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Abstract- The toxicity of As(V) and As(III) to two axenic tropical freshwater microalgae, 15 

Chlorella sp. and Monoraphidium arcuatum, was determined using 72-h growth rate 16 

inhibition bioassays.  Both organisms were tolerant to As(III) (72-h IC50, concentration to 17 

cause 50% inhibition of growth, of 25 and 15 mg As(III)/L, respectively).  Chlorella sp. was 18 

also tolerant to As(V) with no effect on growth rate over 72 h at concentrations up to 0.8 19 

mg/L (72-h IC50 of 25 mg As(V)/L).  M. arcuatum was more sensitive to As(V) (72-h IC50 20 

of 0.25 mg As(V)/L).  An increase in phosphate in the growth medium (0.15 to 1.5 mg PO4
3-

21 

/L) decreased toxicity, i.e. the 72-h IC50 value for M. arcuatum increased from 0.25 mg 22 

As(V)/L to 4.5 mg As(V)/L, while extracellular As and intracellular As decreased, indicating 23 

competition between arsenate and phosphate for cellular uptake.  Both microalgae reduced 24 

As(V) to As(III) in the cell, with further biological transformation to methylated species 25 

(monomethyl arsonic acid and dimethyl arsinic acid) and phosphate arsenoriboside.  Less than 26 

0.01% of added As(V) was incorporated into algal cells, suggesting that bioaccumulation and 27 

subsequent methylation was not the primary mechanism of detoxification.  When exposed to 28 

As(V) both species reduced As(V) to As(III), however only M. arcuatum excreted As(III) into 29 

solution.  Intracellular arsenic reduction may be coupled to thiol oxidation in both species.  30 

Arsenic toxicity was most likely due to arsenite accumulation in the cell, when the ability to 31 

excrete and/or methylate arsenite was overwhelmed at high arsenic concentrations. Arsenite 32 

may bind to intracellular thiols, such as glutathione, potentially disrupting the ratio of reduced 33 

to oxidised glutathione and consequently inhibiting cell division. 34 

 35 

Keywords- Arsenic Algae Toxicity Biotransformation Phosphate 36 
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INTRODUCTION 37 

Arsenic is a widespread contaminant in the environment.  Anthropogenic sources, 38 

together with natural sources, have led to extensive leaching of arsenic into surface, ground 39 

and drinking waters [1].  Arsenic concentrations in freshwaters range from <1 to 10 µg/L [2], 40 

with up to 5000 µg/L reported in contaminated groundwaters [3]. 41 

Most studies investigating arsenic biotransformation have focussed on marine 42 

environments [4], due to the formation of arsenoribosides and arsenobetaine in marine 43 

invertebrates and macroalgae [5].  Arsenoribosides, believed to be the precursors of 44 

arsenobetaine in marine invertebrates, have long been found in marine macroalgae [6], 45 

however, their presence in freshwater microalgae has only recently been elucidated [7]. 46 

Arsenic biotransformation and cycling in freshwater systems has thus far received 47 

little attention, and little is known about the role of freshwater algae.  Algae are an important 48 

component of freshwater aquatic environments and could potentially remediate arsenic-49 

contaminated waters in wetlands through adsorption and biotransformation of inorganic 50 

arsenic.  Microalgae in particular, have been shown to accumulate arsenic(V), with 51 

bioconcentration factors ranging from 200 – 4000 [8,9].  However, more information about 52 

the responses of freshwater algae to arsenic is required if they are to be used in remediation. 53 

Literature data on the toxicity of arsenic to freshwater microalgae are limited to 54 

chlorophytes and cyanophytes.  Reported IC50 values (concentration to cause a 50% 55 

inhibition of growth) range over five orders of magnitude, from 0.048 to 202 mg/L 56 

[10,11,12], and are generally well above environmental concentrations of arsenic.  The wide 57 

variability in sensitivity to arsenic is likely due to biotic factors such as species type, differing 58 

uptake/exclusion pathways, detoxification mechanisms and prior-exposure, as well as abiotic 59 

factors such as arsenic species, phosphate concentrations, pH and exposure time. 60 
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While arsenic is toxic to microalgae at high concentrations, particularly at low 61 

ambient phosphate concentrations, few studies have examined the mode of toxic action of 62 

arsenic in freshwater microalgae.  Most of our information on the mode of toxic action of 63 

arsenic comes from studies with terrestrial plants or microorganisms such as bacteria and 64 

yeasts [13,14].  A recent review of arsenic toxicity in terrestrial plants [13] showed that 65 

arsenic toxicity to biota may be due to: (i) interference in phosphate metabolism, leading to 66 

phosphate depletion or inhibition of adenosine triphosphate (ATP); (ii) oxidative stress due to 67 

the generation of reactive oxygen species; and/or (iii) binding of arsenite to intracellular thiols 68 

(sulfhydryl groups) of enzymes and tissue proteins, such as glutathione. 69 

Aquatic and terrestrial biota have developed several strategies to detoxify metals and 70 

metalloids such as arsenic. These include: (i) exclusion of arsenic from the cell [15]; (ii) 71 

reduction of arsenate to arsenite followed by either excretion, or complexation with 72 

glutathione and sequestration into vacuoles (e.g Saccharomyces cerevisiae, [14]); (iii) 73 

production of other metal-binding proteins such as phytochelatins [16]; (iv) methylation to 74 

less toxic organic forms, together with excretion [17].  Studies with microalgae have largely 75 

focused on methylation as a potential detoxification process [17,18]. 76 

The objective of this study was to investigate the toxicity, biotransformation and mode 77 

of toxic action of arsenic in two axenic tropical freshwater microalgae, one arsenate-tolerant 78 

species (Chlorella sp.) and one sensitive species (Monoraphidium arcuatum).  The mode of 79 

toxicity of arsenate and the detoxification processes in these two algae were compared.  80 

Biotransformation of arsenic and arsenic speciation in cells was determined by microwave-81 

assisted extraction and high performance liquid chromatography- inductively coupled plasma- 82 

mass spectrometry (HPLC-ICP-MS), enabling low detection limits for the quantitation of 83 

arsenoribosides. 84 

 85 
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METHODS 86 

Algal stock cultures 87 

Chlorella sp. 12 and Monoraphidium arcuatum (Korš.) Hindák, originally isolated 88 

from Lake Aesake, Papua New Guinea, were maintained axenically at CSIRO Energy 89 

Technology, Sydney.  Cultures were checked microscopically monthly and plated on agar 90 

(2% bacto agent, 0.1% pepsin and 0.1% yeast extract) several times over 12 months to ensure 91 

the absence of bacteria and other microorganisms.  The algae were cultured in 1/5 strength 92 

