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Carcinogenic nickel compounds are usually found to be weak mutagens; therefore these compounds may not exert their carcinogenic activity
through conventional genotoxic mechanisms. On the other hand, the activities of many nickel compounds have not been adequately investigated.
We evaluated the genotoxic activities of nickel acetate using conventional chromosome aberration and sister chromatid exchange assays and found
that there was no increase of chromosome aberrations or sister chromatid exchanges, although the highest dose (1000 pM) caused mitotic inhibi-
tion. In addition,. we investigated its effect on DNA repair using our challenge assay. In this assay, lymphocytes were exposed to 0.1 to 100 pM
nickel acetate for 1 hr during the GO phase of the cell cycle. The cells were washed free of the chemical and, 1.5 hr later, were irradiated with two
doses of yrays (75 cGy per dose separated by 60 min). A significant dose-dependent increase of chromosome translocations was observed
(p<0.05). The increase is more than expected based on additive effects from exposure to nickel or yrays individually. In contrast to the increase of
chromosome translocations, there was no increase in chromosome deletions, although there was a nickel dose-dependent reduction of mitotic
indices. Our data suggest that pretreatment with nickel interferes with the repair of radiation-induced DNA damage and potentially cause mistakes
in DNA repair. Furthermore, we suggest that nickel-induced abnormal DNA repair may be a mechanism for its carcinogenic properties. The DNA
repair problems that we observed after exposure to low doses of nickel may be viewed as a type of adaptive response. Contrary to some investiga-
tors who showed that adaptive responses may be beneficial, our data indicated that some responses may cause more problems than expected.
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Introduction

It is well recognized by scientists and by
knowledgable lay people that many of our
long-term health problems are due to
chronic exposure to low doses of varying
hazardous agents, including cigarette
smoke and occupational exposures to
known carcinogens (1,2). These exposures
may induce detectable genetic alterations in
the exposed populations, e.g., chromosome
aberrations (3), which are indicative of
long-term consequences. On the other
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hand, the exposure may not cause
detectable genetic damage although the
exposed populations may be at risk for
adverse health outcomes. The latter phe-
nomenon requires special attention and
requires studies to elucidate further the
mechanisms for induction of health effects.
One such mechanism is the induction of
DNA repair problems. Defects in DNA
repair may cause cells to make serious mis-
takes from repairing innocuous DNA
lesions to generating multiple genetic dam-
age, such as chromosome instability. Such
DNA repair errors allow genetic alterations
relevant to the development of cancer to
evolve. Therefore, defects in DNA repair
can cause genetic instability and subse-
quently health effects.

Carcinogenesis is a complicated process
involving multiple and, often, sequential
genetic alterations (4,5) so that errors in
DNA repair may lead ultimately to car-
cinogenesis. Using an in vivo/in vitro
mouse mammary tumor model, we have
documented that the following sequence of
events occurred before the cells became
tumorigenic: chromosome instability, evo-
lution of cells with stabilized but altered
karyotypes, inactivation of the RB tumor
suppressor gene and amplification of the ¢
myc oncogene (6-8). We hypothesize that
the induced chromosome instability is due

to induction of DNA repair problems and
we have recently developed a challenge
assay to detect this phenomenon (9). In
this report, the activity of a nongenotoxic
carcinogen, nickel, is presented.

Workers exposed to nickel compounds
have a significantly increased risk for the
development of lung cancers; therefore,
these compounds are classified as human
carcinogens (10-12). The properties of
some of these compounds have been stud-
ied extensively and these findings have
been summarized in several recent reviews
(13-15). Among the different kinds of
nickel compounds, insoluble compounds
are usually more carcinogenic than the solu-
ble ones. Although their carcinogenic prop-
erties are well documented, the mechanisms
for these activities are not established yet.
Due to the problems of establishing
dosimetry for insoluble compounds, many
of the genotoxic studies have been con-
ducted with soluble ones. These reports
indicate that most of the carcinogenic
nickel compounds are inactive or weakly
mutagenic in standard genotoxic assays.

Biochemical studies have documented
that nickel can bind to DNA and protein
in cells in vitro (16,17) and to chromatin
in vivo (18). Such binding to cellular
macromolecules is correlated with the com-
pounds’ ability to interfere with DNA syn-
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thesis (16,19). Nickel compounds can
induce slight increases in chromosome
aberrations (/6,20) and sister chromatid
exchanges (21,22), and tend to be weak
mutagens (21,23).

