
0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2900307, IEEE

Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH 2018 1

Toxic Code Snippets on Stack Overflow
Chaiyong Ragkhitwetsagul, Jens Krinke, Matheus Paixao, Giuseppe Bianco, Rocco Oliveto

Abstract—Online code clones are code fragments that are copied from software projects or online sources to Stack Overflow as

examples. Due to an absence of a checking mechanism after the code has been copied to Stack Overflow, they can become toxic code

snippets, e.g., they suffer from being outdated or violating the original software license. We present a study of online code clones on

Stack Overflow and their toxicity by incorporating two developer surveys and a large-scale code clone detection. A survey of 201

high-reputation Stack Overflow answerers (33% response rate) showed that 131 participants (65%) have ever been notified of outdated

code and 26 of them (20%) rarely or never fix the code. 138 answerers (69%) never check for licensing conflicts between their copied

code snippets and Stack Overflow’s CC BY-SA 3.0. A survey of 87 Stack Overflow visitors shows that they experienced several issues

from Stack Overflow answers: mismatched solutions, outdated solutions, incorrect solutions, and buggy code. 85% of them are not

aware of CC BY-SA 3.0 license enforced by Stack Overflow, and 66% never check for license conflicts when reusing code snippets.

Our clone detection found online clone pairs between 72,365 Java code snippets on Stack Overflow and 111 open source projects in

the curated Qualitas corpus. We analysed 2,289 non-trivial online clone candidates. Our investigation revealed strong evidence that

153 clones have been copied from a Qualitas project to Stack Overflow. We found 100 of them (66%) to be outdated, of which 10 were

buggy and harmful for reuse. Furthermore, we found 214 code snippets that could potentially violate the license of their original

software and appear 7,112 times in 2,427 GitHub projects.

Index Terms—Code Clone Detection, Stack Overflow, Outdated Code, Software Licensing

✦

1 INTRODUCTION

Stack Overflow is a popular online programming com-
munity with 7.6 million users, 14 million questions, and 23
million answers1. It allows programmers to ask questions
and give answers to programming problems. The website
has found to be useful for software development [16], [33],
[49], [52], [53], [69], [70], [74] and also valuable for educa-
tional purposes [47]. On Stack Overflow, each conversation
contains a question and a list of answers. The answers
frequently contain at least one code snippet as a solution
to the question asked. We found that the code snippets are
often not authored directly on the Stack Overflow website
but copied from another location. A snippet in an answer
could be copied and modified from a code snippet in the
question, copied from the answerer’s own code or from
other locations including open source software (OSS) sys-
tems.

The process of posting and answering questions on Stack
Overflow that involves the reuse (copying) of source code
can be considered code cloning. Code cloning is an activity
of reusing source code by copying and pasting. It normally
occurs in software development and account from 7% to
23% of source code in typical software systems [8]. The
benefits and drawbacks of clones are still controversial. Sev-
eral authors state that clones lead to bug propagations and
software maintenance issues [29], while some others suggest
that clones are not harmful and can even be beneficial [30],
[63].

Code cloning can also have side effects such as violating
software licenses or introducing software vulnerabilities.
Carelessly cloning code from one project to another project
with a different license may cause a software license vio-
lation [22]. This also happens within the context of online
Q&A websites such as Stack Overflow. An et al. [3] showed

1. Data as of 21 August 2017 from https://stackexchange.com/sites

that 1,279 cloned snippets between Android apps and Stack
Overflow potentially violate software licenses. Security is
also among the main concerns when the code is copied
from an online source. For example, Stack Overflow helps
developers to solve Android programming problems more
quickly than other resources while, at the same time, offers
less secure code than books or the official Android docu-
mentation [2].

We call code snippets that are copied from software sys-
tems to online Q&A websites (such as Stack Overflow) and
vice versa as “online code clones.” There are two directions
in creating online code clones: (1) code is cloned from a
software project to a Q&A website as an example; or (2) code
is cloned from a Q&A website to a software project to obtain
a functionality, perform a particular task, or fixing a bug.
Similar to classic code clones, i.e., clones between software
systems, online code clones can lead to license violations,
bug propagation, an introduction of vulnerabilities, and
re-use of outdated code. Unfortunately, online clones are
difficult to locate and fix since the search space in online
code corpora is larger and no longer confined to a local
repository.

To have a deeper insight into online code clones, we
surveyed 201 high-reputation Stack Overflow answerers.
The results of such a survey show that online code cloning
occurs on Stack Overflow. Stack Overflow answerers fre-
quently clone code from other locations, such as their per-
sonal projects, company projects, and open source projects,
to Stack Overflow as a solution or a complement to a so-
lution. The code cloning activity on Stack Overflow is obvi-
ously beneficial considered the popularity of Stack Overflow
and its influence on software development [49], [52], [53].
On the other hand, there is also a downside caused by low
quality, defective, and harmful code snippets that are reused
without awareness by millions of users [2], [20], [83].

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2900307, IEEE

Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH 2018 2

/* Code in Stack Overflow post ID 22315734 */ /* WritableComparator.java (2014-11-21) */

public int compare(byte[] b1,int s1,int l1, ...) { public int compare(byte[] b1,int s1,int l1, ...) {

try { try {

buffer.reset(b1,s1,l1); /* parse key1 */ buffer.reset(b1,s1,l1); /* parse key1 */

key1.readFields(buffer); key1.readFields(buffer);

buffer.reset(b2,s2,l2); /* parse key2 */ buffer.reset(b2,s2,l2); /* parse key2 */

key2.readFields(buffer); key2.readFields(buffer);

} catch (IOException e) { buffer.reset(null,0,0); /* clean up reference */

throw new RuntimeException(e); } catch (IOException e) {

} throw new RuntimeException(e);

return compare(key1,key2); /* compare them */ }

} return compare(key1, key2); /* compare them */

}

Figure 1: An example of the two code fragments of WritableComparator.java. The one from the Stack Overflow post
22315734 (left) is outdated when compared to its latest version in the Hadoop code base (right). Its Apache v.2.0 license is
also missing.

One participant in our survey expresses his/her con-
cerns about this:

“The real issue is less about the amount the code
snippets on SO than it is about the staggeringly high
number of software “professionals” that mindlessly use
them without understanding what they’re copying, and
the only slightly less high number of would-be pro-
fessionals that post snippets with built-in security is-
sues. A related topic is beginners who post (at times
dangerously) misleading tutorials online on topics they
actually know very little about. Think PHP/MySQL
tutorials written 10+ years after mysql_* functions
were obsolete, or the recent regex tutorial that got posted
the other day on HackerNew (https://news.ycombinator.
com/item?id=14846506). They’re also full of toxic code
snippets.”

Although this activity of online code cloning is well-
known, there are only a few empirical studies on the
topic [1], [3], [4], especially on finding the origins of the
clones on Q&A websites. In this study, we tackle this chal-
lenge of establishing the existence of online code clones on
Stack Overflow, investigate how they occur, and study the
potential effects to software reusing them. Therefore, we
mine Stack Overflow posts, detected online code clones, and
analysed the clones to reveal “toxic code snippets.”

Toxic code snippets mean code snippets that, after in-
corporating into software, degrade the software quality.
Stack Overflow code snippets cloned from open source
software or online sources can become toxic when they
are (1) outdated, (2) violating their original software li-
cense, (3) exhibiting code smells, (4) containing faults, or
(5) having security vulnerabilities. In this study, we focus
on the first two forms of toxic code snippets, outdated
code and license-violating code, as these two problems
are still underexplored compared to code smells [75] and
vulnerabilities [2], [20]. Moreover, Stack Overflow users also
express their concerns about these two problems as shown
in several discussion threads2 on meta.stackexchange.com

2. Discussions about outdated answers and code license on
Stack Overflow: meta.stackexchange.com/questions/131495,
meta.stackexchange.com/questions/11705/,
meta.stackexchange.com/questions/12527,
meta.stackexchange.com/questions/25956,
meta.stackoverflow.com/questions/321291.

about outdated answers and license of code on Stack Over-
flow. Outdated code snippets can be harmful since they are
not up-to-date with their originals and may contain defects.
Code snippets from open source projects usually fall under
a specific software license, e.g., GNU General Public License
(GPL). If they are cloned to Stack Overflow answers without
the license, and then flow to other projects with conflicting
licenses, legal issues may occur.

We would like to motivate the readers by giving two
examples of toxic code snippets. The first example is an
outdated and potentially license-violating online code clone
in an answer to a Stack Overflow question regarding how to
implement RawComparator in Hadoop3. Figure 1 shows—
on the left—a code snippet embedded as a part of the
accepted answer. The snippet shows how Hadoop imple-
ments the compare method in its WritableComparator

class. The code snippet on the right shows another version
of the same method, but at this time extracted from the
latest version (as of October 3, 2017) of Hadoop. We can
see that they both are highly similar except a line containing
buffer.reset(null,0,0); which was added on Novem-
ber 21, 2014. The added line is intended for cleaning up
the reference in the buffer variable and avoid excess heap
usage (issue no. HADOOP-113234). While this change has
already been introduced into the compare method several
years ago, the code example in Stack Overflow post is
still unchanged. In addition, the original code snippet of
WritableComparator class in Hadoop is distributed with
Apache license version 2.0 while its cloned instance on Stack
Overflow contains only the compare method and ignores its
license statement on top of the file. There are two potential
issues for this. First, the code snippet may appear to be
under Stack Overflow’s CC BY-SA 3.0 instead of its original
Apache license. Second, if the code snippet is copied and
incorporated into another software project with a conflicting
license, a legal issue may arise.

The second motivating example of outdated online code
clones with more disrupting changes than the first one
can be found in an answer to a Stack Overflow question
regarding how to format files sizes in a human-readable
form. Figure 2 shows—on the left—a code snippet to per-
form the task from the StringUtils class in Hadoop.

3. http://stackoverflow.com/questions/22315734
4. https://issues.apache.org/jira/browse/HADOOP-11323

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2900307, IEEE

Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH 2018 3

/* Code in Stack Overflow post ID 801987 */ /* StringUtils.java (2013-02-05) */

public static String humanReadableInt(long number) { public static String humanReadableInt(long number) {

long absNumber = Math.abs(number); return TraditionalBinaryPrefix.long2String(number,"",1);

double result = number; }

String suffix = "";

if (absNumber < 1024) {

} else if (absNumber < 1024 * 1024) {

result = number / 1024.0;

suffix = "k";

} else if (absNumber < 1024 * 1024 * 1024) {

result = number / (1024.0 * 1024);

suffix = "m";

} else {

result = number / (1024.0 * 1024 * 1024);

suffix = "g";

}

return oneDecimal.format(result) + suffix;

}

Figure 2: An example of the two code fragments of StringUtils.java. The one from the Stack Overflow post 801987
(left) is outdated when compared to its latest version in the Hadoop code base (right). The toxic code snippet is outdated
code and has race conditions.

The code snippet on the right shows another version of
the same method, but at this time extracted from the lat-
est version of Hadoop. We can see that they are entirely
different. The humanReadableInt method is rewritten on
February 5, 2013 to solve an issue of a race condition (issue
no. HADOOP-92525).

The two toxic code snippets in our examples have been
posted on March 11, 2014 and April 9, 2009 respectively.
They have already been viewed 259 and 2,886 times6 at the
time of writing this paper (October 3, 2017). Our calculation
finds that there will be a new viewer of the first toxic snippet
approximately every 5 days compared to almost every day
for the second one. Considering the popularity of Stack
Overflow, which has more than 50 million developers visit-
ing each month7, one toxic code snippet on Stack Overflow
can spread and grow to hundred or thousand copies within
only a year or two.

While research has mostly focused on reusing code
snippets from Stack Overflow (e.g., [3], [33], [81]), fewer
studies have been conducted on finding the origins of code
examples copied to Stack Overflow and the awareness of
Stack Overflow developers in doing so. Finding the origins
of code examples reveals the problem of toxic code snippets
caused by outdated code and software licensing violations.
It is equally important to studying the effects of reusing
Stack Overflow code snippets because it gives insights into
the root cause of the problem and lays a foundation to an
automatic technique to detect and report toxic code snippets
on Stack Overflow to developers in the future.

This paper makes the following primary contributions:

1) Awareness of Stack Overflow answerers and vis-
itors to toxic code snippets: We performed an on-
line survey and collected answers from 201 highly-
ranked Stack Overflow users and 87 Stack Overflow

5. https://issues.apache.org/jira/browse/HADOOP-9252
6. The number of views is for the whole Stack Overflow post but we

use it as a proxy of the number of views the accepted answer receives
because the question and the answer of the two motivation examples
have a short gap of posting time (within the same day and four days
after).

7. Data as of 21 August 2017 from: https://stackoverflow.com

visitors. We found that the answerers cloned code
snippets from open source projects to Stack Over-
flow answers. While Stack Overflow answerers are
aware of their outdated code snippets, 19% of the
participants rarely or never fix the code. 99% of the
answerers never include a software license in their
snippets and 69% never check for licensing conflicts.
On the other hand, 66% of the Stack Overflow
visitors experienced problems from reusing Stack
Overflow code snippets, including outdated code.
They are generally not aware of the CC BY-SA 3.0
license, and more than half of them never check for
license compatibility when reusing Stack Overflow
code snippets.

2) A manual study of online code clones: To empir-
ically confirm the findings from the surveys, we
used two clone detection tools to discover 2,289
similar code snippet pairs between 72,365 Java code
snippets obtained from Stack Overflow’s accepted
answers and 111 Java open source projects from the
curated Qualitas corpus [73]. We manually classified
all of them.

3) An investigation of toxic code snippets on Stack
Overflow: Our study shows that from the 2,289
online clones, at least 328 have been copied from
open source projects or external online sources to
Stack Overflow, potentially violating software li-
censes. For 153 of them, we found evidence that
they have been copied from a specific open source
project. 100 of them were found to be outdated, of
which 10 were buggy code.

4) An online code clone oracle: The 2,289 manually
investigated and validated online clone pairs are
available for download8 and can be used as a clone
oracle.