Jaworki’s medium [19] and incubated at 27 ± 1ºC on a 12:12 h light/dark cycle (Philips TL 93 

40W cool white fluorescent lighting, 75 µmol photons/m
2
/s, Caringbah, NSW, Australia). 94 

 95 

Growth rate inhibition bioassays 96 

The toxicity of As(V) and As(III) to Chlorella sp. and M. arcuatum was determined 97 

using 72-h growth rate inhibition bioassays.  The test medium used in the bioassays was 98 

synthetic softwater (96 mg/L NaHCO3, 60 mg/L CaSO4.2H2O, 123 mg/L MgSO4 and 4 mg/L 99 

KCl) (Ajax and Asia Pacific Specialty Chemicals, Bacto Laboratories, Liverpool, NSW, 100 

Australia) with a hardness of 80-90 mg CaCO3/L, an alkalinity of 54 mg CaCO3/L and a pH 101 

of 7.6 ± 0.1.  The medium was vacuum filtered through an acid-washed 0.45 µm cellulose 102 

acetate/nitrate membrane filter (Millipore, Bedford, MA, USA) and stored at 4°C. 103 

A batch method was used to conduct growth rate inhibition tests using 250-mL 104 

borosilicate glass Erlenmeyer flasks, coated with Coatasil silanising solution (Ajax 105 

Chemicals, Auburn, NSW, Australia) to prevent adsorption of arsenic to the glass.  Test flasks 106 

and sample storage vessels were soaked in 10% (v/v) nitric acid (BDH) overnight and rinsed 107 

thoroughly with high purity Milli-Q deionised water (>18 MΩ/cm, Bedford, MA, USA). 108 

  On the initial day of each test arsenate stock solutions, 0.2 and 15 g/L As(V) using 109 

Na2AsO4.7H2O (May and Baker, Dagenham, England), or an arsenite stock solution, 15 g/L 110 
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As(III) using NaAsO2 (BDH, Poole, England), were prepared in test medium.  Test media (70 111 

mL) for control treatments or arsenic solutions were added to the flasks.  Each test included 112 

five arsenic concentrations and a control, each prepared in triplicate.  For Chlorella sp., 113 

As(III) treatments ranged from 10 to 200 mg/L and As(V) treatments from 0.75 to 60 mg/L.  114 

For M. arcuatum, As(III) treatments ranged from 5 to 50 mg/L
 
and As(V) treatments from 115 

0.025 to 0.4 mg/L.  Nutrients KH2PO4 (Ajax) and NaNO3 (Merck, Kilsyth, VIC, Australia) 116 

were added to all flasks to give a final concentration of 0.15 mg PO4
3-

/L and 15 mg NO3
-
/L 117 

(N:P molar ratio of 150:1).  Additional toxicity tests with M. arcuatum, were carried out at a 118 

higher phosphate concentration (15 mg NO3
-
/L; 1.5 mg PO4

3-
/L; N:P molar ratio of 15:1) and 119 

a lower nitrate concentration (1.5 mg NO3
-
/L; 1.5 mg PO4

3-
/L; N:P molar ratio of 150:1). 120 

Prior to inoculation with algae, 20-mL subsamples were taken from each flask, pooled 121 

for each treatment, for measurement of initial arsenic concentrations and stored at –18°C.  122 

Measured concentrations, not nominal, were used to calculate toxicity test endpoints. 123 

Cells in the exponential growth phase (5-6 days old) were used in bioassays after 124 

centrifugation (2500 rpm, 7 minutes) and washing three times with Milli-Q water to remove 125 

residual culture medium.  Flasks were inoculated with 2-4 × 10
4
 cells/mL, shaken by hand 126 

and randomly placed in a growth cabinet (27 ± 1ºC, 12:12 h light/dark cycle, Philips TL 40W 127 

cool white fluorescent lighting, 140 µmol photons/m
2
/s).  Test flasks were rotated, and shaken 128 

twice daily to ensure sufficient gas exchange.  The pH was recorded initially and after 72 h.   129 

Cell density was determined daily using a Coulter Multisizer IIE Particle Analyser (70 130 

µm aperture; Coulter Electronics, Luton, UK), with a correction count of background 131 

particles.  The cell density data from 0 to 72 h were used to calculate the growth rate of 132 

treatments by fitting a regression line to a plot of log10 (cell density) versus time (h).  The 133 

slope of the plot gave the cell division rate (µ) calculated as divisions per day.  Growth rates 134 

for treated flasks were expressed as a percentage of the control cell division or growth rate. 135 
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 136 

Statistical analysis 137 

The 72-h IC50 was calculated using linear interpolation (ToxCalc Version 5.0.23C, 138 

Tidepool Software, San Francisco, CA, USA).  The data were tested for normality and 139 

homogenous variance, and Dunnett’s multiple comparison test was used to determine which 140 

treatments differed significantly from the controls (1 tailed, P≤0.05) to estimate the NOEC 141 

(no observable effect concentration) and the LOEC (lowest observable effect concentration). 142 

 143 

Intracellular and extracellular arsenic determination 144 

The concentration of intracellular and extracellular arsenic after 72-h exposure to 145 

As(V) at two different phosphate concentrations (both with 15 mg NO3
-
/L) was determined to 146 

investigate the potential competitive uptake of phosphate and arsenate, using a modified 147 

method of Franklin et al [20].  All manipulations were carried out in a Class-100 clean room. 148 

M. arcuatum was incubated for 72-h with initial As(V) concentrations of 125, 250 and 149 

1000 µg/L for the low phosphate (0.15 mg/L) tests and concentrations of 250, 1000 and 3000 150 

µg As(V)/L for the high phosphate (1.5 mg/L) tests.  Both tests included control treatments 151 

(no arsenic).  For each treatment, nine flasks were prepared, combining three after 72 h to 152 

gain sufficient biomass for analysis, with three replicates per treatment.  Each replicate was 153 

mixed thoroughly and the cell density determined on a Coulter Multisizer IIE Particle 154 

Analyser (70 µm aperture).  Weighed sub-samples (145 mL) were filtered through a 25-mm 155 

glass filtration unit (pre-acid-washed and rinsed with Milli-Q water) using a 0.45 µm GH-156 

polypropylene filter (Pall, Ann Arbor, MI, USA).  Approximately 50 mL of the filtrate was 157 

collected and frozen until analysis (dissolved As fraction). 158 
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Cells were rinsed with 20 mL of arsenic-free, nutrient-free growth medium while in 159 

the filtration unit to remove excess dissolved As(V) solution and to prevent overestimation of 160 

arsenic bound to the outside of cells.  This solution was retained for analysis (rinse fraction). 161 

