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ABSTRACT: Sicilian reservoirs constitute the most important water resources available on the island. Dur-
ing summer 2001, the intense water utilization of Lake Arancio reservoir reduced the water level signifi-
cantly, which coincided with the formation of intense blooms formed by the microcystin (MC)-producing
cyanobacterium Microcystis aeruginosa. During summer 2003, Lake Arancio was continuously filled and
the vertical stratification of the water column was maintained resulting in five to sixfold lower cell numbers
of M. aeruginosa. For both years, a significant relationship between MC net production and Microcysytis
cell growth was observed, implying that Microcystis cell numbers can be used to infer MC concentrations
in water. Unexpectedly, dense blooms of the MC-producing cyanobacterium Planktothrix rubescens
occurred during winter 2005/2006 in the reservoirs Lake Pozzillo, Prizzi, Nicoletti, and Garcia but have not
been reported earlier. In this season, MC concentrations higher than those recorded in summer were
measured, implying that monitoring of Mediterranean drinking water reservoirs needs to be intensified
during winter, a season usually considered to be less prone to the formation of cyanobacterial blooms.
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INTRODUCTION

Mediterranean reservoirs, especially those located in the

semiarid part of the Mediterranean, represent a most impor-

tant resource for human development. When compared

with their temperate counterparts, semiarid environments

are characterized by longer periods of relatively high tem-

peratures favoring algal growth. Human activities often

negatively influence water quality and this may be en-

hanced due to the artificial nature of the reservoirs and the

semiarid climate conditions. Because of its insularity, Sicily

lacks both a permanent river network and aquifers large

enough to ensure a minimum water supply to the reservoirs

during the dry summer season (Naselli-Flores, 2003). Res-

ervoirs fill up during the rainy season in autumn and winter

and, in general, water residence times and nutrient loading

increase during this time period (Kennedy et al., 2002). In

consequence, a higher algal production and algal popula-

tions adapted to an increased water depth have been

observed (Naselli-Flores and Barone, 2005).
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As a consequence of eutrophication processes algal

blooms formed by cyanobacteria have increased in intensity

and duration during the last years in Sicilian reservoirs

(Naselli-Flores and Barone, 2007). Since 1979, the relative

importance of Microcystis and other planktonic cyanobac-

teria gradually increased at the expense of green algae typi-

cally dominating those reservoirs (Naselli-Flores and Bar-

one, 2003, 2005). From 2000 onwards Microcystis aerugi-
nosa occurred with a frequency of 50–100% of total

phytoplankton biovolume in 70% of the water stored in Si-

cilian reservoirs. Because of the Mediterranean climate

characteristics, Microcystis starts growing at the end of

February and grows until October/November. Surprisingly,

during winter 2005/2006, intense blooms of the filamentous

cyanobacterium, Planktothrix rubescens occurred in four

reservoirs (Lakes Garcia, Nicoletti, Pozzillo, and Prizzi),

which altogether contributed 30% of the total water volume

stored in Sicily. Conversely to P. agardhii, which com-

monly develops in Sicilian eutrophic reservoirs at the end

of summer, the occurrence of P. rubescens had never been

recorded before in the island.

Planktonic cyanobacteria of the genera Microcystis and

Planktothrix often produce small peptide molecules, most

prominently microcystins (MC), that are toxic to a variety

of organisms including humans (Chorus and Bartram,

1999). Besides the direct ingestion of MCs via drinking,

water contaminated with MCs that is used for irrigation

may inhibit germination and root growth potentially caus-

ing crop failures (Pflugmacher et al., 2006). In particular,

inhibition of germination and root growth of alfaalfa seed-

lings was observed at relatively low MC concentrations of

5.0 �g L�1. The total quantity of MCs produced by a cya-

nobacterial bloom varies in response to the proportion of

MC-producing genotypes within a specific population (Kur-

mayer et al., 2002). Genotypes differing in morphological

characteristics (so called morphospecies) in Microcystis sp.

have been shown to vary in MC production (Via-Ordorika

et al., 2004). Because of this potential hazard to human

health cyanobacterial blooms need particular attention, and

effective tools for surveillance need to be developed.

