they all perform worse for
all length intervals. For Only-CNN_BiLSTM, it is biased toward
non-toxic peptides for a longer length and gets a higher misclassifi-
cation rate for short-length non-toxic ones. For ATSE, it performs

Fig. 7. Performance comparison between ToxIBTL and the direct training method

on peptide dataset

Fig. 8. Heat maps showing misclassified both toxic peptides and non-toxic peptides of varying lengths by different predictors. (A) Heat map of misclassified toxic peptides. (B)

Heat map of misclassified non-toxic peptides
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worse in length 2 10; 20½ 	 compared with other length intervals.
For our proposed ToxIBTL, we don’t observe the obvious bias to-
ward a certain length due to the relatively balanced misclassification
rates.

To sum up the above, the proposed ToxIBTL does not have a
distinct bias toward toxic or non-toxic peptides and can accurately
identify both toxic and non-toxic peptides for diverse lengths.
Therefore, our model can be taken as a promising predictor for pre-
dicting peptides of any length with great confidence.

3.7 Feature analysis
Discriminative features are the key to build a powerful computational
classifier. When compared with other existing methods, the proposed
ToxIBTL has two main advantages: (i) integrates evolutionary informa-
tion and physiochemical information to represent peptides, and (ii) uses
the information bottleneck principle and transfer learning to extract
effective features containing more relevant information and less noisy
information. The latent and toxicity-related features, i.e. toxic and non-
toxic peptides have distinctly different characteristics, are constructed
with 900 neurons in our neural networks, which correspond to toxic or
non-toxic peptides. To highlight the discriminative power of toxicity-
related features extracted by the proposed ToxIBTL, for comparison,
we randomly select 100 toxic peptides and 100 non-toxic ones and per-
form a clustering analysis of the features on the randomly selected pepti-
des. The clustering results are presented in Figure 9. As shown in
Figure 9, we can easily see that: (i) toxic and non-toxic peptides are clus-
tered into two distinct sub-trees, and (ii) the peptides of the same type
tend to show similar values of toxicity-related features. These results
demonstrate that the features extracted by the proposed ToxIBTL can
accurately capture the toxicity characteristics of peptides.

4 Conclusion

Accurate identification of the toxicity of peptides plays a vital role
in the discovery and development of peptide-based drugs. Therefore,
in this study, we propose a novel deep learning method, called
ToxIBTL, for improving the prediction of peptide toxicity from un-
known peptides, which learns the informative features from multiple
aspects including evolutionary, graphical and statistical information.
To develop an efficient prediction model, the information bottleneck
principle is coupled with transfer learning to extract more discrim-
inative features for peptide sequences. We first pre-train our model
on the large protein dataset, and then fine-tune the pre-trained
model on the small peptide dataset, which can effectively transfer
common knowledge learned from proteins to peptides.
Experimental results demonstrate that the proposed ToxIBTL
achieves a significant prediction performance on the peptide dataset,
and it is superior to other state-of-the-art methods. In addition, we
also conduct a comparative study to evaluate the performance of
our model on the protein dataset. Experimental results show that
our model also can obtain competitive performance compared with

other existing methods. In general, ToxIBTL is an efficient model
for predicting the toxicity of both peptides and proteins. We antici-
pate that our predictor can help to select the desired peptides or pro-
teins in a cost-effective and high-throughput way to accelerate drug
discovery and development.

Although our model achieves a promising performance, there
is still room for further improvement. For example, ToxIBTL
trains the classifiers on the protein dataset and the peptide dataset
independently. However, the model can be trained on these two
datasets together to efficiently learn the common characteristic
space from both proteins and peptides by simultaneously mini-
mizing classification losses on them, which may further improve
the prediction performance. In addition, there is a lack of inter-
pretability in our model. The toxicity of peptides may result from
certain residues located at the C- or N-terminal in a peptide se-
quence or concerted actions of multiple residues. Extracting such
intrinsic relationships from the predictor can not only enrich the
explanation, but also enhance our understanding of the mechan-
ism of peptide toxicity. However, the solutions to solve these
problems still need to be further explored.
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