Following preliminary experiments, two 20-min washes with 0.1 M KH2PO4/K2HPO4 162 

buffer solution (pH 5.95) (Ajax, Merck)) were used for the optimum removal of extracellular 163 

arsenic without obvious efflux of intracellular arsenic.  Phase contrast microscopy showed 164 

that cells were healthy and intact after these treatments.  Cells on the filter paper were 165 

transferred to a Teflon tube, using 0.1 M phosphate buffer (final volume of 20 mL).  This 166 

mixture was shaken for 30 s, allowed to stand for 20 minutes, then re-filtered using a new 167 

filter.  The filtrate was retained for analysis.  The process of cell-washing was repeated.  168 

These samples were called the “extracellular” fraction. 169 

Algal cells were returned to the Teflon tube using 25% (v/v) HNO3 (Merck), made up 170 

to a volume of 8 mL and left to digest for 30 minutes.  The digest was microwaved at 90W for 171 

5 min, diluted to 20 mL with Milli-Q water to give a final concentration of 10% (v/v) HNO3, 172 

and stored at 4°C (“intracellular” fraction).  173 

The dissolved, rinse and extracellular arsenic fractions were analysed for total arsenic 174 

by hydride generation-atomic fluorescence spectrometry (HG-AFS).  Because the 10% (v/v) 175 

acid matrix interfered with the response from the AFS detector, the intracellular arsenic 176 

fraction was analysed for total arsenic by ICP-MS (Perkin Elmer Elan-6000, Australia). 177 

 178 

Arsenic speciation bioassays 179 

To determine the inorganic and organic arsenic species in solution and in algal cells 180 

following 72-h exposure to As(V), two speciation bioassays were conducted for both 181 

Chlorella sp. and M. arcuatum.  The first bioassay consisted of As(V) treatments of one 182 

replicate each of 0, 10, 25 and 40 mg/L for Chlorella sp. and 0, 0.1, 0.2 and 0.3 mg/L for M. 183 
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arcuatum.  The second speciation bioassay consisted of three replicates at one concentration 184 

of arsenic only; 25 mg As(V)/L for Chlorella sp. and 0.2 mg As(V)/L for M. arcuatum 185 

(approximate 72-h IC50).  This set-up was required logistically as each replicate required 15 186 

flasks of algae to be combined to gain sufficient biomass for analysis. 187 

The cell density of the pooled bioassay solution was determined and the solution was 188 

filtered and both the filter paper and filtrate were collected for analysis.  For the second 189 

speciation bioassay, the cells collected on the filter paper were rinsed with 20 mL of Milli-Q 190 

water to prevent overestimation of cellular arsenic due to carryover of dissolved solution.  191 

This rinse solution was analysed for total arsenic by ICP-MS.  The water samples and cellular 192 

samples on the filter paper were frozen immediately following collection and were analysed 193 

for arsenic speciation by microwave digestion and HPLC-ICP-MS. 194 

For quality assurance purposes, three additional flasks were prepared for each 195 

treatment concentration, and incubated for 72 h under the standard test conditions.  Two of 196 

these were blanks (no algae), used to determine arsenic speciation changes in solution due to 197 

either chemical reduction, or the process of collecting the sample fractions.  The third flask 198 

(inoculated with algae) was used to check the overall arsenic mass balance, to account for all 199 

the added arsenic as either in solution, on the cells or adsorbed to the flask.  Adsorption to the 200 

flask was determined by filling the empty flask with nitric acid (20 mL, 0.2% (v/v), Suprapur, 201 

Merck).  It was shaken, left to stand for 48 h and then analysed for total arsenic by ICP-MS. 202 

 203 

Extracellular versus intracellular As(V) reduction 204 

Reduction of As(V) to As(III) by M. arcuatum was further investigated to determine 205 

whether it occurred intracellularly or extracellularly.  Control solutions (no arsenic) and 206 

As(V) treatments were inoculated with algae and incubated for 48 h.  To test for non-207 

biological reduction of arsenic in solution, an additional control was prepared containing 208 
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As(V) but not algae.  The solutions containing cells were centrifuged and the supernatant was 209 

divided into 6 × 50 mL sub-samples, of which three were spiked with more As(V).  Thus 210 

there were three replicates of the following (cell free) solutions: (i) exposed to As(V) plus an 211 

additional arsenic spike after 48 h; (ii) exposed to As(V) with no arsenic spike; (iii) not 212 

exposed to As(V) plus an additional arsenic spike after 48 h and; iv)not exposed to As(V) 213 

with no arsenic spike.  All flasks were placed in the growth cabinet for a further 24 h.  The 214 

solutions were then stored at –15°C until analysis of inorganic arsenic species by HG-AFS.  215 

This experiment was done three times, twice with algae exposed to and additional spikes of 216 

100 µg As(V)/L and once with algae exposed to 300 µg As(V)/L and a spike of 300 217 

µg As(V)/L. 218 

 219 

Effect of As(V) on cellular thiol groups in M. arcuatum and Chlorella sp.  220 

To determine whether As(V) reduction to As(III) was coupled to the oxidation of thiol 221 

groups such as glutathione in the cell, cellular sulfhydryl groups (-SH) were determined by 222 

spectrophotometry with 2-2’-dithiodipyridine using a modified method of Grassetti and 223 

Murray [21], adapted for algal cells by Stauber and Florence [22].   224 

Test solutions were prepared in triplicate at three As(V) concentrations for both M. 225 

arcuatum (0 (control), 260 and 500 µg As(V)/L) and Chlorella sp. (0 (control), 25 and 50 mg 226 

As(V)/L) using nutrient concentrations of 0.15 mg PO4
3-

/L and 15 mg NO3
-
/L.  Solutions 227 

were inoculated with a high algal cell biomass (2-3 × 10
5
 cells/mL) and incubated for either 228 

24 or 48 h under standard growth conditions. 229 

After the exposure period, treatment flasks were combined and 30 mL (by mass) 230 

dispensed into four 50 mL polypropylene centrifuge tubes.  Three replicates were exposed to 231 

2-2’-dithiodipyridine, with the last replicate a blank.  They were processed as per Stauber and 232 

Florence [22], and the absorbance of the samples at 341 nm and 233 nm was measured on a 233 
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UV-Visible spectrophotometer (Ultrospec IIE, LKB Biochrom, Cambridge, UK).  Using a 234 

calibration curve generated with freshly prepared 0.001 M reduced glutathione (GSH) 235 

solution (Sigma) as a standard, the concentration of free thiols in controls and arsenic-treated 236 

cells was calculated.  Student t-tests were performed for pairs of As(V) concentrations to 237 

determine if differences in the number of thiol groups were significant (P ≤ 0.05). 238 