In this article, we present data on MC concentrations

regularly gathered during summer 2001 and 2003 from the

hypertrophic Lake Arancio, dominated by Microcystis sp.

blooms, as well as data on MC concentrations collected

during winter 2005/2006 from other Sicilian reservoirs

dominated by blooms of Planktothrix rubescens.

MATERIALS AND METHODS

Study Sites

Table I shows morphometric characteristics of the studied

reservoirs. Detailed morphological and limnological de-

scriptions of the reservoirs are given in Naselli-Flores

(1999). Because of the strong decrease in water volume

during summer 2001 the thermal stratification of Lake Ara-

ncio was atelomictic (sensu Barbosa and Padisák, 2002)

with a pronounced warming of the surface water during the

day and diurnal, even irregular, mixing events resulting in

large fluctuations in the redox conditions of the water col-

umn (see Naselli-Flores, 2003). In 2003, changes in water

level management resulted in a more stable water level and

in the maintenance of thermal stratification during the

summer period reducing the internal nutrient transport from

the sediments to the water column (Naselli-Flores and Bar-

one, 2005). Autumn 2005 was characterized by intense pre-

cipitation, especially in the central part of the island, and

four reservoirs (Garcia, Nicoletti, Prizzi, and Pozzillo),

which had maintained summer stratification, were subjected

to floods which caused a sudden decrease in transparency

and the abrupt breaking of their thermoclines.

Sampling

In Lake Aranico, water samples were collected from July to

October weekly during the summer of 2001 and every 2

weeks during the summer of 2003. The Sicilian Regional

Environmental Protection Agency (ARPA Sicilia) sampled

the other four reservoirs during winter of 2005/2006. Water

was collected 250 m from the dam at depths corresponding

to 100, 50, and 1% of the subsurface irradiance, as meas-

ured with a LI-COR quantum sensor (LI-COR Biosciences,

Lincoln, Nebraska). The samples from different depths

were mixed and aliquots were used both for phytoplankton

counting and biovolume estimation and for the analysis of

microcystins (MC). Water samples were kept cool and dark

during the transport to the laboratory and were filtered

TABLE I. Main characteristics of the studied reservoirs in Sicily

Reservoir

Volume

(106 m3)

Surface

(km2)

Maximum

Depth (m)

Average

Depth (m) Use Trophic State

Arancio 30 3.2 29 9 Irrigation Eu-Hyper

Garcia 60 5.9 43 10 Drinking Meso-Eu

Nicoletti 17 1.8 36 9 Irrigation Meso

Pozzillo 154 7.7 50 18 Hydropower/irrigation Meso-Eu

Prizzi 9 1.3 44 6 Drinking Meso-Eu
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through glass fiber GF/F filters (Whatman, Kent, Great

Britain) within 2 h. The filters were folded and dried at

55–60 8C for 2 h. The dry filters were put in a 100 cc glass

bottle containing silica gel and stored at �20 8C.

Microscopical methods of plankton enumeration and the

analysis of population dynamics of Microcystis sp. in Lake

Arancio are given in Naselli-Flores and Barone (2003,

2005). In particular, the different Microcystis morphospe-

cies were identified after Komárek et al. (2002).

MCs were analyzed as described previously (Fastner

et al., 1999; Kurmayer et al., 2003). Briefly, filters were cut

into pieces and extracted in 70% methanol (w/v) for three

times. The clear supernatant was injected into high per-

formance liquid chromatography coupled to diode array

detection (HPLC-DAD). MCs were identified by their char-

acteristic absorption maximum at 240 nm and quantified

using MC-LR as external standard. Given a filtered volume

of 100 mL and assuming an average cellular MC content of

100 fg cell�1 a reliable quantification of MC was possible

above a concentration of 60,000 cells mL�1. Consequently,

for cell concentrations below this threshold no cellular MC

contents were calculated.