2 EMPIRICAL STUDY

We performed an empirical study of online code clones
between Stack Overflow and 111 Java open source projects

8. https://ucl-crest.github.io/cloverflow-web

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2900307, IEEE

Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH 2018 4

compare with
latest version

Stack

Overflow

dump

Java
accepted
answers

72,365
code

snippets

remove
comments

& pretty
print

Qualitas

corpus

111
Java

projects

clone detection

remove
comments
& pretty

print

SourcererCC

Simian

Phase 1: Clone Identification

Phase 2: Clone MergingPhase 3: Clone Validation (RQ1)

True clones
False
clones

Phase 4: Clone
Classification (RQ2)QS SQ EX UD BP IN NC

Phase 6: Licensing
Analysis (RQ4)Ninka +

auto. + manual license identification

Phase 5:
Outdated
Code (RQ3)

manually validated clone set

outdated clones license-violating clones

Simian clones

SourcererCC
clones

GitHub projects

clone detection clone
detection

Figure 3: The Experimental framework

to answer the following research questions:

• RQ1 (Stack Overflow answerers’ and visitors’
awareness to toxic code snippets):
1) How often are Stack Overflow answerers aware of the
outdated code and licensing conflicts when they answer a
question on Stack Overflow?
2) How often do Stack Overflow visitors experience the
outdated code and licensing conflicts when they reuse code
in an answer from Stack Overflow?
We surveyed 201 high-reputation Stack Overflow
answerers and 87 Stack Overflow visitors to study
their awareness of the two issues.

• RQ2 (Online code clones): To what extent is source
code cloned between Stack Overflow and open source
projects? We quantitatively measured the number
of online code clones between Stack Overflow and
open source projects to understand the scale of the
problem.

• RQ3 (Patterns of online code clones): How do online
code clones occur? We categorised online clones into
seven categories allowing insights into how online
code clones are created.

• RQ4 (Outdated online code clones): Are online code
clones up-to-date compared to their counterparts in the
original projects? We were interested in the outdated
Stack Overflow code examples since users are poten-
tially reusing them.

• RQ5 (Software licensing violation): How often do
license conflicts occur between Stack Overflow clones and
their originals? We investigated whether the reuse of
online code clones can cause software developers to
violate licenses.

To answer these five research questions, we perform two
surveys and an empirical study to understand the develop-
ers’ awareness of toxic code snippets on Stack Overflow and

to empirically study the online code clones between Stack
Overflow and open source projects, and their toxicity.

2.1 Stack Overflow Developers’ Survey

We support our motivation of toxic code snippets on Stack
Overflow and answer RQ1 by asking Stack Overflow users
to take an online survey. The survey was used for as-
sessing awareness of the developers on the two issues
of outdated code and license-violating code snippets. We
designed the survey using Google Forms by following the
guidelines by Pfleeger and Kitchenham [35], [50]. The sur-
vey was completely anonymous, and the participants could
decide to leave at any time. We created two versions of
the survey: the answerer survey and the visitor survey.
The answerer survey targeted the developers who were
experienced Stack Overflow users and were highly active
in answering questions. The visitor survey targeted the
developers who searched for solutions and reused code
from Stack Overflow answers.

The answerer survey: the survey contained 11 questions.
There were 7 Likert’s scale questions, 3 yes/no questions,
and one open-ended question for additional comments.
The first two questions were mandatory while the other 9
questions were shown to the participants based on their
previous answers. The full survey can be found in our
research note [56]. We selected the participants for the
answerer survey based on their Stack Overflow reputation.
On Stack Overflow, a user’s reputation reflects how much
the community trusts them. A user earns reputations when
he or she receives upvotes for good questions and useful an-
swers. Accepted answers receive more reputation score than
questions and regular answers9. Thus, Stack Overflow rep-
utation is an indicator of user’s skills and their involvement
in asking and answering questions on the site. In this study,
we call Stack Overflow users who have a high reputation
“Stack Overflow answerers.” The participants were invited
to take the survey via email addresses available on their
public Stack Overflow and GitHub profiles. We selected
the answerers based on the all-time reputation ranking10.
The invited participants had a reputation from 963,731 (the
highest) to 6,999, and we sent out 607 emails (excluding
undelivered ones, e.g., due to illegal email addresses). The
survey was open for participation for two months, from 25
July to 25 September 2017, before we collected and analysed
the responses.

The visitors’ survey The survey consists of 16 ques-
tions: 9 Likert’s scale questions, 3 yes/no questions, 2
multiple-choice questions, and 2 open-ended questions.
The first four questions are mandatory while the other
12 questions will be shown to the participants based on
their previous answers. The survey collects information
about the participant’s software development experience,
the importance of Stack Overflow, reasons for reusing Stack
Overflow snippets, problems from Stack Overflow snip-
pets, licensing of code on Stack Overflow, and additional
feedback. The full survey can be found in our research

9. Stack Overflow Reputation: https://stackoverflow.com/help/
whats-reputation

10. Stack Overflow Users (data as of 25 July 2017): https://
stackoverflow.com/users?tab=Reputation&filter=all

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2900307, IEEE

Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH 2018 5

note [56]. We adopted non-probability convenient sampling
to invite participants for this survey. Participation in the
survey requires experience of visiting Stack Overflow for
solving programming tasks at least once. The participants
were invited to take the survey via five channels: social
media post (Facebook), blognone.com (a popular technol-
ogy news and media community in Thailand), the Univer-
sity of Molise in Italy where the third author works, the
comp.lang.java.programmer group, and the Software
Engineering Facebook page. The survey was open for par-
ticipation for 2 months from 25 July 2017 to 25 September
2017.

2.2 Empirical Study of Online Code Clones

We support the motivation and confirm the findings in
the surveys by performing an empirical study of online
code clones between Stack Overflow answers and 111 Java
open source projects. We designed the study in 6 phases as
depicted in Figure 3 where we build different data sets to
answer RQ2 to RQ5.

2.2.1 Phase 1: Clone Identification

We rely on two source code data sets in this study: Java code
snippets in answers on Stack Overflow and open source
projects from the Qualitas corpus [73], as detailed next.

Stack Overflow: We extracted Java code snippets from
a snapshot of a Stack Overflow dump11 in January 2016.
The data dump is in XML, and it contains information
about posts (questions and answers). We were interested
in code snippets embedded in posts which were located
between <code>...</code> tags. A Stack Overflow thread
contains a question and several answers. An answer can
also be marked as an accepted answer by the questioner if
the solution fixes his/her problem. We collected Java code
snippets using two criteria. First, we only focused on code
snippets in accepted answers. We chose the snippets in
accepted answers because they actually solved the problems
in the questions. Moreover, they are usually displayed just
below the questions which makes them more likely to be
reused than other answers. Second, we were only interested
in code snippets of at least ten lines. Although the minimum
clone size of six lines is usual in clone detection [8], [37],
[79], we empirically found that snippets of six lines contain
a large number of boiler-plate code of getters/setters, equal
or hashCode methods, which are not interesting for the
study. Each snippet was extracted from the dump and saved
to a file. Moreover, we filtered out irrelevant code snippets
that were part of the accepted answers but were not written
in Java by using regular expressions and manual checking.
Finally, we obtained 72,365 Java code snippets containing
1,840,581 lines12 of Java source code. The median size of the
snippets is 17 lines.

Open source systems: We selected the established Qual-
itas corpus [73]. It is a curated Java corpus that has been
used in several software engineering studies [7], [48], [72],
[76]. The projects in the corpus represent various domains
of software systems ranging from programming languages
to visualisation. We selected the release 20130901r of the

11. https://archive.org/details/stackexchange
12. Measured by cloc: https://github.com/AlDanial/cloc

Table 1: Stack Overflow and Qualitas datasets

Data set No. of files SLOC

Stack Overflow 72,365 1,840,581
Qualitas 166,709 19,614,083

Qualitas corpus containing 112 Java open source projects.
This release contains projects with releases no later than
1st September 2013. We intentionally chose an old corpus
from 2013 since we are interested in online code clones in
the direction from open source projects to Stack Overflow.
The 20130901r snapshot provides Java code that is more
than 2 years older than the Stack Overflow snapshot, which
is sufficiently long for a number of code snippets to be
copied onto Stack Overflow and also to observe if clones
become outdated. Out of 112 Qualitas projects, there is one
project, jre, that does not contain Java source code due to
its licensing limitation [73] and is removed from the study.
This resulted in 111 projects analysed in the study, for a total
of 166,709 Java files containing 19,614,083 lines of code (see
Table 1). The median project size is 60,667 lines of code.

Clone Detection Tools: We use clone detection to dis-
cover online code clones. There are a number of restrictions
in terms of choosing the clone detection tools for this study.
The main restriction is due to the nature of code snippets
posted on Stack Overflow, as most of them are incomplete
Java classes or methods. Hence, a detector must be flexible
enough to process code snippets that are not compilable
or not complete blocks. Moreover, since the amount of
code that has to be processed is in a scale of millions line
of code (as shown in Table 1), a clone detector must be
scalable enough to report clones in a reasonable amount
of time. We have tried 7 state-of-the-art clone detectors
including Simian [66], SourcererCC [64], NiCad [13], [62],
CCFinder [29], iClones [25], DECKARD [28], and PMD-
CPD [51] against the Stack Overflow and Qualitas datasets.
NiCad failed to parse 44,960 Stack Overflow snippets while
PMD CPD failed to complete the execution due to lexical
errors. iClones could complete its execution but skipped 367
snippets due to malformed blocks in Stack Overflow data
sets. CCFinder reported 8 errors while processing the two
data sets. Although Simian, SourcererCC, and DECKARD
could successfully report clones, we decided to choose only
Simian and SourcererCC due to their fast detection speed.
Moreover, Simian and SourcererCC complement each other
as SourcererCC’s clone fragments are always confined to
method boundaries while Simian’s fragments are not.

Simian is a text-based clone detector that locates clones
at line-level granularity and has been used extensively in
several clone studies [11], [39], [40], [41], [42], [43], [45],
[57], [58], [59], [79]. Furthermore, it offers normalisation of
variable names and literals (strings and numbers) which
enables Simian to detect literal clones (type-1) and param-
eterised clones (type-2) [8]. SourcererCC is a token-based
clone detector which detects clones at either function- or
block-level granularity. It can detect clones of type-1, -2 up
to type-3 (clones with added and removed statements) and
offer scalability against large code corpus [63], [64], [82].

We prepared the Java code in both datasets by remov-
ing comments and pretty-printing to increase the clone

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2900307, IEEE

Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH 2018 6

Table 2: Configurations of Simian and SourcererCC

Tool Configurations

Simian (S) Threshold=10, ignoreStringCase,
ignoreCharacterCase,
ignoreModifiers

SourcererCC (SCC) Functions, Minimum clone size=10,
Similarity=80%

detection accuracy. Then, we deployed the two detectors to
locate clones between the two datasets. For each Qualitas
project, we ran the tools on the project’s code and the entire
Stack Overflow data. Due to incomplete code blocks and
functions typically found in Stack Overflow snippets, the
built-in SourcererCC’s Java tokeniser could not parse 45,903
snippets, more than half of them. Nevertheless, the tool
provides an option to plug in a customised tokeniser, so
we developed a special Java tokeniser with assistance from
the tool’s creators. The customised tokeniser successfully
processed all Stack Overflow snippets.

Simian did not provide an option to detect cross-project
clones. Hence the Simian clone report was filtered to con-
tain only clone pairs between Stack Overflow and Qualitas
projects, removing all clone pairs within either Stack Over-
flow or Qualitas. SourcererCC can detect cross-project clones
between two systems, so we did not filter the clones.

Clone Detection Configuration: We are aware of effects
of configurations to clone detection results and the impor-
tance of searching for optimised configurations in empirical
clone studies [57], [58], [60], [71], [78]. However, considering
the massive size of the two datasets and the search space of
at least 15 Simian and 3 SourcererCC parameters, we are un-
able to search for the best configurations of the tools. Thus,
we decided to configure Simian and SourcererCC based on
their established default configurations chosen by the tools’
creators as depicted in Table 2. The two clone detectors
complemented each other by having Simian detecting literal
copies of code snippets (type-1) and SourcererCC detecting
clones with renaming and added/deleted statements (type-
2, type-3).

Nevertheless, we investigated a crucial parameter set-
ting for clone detection: the minimum clone size threshold.
Choosing a large threshold value can reduce the number
of trivial clones (e.g., equals, hashCode, or getter and
setter methods) and false clones in the analysis or the
manual investigation phase [64], i.e., increasing precision.
Nonetheless, it may create some false negatives. On the
other hand, setting a low threshold results in a larger num-
ber of clone candidate pairs to look at, i.e., increasing recall,
and a higher chance of getting false positives. Moreover, the
large number of clone pairs hinders a full manual validation
of the clones. Three threshold values, six, ten, and fifteen
lines, were chosen for our investigation. We started our
investigation by using a threshold value of six lines, a
well-accepted minimum clone size in clone benchmark [8].
Simian reported 67,172 clone candidate pairs and Sourcer-
erCC reported 7,752 clone candidate pairs. We randomly
sampled 382 pairs from the two sets for a manual check. This
sample number was a statistically significant sample with a
95% confidence level and ±5% confidence interval. The first

Table 3: Number of online clones reported by Simian and
SourcererCC

Tool Total clone pairs Average clone size

Simian 721 16.61
SourcererCC 1,678 17.86

author investigated the sampled clone pairs and classified
them into three groups: not clones, trivial clones (equals,
hashCode, or getter and setter methods), and non-trivial
clones. The manual check found 26 non-clone pairs, 322
trivial clone pairs, and 34 non-trivial clone pairs. Next, we
increased the threshold to ten lines, another well-established
minimum clone size for large-scale data sets [64], and re-
trieved 721 clone pairs from Simian and 1,678 clone pairs
from SourcererCC. We randomly sampled and manually
checked the same amount of 382 pairs and found 27 non-
clone pairs, 253 trivial clone pairs, and 102 non-trivial clone
pairs. Then, we increased the threshold further to fifteen
lines and retrieved 196 clone pairs from Simian and 1,230
clone pairs from SourcererCC. The manual check of the 382
randomly sampled pairs revealed zero non-clone pairs, 298
trivial clone pairs, and 83 non-trivial clone pairs.

The findings from the three threshold values show that
selecting the minimum clone size of ten lines was preferred
over six and fifteen lines. First, it generated a fewer number
of clone pairs than using six lines, which made the manual
clone investigation feasible. Second, it preserved the highest
number of non-trivial clone pairs. The number of online
clone pairs reported using the minimum clone size of 10
lines are presented in Table 3. Simian reports 721 clone pairs
while SourcererCC reports 1,678 clone pairs. The average
clone size reported by Simian is 16.61 lines which is slightly
smaller than SourcererCC (17.86 lines).