 239 

Arsenic analyses 240 

HG-AFS, ICP-MS and HPLC-ICP-MS were all used to determine concentrations of 241 

total arsenic and arsenic species in solution and in algal cells.  All calibration standards were 242 

prepared fresh on the day of analysis using matrix-matched solutions. 243 

Total arsenic and inorganic arsenic speciation in solution were analysed by HG-AFS 244 

using a PSA Excalibur system (PS Analytical, Kent, UK).  Total arsenic was measured after 245 

oxidative digestion of organics to As(V) in 1% K2S2O8 in an autoclave for 30 minutes 246 

(120°C).  Quantitative reduction of As(V) to As(III) was achieved by standing for 30 minutes 247 

with 32% HCl, 1.3% KI and 0.25% ascorbic acid.  Online delivery of 33% (w/v) HCl and 248 

1.5% (w/v) NaBH4 (stabilised in NaOH) converted As(III) to AsH3 for detection.  Total 249 

inorganic arsenic was determined by eliminating the persulphate digestion.  For As(III) 250 

determination, online delivery of 0.3M acetic acid-0.2M sodium acetate and 1.5% (w/v) 251 

NaBH4  (stabilised in NaOH) converted As(III) to AsH3.  Samples were in the same acetic 252 

acid- sodium acetate matrix.  Matrix-matched calibration curves using As(III) and As(V) 253 

standards were generated and the total inorganic As and As(III) concentrations calculated 254 

directly, and As(V) calculated by difference. 255 

Samples requiring determination of total As in an acidic matrix (e.g. As adsorbed to 256 

flask walls and intracellular As) were measured by ICP-MS (Perkin Elmer Elan-6000, 257 

Australia) following a microwave digestion step [23].  258 
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Where low to trace concentrations of organic arsenic compounds were of interest in 259 

cells, microwave-assisted extraction coupled with HPLC-ICP-MS was primarily used for 260 

quantitative speciation analysis.  Both anion- and cation-exchange HPLC-ICP-MS was used 261 

according to the method thoroughly outlined and validated in prior work of Kirby and Maher 262 

[24] and Kirby et al. [25].  Because microalgal cell masses were small (1-3 mg) following 263 

freeze-drying (Labconco, Australia), they were extracted without subsampling.  Calibration 264 

curves were prepared using a mixed standard of sodium arsenite, sodium arsenate 265 

heptahydrate, sodium dimethylarsenic (Alltech - Specialists, Australia) and disodium 266 

monomethylarsenic (Alltech - Specialists, Australia) in Milli-Q water.  Characterisation of 267 

arsenosugars was done with standards previously isolated and purified as described in Kirby 268 

and Maher, [24].  Standards were run at regular intervals throughout sample analysis. 269 

 270 

RESULTS 271 

Toxicity of arsenic to microalgae 272 

The effects of As(III) and As(V) on the growth rates of Chlorella sp. and M. arcuatum 273 

are shown in Table 1.  Growth rates of controls in the toxicity tests ranged from 1.2-1.8 274 

doublings/day for M. arcuatum and 1.3-1.7 doublings/day for Chlorella sp., except for one 275 

Chlorella sp. test where the growth rate was only 0.9 doublings/day, possibly due to late 276 

inoculation at the end of the light cycle.  Measured (initial) concentrations of As(III) and 277 

As(V) ranged from 68-72% and 69-109% of nominal concentrations, respectively.  The pH 278 

increased by a maximum of 0.5 pH unit for all tests except for three individual M. arcuatum 279 

treatments (0, 50, 100 µg As(V)/L) that increased by up to 1.1 pH units. 280 

Algal growth rate decreased as the concentration of arsenic increased.  Slight 281 

stimulation of algal growth (2-8%) occurred at the lowest arsenic concentrations in some 282 

tests.  Both species were insensitive to As(III) with 72-h IC50 values of 14.6 and 25.2 mg/L 283 
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for M. arcuatum and Chlorella sp., respectively.  Complete growth inhibition (< 5% of 284 

controls) was found at 50 mg As(III)/L for both species.  The direct impact of adding As(III) 285 

to these alga was not further investigated due to lack of inter-species sensitivity differences,  286 

As(III) concentrations that caused toxicity were orders of magnitude above expected 287 

environmental concentrations of total arsenic in freshwater and because As(V) is the 288 

thermodynamically-favoured species in oxidised freshwaters [1, 2]. 289 

 Data from the three individual As(V) toxicity tests for Chlorella sp. and M. arcuatum 290 

were combined to determine a concentration-response curve for the toxicity of As(V) to each 291 

alga (Fig. 1).  Using non-linear regression, the 72-h IC50 for Chlorella sp. was 25.4 mg As/L, 292 

with 95% confidence limits (CL) of 25.2 to 25.7 mg As/L.  This alga showed similar 293 

tolerance to both As(III) and As(V), however, both 72-h IC50 values were several orders of 294 

magnitude above expected environmental arsenic concentrations.  As(V) was about 100 times 295 

more toxic to M. arcuatum than Chlorella sp., with a 72-h IC50 (95% CL) of 0.254 (0.253-296 

0.255) mg As/L.  Significant effects of As(V) on the growth rate of M. arcuatum were found 297 

at As(V) concentrations as low as 50 µg/L in one test, however, the mean LOEC value from 298 

three tests was 81 µg/L, with a NOEC of 39 µg As(V)/L. 299 

The toxic mode of action of As(V) on M. arcuatum was of interest due to its greater 300 

sensitivity to As(V) compared with Chlorella sp.  Thus a number of more detailed 301 

experiments were conducted, using M. arcuatum, to try and elucidate the mechanism of 302 

toxicity (see below). 303 

 304 

Effect of phosphate on As(V) toxicity to M. arcuatum 305 

When the phosphate was increased to 1.5 mg/L, lowering the N:P ratio in solution 306 

from 150:1 to 15:1, As(V) was much less toxic to M. arcuatum.  The 72-h IC50 was 4.53 307 

mg As(V)/L, compared to the standard bioassay with a 72-h IC50 of 0.254 mg/L (Table 1).  308 
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The NOEC and LOEC values also increased approximately 20-fold when the phosphate 309 

concentration was increased.  To establish that this was a result of changing the phosphate 310 

concentration and not changing the N:P ratio, a separate test with a lowered nitrate 311 

concentration (1.5 mg NO3
-
/L) and a molar N:P ratio of 15:1 was conducted (0.15 mg PO4