From biovolume and MC concentrations growth rates

(r day�1) and MC (net) production rates (day�1) were calcu-

lated using the formula r ¼ (lnN2 � lnN1)/Dt, where N1,2

were the cell concentrations/peptide concentrations at con-

secutive sampling days and Dt was the time interval in days.

RESULTS

Microcystin Production by
Microcystis aeruginosa

During summer 2001, Microcystis spp. dominated the phy-

toplankton in Lake Arancio with a proportion of 93–100%

of the total biovolume. Besides Microcystis spp., the assem-

blage included a few chlorophytes, such as Botryococcus
braunii, B. terribilis and Pediastrum spp. The Microcystis
morphospecies most frequently found included M. aerugi-
nosa (91–100% with an average percentage of 97%). Dur-

ing most of the study period M. panniformis occurred with

<2%, however, higher proportions were observed during

the first 2 weeks of July and during the second week of Oc-

tober (min: 0; max: 6%; average: 1.5%). During the year

2003 Microcystis sp. reached a lower biovolume and

occurred at subdominant proportions only (min: 1%; max:

37%; average: 10%). The seasonal maxima were observed

during October of 2001 and September of 2003 (Fig. 1).

Total MC concentrations in the samples, expressed as

MC-LR equivalents, ranged between 0 and 2753 �g L�1.

During both years Microcystis biovolume (BV) and the

total MC concentration (expressed as MC-LR equivalents)

were closely correlated: (MC[�g L�1] ¼ 2.24 � BV[mm3

L�1] � 50.2; r2 ¼ 0.98, n ¼ 16, P < 0.001). The maxima

of MC concentrations, 2359 �g L�1 and 40 �g L�1 during

2001 and 2003, respectively, coincided with the maxima of

Microcystis biovolume.

The dominant MC variants were MC-YR and -LR, while

MC-RR occurred in lowest proportions only (<2%), and

further variants were present in yet lower shares of the total

content. During both years the proportion of MC-YR/MC-

LR was almost constant (min: 60%; mean: 73% (61.6 SE);

max: 79%). The MC content of the Microcystis biomass

differed in the two years, with 0.9 to 3.5 �g (mean: 1.8 6

0.2 SE) of MC-LR equivalents per mm3 of biovolume dur-

ing 2001 and 0.3 to 1.2 �g (mean: 0.72 6 0.20 SE) during

2003 (Fig. 2). During 2001, the MC content was constant

until the mid of August and then increased until the mid of

September. This increase in MC content coincided with a

period of low physical stability of the water column due to

the yearly mimimum content of water in the reservoir. This

period was also characterized by an improvement in the

underwater light availability and by a reoxygenation of the

water column (Naselli-Flores, 2003; Naselli-Flores and

Barone, 2003) favoring a strong increase in Microcystis
growth. MC contents were significantly lower during the

summer of 2003 (P < 0.01). Nevertheless, for both years

Fig. 1. Biovolume of Microcystis aeruginosa from July–
October 2001 (upper graph) and 2003 (lower graph) in Lake
Arancio and corresponding concentrations of microcystin
(MC-LR and MC-YR estimated as MC-LR equivalents).
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the MC net production rates were related very closely, i.e.,

almost one to one, to the Microcystis growth rate calculated

on the basis of biovolume (Fig. 3). Consequently, the sea-

sonal variation in MC content was considered of minor im-

portance relative to the dependence of MC net production

on the increase or decrease of Microcystis biovolume.

Microcystin Production by
Plantothrix rubescens

During winter 2005/2006 P. rubescens formed surface

blooms in Lake Pozzillo, the largest Sicilian reservoir,

reaching a population density peak >50 � 109 cells L�1

(&5600 mm3 L�1) at the end of December 2005. P. rubes-
cens colored the water surfaces dull purple by a 60 cm thick

layer floating on the surface. At the beginning of March the

density of filaments decreased down to <20 filaments

mL�1 (about 10 � 106 cells L�1; 1.1 mm3 L�1). P. rubes-
cens was also observed in the other three reservoirs (Garcia,

Nicoletti, and Prizzi) and showed lower cell numbers but a

similar seasonal development in the population density

growth. Growth of Planktothrix started in mid-November at

the end of the stratification, and Planktothrix persisted until

mid-February showing the lowest water temperatures

(9–10 8C) of the year.