2.2.2 Phase 2: Clone Merging

Clones from the two detectors can be duplicated. To avoid
double-counting of the same clone pair, we adopted the idea
of clone agreement which has been used in clone research
studies [21], [60], [79] to merge clones from two data sets.
Clone pairs agreed by both clone detection tools have a
high likelihood to be duplicate and must be merged. To
find agreement between two clone pairs reported by two
different tools, we used the clone pair matching metric pro-
posed by Bellon et al. [8]. Two clone pairs that have a large
enough number of overlapping lines can be categorised as
either a good-match or an ok-match pair with a confidence
value between 0 and 1. Although good-match has a stronger
agreement than ok-match, we choose the ok-match criterion
as our clone merging method because it depends on clone
containment and does not take clone size into account.
Clone containment suits our online code clones from two
tools, Simian (line-level) and SourcererCC (method-level),
better because Simian’s clone fragments can be smaller or
bigger than a method while SourcererCC’s clone fragments
are always confined to a method boundary.

We follow Bellon’s original definitions of ok-match [8],
which are based on how much two clone fragments CF are

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2900307, IEEE

Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH 2018 7

contained in each other:

contained(CF1, CF2) =
|lines(CF1) ∩ lines(CF2)|

|lines(CF1)|

A clone pair CP is formed by two clone fragments CF1 and
CF2, i.e., CP = (CF1, CF2) and the ok-value of two clone pairs
is defined as

ok(CP1, CP2) = min(max(contained(CP1.CF1, CP2.CF1),

contained(CP2.CF1, CP1.CF1)),

max(contained(CP1.CF2, CP2.CF2),

contained(CP2.CF2, CP1.CF2)))

Two clone pairs CP1 and CP2 are called an ok-match(t) iff, for
threshold t ∈ [0, 1] holds

ok(CP1, CP2) ≥ t

The threshold t is crucial for the ok-match because it
affects the number of merged clone pairs. Setting a high t
value will result in a few ok-match clone pairs and dupli-
cates of the same clone pairs (which are supposed to be
merged) may appear in the merged clone set. On the other
hand, setting a low t value will result in many ok-match
clone pairs, and some non-duplicate clone pairs may be
accidentally merged by only a few matching lines. In order
to get an optimal t value, we did an analysis by choosing five
t values of 0.1, 0.3, 0.5, 0.7, 0.9 and studied the merged clone
candidates. By setting t = 0.7 according to Bellon’s study,
we found 97 ok-match pairs reported. On the other hand,
setting t to 0.1, 0.3, 0.5, and 0.9 resulted in 111, 110, 110, and
94 ok-matched pairs respectively. Since the clone pairs of
t = 0.1 were the superset of other sets, we manually checked
all the 111 reported pairs. We found one false positive pair
and 110 true positive pairs. By raising the t to 0.3 and 0.5,
we got rid of the false positive pair and still retained all the
110 true positive pairs. All the clone pairs of t = 0.7 (97) and
t = 0.9 (94) were also true positives due to being a subset
of t = 0.5. However, since there were fewer merged clone
pairs, we ended up leaving some duplicates of the same
clones in the final merged clone set. With this analysis, we
can see that setting the threshold t to 0.1 is too relaxed and
results in having false positive ok-match pairs, while setting
the t to 0.7 or 0.9 is too strict. Thus, we decided to select the
t value at 0.5.

Using the ok-match criterion with the threshold t of 0.5
similar to Bellon’s study [8], we merge 721 clone pairs from
Simian and 1,678 clone pairs from SourcererCC into a single
set of 2,289 online clone pairs. There are 110 common clone
pairs between the two clone sets as depicted in Figure 4. The
low number of common clone pairs is due to SourcererCC
reporting clones with method boundaries while Simian is
purely line-based.

2.2.3 Phase 3-4: Validation and Classification

We used the 2,289 merged clone pairs for manual validation
and online clone classification. The validation and classifi-
cation of the pairs were done at the same time. The clone
validation process (phase 3 in Figure 3) involves checking if
a clone pair is a true positive or a false positive. Moreover,
we are also interested in the patterns of code cloning so we

611 1,568110

Simian (721)
SourcererCC (1,678)

Total (2,289)

Figure 4: The result from clone merging using Bellon’s ok-
match criterion

Table 4: The seven patterns of online code cloning

Patt. Description

QS Cloned from Qualitas project to Stack Overflow (Q → S)
SQ Cloned from Stack Overflow to Qualitas project (S → Q)
EX Cloned from an external source to Stack Overflow (X → S)
UD Cloned from each other or from an external source outside

the project (unknown)

BP Boiler-plate or IDE auto-generated
IN Inheritance, interface implementation
NC Not clones

can gain more insights into how these clones are created
(phase 4 in Figure 3).

Manual investigation: To mitigate the human error, we
deployed two people in the manual clone investigation
process. The first author, who is a research student working
on clone detection research for three years, and the third
author, who is a software engineering research student and
familiar with code clones, took the role of the investigators
performing a manual validation and classification of the
merged clone pairs. The two investigators separately went
through each clone pair candidate, looked at the clones, and
decided if they are a true positive or a false positive and clas-
sified them into an appropriate pattern. After the validation,
the results from the two investigators were compared. There
were 338 (15%) conflicts between true and false clones (QS,
SQ, EX, UD, BP, IN vs. NC). The investigators looked at each
conflicting pair together and discussed until a consensus
was made. Another 270 pairs (12%) were conflicts in the
classification of the true clone pairs. Among these pairs, 145
conflicts were caused by one investigator being more careful
than the other and being able to find evidence of copying
while the other could not. Thus, resolving the conflicts lead
to a better classification, i.e., from UD to QS or EX.

The online cloning classification patterns: We studied
the eight patterns of cloning from Kapser et al. [30], [32] and
performed a preliminary study to evaluate its applicability
to our study. We tried to classify 697 online clone pairs
from the reported clones in phase 1 using Kapser’s cloning
patterns. We found that Kapser’s patterns are too broad
for our study and a more suitable and fine-grained clas-
sification scheme is needed. After a preliminary study, we
adopted one of Kapser’s cloning patterns, boiler-plate code,
and defined six new cloning patterns. The seven patterns
include QS, SQ, EX, UD, BP, IN, and NC as presented
in Table 4. Pattern QS (Qualitas to Stack Overflow) rep-
resents clones that have evidence of being copied from a
Qualitas project to Stack Overflow. The evidence of copying
can be found in comments in the Qualitas source code or
in the Stack Overflow post’s contents. Pattern SQ (Stack
Overflow to Qualitas) is cloning, with evidence, in the

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2900307, IEEE

Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH 2018 8

Table 5: The definition of boiler-plate code

Type Description

API constraints Similar code fragments are created because
of a constraint by an API. For example, read-
ing and writing to database using JDBC,
reading and writing a file in Java.

Templating An optimised or stable code fragment is
reused multiple times. This also includes
auto-generated code by IDE.

Design patterns Java design patterns suggest a way of imple-
menting similar pieces of code. For example,
getters, setters, equals, hashCode, and
toString method.

IN
yes

BP
yes

no

inheritance/

interface

NC
no

clone?
yes

start

evidence?

QS

 yes,

 copied
 from

Q to S SQ

yes,
copied

 from

 S to Q

 yes, copied

from ext. source

EX

UD
no no

detailed check

boiler-

plate?

Figure 5: Online code clone classification process

opposite direction from Stack Overflow to a Qualitas project.
Pattern EX (External Sources) is cloning that has evidence
of copying from a single or multiple external sources to
Stack Overflow, and possibly also to a Qualitas project.
Pattern UD (Unknown Direction) is cloning that creates
identical or highly similar clones between Qualitas and
Stack Overflow but where we could not find any attribu-
tion of copying. Pattern BP (Boiler-Plate) represents clones
containing boiler-plate. We define three cases of boiler-plate
code and use in our classification as shown in Table 5.
Our definition is specific to Java and more suitable to our
study than the general definition in Kapser’s [32]. Pattern IN
(Inheritance/Interface) is cloning by inheritance of the same
super class or implementation of the same interface. These
two activities usually result in similar overriding methods.
The last pattern, NC (Not Clones), represents false clone
pairs. These are mainly false positive clones from the clone
detectors such as similar try-catch statements.

The classification of the filtered online clone pairs fol-
lowed the steps depicted in Figure 5. First, we look at a
pair of clone fragments to see their similarity. If they are
accidentally similar code fragments after code normalisation
or false positive clones from the clone detection tools, we
classify the pair into NC. If the two fragments are boiler-
plate code, the pair is classified into BP. If they implement
the same interface or inherited the same class and share
similar overriding methods, the pair is classified into IN. If
the pair is not BP, IN, or NC, we start a detailed investiga-
tion. We check the corresponding Stack Overflow post, read
through it carefully and look for any evidence mentioning
code copying. If evidence of copying has been found from
a Qualitas project, the pair is classified in QS. In several
occasions, we used extra information such as the questions’
contents, the name of posters, and the tags to gain a better

understanding. On the other hand, if the source code from
the Qualitas project mentions copying from Stack Overflow,
the pair is classified into SQ. If there is evidence of copying
from an external source instead of a Qualitas project, the pair
is classified as EX. Lastly, if there is no evidence of copying
in any direction but the clone fragments are highly similar,
we classify them into UD.

2.2.4 Phase 5: Outdated Clones

Outdated code occurs when a piece of code has been copied
from its origin to another location, and later the original
has been updated [80]. Usually, code clone detection is used
to locate clone instances and update them to match with
the originals [8]. However, online code clones are more
difficult to detect than in regular software projects due to its
large search space and a mix of natural and programming
languages combined in the same post.

To search for outdated online code clones, we focused on
the QS clone pairs that were cloned from Qualitas to Stack
Overflow and compared them with their latest versions. We
downloaded the latest version of the Qualitas projects from
their repositories on October 3, 2017. For each QS online
clone pair, we used the clone from Qualitas as a proxy.
We searched for its latest version by the file name and
located the cloned region in the file based on the method
name or specific code statements. We then compared the
Stack Overflow snippet to its latest version line-by-line to
find if any change has been made to the source code. We
also made sure that the changes did not come from the
modifications made to the Stack Overflow snippets by the
posters but from the updates in the projects themselves.
When we found inconsistent lines between the two versions,
we used git blame to see who modified those lines of
code and the timestamps. We also read commit messages
and investigated the issue tracking information if the code
change is linked to an automatic issue tracking system, such
as Jira or BugZilla to gain insights into the intent behind the
change.

Lastly, we searched for the outdated code snippets in
130,719 GitHub projects to see how widespread is the
outdated code in the wild. We mined GitHub based on
the number of stars the projects received, which indicated
their popularity. We relied on GitHub API to query the
project metadata before cloning them. Since GitHub API
returned only top 1,000 projects at a time for each query,
we formulated the query to retrieve most starred projects
based on their sizes. The project size range started from
1KB to 2MB with 1KB step size, and the last query is for
all the remaining projects that were larger than 2MB. With
this method, we retrieved the top 1,000 most starred projects
for each project size. As a result, we cloned 130,719 GitHub
projects ranging from 29,465 stars to 1 star. A clone detection
was then performed between the outdated code snippets
and the GitHub projects. We selected SourcererCC with the
same settings (see Table 2) for this task because it could scale
to a large-scale data set, while Simian could not. Finally, we
analysed the clone reports and manually checked the clones.

2.2.5 Phase 6: Licensing Analysis

Software licensing plays an important role in software de-
velopment. Violation of software licenses impacts software

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2900307, IEEE

Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH 2018 9

Table 6: Experience of Stack Overflow answerers

Experience Amount Percent

Less than a year 1 0.5%
1 – 2 years 1 0.5%
3 – 5 years 30 14.9%
5 – 10 years 58 28.9%
More than 10 years 111 55.2%

delivery and also leads to legal issues [68]. One can run into
a licensing issue if one integrates third-party source code
into their software without checking. A study by An et al. [3]
reports 1,279 cases of potential license violations between
399 Android apps and Stack Overflow code snippets.

We analysed licensing conflicts of the online clones in
the QS, EX, and UD set. The licenses were extracted by
Ninka, an automatic license identification tool [23]. Since
Ninka works at a file level, we report the findings based on
Stack Overflow snippets and Qualitas source files instead
of the clone pairs (duplicates were ignored). For the ones
that could not be automatically identified by Ninka and
have been reported as SeeFile or Unknown, we looked at
them manually to see if any license can be found. For EX
clone pairs that are cloned from external sources such as
JDK or websites, we manually searched for the license of
the original code. Lastly, we searched for occurrences of the
license-conflicting online clones in GitHub projects using the
same method as in the outdated clones.

3 RESULTS AND DISCUSSION

We use the two online surveys of Stack Overflow answerers
and visitors to answer RQ1 and follow the 6 phases in the
experimental framework (Figure 3) to answer the other four
research questions. To answer RQ2, we rely on the number
of manually validated true positive online clone pairs in
phase 3. We use the results of the manual classification by
the seven patterns of online code cloning to answer RQ3
(phase 4). For RQ4, we looked at the true positive clone pairs
that are classified as clones from Qualitas to Stack Overflow
and checked if they have been changed after cloning (phase
5). Similarly, for RQ5, we looked at the license of each clone
in the pattern QS, EX, UD and checked for a possibility of
license violation (phase 6).

3.1 RQ1: Stack Overflow Answerers’ and Visitors’

Awareness

3.1.1 The Answerer Survey

We received 201 answers (33% response rate) from 607
emails we sent to the Stack Overflow answerers. The re-
sponse rate was high considering other online surveys in
software engineering [55]. We only present a summary of
the survey answers in this paper, and the full analysis is
available as a research note [56].

General Information: As shown in Table 6, the majority
of the answerers are experienced developers with more
than 10 years of experience (55.2%) or between 5 to 10
years (28.9%). They are active users and regularly answer
questions. 49 participants (24%) answer questions on Stack
Overflow every day.

Table 7: Frequency of including code snippets in answers

Include code snippets Amount Percent

Very Frequently (81–100% of the time) 84 42%
Frequently (61–80% of the time) 63 31%
Occasionally (41–60% of the time) 40 20%
Rarely (21–40% of the time) 11 6%
Very Rarely (1–20% of the time) 2 1%
Never (0% of the time) 1 1%

Total 201 100%

Personal p
rojects

Company projects

Open source projects

Write
 fro

m scratch

Modify
 fro

m questio
ns

Others
0

20

40

60

80

100

120

140

A
m

o
u
n
t

Very frequently

Frequently

Occasionally

Rarely

Very rarely

Never

Figure 6: The sources of code snippets in Stack Overflow
answers

Code Snippets in Answers: 84 and 63 answerers include
code snippets in more than 80% and 60% of their answers
respectively. Interestingly, there is one answerer who never
include code snippet in his/her answers (Table 7).