3-
312 

/L).  In this test, the 72-h IC50 (0.183 mg As(V)/L) was only slightly (but significantly, 313 

P<0.05) lower than the 72-h IC50 from the standard test using 15 mg NO3
-
/L (0.254 mg 314 

As(V)/L) (Table 1).  This suggests that the ameliorating effect on As(V) toxicity observed in 315 

the high phosphate growth bioassay (N:P;15:1), was due to increasing phosphate 316 

concentration alone. 317 

 318 

Effect of phosphate on the concentration of intracellular and extracellular arsenic 319 

The distribution of arsenic in the various algal fractions after 72 h are shown in Table 320 

2 for low phosphate (0.15 mg PO4
3-

/L) and high phosphate (1.5 mg PO4
3-

/L) bioassays.  Good 321 

recovery of arsenic was obtained (96-103% of the initial arsenic in solution), with most of the 322 

arsenic (> 99%) in the dissolved arsenic fraction.  Arsenic concentrations in the cellular 323 

fractions were low.  The concentration of arsenic in all fractions increased with increasing 324 

initial arsenic in the media. 325 

Extracellular and intracellular concentrations of total arsenic on a per cell basis are 326 

shown in Fig. 2.  Results are expressed this way to overcome substantially lower total cell 327 

numbers at higher arsenic concentrations, due to toxic effects on growth.  Preliminary 328 

experiments showed that arsenic did not substantially alter the size of M. arcuatum, i.e. 329 

arsenic load did not change as a result of surface area or volume changes.  Extracellular and 330 

intracellular concentrations of arsenic increased with increasing concentrations of arsenic 331 

added to the growth medium.  The concentrations of intracellular and extracellular arsenic 332 
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were significantly higher (P ≤ 0.05) when the bioassay was carried out in low phosphate (0.15 333 

mg PO4
3-

/L) compared to high phosphate (1.5 mg PO4
3-

/L) solutions (Table 2). 334 

 335 

Speciation and distribution of arsenic in microalgae 336 

The distribution of arsenic after 72-h exposure to As(V) is shown in Fig. 3 for both M. 337 

arcuatum and Chlorella sp.  Of the As recovered, > 94% was in solution, < 0.01% was 338 

associated with the cells and < 1.3% was adsorbed to the flask walls.  The amount of total As 339 

adsorbed to the flask increased with increasing concentrations of As(V) used in the test 340 

medium.  Addition of a rinsing step resulted in up to 6.2% of total As being recovered in this 341 

fraction, with cellular concentrations of As(V), As(III), DMA and MMA in Chlorella sp. 342 

decreasing by 2-4 fold.  This highlighted that carryover of dissolved arsenic, in the mg/L 343 

range, results in overestimation of cellular arsenic. 344 

As(III) was present in test media containing M. arcuatum after a 72-h exposure to 345 

As(V) (Fig. 3).  The percentage of initial As(V) reduced to As(III) decreased from 95% to 346 

22% with increasing initial As(V) concentrations.  However, no As(III) was detected in the 347 

blanks (no algae), indicating that the presence of As(III) in M. arcuatum solutions was due to 348 

biological reduction.  In a separate As(V) exposure test, inorganic As concentrations were 349 

measured at 24-h intervals throughout the 72-h bioassay with M. arcuatum.  As(V) reduction 350 

to As(III) was observed in the initial 24-h period and the reduction continued over time: 41% 351 

and 65% of the 260 µg As(V)/L treatment was detected as As(III) at 24 and 48 h, 352 

respectively; and 46% and 72% of the 500 µg As(V)/L treatment was detected as As(III) at 24 353 

and 48 h.  Between 48 and 72-h, As(V) reduction to As(III) was similar. 354 

In contrast, As(III) was not detected in solution after 72 h in Chlorella sp. bioassays 355 

(Fig. 3).  There was no detectable MMA, DMA, phosphate arsenoriboside or other organic 356 

species of arsenic in solution at 72 h for either algae. 357 
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Five arsenic species were detected in the cells; As(V), As(III), MMA, DMA and 358 

phosphate arsenoriboside (P-sug) (Fig. 4).  No other arsenic species were detected in any of 359 

the tests.  Cells contained predominantly As(V) followed by As(III).  Although cellular 360 

concentrations of arsenic species in Chlorella (after rinsing) were a maximum of 6-fold 361 

higher than arsenic species accumulated by M. arcuatum, M. arcuatum had been treated with 362 

concentrations of As(V) 100 times lower than Chlorella.  Thus M. arcuatum accumulated 363 

more arsenic from solution relative to Chlorella sp., and was consequently more sensitive to 364 

As(V) than Chlorella sp. 365 

For Chlorella sp., concentrations of cellular As(V) and As(III) generally increased 366 

with increasing As(V) concentrations in the growth medium, in contrast to M. arcuatum 367 

where concentrations of As(V), DMA and phosphate arsenoriboside were at a maximum in 368 

the 0.210 mg/L (rinsed cell) treatment (Fig. 4).  Trace concentrations of phosphate 369 

arsenoriboside were occasionally detected in Chlorella cells.  Higher amounts of phosphate 370 

arsenoriboside were detected in M. arcuatum with a mean value of 44.7 ± 19.6 × 10
-18

 g/cell 371 

in the 0.210 mg As/L treatment. 372 

 373 

Cellular reduction of arsenic(V) to arsenic(III) by M. arcuatum 374 

Preliminary experiments demonstrated that M.arcuatum did not inherently produce an 375 

exudate that could reduce arsenic. 376 

M. arcuatum exposed to 0.1 mg/L and 0.3 mg/L As(V) for 48 h reduced the As(V) in 377 

solution to As(III) by approximately 41% (0.04 mg As(III)/L) and 11% (0.03 mg As(III)/L), 378 

respectively.  There was no reduction of As(V) to As(III) in the growth medium in the 379 

absence of M. arcuatum cells, indicating that arsenic reduction was biologically mediated.   380 

After the initial 48-h exposure (control, 0.1 or 0.3 mg/L As(V)), the cells were 381 

removed and the supernatant spiked with an additional 0.1 or 0.3 mg As(V)/L for a further 24 382 
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h.  No further reduction of As(V) was observed in this period.  This showed that the reduction 383 

of As(V) to As(III) only occurred in the presence of cells, i.e. the reduction was not due to an 384 

exudate released by the cells, generated in the presence of As(V). 385 

 386 

Effect of As(V) on cellular thiol groups in M. arcuatum and Chlorella sp. 387 

Oxidation of thiols such as glutathione has previously been shown to be a potential 388 

mechanism by which cell division is inhibited by metals in algal cells [19].  The hypothesis 389 

was that reduced glutathione (GSH) is oxidised (to GSSG) as As(V) is reduced to As(III).  390 