Analysis of MCs in a surface sample collected at highest

cell density (December 2005) in Lake Pozzillo revealed the

presence of demethylated variants of MC-RR (95%), MC-

LR (3%), and small amounts of unknown MC variants

(2%). The total concentration of MC (calculated as equiva-

lents of MC-LR) was 34 mg L�1. This concentration corre-

sponded to a MC content of 6.0 �g mm�3 of biovolume.

After this peak, lower MC concentrations were detected,

i.e., the MC concentration in a surface sample from Lake

Prizzi at 15 February 2006 was 7 �g L�1 (MC-RR deter-

mined as MC-LR equivalents).

DISCUSSION

In this study the MC content of the Microcystis population

varied seasonally by a factor of four. In the majority of studies

on the regulation of MC net production by various environ-

mental conditions in the laboratory the different environmen-

tal factors (i.e., micro- and macronutrients, light, temperature,

pH) were found to induce changes in MC content, usually by

a factor of three to four (Sivonen and Jones, 1999).

In their unifying theory, Orr and Jones (1998) suggested

MC net production to be coupled linearly to the cell divi-

sion of the organism and concluded that—although MC is a

secondary metabolite—it rather displays the attributes of

essential intracellular nitrogenous compounds in cyanobac-

teria. According to this theory, the strongest influence of all

possible environmental factors is indirect—through their

effect on cell division and growth, whereas the direct

effects of environmental conditions on MC biosynthesis are

of minor importance.

The situation becomes more complex in the field since

in contrast to the laboratory numerous different genotypes

coexist and therefore may influence the MC concentration

in the biovolume and water. The wax and wane of MC-

producing versus non-MC-producing strains has been

suggested as a most important factor regulating MC net

production in water (Sivonen and Jones, 1999). In this

study, a significant one to one relationship between MC net

production and Microcystis growth was observed, implying

that the number of coexisting MC-producing and non-MC-

producing genotypes was seasonally stable, although it may

have differed between the years 2001 and 2003. We cannot

exclude the occurrence of shifts within the group of MC-

Fig. 3. Linear relationship between the growth rate of
Microcystis aeruginosa calculated from biovolume estimates
in the microscope and the net production rate of microcys-
tin-LR equivalents during 2001 (^) and 2003 (~).

Fig. 2. Microcystin content in M. aeruginosa from July–
October of 2001 (straight line) and 2003 (dashed line) in
Lake Arancio.
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producing genotypes. For example, Amé and Wunderlin

(2005) identified iron and ammonium concentrations, and

high temperature as factors that might influence the propor-

tion of MC-producing genotypes. Indeed, during summer

of 2001 Lake Arancio showed an atelomictic stratification

type with diurnal and irregular mixing events resulting in

large fluctuations in the redox conditions of the water col-

umn. However, nonetheless the proportion of MC variants,

MC-LR, YR, and RR was relatively constant during both

years implying that shifts among genotypes producing dif-

ferent MC variants did not occur. Notably, a number of

field studies also reported significant linear relationships

between MC net production and Microcystis biovolume

(Kotak et al., 2000; Chorus et al., 2001; Kurmayer et al.,

2003). Even the re-analysis of data of a study postulating

that seasonal and spatial shifts in MC genotype composition

determine MC net production in Lake Biwa (Ozawa et al.,

2005) revealed a significant linear relationship between MC

concentrations and Microcystis cell numbers (y ¼ 3.1526 þ
0.0776x, where y was the MC concentration in pg mL�1