We asked the remaining 200 participants for the origins
of code snippets in their answers. We provided six locations
including the answerer’s personal projects, the answerer’s
company projects, open source projects, writing the code
from scratch, copying and modifying the code from the
question, and others (e.g., code that are copied from other
questions or answers on Stack Overflow) and we asked
them to rate how often they copied the code from these
locations. The results are shown in Figure 6. Looking at
the Very Frequently section, we can see that the answerers
mainly write new code from scratch (106) or copy and mod-
ify the code snippets from the question for each answer (66),
while fewer numbers are from other sources including their
personal projects (28), their company projects (4), and open
source projects (9). Although copying from open source
projects is not the most popular choice, the answerers still
rely on them sometimes. As shown in the figure, there are
14, 31, and 33 participants who frequently, occasionally, and
rarely copied code snippets from open source projects.

RQ 1.1 How often are Stack Overflow answerers aware of the
outdated code and licensing conflicts when they answer a question
on Stack Overflow?

Outdated Code Snippets: We asked the answerers if
they have ever been notified about outdated code in their
answers. 111 participants selected Yes while the other 89

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2900307, IEEE

Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH 2018 10

Table 8: Notifications of outdated code snippets in answers

Notified of outdated code Amount Percent

Very frequently (81–100% of my answers) 2 1%
Frequently (61–80% of my answers) 1 0.5%
Occasionally (41–60% of my answers) 9 4.5%
Rarely (21–40% of my answers) 16 8%
Very rarely (1–20% of my answers) 103 51.5%
Never (0% of my answers) 69 34.5%

Total 200 100%

Table 9: Fixing of outdated code snippets in answers

Fixing of outdated code Amount Percent

Very frequently (81–100% of the cases) 48 36.6%
Frequently (61–80% of the cases) 27 20.6%
Occasionally (41–60% of the cases) 30 22.9%
Rarely (21–40% of the cases) 11 8.4%
Very rarely (1–20% of the cases) 8 6.1%
Never (0% of the cases) 7 5.3%

Total 131 100.0%

participants selected No. However, we found inconsistent
results when we asked a follow-up question on the fre-
quency of being notified. As displayed in Table 8, the
number of participants who have Never been notified about
outdated code snippets in their answers drops from 89 to
69.

We found that although the answerers have been notified
of outdated code in their answers, for 51.5% of them such
notifications occur very rarely (only 1–20% of the answers).
Only 3 participants reported that they were notified in more
than 60% of their answers. This notification to the answerer
can be done via several means, such as contacting the author
directly or writing a comment saying that the answer is
already outdated. The low percentage of outdated code noti-
fications reflect the experience of high reputation answerers
who accumulate the reputation for a long time. Due to the
voting mechanism of Stack Overflow, high-reputation users
usually provide high-quality answers to earn upvotes from
other users. They are careful when posting code snippets
in the answer to avoid problems and, vice versa, getting
downvotes. It would be interesting to compare the findings
to Stack Overflow answerers who are newer and have a
lower reputation. However, we leave it to future work.

We then asked 131 participants who have been notified
of their outdated code a follow-up question “how frequently
did you fix your outdated code on Stack Overflow?”. The an-
swers, depicted in Table 9, show that more than half of them
(57.2%) very frequently or frequently fix the outdated code
snippets. However, there are 19.8% of the answerers in both
groups who rarely, very rarely, or never fix their outdated
code.

Table 10: Inclusion of software license in answer

Include license? Amount

No. 197
Yes, in code comment 1
Yes, in text surrounding the code 2

Total 200

Table 11: Checking for licensing conflicts with CC BY-SA 3.0

Check license conflicts? Amount Percent

Very Frequently (81–100% of the time) 14 7%
Frequently (61–80% of the time) 7 3.5%
Occasionally (41–60% of the time) 10 5%
Rarely (21–40% of the time) 16 8%
Very rarely (1–20% of the time) 15 7.5%
Never (0% of the time) 138 69%

Total 200 100%

The License of Code Snippets: Among the 200 an-
swerers who include code snippets in their answers, 124
answerers are aware that Stack Overflow applies Creative
Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA
3.0) to content in the posts, including code snippets, while
the rest (76) are not. Nevertheless, as shown in Table 10,
almost all of them (197) reported that they did not include
license statement in their code snippets due to several
reasons. First, some answerers chose to post only their own
code or code that was adapted from the question; hence they
are automatically subjected to CC BY-SA 3.0. Second, they
copied the code from company or open source projects that
they knew were permitted to be publicly distributed. Third,
some answerers believe that code snippets in their answers
are too small to claim any intellectual property on them and
fall under fair use [19].

While nobody explicitly includes a software license in
their snippets, many users include a statement on their
profile page that all their answers are under a specific
license. For example, a Stack Overflow user includes the
following text in his/her profile page.

All code posted by me on Stack Overflow should be con-
sidered public domain without copyright. For countries
where public domain is not applicable, I hereby grant
everyone the right to modify, use and redistribute any
code posted by me on Stack Overflow for any purpose.
It is provided “as-is” without warranty of any kind.

Many users either declare their snippets to be public
domain, or they grant additional licenses, e.g., Apache 2.0
or MIT/Expat.

We asked the answerers a follow-up question of how
frequently they checked for a conflict between software
license of the code snippets they copied to their answers and
Stack Overflow’s CC BY-SA 3.0. As shown in Table 11, ap-
proximately 69% of answerers did not perform the checking.
Nonetheless, there are about 10.5% of the answerers who
very frequently or frequently check for licensing conflicts
when they copy code snippets to Stack Overflow.

To answer RQ 1.1, although most of the Stack Overflow
answerers are aware that their code can be outdated,
51.5% of the answerers were very rarely notified and 35.5%
have never been notified of outdated code in the answers.
After being notified, 19.8% of them rarely or never fix
the outdated code. 124 answerers out of 200 (62%) are
aware of Stack Overflow’s CC BY-SA 3.0 license applied
to code snippets in questions and answers. However, only
3 answerers explicitly include software license in their
answers. Some answerers choose to include the license
in their profile page instead. 69% of the answerers never

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2900307, IEEE

Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH 2018 11

check for licensing conflicts between their copied code
snippets and Stack Overflow’s CC BY-SA 3.0.

Open Comments: We also invited the participants to
give a free-form comment regarding their concerns about
answering Stack Overflow with code snippets. Besides the
one we present earlier in the introduction, these are interest-
ing comments we received.

1) “When I copy code it’s usually short enough to be
considered "fair use" but I am not a lawyer or copyright
expert so some guidance from Stack Overflow would be
helpful. I’d also like the ability to flag/review questions
that violate these guidelines.”

2) “My only concern, albeit minor, is that I know people
blindly copy my code without even understanding what
the code does.”

3) “The main problem for me/us is outdated code, esp. as old
answers have high google rank so that is what people see
first, then try and fail. Thats why we’re moving more and
more of those examples to knowledge base and docs and
rather link to those.”

4) “Lot of the answers are from hobbyist so the quality is
poor. Usually they are hacks or workarounds (even MY
best answer on Stack Overflow is a workaround).”

The comments highlight that Stack Overflow users are
unsure about the legal implications of copying code, that
code is copied without understanding it, and that the quality
of code on Stack Overflow is often low.

3.1.2 The Visitor Survey

We received answers from 89 participants. Two participants
never copy code from Stack Overflow, so we analysed the
answers of the remaining 87 participants. We only present a
summary of the survey answers in this paper, and the full
analysis is available as a research note [56].

General Information: Twenty-four (27%) and twenty-
one (24%) participants have over 10 years and 5–10 years
of experience respectively. There are 19 participants (21%)
who have 3–5 years, 18 (20%) who have 1-2 years, and 7
(8%) participants who have less than a year of programming
experience.

The Choice for programming solutions: Stack Over-
flow is ranked higher than official documentation, online
repositories, and books as the resource to look for program-
ming solutions. Developers rely on Stack Overflow answers
because they are easy to search for on the web. Moreover,
64% of the participants reuse code snippets from Stack
Overflow at least once a week. They copy code from Stack
Overflow because they can be found easily from a search
engine, solve similar problems to their problems, provide
helpful context, and offer voting mechanism and accepted
answers.

RQ 1.2 How often do Stack Overflow visitors experience the
outdated code and licensing conflicts when they reuse code in an
answer from Stack Overflow?

The survey results show that 57 out of 87 Stack Overflow
visitors encountered a problem from reusing Stack Overflow
code snippets. Ten participants experienced problems for

Table 12: Problems from Stack Overflow code snippets

Problem Amount

Mismatched solutions 40
Outdated solutions 39
Incorrect solutions 28
Buggy code 1

Table 13: Frequency of reporting the problems to Stack
Overflow posts

Report? Amount Percent

Very Frequently (81–100% of the time) 1 1.8%
Frequently (61–80% of the time) 1 1.8%
Occasionally (41–60% of problematic snippets) 3 5.3%
Rarely (21–40% of problematic snippets) 8 14.0%
Very rarely (1–20% of problematic snippets) 8 14.0%
Never (0% of problematic snippets) 36 63.2%

Total 57 100%

more than 80% of the copied snippets, and sixteen par-
ticipants faced problems for 40–60% of the reused code.
As shown in Table 12, the problems ranked by frequency
include mismatched solutions (40), outdated solutions (39),
incorrect solutions (28), and buggy code (1). Sixty-three
percent of the participants never report the problems back
to Stack Overflow (Table 13). The ways of reporting the
problems (22 answers) included down-voting the answer
containing the problematic code snippet (8), writing a com-
ment saying that the code has problems (10), contacting the
answerers regarding the problems directly (2), and posting
a better snippet as new answer on same topic (2).

In addition, 74 out of the 87 (85%) participants are not
aware of Stack Overflow CC BY-SA 3.0 license, and 62%
never give attributions to the Stack Overflow posts they
copied the code snippets from. As shown in Table 14, we
found that 66% of the visitors never check for software
licensing conflicts between Stack Overflow code snippets
and their projects. Interestingly, 9% of the participants en-
countered legal issues. Due to the anonymity of the survey,
we could not investigate further regarding the legal issues
that the participants faced from using Stack Overflow code
snippets. To the best of our knowledge, a study of legal
problems from reusing Stack Overflow code snippets has
never been done before and will be our future work.

To answer RQ 1.2, Stack Overflow visitors experienced
several issues from Stack Overflow answers including
outdated code. 85% of them are not aware of CC BY-SA 3.0

Table 14: Check for licensing conflicts before using Stack
Overflow snippets

License check? Amount Percent

Very frequently (81–100% of the time) 0 0.0%
Frequently (61–80% of the time) 7 8.1%
Occasionally (41–60% of the time) 6 6.9%
Rarely (21–40% of the time) 6 6.9%
Very rarely (1–20% of the time) 11 12.6%
Never (0% of the time) 57 65.5%

Total 87 100%

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2900307, IEEE

Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH 2018 12

Table 15: Investigated online clone pairs and corresponding
snippets and Qualitas projects

Set Pairs Snippets Projects Cloned ratio

Reported clones 2,289 460 59 53.28%

TP from manual
validation

2,063 443 59 54.09%

license enforced by Stack Overflow and 66% never check
for license conflicts when reusing code snippets.

3.2 RQ2: Online Code Clones

To what extent is source code cloned between Stack Overflow and
open source projects?

The statistics on clones obtained from the merged clone
data set are presented in Table 15. Simian and SourcererCC
reported clones in 460 snippets, approximately 0.6% of the
72,365 Stack Overflow snippets, associated with 59 Qualitas
projects. For the cloned Stack Overflow snippets, the aver-
age ratio of cloned code is 53.28% (i.e., the number of cloned
lines of the cloned Stack Overflow snippet).

Lastly, during the manual investigation of 2,289 clone
pairs, we identified 226 pairs as not clones (NC), i.e., false
positives. After removing them, the set still contains 2,063
true positive clone pairs between 443 Stack Overflow snip-
pets and 59 Qualitas projects. The average cloned ratio for
the true positive clone pairs is 54.09%.

To answer RQ2, we found 2,063 manually confirmed clone
pairs between 443 Stack Overflow code snippets and 59
Qualitas proejcts.

3.3 RQ3: Patterns of Online Code Cloning

How do online code clones occur?

We performed a manual classification of the 2,289
merged clone pairs by following the classification process
in Figure 5. The classification results are shown in Table 16
and explained in the following.

QS: Qualitas → Stack Overflow. We found 247 online
clone pairs with evidence of cloning from Qualitas projects
to Stack Overflow. However, we observed that, in some
cases, a cloned code snippet on Stack Overflow matched
with more than one code snippet in Qualitas projects be-
cause of code cloning inside Qualitas projects themselves.
To avoid double counting of such online clones, we consoli-
dated multiple clone pairs having the same Stack Overflow
snippet, starting line, and ending line into a single clone
pair. We finally obtained 153 QS pairs (Table 16) having
unique Stack Overflow code snippets and associated with 23
Qualitas projects listed in Table 17. The most cloned project
is hibernate with 23 clone pairs, followed by eclipse (21
pairs), jung2 (19 pairs), spring (17 pairs), and jfreechart (13
pairs). The clones are used as examples and are very similar
to their original Qualitas code with limited modifications.
Most of them have a statement in the Stack Overflow post

Figure 7: Age of QS online code clones.

saying that the code is “copied,” “borrowed” or “modified”
from a specific file or class in a Qualitas project. For exam-
ple, according to the motivating example in Figure 1, we
found evidence in the Stack Overflow Post 22315734 saying
that “Actually, you can learn how to compare in Hadoop from
WritableComparator. Here is an example that borrows some ideas
from it.”

We analysed the time it took for the clone to appear from
Qualitas projects to Stack Overflow. The clone ages were
calculated by counting the number of months between the
date of each Qualitas project and the date the answer was
posted on Stack Overflow as shown in Figure 7. We found
that, on average, it took the clones around 2 years since they
appeared in Qualitas projects to appear on Stack Overflow
answers. Some of the clones appeared on Stack Overflow
almost at the same time as the original, while the oldest
clones took around 5 years.