Decreased SH concentrations for As(V) treatments compared to controls (no As(V)) indicated 391 

that thiol groups were oxidised.  Preliminary experiments with As(V) and glutathione in cell-392 

free solution, showed that As(V) did not oxidise GSH to GSSG in the absence of algal cells.  393 

Arsenic toxicity and As(V) reduction to As(III) were similar when both high (3 × 10
5
 394 

cells/mL) and low (2-4 × 10
4
 cells/mL) initial cell densities were used. 395 

In unexposed controls, M. arcuatum contained 8.2 ± 1.9 nmol SH 10
-6

 cells.  Thiols 396 

significantly decreased as the concentration of arsenic and time of exposure increased, 397 

however, results were variable.  After a 24-h exposure to 500 µg As(V)/L, thiol 398 

concentrations were significantly lower (P <0.05) in two of the three tests (16% and 57% of 399 

controls).  After a 48-h exposure, thiol concentrations were 15 and 37% of controls in two of 400 

the three tests. 401 

A similar pattern was observed for Chlorella sp., with a mean number of thiols of 7.9 402 

± 3.3 nmol SH 10
-6

 cells in unexposed controls.  After 48-h exposure to 25 mg As(V)/L (the 403 

approximate IC50 for Chlorella sp.) thiol concentrations were significantly decreased (16-404 

75% of controls).  After a 72-h exposure, thiol concentrations were also decreased (55% of 405 

control and 14% of control at 25 and 50 mg As(V)/L, respectively).  When Chlorella sp. was 406 

exposed to much lower arsenic concentrations, similar to that of M. arcuatum (i.e. 500 µg 407 
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As(V)/L) thiol concentrations were not significantly different after 24 h (92% of control) but 408 

were significantly lower (P <0.05) after a 48- and 72-h exposure (61 and 68% of controls).  409 

The variation observed is these results is likely due to the cells being damaged but not lysed 410 

by the addition dithiodipyridine solution and vortexing.  Thus, conversion of internal thiols 411 

may differ between experiments. 412 

 413 

DISCUSSION 414 

Arsenic toxicity 415 

The current results confirm that the toxicity of arsenic to freshwater microalgae 416 

depends on the chemical species of arsenic, the algal species and the phosphate concentration 417 

in the test medium.  Arsenate and arsenite were approximately equally toxic to Chlorella sp., 418 

with IC50s of 25.4 mg As(V)/L and 25.2 mg As(III)/L).  M. arcuatum was more sensitive to 419 

As(V) (IC50: 0.254 mg As(V)/L) than Chlorella sp. and more sensitive to As(V) than As(III) 420 

(IC50: 14.6 mg As(III)/L). 421 

The 12-14-d growth inhibition IC50 values for As(V) spanned five orders of 422 

magnitude for Scenedesmus obliquus, Ankistrodesmus falcatus, Selenastrum capricornutum, 423 

Scenedesmus quadricauda and Chlamydomonas reinhardtii (0.048, 0.256, 31, 61, 202 mg/L, 424 

respectively) [10,11,12].  Although different test durations and conditions such as 425 

photoperiods and phosphate concentrations make comparison difficult, this illustrates that 426 

even in a single genus, there are large variations in sensitivity of microalgae to arsenic.  427 

  The toxicity of arsenic to freshwater microalgae is also dependent on the chemical 428 

species of arsenic added.  It has been reported that As(V) is more toxic than As(III) to 429 

freshwater algae, while the reverse is true for marine algae and humans [1,26].  In 96-h 430 

growth inhibition tests with the freshwater green alga Selenastrum capricornutum, IC50 431 

values of 31 and 0.69 mg As/L were found for As(III) and As(V) respectively [27], while the 432 
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toxicity of arsenic decreased in the order As(V)>As(III)>DMA for natural algal assemblages 433 

in an arsenic-contaminated freshwater lake [28].  Contrary to this, it was found that As(III) 434 

was more toxic than As(V) to Chlorella vulgaris (isolated from arsenic-contaminated 435 

freshwaters) with growth increasing with As(V) concentrations up to 2000 mg/L, and growth 436 

inhibition at As(III) concentrations > 40 mg/L [9]. 437 

Our results showed that a ten-fold increase in the phosphate concentration decreased 438 

the toxicity of As(V) to M. arcuatum by approximately twenty-fold (Table 1).  The reduced 439 

toxicity of As(V) was a result of higher phosphate concentrations, rather than simply due to 440 

changing the N:P ratio (Table 1).  The concentration of phosphate in solution significantly 441 

affected the amount of arsenic adsorbed to the surface of M. arcuatum and the amount of 442 

arsenic that was accumulated inside the cell (Table 2).  At low phosphate concentrations, 443 

intracellular and extracellular arsenic concentrations were high, corresponding to increased 444 

growth inhibition, compared to the bioassays carried out at high phosphate concentrations.  445 

With an increase in phosphate concentration in the bioassay medium, less arsenic binds to the 446 

algal cell, and less arsenic is taken up intracellularly (Fig. 2), supporting the hypothesis that 447 

arsenate and phosphate compete for uptake in algal cells.  This further supports the study by 448 

Maeda et al [29] which showed that the toxic effect of 10 mg As(V)/L to Chlorella vulgaris 449 

decreased when the phosphate concentration increased from 14 to 14000 mg PO4
3-

/L.  450 

However, these authors used high arsenic concentrations (1-1000 mg As(V)/L), high cell 451 

densities, and an isolate from a contaminated environment.  High cell densities decrease the 452 

toxic load to cells [20], while there exists the potential for adaption and species sucession in 453 

polluted environments.  Consequently Chlorella vulgaris was very tolerant to As(V) (52% 454 

growth inhibition at 5 g As(V)/L) when compared M. arcuatum in our study (IC50: 254 µg 455 

As(V)/L).  Maeda et al. [30] also determined intracellular and extracellular As in Chlorella 456 

vulgaris using only water to remove extracellular arsenic.  The amount of arsenic adsorbed to 457 
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and accumulated inside the cells increased 10-fold with each 10-fold increase in the 458 

concentration of arsenic in the test medium.  Similar trends were observed in M. arcuatum in 459 

our current study, using a phosphate buffer to desorb As from the algal cell surface. 460 