and x was the cell concentration in cells mL�1, R2 ¼ 0.59,

n ¼ 85, cell contents of >1000 fg cell�1 were considered as

outliers and have not been included). This evidence is of

importance in order to use Microcystis cell numbers to

predict MC concentrations in water. Thus, cell numbers or

biovolume can be important surrogate parameters for

authorities and water managers performing environmental

monitoring and risk assessment. They become most mean-

ingful through occasional MC analyses and determination

of the ratio of MC per cell or per unit biovolume. Once this

ratio is known to remain stable in a given water-body, con-

ducting MC analyses once or 2–3 times per growing season

would be sufficient to validate the prediction of MC con-

centrations in the water from cell density or biovolume

determined more frequently, e.g., weekly or in 14-day inter-

vals. This approach is particularly useful for water-bodies

with unialgal cyanobacterial populations that persist for

extended periods of time.

As shown by Naselli-Flores and Barone (2005), the

water level reduction during summer in Sicilian reservoirs

enhanced the growth of Microcystis sp. In contrary, a dif-

ferent water management, i.e., continuously refilling the

reservoir and maintaining the vertical stratification reduced

internal nutrient loading and by this the growth of Micro-
cystis sp. On the other hand, these stratifying conditions

may favor the occurrence of shade-adapted species, such as

Planktothrix rubescens. P. rubescens typically occurs in

deep, physically stratified and oligo- to mesotrophic waters

in which they can form metalimnetic layers because light

penetrates to this depth (Kurmayer et al., 2004). It has been

shown both empirically and by modeling that during peri-

ods of low insolation such as in December the filaments

receive low light doses only and react by floating up from

deeper regions of the lake, thus forming visible water

blooms (Walsby et al., 2005).

It is unclear why P. rubescens was observed only

recently and not during the regular phytoplankton monitor-

ing in the years before. During the last years the autumnal

precipitation was increasing which has also been predicted

by current climate models (Tin, 2006). High precipitation

events occurred during early November 2005 (Sicilian

Hydrological Service, unpublished data), causing a mixing

of the water column but also decreasing the water transpar-

ency of the reservoirs. These conditions may have favored

low light adapted phytoplankton species such as Plankto-
thrix spp. In general P. agardhii has been shown to out

compete green algae in shallow, eutrophic lakes (Scheffer

et al., 1997). P. rubescens has a highly efficient light har-

vesting complex as well and frequently dominates deep res-

ervoirs of the temperate climatic zone. P. rubescens has

been suggested to outgrow P. agardhii under low light con-

ditions and lower temperatures in the stratified lake Blel-

ham Tarn (<218C) while P. agardhii may be more success-

ful in shallow and warmer waters (Davis and Walsby,

2002).

The pinkish color of these blooms frequently alerts the

population. Because of the concern of toxicity as well as

public perception, local authorities had to stop the water

use in this reservoir until the beginning of March when the

density of filaments decreased below 20 per mL (about 10

� 106 cells L�1; 1.1 mg L�1). The same measure was taken

for the drinking water reservoirs Garcia and Prizzi. Red

pigmented P. rubescens (sensu Suda et al., 2002) always

produces MCs (Kurmayer et al., 2004). Similarly as for

Microcystis sp. for Planktothrix rubescens significant cor-

relations between the cell numbers and the MC concentra-

tions have been reported (Briand et al., 2005). Conse-

quently the counting of filaments/cell numbers can be

useful to infer potential MC concentrations in water

dominated by P. rubescens. However compared with

Microcystis sp. in Lake Arancio the Planktothrix
showed higher population densities leading to higher

MC net production rates, and it contained two to sixfold

more MC (6.2 �g mm�3 biovolume). This study demon-

strates that health risks caused by MC-producing cyano-

bacteria in reservoirs are present during winter as well as

during summer, and if overlooked may have public health

consequences. Consequently, water monitoring efforts

need to be intensified during winter times, a season that is

usually considered to be less prone to the formation of

surface sums in the temperate region of the Northern

hemisphere.
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