SQ: Stack Overflow → Qualitas. We found one pair
with evidence of cloning from Stack Overflow post ID
698283 to POIUtils.java in jstock project. The user who
asked the question on Stack Overflow is an author of jstock.
The question is about determining the right method to call
among 7 overloading methods of setCellValue during
runtime. We could not find evidence of copying or attri-
bution to Stack Overflow in jstock. However, considering
that the 25 lines of code of findMethodToInvoke method
depicted in Figure 8 in Stack Overflow is very similar to
the code in jstock including comments, it is almost certain
that the two code snippets form a clone pair. In addition,
the Stack Overflow answer was posted on March 30, 2009,
while the code in POIUtils class in jstock was committed
to GitHub on the next day of March 31, 2009.

This very low number of SQ clone pair is very likely
due to the age of the Qualitas corpus as another study [3]
showed the presence of clones from Stack Overflow in
newer open source data sets. This is expected and comes
from our experimental design since we are more interested
in cloning from Qualitas to Stack Overflow.

EX: External Sources. We found 197 clone pairs from
external sources to Stack Overflow. After consolidating
duplicated SO snippets due to multiple intra-clone instances
in Qualitas, we obtained 109 EX pairs. We found evidence of
copying from an external source to both Stack Overflow and
Qualitas in 49 pairs. Each of the pairs contains statement(s)
pointing to the original external location of the cloned code
in Qualitas and Stack Overflow. Besides, we found evidence
of copying from an external source to Stack Overflow,
but not in Qualitas, in 60 pairs. Our analysis shows that
the external sources fall into six groups as displayed
in Figure 9. There are 63 EX online clone pairs copied

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2900307, IEEE

Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH 2018 13

Table 16: Classifications of online clone pairs.

Set QS SQ EX UD BP IN NC Total

Before consolidation 247 1 197 107 1,495 16 226 2,289
After consolidation 153 1 109 65 216 9 53 606

Table 17: Qualitas projects associated with QS and UD
online clone pairs

QS UD

Project Pairs Project Pairs

hibernate 23 netbeans 11
eclipse 21 eclipse 8
jung2 19 jstock 5
spring 17 compiere 5
jfreechart 13 ireport 4
hadoop 10 jmeter 4
tomcat 8 jung2 3
log4j 8 jhotdraw 3
struts2 5 c-jdbc 3
weka 4 log4j 3
lucene 4 wct 2
poi 3 hibernate 2
junit 3 tomcat 2
jstock 2 spring 1
jgraph 2 rssowl 1
jboss 2 mvnforum 1
jasperreports 2 jfreechart 1
compiere 2 jboss 1
jgrapht 1 hadoop 1
itext 1 geotools 1
c-jdbc 1 freemind 1
ant 1 findbugs 1
antlr4 1 cayenne 1

private Method findMethodToInvoke(Object test) {

Method method = parameterTypeMap.get(test.getClass());

if (method != null) {

return method;

}

// Look for superclasses

Class<?> x = test.getClass().getSuperclass();

while (x != null && x != Object.class) {

method = parameterTypeMap.get(x);

if (method != null) {

return method;

}

x = x.getSuperclass();

}

// Look for interfaces

for (Class<?> i : test.getClass().getInterfaces()) {

method = parameterTypeMap.get(i);

if (method != null) {

return method;

}

}

return null;

}

Figure 8: The findMethodToInvoke that is found to be
copied from Stack Overflow post 698283 to POIUtils class
in jstock.

JD
K

W
eb

O
SS

O
ffi
ci
al
 d

oc
s

Boo
k

C
om

pa
ny

0

10

20

30

40

50

60

70

C
lo

n
e

 p
a

ir
s

Figure 9: Original sources of EX clone pairs

from source code of Java SDK (e.g., java.util, javax.swing,
javax.servlet), 18 pairs from websites, 14 pairs from open
source systems not in Qualitas (e.g., Mozilla Rhino), 10 pairs
from Java official documentation by Sun Microsystems or
Oracle, 3 pairs from books, and 1 pair from a company
project. For example, Stack Overflow Post 9549009
contains a code comment saying “Copied shamelessly from
org.bouncycastle.crypto.generators.PKCS5S2ParametersGenerator”
which is an open source project not included in the Qualitas
corpus. Post 92962 includes a VerticalLabelUI class
with a license statement showing that it is developed by a
private company called Sapient. Post 12879764 has a text
saying “Code modified and cleaned from the original at Filthy
Rich Clients.” which is a book for developing animated and
graphical effects for desktop Java applications. Another
example is a copy of the code from a website in post
15260207. The text surrounding source code reads “I
basically stole this from the web and modified it slightly... You
can see the original post here (http://www.java2s.com/Code/Java/
Swing-JFC/DragListDemo.htm).”. Interestingly, the code is
actually a copy from Sun Microsystems.

These findings complement a study of clones between
software projects [71]. We found that cloning can also
happen among different sources on the Internet just like
software projects. There are 18 clone pairs that originated
from programming websites including www.java2s.com
and exampledepot.com. Moreover, there is one snippet
which comes from a research website. We found that a snip-
pet to generate graphical Perlin noise is copied from NYU
Media Research Lab (http://mrl.nyu.edu/~perlin/noise/)
website and is used in both Stack Overflow answer and the
aoi project with attribution.

UD: Unknown Direction. We found 107 online clone
pairs, reduced to 65 pairs after consolidating the clones,
with no evidence of cloning between Qualitas and Stack
Overflow but with a high code similarity that suggests
cloning. The most cloned project is netbeans with 11 clone

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2900307, IEEE

Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH 2018 14

pairs. Most of the clones are a large chunk of code handling
GUI components. Although these GUI clones might be auto-
generated by IDEs, we did not find any evidence. The
second most cloned project is eclipse (8 pairs), followed by
jstock (5 pairs), a free stock market software, and compiere,
a customer relationship management (CRM) system.

BP: Boiler-Plate. There were a large amount of boiler-
plate clone pairs found in this study. We observed 1,495 such
clone pairs and 216 after consolidation. The BP clone pairs
account for 65% of all clone pairs we classified. The majority
of them are equals() methods.

IN: Inheritance/interface. There were 16 clone pairs, 9
pairs after consolidation, found to be similar because they
implement the same interface or inherit from the same
class. An example is the two implementations of a custom
data type which implements UserType. They share similar
@Override methods of deepCopy, isMutable, assemble,
disassemble, and replace.

NC: Not Clones. There were 226 non-clone pairs, 53
after consolidation. Mainly, they are false positive clones
caused by code normalisation and false type-3 clones from
SourcererCC. Examples of the NC clone instances include
finally or try-catch clauses that were accidentally the
same due to their tiny sizes, and similar switch-case

statements.

To answer RQ3, we found 153 pairs with strong evidences
to be cloned from 23 Qualitas projects to Stack Overflow,
1 pair was cloned from Stack Overflow to Qualitas, and
109 pairs were found to be cloned to Stack Overflow from
external sources. However, the largest amount of the clone
pairs between Stack Overflow and Qualitas projects are
boiler-plate code (216), followed by 65 clone pairs with
no evidence that the code has actually been copied, and 9
pairs of clones due to implementing the same interface or
inheriting the same class.

3.4 RQ4: Outdated Online Code Clones

Are online code clones up-to-date compared to their counterparts
in the original projects?

We discovered 100 outdated online clone pairs out of
153 pairs. As shown in Figure 10, hibernate has the highest
number of 19 outdated pairs, followed by 14 from spring,
13 from eclipse, and 9 from hadoop. Besides the two
examples of outdated code in WritableComparator and
StringUtils class from hadoop shown in Figure 1 and
Figure 2, we also found a few outdated code elements which
contained a large number of modifications. For example, the
code snippet in Stack Overflow post 23520731 is a copy
of SchemaUpdate.java in hibernate. The code has been
heavily modified on February 5, 2016.

We analysed code modifications which made Stack
Overflow code outdated by going through commits
and git blame information. The six code modification
types found in the 100 outdated online clone pairs are
summarised in Table 18. They include statement addition,
statement modification, statement removal, method
rewriting, API change (changing in method signature),
and file deletion. We occasionally found multiple code

Table 18: Six code modification types found when compar-
ing the outdated clone pairs to their latest versions

Modification Occurrences

Statement modification 50
Statement addition 28
Statement removal 18
Method signature change 16
Method rewriting 15
File deletion 14

modifications applied to one clone pair at the same
time but at a different location. The most often code
change found is statement modification (50 occurrences),
followed by statement addition (28 occurrences), statement
removal (18 occurrences), change of method signature,
i.e., API change (16 occurrences), and method rewriting
(15 occurrences). Moreover, in the 100 outdated pairs,
we found 14 “dead” snippets. These snippets cannot
be located in the latest version of the projects. For
example, the snippet in Stack Overflow post 3758110, a
copy of DefaultAnnotationHandlerMapping.java

in spring, was deleted in the commit
02a4473c62d8240837bec297f0a1f3cb67ef8a7b on
January 20, 2012, two years after it was posted.

Moreover, using the information in git commit messages,
we can associate each change to its respective issues in an
issue tracking system, such as Bugzilla or Jira. We found
that in 58 cases, the cloned code snippets on Stack Overflow
were changed because of a request in the issue tracking
system. Since issue tracking systems are also used, besides
bug reports, for feature request and feature enhancements,
having an issue tracking ID can reflect that most of the
changes are important and not only a superficial fix such as
code formatting. The intent behind the changes are grouped
into six categories as shown in Table 20. Enhancement is the
majority intent accounting for 65 of the 100 outdated code
(65%). Next is code deprecation (15%), which represents the
code snippets that are outdated due to the use of deprecated
functions or APIs. The code snippets that we analysed con-
tained a few deprecated code statements while the newest
version (based on the time we did the analysis) of the same
code snippets no longer contain the deprecated part. There
were 10 outdated code snippets (10%) caused by bug fixing.
They contained buggy code statements, and were later fixed
in the newest version. The rest of the changes are because
of code refactoring (6%), changing coding style (3%), and
the data format change (2%). Not all outdated code is toxic.
However, the 10 buggy and outdated code snippets we
found are toxic and are harmful to reuse.

Table 19 shows examples of the outdated online clones
on Stack Overflow. The table displays information about
the clones from both Stack Overflow and Qualitas side in-
cluding the dates. We summarise the changes that make the
clones outdated into three types, modified/added/deleted
statements (S), file deletion (D), and method rewriting (R),
along with the issue tracking number and the date of the
change. The complete set of 100 outdated online clones can
be found on the study website.

We performed a detailed investigation of the 100 out-
dated answers on Stack Overflow, on May 6, 2018, ap-

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2900307, IEEE

Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH 2018 15

hibe
rnat

e
spri

ng
ecli

pse
had

oopjung
2

jfree
cha

rt
tom

cat
stru

ts2 log4
j
jsto

ck juni
t poi

luce
ne

jasp
erre

port
s
jbos

s
jgra

ph
jgra

pht ant
1
4
7

10
13
16
19

Pa
irs

Figure 10: Outdated QS online clone pairs group by projects

Table 19: Examples of the outdated QS online clones

Stack Overflow Qualitas Changes

Post Date Project Ver. File Start End Date Issue ID Type∗ Date

2513183 25-Mar-10 eclipse 4.3 GenerateToStringAction.java 113 166 5-Jun-13 Bug 439874 S 17-Mar-15
22315734 11-Mar-14 hadoop 1.0.0 WritableComparator.java 44 54 25-Aug-11 HADOOP-11323 S 20-Nov-14
23520731 7-May-14 hibernate 4.2.2 SchemaUpdate.java 115 168 22-May-13 HHH-10458 S 5-Feb-16
18232672 14-Aug-13 log4j 1.2.16 SMTPAppender.java 207 228 31-Mar-10 Bug 44644 R 18-Oct-08
17697173 17-Jul-13 lucene 4.3.0 SlowSynonymFilterFactory.java 38 52 6-Apr-13 LUCENE-4095 D 31-May-12
21734562 12-Feb-14 tomcat 7.0.2 FormAuthenticator.java 51 61 4-Aug-10 BZ 59823 R 4-Aug-16
12593810 26-Sep-12 poi 3.6 WorkbookFactory.java 49 60 7-Dec-09 57593 R 30-Apr-15
8037824 7-Nov-11 jasperreports 3.7.4 JRVerifier.java 1221 1240 31-May-10 N/A D 20-May-11
3758110 21-Sep-10 spring 3.0.5 DefaultAnnotation

HandlerMapping.java
78 92 20-Oct-10 SPR-14129 D 20-Jan-12

14019840 24-Dec-12 struts 2.2.1 DefaultActionMapper.java 273 288 17-Jul-10 WW-4225 S 18-Oct-13

* S: modified/added/deleted statements, D: file has been deleted, R: method has been rewritten completely

Table 20: Intents of code changes in the 100 outdated code
snippets

Intent Detail Amount

Enhancement Add or update existing features 64
Deprecation Delete dead/deprecated code 15
Bug Fix bugs 10
Refactoring Refactor code for better design 6
Coding style Update to a new style guideline 3
Data change Changes in the data format 2

proximately two years after the snapshot we analysed was
created to look for any changes, warnings, or mitigations
made to the outdated code snippets. We investigated the
answers on three aspects: newer answers, higher-voted an-
swers, and comments on the outdated answers.13 We found
34 posts which contained newer answers and 5 posts which
contained answers with a higher number of votes than the
outdated answers. However, 99 of the 100 outdated answers
were still marked as accepted answers. For the comments,
we check if there is any comment to mitigate or point out
the toxicity of the outdated code snippets. We found that,
out of 100 answers, 6 answers had a comment saying the
code in the answer is outdated or containing issues, such as
“spring 3.1 stuff”, “...tried this but having connect exception –

13. We also found that the Stack Overflow question ID 22262310,
which has an outdated answer from WritableComparator.java

(Figure 1), has a negative score of -1. It is interesting to see if the
negative score for the question impacts both the number of views and
the trust that people place in the answer to a down-voted question.
However, it is out of the scope of this study so we leave it as future
work.

Clones Amount

Found in Qualitas GitHub repos 13

Found in other project repos
Exact copy (outdated) 47
Non-exact copy 32

Total 102

Table 21: Clones of the 100 Stack Overflow outdated code
snippets in 131,703 GitHub projects

javax.mail.MessagingException: Could not connect to
SMTP host: smtp.gmail.com, port: 465”, “You should add a
buffer.reset(null, 0, 0); at the end of the try block to
avoid excess heap usage (issue no. HADOOP-11323)” or “.. I do
not have experience with new versions of hibernate for a long time.
But previously without clean you could receive some unexpected
results. So I suggest to try different approaches or even check latest
documentation”. The 6 outdated code snippets were still not
fixed, but the comments themselves may help to warn some
of the Stack Overflow users.