While phosphate has been shown to affect arsenate uptake into M. arcuatum, it is not 461 

known if arsenate reduces phosphate uptake into the alga, thereby contributing to inhibitory 462 

effects of arsenate on algal growth.  However, because phosphate is an essential nutrient, 463 

competition between arsenate and phosphate for cellular uptake is likely to be one mode of 464 

toxic action in microalgae.  Increases in arsenic have been shown to decrease phosphate 465 

uptake in five freshwater algae, Anabaena variabilis, Chlamydomonas reinhardtii, 466 

Cryptomonas erosa, Melosira granulata and Ochromonas vallesiaca [31]. In contrast, it was 467 

found that phosphate uptake in Synechococcus leopoliensis, a cyanophyte, was not affected by 468 

arsenate even when the concentration of arsenate was fifty times that of phosphate, possibly 469 

because this species had a highly specific phosphate transport system [32]. 470 

 471 

Arsenic accumulation and biotransformation 472 

Accumulation of arsenic by freshwater microalgae typically increased with increasing 473 

arsenate concentrations in the test medium (Fig. 4), similar to other studies [18,29,32].  474 

Maeda et al. [9] also showed that accumulation of As only occurred in live C. vulgaris cells, 475 

suggesting an active uptake mechanism. 476 

In our studies, As(V) was the main arsenic species in cells, followed by 1-6% as 477 

As(III).  Maeda et al. [33] also found that >95% of arsenic was accumulated by freshwater 478 

algae as inorganic species.  They found that dimethylated arsenic was the major methylated 479 

arsenic compound detected.  However, while both Chlorella sp. and M. arcuatum in our study 480 

methylated As(V) to MMA, DMA and phosphate arsenoriboside (Fig. 4), these products were 481 

present only in low concentrations in the cells and were not detectable in solution.   482 
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In our study 0-12% of cellular arsenic occurred as the phosphate arsenoriboside.  483 

Arsenoribosides have only recently been positively identified in one freshwater alga, 484 

Chlorella vulgaris, with comparison to the retention time of arsenoriboside standards.  485 

Glycerol, phosphate and sulfonate arsenoribosides were detected, with phosphate 486 

arsenoriboside occurring in the highest concentration of 0.2-5% of accumulated arsenic [7].  487 

Agar plating was not carried out, but no significant differences occurred between cultures 488 

treated with and without antibiotics.  Arsenoribosides have also been identified in Nostoc 489 

flagelliforme, a terrestrial cyanobacterium [34].  It is possible that the arsenoribosides 490 

detected were produced by bacteria in the cultures rather than the microalgae themselves, but 491 

our study with bacteria-free algal cultures confirms that microalgae exposed to low arsenic 492 

concentrations can produce trace arsenoribosides, but it does not appear to be a major 493 

detoxification pathway. 494 

Bioassays with exponentially growing cells showed that when M. arcuatum (but not 495 

Chlorella sp.) was exposed to As(V), As(III) was excreted into solution.  Hellweger et al. [35] 496 

found that As(III) excretion into solution was more likely during the exponential phase of 497 

growth.  Algae in the stationary phase of growth (phosphate limited) were more likely to 498 

methylate arsenic to more complex organic arsenic compounds, which are then excreted.  499 

Similarly, it was found that when Chlorella vulgaris accumulated inorganic, mono- and di-500 

methylated arsenic over 20 days, it excreted inorganic As together with trimethylated arsenic 501 

species after 4 days and dimethylated arsenic species after 14 days [18].  Trivalent 502 

methylarsenic species have also been detected in the growth medium of the green alga 503 

Closterium aciculare [36] but were not detected in our current study using HPLC-ICP-MS.  It 504 

is possible that, if methylation of arsenic occurs to a greater extent in stationary phase cells, 505 

then larger concentrations of arsenoribosides may have been detected if stationary phase 506 

rather than exponentially growing algae had been used in our experiments. 507 
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As(V) reduction to As(III) occurs intracellularly (or in the cell membrane) in M. 508 

arcuatum and the As(III) is then excreted into the test medium.  Similar trends have also been 509 

found in bacteria and yeasts [14], with As(V) reduced to As(III) via an arsenate reductase and 510 

then removed from the cytosol by either a secondary carrier, using energy from an existing 511 

ion gradient, or in a complex with a second protein via an ATP-coupled pump. 512 

Our study supports the biotransformation model of Cullen et al. [17,37] in which  513 

arsenate is taken up by algal cells using a phosphate transport system, reduced to As(III) in 514 

the cell by thiols and/or dithiols and then excreted into the growth medium, probably by an 515 

active transport system.  At longer exposure times, As(III) may be methylated to MMA, then 516 

to DMA and trimethylated arsenic species, which then diffuses into the growth medium. 517 

In the marine microalga Nitzchia closterium, toxicity of copper was shown to be a 518 

cytosolic reaction between copper and GSH [22].  The cellular ratio of GSH:GSSG, critical to 519 

mitotic cell division, was lowered.  We hypothesised that in M. arcuatum, reduction of As(V) 520 

to As(III) may be coupled with oxidation of GSH, ultimately resulting in inhibitory effects on 521 

cell division.  If this was the case, total thiol concentrations in the cells should be reduced in 522 

the presence of arsenate, at concentrations that are inhibitory to algal growth.  Thiol cell 523 

concentrations were lower in M. arcuatum at high concentrations of As(V) (0.5 mg As(V)/L) 524 

at 24 and 48-h compared to controls, but variability in the results suggest improvements must 525 

be made to this technique for freshwater algae before strong conclusions can be made (as 526 

using marine algae, e.g. [22], osmotic shock effectively lyses the cell).  Excretion of As(III) 527 

may not keep pace with arsenic reduction, leading to accumulation of As(III) in the cells.  528 

As(III) is known to bind strongly to thiols in plants and animals [13].  As(III) appears to only 529 

be toxic once accumulated inside cells, as As(III) in the medium was not toxic to either M. 530 

arcuatum or Chlorella sp. 531 
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In Chlorella sp., thiol oxidation was also observed at As(V) concentrations that inhibit 532 

cell division (25 mg As(V)/L).  This indicates that As(V) reduction may be coupled to thiol 533 

oxidation, but the alga lacks the arsenite transporter to excrete As(III) into the medium.  It is 534 

possible that Chlorella sp. is able to detoxify arsenite inside the cell by sequestering it into 535 

subcellular compartments much like the yeast Saccharomyces cerevisiae complexes As(III) 536 

with glutathione, transferring the product from the cytosol into vacuoles via a specific 537 

transporter [14]. 538 

In freshwater environments, arsenic is unlikely to be toxic to M. arcuatum, except in 539 

highly contaminated surface and groundwaters containing >50 µg As/L.  In such 540 

environments, it is likely that As(V) is taken up by algal cells due to its similarity to 541 

phosphate, and is quickly reduced to As(III).  Toxicity is most likely due to the presence of 542 