Since nickel compounds are not strong
mutagens by themselves, some investigators
feel that they may be potent co-mutagens.
In fact, nickel compounds can enhance the
induction of mutations by methylmethane
sulfonate in bacteria (24). In mammalian
cells, they can enhance the induction of
mutation by ultraviolet light (21), single
stranded DNA breaks by X-rays, and cell
transformation by benzo[4]pyrene (25).
This enhancement activity of nickel com-
pounds may be due to their effect on DNA
repair. On the other hand, no enhance-
ment effect was detected in a CHO/
HGPRT gene mutation assay (26). Never-
theless, the mechanisms for the potential
synergistic effects need to be elucidated.

We have systematically investigated the
cytogenetic effects of a soluble nickel com-
pound, nickel acetate. In addition, we have
used our challenge assay to elucidate cyto-
genetically its effects on DNA repair. We
have chosen to study nickel acetate because
it is a soluble carcinogenic compound
(27-30) and its clastogenic effects have not
been adequately investigated.

The challenge assay is based on our
hypothesis that chemicals that can bind to
cellular macromolecules are able to inter-
fere with normal cellular functions such as
DNA repair processes and can cause mis-
takes in DNA repair ( 9). The assay is con-
ducted by exposing cells first to the target
chemical (pulse-treatment) and then to ion-
izing radiation. These cells are therefore
challenged to repair the radiation-induced
DNA lesions after chemical exposure so
that repair occurs in the absence of the
chemical. If pretreatment with the target
chemical causes errors in the repair process,
mistakes in repair would occur. One type of
such mistakes is the rejoining of DNA frag-
ments to the wrong DNA molecules which
leads to the formation of rearranged chro-
mosomes. Since radiation-induced DNA
damage is repaired within a very short time
(during the GO phase of the cell cycle in our
protocol), the observed abnormal chromo-
somes are, therefore, not caused by replica-
tion errors. Thus, we interpret our assay
data to indicate DNA repair problems.

The feasibility of the challenge assay has
been tested with lymphocytes from ciga-
rette smokers. We observed that cells from
smokers have significantly more dicentric
chromosomes than those from nonsmokers
after the challenge with X-rays (31). The
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most effective protocol for detecting the
difference was found to be the exposure of
lymphocytes to a double dose of 100 cGy
of X-rays each separated by 60 min.
Therefore, the double exposure protocol
was used in this study. Furthermore, the
exposure doses were reduced from 100 cGy
to 75 cGy per dose since the detection of
effects using low doses is more relevant
than those with higher doses. In this study,
we found that nickel acetate does not cause
chromosome aberrations or sister chro-
matid exchanges in human lymphocytes
even when cytotoxic doses are used. On the
other hand, this compound does induce
abnormal DNA repair.

Materials and Methods

Source of Lymphocytes and Blood
Culture Procetfm

Blood samples are obtained from normal
volunteers who are healthy and not occupa-
tionally exposed to known hazardous agents.
Most of the experiments are conducted with
blood samples from two male donors. The
samples are collected by venipuncture in the
presence of sodium heparin as anticoagulant.
After collection of samples, whole blood cul-
tures are set up using phytohemagglutinin as
mitogen and RPMI 1640 culture medium
according to the techniques established in
our laboratory (31). The only exception is
that autologous plasma from each donor is
added to each culture to enhance cell growth
(0.25 ml per 10 ml culture).

Chemicals

Nickel acetate is purchased from Alfa
Products (Danvers, MA). An appropriate
amount of the compound is weighed out
for use in each experiment. The compound
is dissolved in distilled water, filter steril-
ized and diluted with sterile distilled water
to the desired concentrations.
Irradiation Conditions
Blood cultures are irradiated in a Mark I
Cesium-137 Pneumatic Irradiator which is
located in the Department of Radiation
Therapy. The dose rate is set at 80 cGy/min.
For irradiation, tubes containing blood
cultures are loaded onto a styrofoam-type
holder which can receive six tubes for irra-
diation at one time. The holder is placed in
the center of the cavity of the irradiator and
on top of a rotating platform turning with a
speed of approximately 10 revolutions/min.