Then, we performed code clone detection between the
100 outdated code snippets and 130,719 GitHub projects.
We found 102 cloned candidates, which were associated
with 30 outdated code snippets, appearing in 68 GitHub
projects and manually investigated all of them. Out of the
102 cloned snippets, 13 cloned snippets matched with them-
selves because some of the Qualitas projects also appear on
GitHub. For other projects besides the Qualitas projects, 32
cloned snippets were not exactly the same (e.g., they con-
tained additional code modifications made by the projects’

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2900307, IEEE

Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH 2018 16

developers, or they were copied from another source with a
slightly different code). 47 cloned snippets were the same
as the outdated code snippets, which of 12 were buggy.
Two cloned snippets gave attributions to Stack Overflow.
The attributions pointed to different posts than the ones we
found but containing the same code in the answers14. 32
cloned snippets were very likely to be a file-level clone from
its respective original project (e.g., JFreeChart, JUnit, Log4J,
Hadoop) based on their license header and the Javadoc
comments. 13 cloned snippets did not have any hints or
evidence of copying.

Interestingly, we discovered that the buggy version of
the humanReadableInt() method from Hadoop appeared
in two popular Java projects: deeplearning4j (8,830 stars and
4,223 forks) and Apache Hive (1,854 stars and 1,946 forks).
Due to the lack of evidence, we could not conclude how
this method, which is the same as the toxic code snippet
we found on Stack Overflow, appears in the two projects. It
is possible that the developers retrieved them from Stack
Overflow, other websites, or from Hadoop code base di-
rectly. Nevertheless, we reported them to the developers of
the two projects regarding the issue. We created a bug report
for each project (deeplearning4j #469415 and HIVE-1892916)
and communicated with the developers of the projects by
describing the problem of race condition in the outdated
version of the humanReadableInt() method and pro-
posed a fix by using the newest version of the method
in Hadoop. The issue has been fixed in both projects. The
developers of deeplearning4j agreed that the method was
problematic and decided to implement their own fix due to
a concern of a potential software licensing conflict caused
by copying the fix directly from the Hadoop code base. The
developers of Apache Hive found that the method was not
used anywhere in the project, so they decided to delete it.

Although we did not find strong evidence of the out-
dated code snippets in GitHub projects, it would still be
useful if Stack Overflow implements a flagging of outdated
answers. The outdated online code clones cause problems
ranging from uncompilable code (due to modifications and
different API usage in the outdated code) to the introduction
of vulnerabilities to the software [80]. An outdated code
with a subtle change (e.g., Figure 1) may be copied and
reused without awareness from developers. Moreover, an
outdated code with a defect (e.g., a race condition problem
in Figure 2) is clearly harmful to be reused. Although
Stack Overflow has a voting mechanism that may mitigate
this issue, the accepted answer may still be used by naive
developers who copy and reuse the outdated code.

For RQ4, our results show that 66% (101) of QS clone
pairs on Stack Overflow are outdated. 86 pairs differ from
their newest versions by modifications applied to variable
names or method names, added or deleted statements,
to a fully rewritten code with new method signatures.
14 pairs are dead snippets. 47 outdated code snippets

14. The answers were not marked as accepted so they were not
included in our experiment.

15. deeplearning4j bug report: https://github.com/deeplearning4j/
deeplearning4j/issues/4692

16. Apache Hive bug report: https://issues.apache.org/jira/
browse/HIVE-18929

Table 22: License mapping of online clones (file-level)

Type Qualitas Stack Overflow
(CC BY-NC-SA)

QS EX UD

Compatible Apache-2 Apache-2 1
EPLv1 EPLv1 2 1
Proprietary Proprietary 2
Sun Microsystems Sun Microsystems 3
No license No license 20 9 2
No license CC BY-SA 3.0 1

Total 23 15 3

Incompat. AGPLv3/3+ No license 1 4
Apache-2 No license 46 14 12
BSD/BSD3 No license 4 1
CDDL or GPLv2 No license 6
EPLv1 No license 10 6
GPLv2+/3+ No license 8 48 7
LesserGPLv2.1+/3+ No license 16 9
MPLv1.1 No license 1
Oracle No license 3
Proprietary No license 1 2
Sun Microsystems No license 1 2
Unknown No license 11
LesserGPLv2.1+ New BSD3 1

Total 86 78 50

are found in 130,719 GitHub projects without evidence of
copying, which of 12 were buggy. A toxic code snippet
with a race condition was found in two popular projects:
deeplearning4j and Apache Hive.

3.5 RQ5: Software Licensing Violations

Do licensing conflicts occur between Stack Overflow clones and
their originals?

In our study, we reveal another type of toxic code
snippets which is software licensing issues caused by code
cloning to Stack Overflow. We found evidence that 153
pieces of code have been copied from Qualitas projects to
Stack Overflow as examples. Another 109 pieces of code are
cloned from external sources. Their status of accepted an-
swers increases their chances of being reused. Even though
most of the Qualitas projects came with a software li-
cense, we found that the license information was frequently
missing after the code was copied to Stack Overflow. The
licensing terms on top of source code files are not copied
because usually only a small part of the file was cloned.
In overall, we can see that most of the Stack Overflow
snippets do not contain licensing terms while their clone
counterparts in Qualitas projects and external sources do.
Since licensing statement resides on top of a file, the results
here are analysed at a file level, not clone fragment, and
clone pairs from the same file are merged. The summary of
licensing information is listed in Table 22.

Compatible license: There are 41 pairs which have
compatible licenses such as Apache license v.2; Eclipse Public
License v.1 (EPLv1); or a pair of Creative Common Attribution-
NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
vs. no license. These clones are safe for being reused. Since
source code and text on Stack Overflow are protected by
CC BY-NC-SA 3.0, we can treat the Stack Overflow code
snippets without licensing information as having CC BY-
NC-SA 3.0 by default. The CC BY-NC-SA 3.0 license is
relaxed, and it only requests an attribution when reused.

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2900307, IEEE

Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH 2018 17

No. of stars
Qualitas Other Projects

Projects Pairs Projects Pairs Same license

29,540–10 8 71 406 1,837 193
9–5 0 0 275 739 110
4–1 2 24 1,746 4,536 692

Total 10 95 2,427 7,112 995

Table 23: Clones of the 214 Stack Overflow missing-license
code snippets in 130,719 GitHub projects

Incompatible license: there are 214 clone pairs which
do not contain licensing information after they are posted
on Stack Overflow or contain a different license from their
Qualitas clone counterparts. Almost all (85) of QS clone
pairs have their licensing terms removed or changed when
posted on Stack Overflow. One QS clone pair posted by a
JFreeChart developer changed its license from Lesser GPL
v2.1+ to New BSD 3-clause. The developer may intention-
ally changed the license to be more suitable to Stack Over-
flow since New BSD 3-clause license allows reuse without
requiring the same license in the distributing software or
statement of changes.

For EX clone pairs, we searched for licensing terms of
the original source code from the external sources. We found
that 78 out of 93 EX clone pairs have incompatible licenses.
Similarly, the license statement was removed from Stack
Overflow snippets.

Of 53 UD clone pairs, 50 pairs have incompatible li-
censes. Again, most clones in Qualitas contain a license
while the Stack Overflow snippets do not.

The same GitHub study has been done for license-
incompatible code snippets. We detected clones between
the 214 code snippets with their original license missing (86
QS, 78 EX, and 50 UD) and 130,719 GitHub projects using
SourcererCC with 80% similarity threshold. Opposite to the
outdated clones, we discovered a large number of 7,207
clone pairs. There were 95 pairs from 10 Qualitas projects
hosted on GitHub and 7,112 pairs from 2,427 other projects.
As shown in Table 23, the clones were found in highly-
starred projects (29,465 stars) to lowly-starred star projects
(1 star). We found 12 code snippets with attributions to
Stack Overflow questions/answers and 6 of them refer to
one of our QS or EX clone pairs. We used the Ninka tool to
identify software licenses of the 7,112 cloned code snippets
automatically. Five code snippets did not have a license
while the originals had the Apache-2, GPLv2, or EPLv1
license. One snippet had the AGPLv3 license while the
original had the Apache-2 license. Only 995 code snippets
in GitHub projects have the same license as the originals in
Qualitas.

Note that the code snippets could potentially violate the
license, but do not necessarily do so. In the example where
the JFreeChart developer copied his own code, she or he
was free to change the license. The same may have occurred
with any of the 214 code snippets.

For RQ5, we found 214 code snippets on Stack Overflow
that could potentially violate the license of their original
software. The majority of them do not contain licensing
statements after they have been copied to Stack Overflow.

For 164 of them, we were able to identify, with evidence,
where the code snippet has been copied from. We found
occurrences of 7,112 clones of the 214 license-incompatible
code snippets in 2,427 GitHub projects.

3.6 Overall Discussion

This study empirically shows from the surveys and the
clone detection experiment that online code clones occur
on Stack Overflow and the clones may become toxic due
to outdated code and software license incompatibility. The
findings lead to the insight about the toxicity of online
code clones, and we proposed three actionable items to
the software engineering research and the Stack Overflow
community.

3.6.1 Toxicity of outdated and license-incompatible clones

The insights from our study of toxic code snippets on Stack
Overflow are as follows:

Outdated clones are not harmful: We found only a small
number of toxic outdated code snippets in open source
projects on GitHub. Besides 12 buggy and outdated code
snippets found in 12 projects, the rest were non-harmful
clones of the outdated code. Although other studies show
that Stack Overflow code snippets may become toxic by con-
taining security vulnerabilities [2], [20] or API misuse [83],
we found in this study that the damage caused by outdated
code on Stack Overflow is not high.

License-incompatible clones can be harmful: The miss-
ing licensing statements of online code clones on Stack
Overflow can cause more damage than outdated code. As
shown in our study and also in the study by An et al. [3],
some online clones on Stack Overflow are initially licensed
under more restrictive license than Stack Overflow’s CC BY-
SA 3.0. If these missing-license online clones are reused in
software with an incompatible license, the software owner
may face legal issues. Software auditing services such as
Black Duck Software17 or nexB18, which can effectively
check for license compliance of code copied from open
source projects, do not check for the original license of the
cloned code snippets on Stack Overflow. Although the Stack
Overflow answerers who participated in our survey believe
that most of the code snippets on Stack Overflow are too
small to claim for copyright and they fall under fair-use,
there is still a risk due to different legal systems in each
country. For example, Germany’s legal system does not have
a concept of fair use. Besides, the number of minimum lines
of code to be considered copying, i.e., de minimis, is also
differently interpreted from case to case or from country to
country.

3.6.2 Actionable Items

Our study discovers links from code in open source projects
to code snippets on Stack Overflow using clone detection
techniques. These links enable us to discover toxic code
snippets with outdated code or licensing problems. The
links can be exploited further to mitigate the problems of
reusing outdated online clones and incompatible license on

17. https://www.blackducksoftware.com
18. https://www.nexb.com

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2900307, IEEE

Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH 2018 18

Stack Overflow code snippets. We propose the following
actionable items:

Automated cloning direction detection: As shown in
this study, we still relied on manual validation to read the
post, understand the context, and use multiple hints based
on human judgement (e.g., comments in the code, natural
text in the question and answers, date/time of the posts) to
conclude that the code snippets are actually copied from
Qualitas or external sources to Stack Overflow. This is a
burdensome and time-consuming process. We call for more
research in automation of code cloning direction detection.
From our experience in this paper, we found that code
comments and accompanied natural text on Stack Overflow
were a great source of information to decide the direc-
tion of code copying. Thus, by using code clone detection
to locate clone candidates and then applying information
retrieval techniques, e.g., cosine similarity with tf-idf, we
can rank the clone candidates based on the similarity of
their project names (or classes) to the text in comments
or natural text surrounding the clones in Stack Overflow
posts. For example, the Stack Overflow answer containing
the text “Actually, you can learn how to compare in Hadoop
from WritableComparator. Here is an example that borrows
some ideas from it.” must be ranked very high among the list
of clone candidates of a code snippet from Hadoop since
it contains two terms of the project name (Hadoop) and a
class name (WritableComparator) in it. This technique will
dramatically reduce the manual validation effort to establish
the direction of cloning. The technique can also be used on
Stack Overflow to flag that an answer has a high chance of
copying from open source projects.

Preventive measure: We encourage Stack Overflow to
enforce attribution when source code snippets have been
copied from licensed software projects to Stack Overflow.
Moreover, an IDE plug-in that can automatically detect
pasted source code and follow the link to Stack Overflow
and then to the original open source projects could also
prevent the issue of license violation. We foresee the imple-
mentation of the IDE plugin using a combination of scalable
code clone detection [64] or clone search techniques [34]
and automated software licensing detection [23]. In this
study, we performed the check using a set of code clone
detectors (Simian and SourcererCC) and software licensing
detector (Ninka), but we had to operate the tools manually.
Using the knowledge obtained from this study, we plan to
build an automated and scalable clone search with licensing
detection. With the proposed solution, we can use the tool
to create a database of code snippets on Stack Overflow
and allow the users to search for clones and check their
licenses. The clone search tool can offer a service via REST
API and integrated into the IDE plugin. Every time a new
code fragment is pasted into the IDE, the plugin performs
the check by calling the clone search tool service and report
the finding to the developers in real time.

Also, we also performed a study of two open source
software auditing platforms/services: BlackDuck Software
and nexB. For BlackDuck Software, we found from their
report [17] that while they check for code copied from
open source projects including GitHub and Stack Overflow
and analyse their license compatibility with their customer
software, the BlackDuck auditing system will treat the code

snippets on Stack Overflow as having an “unknown” license
because it does not know the original license of Stack
Overflow code snippets. For nexB, their product does not
mention checking of reused source code from Stack Over-
flow. So, our proposed service, which can offer more precise
licensing information of Stack Overflow code snippets, will
be useful as an add-on license check for code copying from
Stack Overflow.

Detective measure: A system to detect outdated source
code snippets on Stack Overflow may be needed. The sys-
tem can leverage the online clone detection techniques in
this study to periodically check if the cloned snippets are
still up-to-date with their originals.

While checking if the copied code snippets on Stack
Overflow are still up-to-date with the latest version of
their originals can possibly be done automatically, it is a
challenging task to automate the process of establishing
the direction of code cloning as previously discussed. Since
automatically establishing code cloning direction is still an
open challenge, one viable solution, for now, is encouraging
the Stack Overflow developers to always include the origin
of the copied code snippet in the post so that this link is
always established at the posting time. Even better, Stack
Overflow can provide an optional form to fill in when an
answerer post an answer if he or she copies the code from
other software projects. The form should include the origin
of the code snippet (possibly as a GitHub URL) and its
original license. Using this manually established links at
posting time, we can then automate the process of checking
for an outdated code.