As(III) in the cell, when the ability to excrete or sequester As(III) is overwhelmed and the 543 

As(III) subsequently binds to intracellular thiols, inhibiting cell division.  The disruption of 544 

phosphate metabolism by incorporation of As(V) into phosphorylated compounds, vital to the 545 

cycling of ATP, may also contribute to arsenic toxicity. 546 

 547 
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Table 1. 72-h toxicity of As(III) and As(V) to Chlorella sp. and Monoraphidium arcuatum, 

under different nutrient conditions 

 [NO3
-
]  [PO4

3-
]  N:P 72-h IC50

a
 (mg/L) LOEC

b
 (mg/L) 

 (mg/L) (mg/L) (molar)   

As(III)      

Chlorella sp. 15 0.15 150:1 25.2 (23.3-29.2)
c
 -

d 

M. arcuatum  15 0.15 150:1 14.6 (11.7-17.7)
c
 3.75

c
 

As(V)      

Chlorella sp. 15 0.15 150:1 25.4 (25.2-25.7)  1.93 

M. arcuatum  15 0.15 150:1 0.254 (0.253-0.255)  0.081 

M. arcuatum- high PO4
3- 

 15 1.5 15:1 4.53 (4.02-4.83) 
c
 1.91 

c
 

M. arcuatum- low NO3
- 
 1.5 0.15 15:1 0.183 (0.170-0.192) 

c
 0.054 

c
 

a
 IC50: concentration of As which inhibits growth rate by 50%, calculated from a 

concentration response curve developed from 3 separate growth inhibition toxicity tests, 

unless otherwise indicated.  Brackets indicate 95% confidence limits 

b
 LOEC: lowest-observable-effect concentration, calculated as the geometric mean of three 

LOECs from three separate tests, unless otherwise indicated 

c
 Results are calculated from a single growth inhibition toxicity test 

d
 LOEC > IC50 therefore not reported 
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Table 2.  Mean arsenic distribution in M. arcuatum fractions after 72-h exposure to varying 

As(V) and PO4
3-

 concentrations 
a
 

[PO4
3-

] 

(mg/L) 

Initial 

nominal 

[As] (µg/L) 

Initial 

measured 

[As] (µg/L)
b
 

% 

Recovery
c
 

Dissolved 

As (µg/L) 

As in 

rinse 
d
 

(µg/L) 

Extracellular As 

(×10
-18

 g/cell)
e,f

 

Intracellular As 

(×10
-18

 g/cell)
f
 

0 (control) < 0.5 - 0 ± 0 0.0 ± 0.0 140 ± 15 ND
g
 

125 123 102 ± 1 125 ± 2 0.7 ± 0.0 1100 ± 270 1200 ± 390 

250 236 103 ± 0 244 ± 1 1.4 ± 0.2 1400 ± 120 2400 ± 380 

0.15 

1000 1000 98 ± 2 985 ± 19 5.7 ± 0.3 3900 ± 410 2600 ± 110 

0 (control) < 0.5  - 0 ± 0  0.0 ± 0.0 15 ± 34 12 ± 21 

250 247 96 ± 1 237 ± 2 1.4 ± 0.4 40 ± 74 180 ± 22 

1000 935 101 ±  2 945 ± 22 7.5 ± 2.5 110 ± 50 400 ± 140 

1.5 

3000 2880 99 ± 2 2840 ± 43 20 ± 1.5 1100 ± 100 1600 ± 330 

a
 Mean calculated from 3 replicates, ± one standard deviation (SD) from the mean 

b  
No SD indicated for initial measured arsenic as it was calculated from 3 pooled sub-samples 

c
 % Recovery = total As/measured initial As concentrations × 100 

d
 Rinse was performed to prevent overestimation of extracellular As due to carryover from 

dissolved fraction.  

e
 Extracellular As is the combination of both phosphate washes 

f  
Extracellular blank (phosphate buffer) was 0.6 (± 0.2) µg As/L and intracellular blank (acid 

matrix) was <0.1 µg As/L 

g
 ND not detected 
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Fig. 1.  Effect of As(V) on 72-h growth rate of Monoraphidium arcuatum ( ) and Chlorella 

sp. 12 ( ).  Concentration-response curves were based on combined data from three toxicity 

tests.  Error bars represent one standard deviation of three replicates. 

 

Fig. 2.  Intracellular and extracellular arsenic concentrations in M. arcuatum when bioassays 

were carried out with varying As(V) concentrations (0-3000 µg As(V)/L) at low and high 

phosphate concentrations (0.15 and 1.5 mg PO4
3-

/L).  Note that the legend is based on 

nominal concentrations of As, measured initial concentrations are given in Table 2 and vary 

slightly between low and high phosphate tests.  

 

Fig. 3.  Mass balance of arsenic species in solution after 72 hours of growth of (a) 

Monoraphidium arcuatum and (b) Chlorella sp. 12.  As(V) and As(III) in solution, total 

arsenic (TAs) in the cells and adsorbed to the flask walls were measured for all test 

treatments.  * This column in each figure is the average from 3 separate bioassays run with 

0.210 and 26.4 mg As(V)/L for M. arcuatum and Chlorella sp. respectively; these tests 

incorporated a rinsing step of the algal cells to investigate the As carryover from solution to 

cells in the subsequent analysis, and thus a rinse fraction is shown only for these test 

treatments. 

 

Fig. 4(a)  Concentration of As species in Chlorella sp. 12 after 72-h exposure to 8.80-39.6 mg 

As(V)/L.  Values indicated for 26.4 mg As(V)/L were the result of triplicate speciation 

bioassays which incorporated a rinsing step prior to analysing the cells.  Values for control, 

8.8 and 39.6 mg As(V)/L were the result of a single speciation bioassay and did not 

incorporate a rinsing step prior to analysing the algal cells. (b)  Concentration of As species in 

Monoraphidium arcuatum after 72-h exposure to 0.103-0.298 mg As(V)/L.  Values indicated 

for 0.210 mg As(V)/L were the result of triplicate speciation bioassays which incorporated a 

rinsing step prior to analysing the cells.  Values for control, 0.103 and 0.298 mg As(V)/L 

were the result of a single speciation bioassay and did not incorporate a rinsing step prior to 

analysing the algal cells.  MMA = monomethylarsonic acid; DMA = dimethylarsinic acid; P-

sug = phosphate arsenoriboside.
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