Treatment Conditions

Cells are either treated during the GO or
the G1/S phases of the cell cycle. For treat-

ment during the GO phase, cells are treated
with chemicals and/or radiation before cul-
tures are set up. For treatment at the G1/S
phases, cells are treated at 24 hr after initia-
tion of cell cultures. Each culture is treated
with 0.1 ml of the appropriate concentra-
tions of nickel acetate.

Chromosome Aberrations and Sister
Chromatid Exchanges. For treatment at
the GO phase of the cell cycle, cells are
treated with chemicals for 1 hr, washed free
of the chemicals (twice with excess amount
of Hank’s Ca** and Mg** free balanced salt
solution), and then cultures are initiated.
At 16 to 24 hr after initiation, bromo-
deoxyuridine (BrdU) is added to each cul-
ture to achieve a final concentration of 5
M. At 52 hr after initiation of cultures,
cells are harvested, stained with fluorescent-
plus-Giemsa technique and analyzed for
the presence of chromosome aberrations
according to our standardized technique
(31). Two experiments are performed and
100 cells per experiment are analyzed for
the presence of chromosome aberrations.

For treatment at the G1/S phases of the
cell cycle, cells are exposed to different con-
centrations of the chemical from 28 hr until
harvest time. BrdU is added to cultures at
the same time. At 52 hr after initiation of
cell cultures, cells are harvested for chromo-
some aberration and at 72 hr for sister chro-
matid exchange analyses. Three experiments
are performed and 50 cells per experiment
are analyzed for chromosome aberrations
and for sister chromatid exchanges.

Challenge Assay for DNA Repair.
Cells are treated with different concentra-
tions of the chemical at the GO phase of
the cell cycle for 1 hr and washed free of
the chemical as described earlier. At 1.5 hr
after termination of treatment with chemi-
cal, cells are irradiated with two doses of
Y-rays (75 cGy per dose and separated by
60 min). The radiation doses for this
experiment are less than those of our earlier
experiment (31 ) because our empbhasis is to
identify biological responses using as
reduced doses of chemical and radiation as
possible. Furthermore, y-rays instead of X-
rays are used because the former machine is
more readily available for us to conduct
studies. Furthermore, the biological effects
of these two kinds of radiation are very
similar. Cell cultures are initiated after the
completion of irradiation. At 52 hr after
initiation, cells are harvested for chromo-
some aberration analyses. Four experiments
are performed and approximately 50 cells
are analyzed from each experiment for a
total of 200 cells for each treatment condi-
tion. Due to the demand for many cultures
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Table 1. Induction of chromosome abnormalities after exposure to nickel acetate in human lymphocytes.

GO exposure? G1/S exposure’
Concentration, No. cells % chromatid breaks, No. cells % chromatid breaks, No. cells Mean SCE

(uM) analyzed + SEM analyzed + SEM analyzed per cell, + SD

0 200 0.5(0.4) 150 0 150 5.2(0.5)

0.1 NA — 150 0 150 4.9(0.3)

1.0 200 1.0(0.6) 150 0.3(0.3) 150 4.9(0.2)

10 200 1.0(0.6) 150 1.0(0.3) 150 5.0(0.4)

100 200 0 150 0 150 4.9(0.1)

1000 NA — 0 M 0 Mi

Abbreviations: NA, not analyzed; MI, mitotic inhibition. ? Lymphocytes were exposed to the chemical for 1 hr before initiation of culture (GO) or from 28 hr until harvest time
(G1/S). Chromosome-type abnormalities are rarely observed.

Table 2. Induction of chromosome translocations by a combination of nickel acetate followed by y-rays.?

Concentration, Yyrays, Dicentric frequencies per 100 cells (no. cells analyzed)
M cGy Experiment 1 Experiment 2 Experiment 3 Experiment 4
0 75+75 14.0 (50) 14.0 (50) 16.0 (50) 22.0(50)
0.1 75+75 12.0(50) 13.0(70) 10.0(30) 20.0(50)
10 75+75 20.0 (50) 176 (34) 22.7 (66) 26.0(50)
10 75+75 25.0(64) 19.4 (36) 32.5(40) 20.0(60)
100 75+75 23.7 (59) 12.2(41) 23.8(21) 19.0(79)

?Lymphocytes were exposed to the chemical for 1 hr at GO, washed and irradiated 1.5 hr later with two doses of y-rays separated by 60 min. Cultures were initiated after the

treatment.