With such a system, the poster can be notified when the
code has been updated in the original project so that he/she
can update their code on Stack Overflow accordingly. On
the other hand, with a crowdsourcing solution using an IDE
plug-in, developers can also report the corrected version of
outdated code back to the original Stack Overflow threads
when they reuse outdated code and make corrections to
them.

4 THREATS TO VALIDITY

Internal validity:
We applied different mechanisms to ensure the validity

of the clone pairs we classified. First, we used two widely-
used clone detection tools, Simian and SourcererCC. We
tried five other clone detectors but could not add them to
the study due to their scalability issues and susceptibility to
incomplete code snippets. We adopted Bellon’s agreement
metric [8] to merge clone pairs for the manual classifica-
tion and avoid double counting of the same clone pairs.
We studied the impact of choosing different thresholds for
Bellon’s clone agreement and the minimum clone size of the
two clone detectors and selected the optimal values. Nev-
ertheless, our study might still suffer from false negatives,
i.e., online code clones that are not reported by the tools or
are filtered out by the size (less than 10 lines) within the
clone detection process. We selected accepted answers on
Stack Overflow in this study to focus on code snippets that
solve the question’s problem and are often shown on top of
the answer list. We investigated the 72,365 Stack Overflow
code snippets used in our study and found that 62,245 of

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2900307, IEEE

Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH 2018 19

them (86%) are also the highest voted answers. We plan to
incorporate the highest voted answers in future work. We
analysed the Stack Overflow data snapshot of January 2016.
The findings may differ from using the newer snapshots.
However, we do not expect large differences of the findings
if we update the data set. The reason is that the Stack
Overflow answers are rarely modified. Moreover, updating
the dataset would eliminate the possibility to study the
evolution of outdated answers.

Our seven patterns of online code cloning may not cover
all possible online cloning patterns. However, instead of
defining the patterns beforehand, we resorted to extracting
them from the data sets. We derived them from a manual
investigation of 679 online clone pairs and adopted one
pattern from the study by Kapser et al. [31].

The 2,289 clone pairs classified by the first and the third
author are subject to manual judgement and human errors.
Although we tried our best to be careful on searching for ev-
idence and classifying the clones, some errors may still exist.
We mitigated this problem by having two investigators to
cross check the classifications and found 145 cases that lead
to better classification results. This validation process can be
even improved by employing an external investigator.

The detailed investigation of the 100 outdated answers
on Stack Overflow may not fully capture what Stack Over-
flow visitors actually do when they already expect an
outdated answer. Our investigation tries to at least shade
light on this by comparing the popularity of the outdated
answer and the newer answers based on the number of
votes. Nonetheless, this may be affected by the duration that
the answers appear on a Stack Overflow post. The newer
answers have less visibility compared to the older answers.

External validity: We carefully chose the data sets for our
experiment so the findings could be generalised as much as
possible. We selected Stack Overflow because it is one of the
most popular programming Q&A websites available with
approximately 7.6 million users. There are a large number
of code snippets reused from the site [3], and there are also
several studies encouraging of doing so (e.g., [33], [49], [52],
[53]). Nonetheless, it may not be representative to all the
programming Q&A websites.

Regarding the code snippets, we downloaded a full data
dump and extracted Java accepted answers since they are
the most likely ones to be reused. Our findings are limited
to these restrictions. They may not be generalised to all
programming languages and all answers on Stack Over-
flow. We chose the curated Qualitas corpus for Java open
source projects containing 111 projects [73]. The projects
span several areas of software and have been used in several
empirical studies [7], [48], [72], [76]. Although it is a curated
and well-established corpus, it may not fully represent all
Java open source software available.

We selected 130,719 GitHub Java projects based on the
number of stars they obtained to represent their popularity.
They might not represent all Java projects on GitHub, and
the number of clone pairs found may differ from other
project selection criteria.

Regarding the few number of toxic code snippets in
Stack Overflow posts and code reuse in GitHub, this is
partially due to the data set of (only) 111 Java projects
from the Qualitas corpus. The clones and the discovered

outdated code and potentially license-violating code snip-
pets reported in this paper are only subject to these 111
projects. The number may increase if we expand the amount
of open source projects. Moreover, this study only focuses
on Java, and the situation may be worse or better for other
programming languages.

5 RELATED WORK

Stack Overflow is a gold mine for software engineering
research and has been put to use in several previous
studies. Regarding developer-assisting tools, Seahawk is
an Eclipse plug-in that searches and recommends relevant
code snippets from Stack Overflow [52]. A follow-up work,
Prompter, by Ponzanelli et al. [53] achieves the same goal
but with improved algorithms. The code snippets on Stack
Overflow are mostly examples or solutions to programming
problems. Hence, several code search systems use whole
or partial data from Stack Overflow as their code search
databases [16], [33], [49], [69], [70]. Furthermore, Treude et
al. [74] use machine learning techniques to extract insight
sentences from Stack Overflow and use them to improve
API documentation.

Another research area is knowledge extraction from
Stack Overflow. Nasehi et al. [47] studied what makes
a good code example by analysing answers from Stack
Overflow. Similarly, Yang et al. [81] report the number of
reusable code snippets on Stack Overflow across various
programming languages. Wang et al. [77] use Latent Dirich-
let Allocation (LDA) topic modelling to analyse questions
and answers from Stack Overflow so that they can automat-
ically categorise new questions. There are also studies trying
to understand developers’ behaviours on Stack Overflow,
e.g., [9], [12], [46], [61].

Code clone detection is a long-standing research topic
in software engineering. Whether clones are good or bad for
software is still controversial [24], [26], [27], [31], [32], [40],
[64]. Code clones have several applications such as software
plagiarism detection [54], source code provenance [14], and
software licensing conflicts [22].

Two code fragments are clones if they are similar enough
according to a given definition of similarity [8]. Given an
open interpretation of “definition of similarity,” there are
various clone detection tools and their siblings, code plagia-
rism detectors, invented based on a plethora of different
code similarity measurements [57], [58], [62], [71]. Many
tools do not work on original source code directly but detect
clones at an intermediate representation such as tokens [10],
[18], [25], [29], [44], [54], [64], [65], [67], AST [6], [28] or
program dependence graphs [36], [38].

Cloning patterns are initially defined by Kapser et
al. [31], [32] by studying clones in Linux file systems and
deriving 11 patterns of code cloning. Our study adopted
one of the patterns into our online code cloning patterns.

Clone agreement is useful when a clone oracle is ab-
sent. By exploiting the different behaviours of clone detec-
tors, one can look for their agreement and obtain highly-
confident clones [8], [79]. Clone pairs that are agreed by
multiple tools are more assured to be true clones than the
ones reported by only a single tool [21], [60], [79].

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2900307, IEEE

Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH 2018 20

Software licensing is crucial for open source and indus-
trial software development. Di Penta et al. [15] studied the
evolution of software licensing in open source software and
found that licensing statements change over time. German
et al. [22] found that licensing conflicts occur between the
clone siblings, i.e., clones among different systems that come
from the same source. Later, German et al. [23] created an
automated tool for software license identification, Ninka,
which is used in our online clone license analysis.

Reusing of outdated third-party source code occurs
in software development. Xia et al. [80] show that a large
number of open source systems reuse outdated third-party
libraries from popular open source projects. Using the out-
dated code give detrimental effects to the software since
they may introduce vulnerabilities. Our study similarly
finds the outdated code on Stack Overflow.

Work similar to ours are studies by An et al. [3], Ab-
dalkareem et al. [1], Baltes et al. [4], and Zhang et al. [83].
An et al. investigated clones between 399 Android apps and
Stack Overflow posts. They found 1,226 code snippets which
were reused from 68 Android apps. They also observed
that there are 1,279 cases of potential license violations. The
authors rely on the timestamp to judge whether the code
has been copied from/to Stack Overflow along with confir-
mations from six developers. Instead of Android apps, we
investigated clones between Stack Overflow and 111 open
source projects. Their results are similar to our findings that
there exist clones from software projects to Stack Overflow
with potential licensing violations. Abdalkareem et al. [1]
detected clones between Stack Overflow posts and Android
apps from the F-Droid repository and used timestamps to
determine the direction of copying. They found 22 apps
containing code cloned from Stack Overflow. They reported
that cloned code is commonly used for enhancing existing
code. Their analysis shows that the cloned code from Stack
Overflow has detrimental effects on quality of the apps.
The median percentage of bug fixing commits after adding
Stack Overflow code (19.09%) is higher than before adding
the code (5.96%) with statistical significance. Baltes et al. [4]
discovered that only 23.2% of the clones in GitHub projects
from the 10 most frequently referenced Java code snippets
on Stack Overflow contain attributions. Zhang et al. [83]
study quality of code snippets on Stack Overflow. They
show that 31% of the analysed Stack Overflow posts contain
potential API usage violations and could lead to program
crashes or resource leaks.

6 CONCLUSIONS

Online code clones are clones that have been copied to
Q&A websites such as Stack Overflow. We classified 2,289
clone pairs using seven patterns of online code cloning.
We discovered 153 clone pairs that have been copied, with
evidence, from Qualitas projects to Stack Overflow, 109
clone pairs that have been copied from external sources
besides Qualitas to Stack Overflow, and 65 clone pairs that
are highly similar but without evidence of copying.

The online survey of 201 high-reputation Stack Overflow
developers (i.e., answerers) shows that although the devel-
opers are aware of outdated code in their answers, 19.8% of
them rarely or never fix the outdated code. In addition, 62%

of the participants are aware of Stack Overflow CC BY-SA
3.0 license applied to code snippets on the website. Only
3 answerers include the original license in their answers.
69% of the answerers never check for licensing conflicts
between the original code and CC BY-SA 3.0 enforced by
Stack Overflow. Another survey of 87 Stack Overflow visi-
tors shows that Stack Overflow code snippets have several
issues, including outdated code. 85% of them are not aware
of CC BY-SA 3.0 license enforced by Stack Overflow and 66%
never check for license conflicts when reusing code snippets.

We support the surveys’ findings by performing a de-
tailed analysis of toxic code snippets on Stack Overflow. We
investigated the online clone pairs on two aspects: outdated
code and potential license violation. The investigation of
the 153 clone pairs copied, with evidence, from Qualitas
to Stack Overflow reveals that 100 of them are outdated.
Twelve outdated clone pairs are buggy and toxic to reuse.
Our large-scale clone detection between the outdated code
snippets and 130,719 GitHub projects finds 102 candidates
of the outdated code being used in the wild. Moreover,
we found 214 code snippets on Stack Overflow that could
potentially violate the license of their original software, and
they occur in 7,112 times in 2,427 projects on GitHub.

This study is among, if not the first, to address the
important issues of toxic code snippets, including outdated
and license-violating online code clones, on programming
Q&A websites using a hybrid methodology of automatic
code clone detection and a manual clone investigation.

ACKNOWLEDGMENTS

The authors would like to thank Prof. Cristina Lopes and
Di Yang from University of California, Irvine for their help
in running SourcererCC clone detector and implementing a
custom tokeniser for Stack Overflow snippets.

REFERENCES

[1] Rabe Abdalkareem, Emad Shihab, and Juergen Rilling. On code
reuse from stackoverflow: An exploratory study on android apps.
Information and Software Technology, 88:148–158, aug 2017.

[2] Yasemin Acar, Michael Backes, Sascha Fahl, Doowon Kim,
Michelle L Mazurek, and Christian Stransky. You get where you’re
looking for: The impact of information sources on code security.
In SP ’16, pages 289–305, 2016.

[3] Le An, Ons Mlouki, Foutse Khomh, and Giuliano Antoniol. Stack
Overflow: A code laundering platform? In SANER ’17, 2017.

[4] Sebastian Baltes and Stephan Diehl. Usage and attribution of Stack
Overflow code snippets in GitHub projects. Empirical Software
Engineering, Oct 2018.

[5] Sebastian Baltes, Richard Kiefer, and Stephan Diehl. Attribution
required: Stack Overflow code snippets in GitHub projects. In Pro-
ceedings of the 39th International Conference on Software Engineering
Companion (ICSE-C’17), pages 161–163, 2017.

[6] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone
detection using abstract syntax trees. In ICSM’98, pages 368–377,
1998.

[7] Nels E. Beckman, Duri Kim, and Jonathan Aldrich. An empirical
study of object protocols in the wild. In ECOOP ’11, pages 2–26,
2011.

[8] Stefan Bellon, Rainer Koschke, Giuliano Antoniol, Jens Krinke,
and Ettore Merlo. Comparison and evaluation of clone detection
tools. Transactions on Software Engineering, 33(9):577–591, 2007.

[9] Amiangshu Bosu, Christopher S. Corley, Dustin Heaton, Debarshi
Chatterji, Jeffrey C. Carver, and Nicholas A. Kraft. Building
reputation in StackOverflow: An empirical investigation. In MSR
’13, pages 89–92, 2013.

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2900307, IEEE

Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH 2018 21

[10] Steven Burrows, S. M. M. Tahaghoghi, and Justin Zobel. Efficient
plagiarism detection for large code repositories. Software: Practice
and Experience, 37(2):151–175, 2007.

[11] Wai Ting Cheung, Sukyoung Ryu, and Sunghun Kim. Devel-
opment nature matters: An empirical study of code clones in
JavaScript applications. Empirical Software Engineering, pages 517–
564, 2015.

[12] Morakot Choetkiertikul, Daniel Avery, Hoa Khanh Dam, Truyen
Tran, and Aditya Ghose. Who will answer my question on Stack
Overflow? In ASWEC ’15, pages 155–164, 2015.

[13] James R. Cordy and Chanchal K. Roy. The NiCad clone detector.
In ICPC ’11, pages 3–4, 2008.

[14] Julius Davies, Daniel M. German, Michael W. Godfrey, and Abram
Hindle. Software bertillonage: Determining the provenance of
software development artifacts. Empirical Software Engineering,
18:1195–1237, 2013.

[15] Massimiliano Di Penta, Daniel M. German, Yann-Gaël Guéhéneuc,
and Giuliano Antoniol. An exploratory study of the evolution of
software licensing. In ICSE ’10, volume 1, page 145, 2010.

[16] Themistoklis Diamantopoulos and Andreas L. Symeonidis. Em-
ploying source code information to improve question-answering
in Stack Overflow. In MSR ’15, pages 454–457, 2015.