Table 3. Induction of infidelity of DNA repair by nickel acetate in human lymphocytes®

Concentration, Y-rays, No. cells % chromosome % chromosome % changes from
M cGy mi? analyzed delet., + SD transl., + SD expected
0 75+75 17 200 9.8(2.6) 16.5(3.8) *¢ —
0.1 75+75 13 200 98(22) 138 (4.3)°'d -16.4
1.0 75+75 7 200 10.5(2.6) 216(36)% 309
10 75475 8 200 9.5(2.6) 242(6.1)5% 46.7
100 75+75 6 200 9.0(32) 19.8(5.5)° 20.0

Treatment conditions are similar to those of Table 2. MI = mitotic index (number of metaphase cells from 10,000 cells analyzed). ¢ Significant dose-dependent increase (p<0.05;
analysis of variance). dSigniﬁcantIy different from each other (p<0.05; contrast analysis). ° Significantly different from each other (p<0.05; contrast analysis).

for each experiment, one tube of lympho-
cyte culture is used for each treatment in
each experiment. For the challenge assay,
the cells are treated with chemicals and
radiation, and washed and centrifuged
many times. Many cells are lost from the
extensive manipulation. Sometimes not
enough cells are recovered for analysis of
50 well-spread metaphase cells. In these
cases, additional cells are scored from other
experiments in order to fill the deficiencies.

Results

A summary of the frequencies of chromo-
some aberrations and sister chromatid
exchanges is presented in Table 1. The
cytogenetic effects of nickel acetate are
tested with concentrations ranging from
0.1 to 1000 uM for 1 to 48 hr of exposure.
As shown in the table, none of the expo-
sure conditions induced any increase of
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chromosome aberrations nor sister chro-
matid exchanges. At 1000 pM concentra-
tion, nickel acetate is cytotoxic as indicated
by the inhibition of mitosis.

Our challenge assay is used to investi-
gate whether exposure to nickel acetate can
cause mistakes in DNA repair and lead to
the formation of abnormal chromosomes.
The frequencies of dicentric chromosomes
obtained from four independently con-
ducted studies are summarized in Table 2.
As shown in the table, the collected data
are rather consistent from one experiment
to another. Additional data from these four
experiments are summarized in Table 3. As
shown in the table, the chemical induces a
significant dose-dependent increase of
chromosome-type rearrangements (p<0.05)
as determined by the analysis of variance
procedure although the response falls off at
high doses of nickel acetate (100 pM). In

addition, the translocation frequencies in
cells treated with 0.1, 1.0, and 10 pM
nickel acetate are significantly different
from each other (p<0.05; contrast analysis).
The frequencies for those cells treated with
10 pM of the chemical is significantly dif-
ferent from the control (p<0.05; contrast
analysis). The observed phenomenon is
induced by nickel acetate with concentra-
tions that are not clastogenic by them-
selves. On the other hand, no change in
chromosome-type deletions is observed. In
addition, there is a nickel dose-dependent
reduction of mitotic indices.

Discussion

Carcinogenic nickel compounds are found
to be weakly mutagenic in a variety of short-
term assays, therefore, these compounds
may not exert their carcinogenic activities
using conventional genotoxic mechanisms.
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A unique observation is that these com-
pounds appear to affect heterochromatin
preferentially. Nickel-transformed Chinese
hamster embryo cells have nonrandom dele-
tion of the heterochromatin in the
Xchromosome (32). On the other hand,
other investigators have shown that nickel
compounds can enhance the activities of
mutagenic agents (21,24,25). However, the
mechanisms for expression of these phe-
nomena have not yet been elucidated.

Since nickel compounds are capable of
binding to cellular DNA and proteins
(16-18), they can cause abnormal expres-
sion of cellular functions. We hypothesize
that one of those functions is fidelity of
DNA repair. Using a challenge assay, we
have shown that noncytotoxic and nonclas-
togenic doses of nickel acetate induce sig-
nificant increase of rearrangement-type
chromosome aberrations (p<0.05; Table 3).
On the other hand, the frequency of dele-
tion-type chromosome aberrations is
unchanged after exposure to different com-
binations of nickel and y-rays. The latter
observation suggests that the amount of
DNA strand breaks induced by y-rays may
not have been increased significantly by
prior exposure to different concentrations
of nickel. The increased frequency of
rearranged chromosomes is therefore
caused by problems in repair of radiation-
induced DNA damage. One of the causes
for the problem is the inability to rejoin
radiation-induced DNA fragments so as to
reform the original DNA molecules. This
can be caused by interference from com-
plexes formed between nickel and DNA
and between nickel and repair enzymes.
Another possibility is due to nickel-
induced delay of DNA repair. Delay in
repair may allow a significant amount of
damage induced by the first dose of radia-
tion to interact.with damage induced by
the second dose of radiation (60 min later).
The phenomenon is well documented in
experiments which showed that inhibition
of DNA repair by ara-C after exposure to
X-rays causes significant increase of
rearrangement-type chromosome aberra-
tions (33,34 ). Both mechanisms may exist
for nickel under our experimental condi-
tions. Therefore, we interpret our data to
be indicative of infidelity of DNA repair
caused by exposure to nickel.

A wide range of concentration of nickel
acetate (from noncytotoxic to cytotoxic
doses) is tested in our assay. The shape of
the dose-response curve (last two columns
of Table 3) reflects the biological effects
from exposure to these different doses of
nickel. Although we have not conducted
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mechanistic studies to elucidate the cause
of the response, there are data from the lit-
erature to explain our observed phenome-
non. It is possible that nickel induces an
adaptive cellular response (35). The study
showes that after exposure of cells to a low
dose of a DNA damaging agent, cells
become resistant to damage from exposure
to a high dose of another agent. Induction
of DNA repair enzymes is a possible expla-
nation for this phenomenon. Our data
indicate that the induced adaptive response
may not always be beneficial.

Exposure to the highest dose of nickel
leads to a translocation frequency lower
than that from the second highest dose.
This response may be due to toxicity of
nickel to lymphocytes. It may, on the other
hand, be due to reduced intranuclear con-
centration of nickel at this extracellular
dose. For example, in an i vivo study, the
tissue concentrations of nickel increase
with time, as expected, after exposure to
increasing doses of nickel carbonate (18).
However, at certain tissue concentrations
of nickel, the concentrations in cell nuclei
are actually reduced. This study suggests
that the nucleus has specific mechanisms to
remove nickel after certain extracellular
concentrations of nickel are reached. The
same mechanism may exist in lymphocytes
in our study.

Infidelity of DNA repair is probably an
important causal mechanism in the devel-
opment of cancer. Mistakes in the repair of
spontaneous or induced DNA lesions may
convert generally innocuous DNA damage
into a major defect that can cause long-
term health effects. It is conceivable that
infidelity of DNA repair creates instability
of the genome which permits genetic alter-
ations significant in the development of
cancer to occur. In fact, the observation of
altered p53 genes in cells exposed to
nongenotoxic nickel is consistent with our
suggested activity of nickel (36). The well
documented increase of cancer risk among
patients with DNA repair defects and/or
chromosome instability syndromes is also
consistent with the hypothesis. Therefore,
infidelity of DNA repair may contribute to
the production of multiple and sequential
genetic alterations within the same cell for
clonal adaptation and progression of
abnormal cells. This is the hallmark for
development of cancer (4,5,37,38). Our
data suggest that nickel acetate, and per-
haps other carcinogenic nickel compounds,
can cause DNA repair problems and that
this activity may be one of the mechanisms
responsible for their carcinogenic proper-
ties. Our suggestion is also consistent with

the observation of chromosome abnormali-
ties in mouse tumors induced by nickel
compounds which are not clastogenic (39).

Our challenge assay is designed with
the intention of using it in population
monitoring studies. Therefore, cells are
treated with chemicals during the GO phase
of the cell cycle in order to mimic #n vivo
exposure to chemicals. As part of our in
vitro assay, cells are then exposed to radia-
tion in the absence of chemicals. As
demonstrated by our study with lympho-
cytes from cigarette smokers (31), these
lymphocytes are exposed to cigarette smoke
in vivo and then to radiation in vitro. In
that study, our data indicate that exposure
to cigarette smoke causes DNA repair
problems. After the challenge assay is better
characterized, it may be used to detect
DNA repair problems in cells from workers
who are occupationally exposed to poten-
tially hazardous agents.
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