[17] Black Duck. 2017 open source security and risk analysis. Technical
report, Center for Open Source Research & Innovation (COSRI),
2017.

[18] Z. Duric and D. Gasevic. A source code similarity system for
plagiarism detection. The Computer Journal, 56(1):70–86, 2012.

[19] Intellectual property for CS students: Copyrights – fair use.
https://www.cs.duke.edu/courses/cps182s/fall02/cscopyright/
Copyrights/Copyright-Fairuse.htm, 2017.

[20] Felix Fischer, Konstantin Bottinger, Huang Xiao, Christian Stran-
sky, Yasemin Acar, Michael Backes, and Sascha Fahl. Stack Over-
flow considered harmful? the impact of copy&paste on Android
application security. In SP ’17, pages 121–136, 2017.

[21] Marco Funaro, Daniele Braga, Alessandro Campi, and Carlo
Ghezzi. A hybrid approach (syntactic and textual) to clone
detection. In International Workshop on Software Clones, pages 79–80,
2010.

[22] Daniel M. German, Massimiliano Di Penta, Yann-Gael Gueheneuc,
and Giuliano Antoniol. Code siblings: Technical and legal impli-
cations of copying code between applications. In MSR ’09, pages
81–90, 2009.

[23] Daniel M. German, Yuki Manabe, and Katsuro Inoue. A sentence-
matching method for automatic license identification of source
code files. In ASE ’10, page 437, 2010.

[24] Nils Göde and Jan Harder. Clone stability. In CSMR ’11, pages
65–74, 2011.

[25] Nils Göde and Rainer Koschke. Incremental clone detection. In
CSMR ’09, pages 219–228, 2009.

[26] Jan Harder and Nils Göde. Cloned code: stable code. Journal of
Software: Evolution and Process, 25(10):1063–1088, 2013.

[27] Keisuke Hotta, Yukiko Sano, Yoshiki Higo, and Shinji Kusumoto.
Is duplicate code more frequently modified than non-duplicate
code in software evolution? In IWPSE-EVOL ’10, page 73, 2010.

[28] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane
Glondu. DECKARD: Scalable and accurate tree-based detection of
code clones. In ICSE ’07, pages 96–105, 2007.

[29] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue.
CCFinder: a multilinguistic token-based code clone detection sys-
tem for large scale source code. Transactions on Software Engineer-
ing, 28(7):654–670, 2002.

[30] Cory Kapser and Michael Godfrey. "cloning considered harmful"
considered harmful. In WCRE ’06, pages 19–28, 2006.

[31] Cory Kapser and Michael W Godfrey. Toward a taxonomy of
clones in source code: A case study. In ELISA ’03, pages 67–78,
2003.

[32] Cory J. Kapser and Michael W. Godfrey. “cloning considered
harmful” considered harmful: patterns of cloning in software.
Empirical Software Engineering, 13(6):645–692, 2008.

[33] Iman Keivanloo, Juergen Rilling, and Ying Zou. Spotting working
code examples. In ICSE ’14, pages 664–675, 2014.

[34] Kisub Kim, Dongsun Kim, Tegawende F Bissyande, Eunjong Choi,
Li Li, Jacques Klein, and Yves Le Traon. FaCoY – A Code-to-Code
Search Engine. In Proceedings of the 40th International Conference on
Software Engineering (ICSE’18), 2018.

[35] Barbara A. Kitchenham and Shari Lawrence Pfleeger. Principles
of Survey Research Part 2: Designing a Survey Sample size Exper-
imental designs. Software Engineering Notes, 27(1):18–20, 2002.

[36] Raghavan Komondoor and Susan Horwitz. Using slicing to
identify duplication in source code. In SAS’01, pages 40–56, 2001.

[37] Rainer Koschke, Raimar Falke, and Pierre Frenzel. Clone detection
using abstract syntax suffix trees. In Proceedings of the 13th Working
Conference on Reverse Engineering (RE ’06), pages 253–262, 2006.

[38] Jens Krinke. Identifying similar code with program dependence
graphs. In WCRE ’01, pages 301–309, 2001.

[39] Jens Krinke. A study of consistent and inconsistent changes to
code clones. In Working Conference on Reverse Engineering, 2007.

[40] Jens Krinke. Is cloned code more stable than non-cloned code?
In International Working Conference on Source Code Analysis and
Manipulation, pages 57–66, 2008.

[41] Jens Krinke. Is cloned code older than non-cloned code? In
International Workshop on Software Clones, 2011.

[42] Jens Krinke, Nicolas Gold, Yue Jia, and David Binkley. Cloning
and copying between GNOME projects. In MSR ’10, pages 98–
101, 2010.

[43] Jens Krinke, Nicolas Gold, Yue Jia, and David Binkley. Distin-
guishing copies from originals in software clones. In International
Workshop on Software Clones, 2010.

[44] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. CP-
Miner: Finding copy-paste and related bugs in large-scale software
code. Transactions on Software Engineering, 32(3):176–192, 2006.

[45] Manishankar Mondal, Md. Saidur Rahman, Ripon K Saha, Chan-
chal K. Roy, Jens Krinke, and Kevin A Schneider. An empirical
study of the impacts of clones in software maintenance. In ICPC
’11, pages 242–245, 2011.

[46] Dana Movshovitz-Attias, Yair Movshovitz-Attias, Peter Steenkiste,
and Christos Faloutsos. Analysis of the reputation system and user
contributions on a question answering website: StackOverflow. In
ASONAM ’13, pages 886–893, 2013.

[47] Seyed Mehdi Nasehi, Jonathan Sillito, Frank Maurer, and Chris
Burns. What makes a good code example?: A study of program-
ming Q&A in StackOverflow. In ICSM ’12, pages 25–34, 2012.

[48] Cyrus Omar, Young Seok Yoon, Thomas D. LaToza, and Brad A.
Myers. Active code completion. In ICSE ’12, pages 859–869, 2012.

[49] Jin-woo Park, Mu-Woong Lee, Jong-Won Roh, Seung-won Hwang,
and Sunghun Kim. Surfacing code in the dark: an instant clone
search approach. Knowledge and Information Systems, 41(3):727–759,
2014.

[50] Shari Lawrence Pfleeger and Barbara A. Kitchenham. Principles
of survey research part 1: Turning lemons into lemonade. Software
Engineering Notes, 26(6):16, 2001.

[51] Pmd’s copy/paste detector (cpd). https://pmd.github.io/pmd-5.
8.1/usage/cpd-usage.html, 2017.

[52] Luca Ponzanelli, Alberto Bacchelli, and Michele Lanza. Seahawk:
Stack Overflow in the IDE. In ICSE ’13, pages 1295–1298, 2013.

[53] Luca Ponzanelli, Gabriele Bavota, Massimiliano Di Penta, Rocco
Oliveto, and Michele Lanza. Mining StackOverflow to turn the
IDE into a self-confident programming prompter. In MSR ’14,
pages 102–111, 2014.

[54] Lutz Prechelt, Guido Malpohl, and Michael Philippsen. Finding
plagiarisms among a set of programs with JPlag. Journal of
Universal Computer Science, 8(11):1016–1038, 2002.

[55] Teade Punter, Marcus Ciolkowski, Bernd Freimut, and Isabel John.
Conducting on-line surveys in software engineering. In Proceed-
ings of the International Symposium on Empirical Software Engineering
(ISESE’03), pages 80–88, 2003.

[56] Chaiyong Ragkhitwetsagul and Jens Krinke. Awareness and
experience of developers to outdated and license-violating code
on stack overflow: The online survey. In UCL Computer Science
Research Notes RN/17/10, 2017.

[57] Chaiyong Ragkhitwetsagul, Jens Krinke, and David Clark. Simi-
larity of source code in the presence of pervasive modifications. In
SCAM ’16, pages 117–126, 2016.

[58] Chaiyong Ragkhitwetsagul, Jens Krinke, and David Clark. A com-
parison of code similarity analysers. Empirical Software Engineering,
23(4):2464–2519, 2018.

[59] Chaiyong Ragkhitwetsagul, Jens Krinke, and Bruno Marnette. A
picture is worth a thousand words: Code clone detection based on
image similarity. In International Workshop on Software Clones, 2018.

[60] Chaiyong Ragkhitwetsagul, Matheus Paixao, Manal Adham, Sa-
heed Busari, Jens Krinke, and John H Drake. Searching for

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2900307, IEEE

Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH 2018 22

configurations in clone evaluation – a replication study. In SSBSE
’16, 2016.

[61] Christoffer Rosen and Emad Shihab. What are mobile developers
asking about? A large scale study using Stack Overflow. Empirical
Software Engineering, 21(3):1192–1223, 2016.

[62] Chanchal K. Roy and James R. Cordy. An empirical study of
function clones in open source software. In WCRE ’08, 2008.

[63] Vaibhav Saini, Hitesh Sajnani, and Cristina Lopes. Comparing
quality metrics for cloned and non cloned Java methods: A large
scale empirical study. In ICSE ’16, pages 256–266, 2016.

[64] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K Roy,
and Cristina V Lopes. SourcererCC: Scaling code clone detection
to big-code. In ICSE ’16, pages 1157–1168, 2016.

[65] Saul Schleimer, Daniel S Wilkerson, and Alex Aiken. Winnowing:
Local algorithms for document fingerprinting. In SIGMOD’03,
2003.

[66] Simian–similarity analyser. http://www.harukizaemon.com/
simian, 2015.

[67] Randy Smith and Susan Horwitz. Detecting and measuring
similarity in code clones. In International Workshop on Software
Clones, 2009.

[68] Christopher Jon Sprigman. Oracle v. Google. Communications of
the ACM, 58(5):27–29, 2015.

[69] Kathryn T Stolee, Sebastian Elbaum, and Daniel Dobos. Solving
the search for source code. Transactions on Software Engineering and
Methodology, 23(3):1–45, 2014.

[70] Siddharth Subramanian and Reid Holmes. Making sense of online
code snippets. In MSR ’13, pages 85–88, 2013.

[71] Jeffrey Svajlenko and Chanchal K. Roy. Evaluating modern clone
detection tools. In ICSME’14, pages 321–330, 2014.

[72] Craig Taube-Schock, Robert J. Walker, and Ian H. Witten. Can we
avoid high coupling? In ECOOP ’11, pages 204–228, 2011.

[73] Ewan Tempero, Craig Anslow, Jens Dietrich, Ted Han, Jing Li,
Markus Lumpe, Hayden Melton, and James Noble. Qualitas
corpus: A curated collection of java code for empirical studies.
In APSEC ’10, pages 336–345, 2010.

[74] Christoph Treude and Martin P Robillard. Augmenting API
documentation with insights from Stack Overflow. In ICSE ’16,
pages 392–403, 2016.

[75] Michele Tufano, Fabio Palomba, Gabriele Bavota, Rocco Oliveto,
Massimiliano Di Penta, Andrea De Lucia, and Denys Poshyvanyk.
When and why your code starts to smell bad. In ICSE’ 15,
volume 17, pages 403–414, 2015.

[76] Bogdan Vasilescu, Alexander Serebrenik, and Mark van den
Brand. You can’t control the unfamiliar: A study on the relations
between aggregation techniques for software metrics. In ICSM ’11,
pages 313–322, 2011.

[77] Shaowei Wang, David Lo, and Lingxiao Jiang. An empirical study
on developer interactions in StackOverflow. In SAC ’13, pages
1019–1024, 2013.

[78] Shaowei Wang, David Lo, Bogdan Vasilescu, and Alexander Sere-
brenik. EnTagRec: An enhanced tag recommendation system for
software information sites. In ICSME ’14, pages 291–300, 2014.

[79] Tiantian Wang, Mark Harman, Yue Jia, and Jens Krinke. Searching
for better configurations: A rigorous approach to clone evaluation.
In FSE ’13, pages 455–465, 2013.

[80] Pei Xia, Makoto Matsushita, Norihiro Yoshida, and Katsuro Inoue.
Studying reuse of out-dated third-party code. Information and
Media Technologies, 9(2):155–161, 2014.

[81] Di Yang, Aftab Hussain, and Cristina Videira Lopes. From query
to usable code: An analysis of Stack Overflow code snippets. In
MSR ’16, pages 391–402, 2016.

[82] Di Yang, Pedro Martins, Vaibhav Saini, and Cristina Lopes. Stack
overflow in github: Any snippets there? In Proceedings of the
International Conference on Mining Software Repositories (MSR ’17),
2017.

[83] Tianyi Zhang, Ganesha Upadhyaya, Anastasia Reinhardt, Hridesh
Rajan, and Miryung Kim. Are online code examples reliable ? an
empirical study of API misuse on Stack Overflow. In ICSE’18,
2018.

Chaiyong Ragkhitwetsagul is a lecturer at
the Faculty of Information and Communication
Technology, Mahidol University, Thailand. He re-
ceived the PhD degree in Computer Science at
University College London, where he was part of
the Centre for Research on Evolution, Search,
and Testing (CREST). His research interests in-
clude code search, code clone detection, soft-
ware plagiarism, modern code review, and min-
ing software repositories.

Jens Krinke is Associate Professor in the Soft-
ware Systems Engineering Group at the Uni-
versity College London, where he is Director of
CREST, the Centre for Research on Evolution,
Search, and Testing. His main focus is software
analysis for software engineering purposes. His
current research interests include software sim-
ilarity, modern code review, program analysis,
and software testing. He is well known for his
work on program slicing and clone detection.

Matheus Paixao is Research Assistant in the
Computer Science Department at State Univer-
sity of Ceara. He received his PhD degree at
University College London, where he was part of
the Centre for Research on Evolution, Search,
and Testing (CREST) and Software Systems
Engineering (SSE) Group. His research inter-
ests include software architecture, search-based
software engineering, mining software reposito-
ries, and modern code review.

Giuseppe Bianco received his bachelor de-
gree in Computer Science from the University of
Molise (Italy) under the supervision of Dr. Rocco
Oliveto. As part of an Erasmus+ traineeship, he
spent three month at the CREST centre, Univer-
sity College London, UK, under the supervision
of Dr. Jens Krinke. He is now a project manager
at Corsi.it.

Rocco Oliveto is Associate Professor at Univer-
sity of Molise (Italy), where he is also the Director
of the Computer Science Bachelor and Master
programs and the Director of the Software and
Knowledge Engineering Lab (STAKE Lab). He is
also one of the co-founders and CEO of Data-
Sound, a spin-off of the University of Molise aim-
ing at efficiently exploiting the priceless heritage
that can be extracted from big data analysis via
machine learning.

