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Abstract- The aquatic toxicology of the photostable synthetic pyrethroid insecticides as it affects 
two important groups of susceptible organisms- fish and aquatic insects- is discussed. The sensi
tivity of these aquatic species to the pyrethroids is dependent on several factors, including toxico
kinetics, target site (nervous system), sensitivity and possible secondary mechanisms of action, as 
well as chemical and physical properties of the aquatic medium that influence toxicity and bioavail
ability. Uptake rates and routes of fen valerate greatly affected the toxicity of fen valerate to mosquito 
larvae. LD50 values were determined for cuticular and dietary exposure routes by utilizing radio
labeled fenvalerate at the respective LC50 concentrations in the two media (water and food). Fen
valerate was sixfold more toxic to mosquito larvae by the cuticular route. Technical fenvalerate was 
more toxic to larvae than was the emulsifiable concentrate formulation. Addition of different con
centrations of humic acid to the water reduced the toxicity to the larvae. Review and analysis of rele
vant literature are integrated into a discussion of the principles and details of aquatic toxicology of 
the pyrethroids. 
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INTRODUCTION 

In recent years, synthetic pyrethroid insecticides 
have been developed for major uses in agriculture 

and public health. The current commercial prod

ucts were evolved from the natural pyrethrins, 
which possess high insecticidal potency, low mam

malian toxicity and very short persistence. The 

modern synthetic pyrethroids retain some of the at-

tributes of the natural products but have been 

designed to provide enhanced residual activity 
through greater photostability. They are also more 
resistant to chemical and biological degradation by 

virtue of changes at several sites in the molecule 
(Fig. 1): (a) the substituted pentenone ring is 
replaced (typically) by a phenoxybenzyl group, (b) 

the isobutene group is replaced by a halogenated vi-
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Fig. I. Structures of a natural pyrethrin and fenvalerate, 
a photostable synthetic pyrethroid. 



672 J. R. COATS ET AL. 

nyl group or halogenated phenyl ring and (c) a cy
ano group is substituted on the benzylic carbon. 
The first two of these changes increase the photo
stability of the molecule and reduce its susceptibil
ity to oxidation. The third change stabilizes the 
ester bond against hydrolysis. 

The water solubilities of the photostable syn
thetic pyrethroids are in the range of 1 to 10 #Lg/L, 
and the octanol/water partition coefficients range 
from 104 to 107 • 

These halogenated, lipophilic and photostable 
compounds are exceptionally active against many 
insects yet still are relatively safe to mammals and 
birds. However, they are extremely toxic to certain 
aquatic and marine groups, including fish. This ar
ticle presents an overview of the aquatic toxicology 
of the synthetic pyrethroids, including their toxic
ity and toxicokinetics, summarizing research from 
this and other laboratories and presenting new data 
on bioavailability and uptake rates and routes. 

MATERIALS AND METHODS 

Technical-grade fenvalerate was provided by the 
Shell Development Company (Modesto, CA). Pu
rification by silica gel column chromatography 
resulted in greater than 980Jo purity. 3H-[ring]-Fen
valerate was prepared by Amersham Corporation 
(Arlington Heights, IL). 

The bluegill and fathead minnows used in most 
studies were obtained from the Kloubec Fish Farm 
or the U.S. Environmental Protection Agency En
vironmental Research Laboratory in Duluth, Min
nesota. They were acclimated to the laboratory 
conditions for 10 d before use and were not fed for 
24 h before or during exposures. The details of the 
exposure conditions are provided elsewhere [ 1 ,2]. 
All exposure concentrations were monitored by 
GC, as were residue levels in fish [3]. LC50 values 
were calculated using the trimmed Spearman-Kar
ber method [4]. 

The mosquito larvae were reared from eggs ob
tained from a laboratory strain. of Culex pipiens 
pipiens in distilled water; they were fed ground 
Tetramin fish food. 

The mosquito larval LC50 tests were conducted 
with distilled water, 50 ml per assay, in 100-ml Py
rex beakers. Twenty second-instar larvae were 
transferred to each beaker, and the appropriate 
concentration of fenvalerate insecticide was added 
in 0.5 ml acetone. Mortality was recorded at 24 h. 
Insects that did not respond to tapping on the con
tainer were judged to be dead. 

Mosquito larva route-of-entry studies 

Fourth-instar larvae of C. p. pipiens were ex· 
posed to [3H]fenvalerate by two routes of entry, 
cuticular and oral. The concentrations used were 
the LC50 levels: 0.00045 mg/L in the water and 11 
mg/kg in the diet. The 3H-[ring]-fenvalerate uti: 

lized had a specific activity of 3.8 Cilmmol. For 
the cuticular exposure, the insecticide was added, 
in 1 ml acetone solution, to the 100 ml distilled wa
ter containing the larvae. Three replicates of 10 lar· 
vae each were collected, rinsed and combusted at 
each of nine time intervals: 0.5, 1, 1.5, 2, 2.5, 3, 16, 
24 and 48 h. No mortality occurred in the three 
control groups. For the oral exposure route, Tetra
min fish food was ground by mortar and pestle, 
treated with [lH]fenvalerate in 1 ml acetone, dried 
quickly, rinsed with distilled water to remove any 

freely available fenvalerate and dried again before 
being fed to the larvae. Three replicates were used 
for each of the nine time intervals after treatment 
with the [lH]fenvalerate food. Larvae were starved 
for 4 h before exposures. The individual samples of 
10 larvae were allowed to blot dry on filter paper, 
were transferred to ashless paper and then were com· 
busted in a Packard Tri-Carb sample oxidizer. The 
radioactivity was quantified using an LKB Rack
Beta liquid scintillation counter and was expressed 
as nanograms fenvalerate per larva. 

RESULTS AND DISCUSSION 

Toxicity 

Synthetic pyrethroids are generally accepted to 
be relatively safe for mammalian and avian species. 
Oral LD50s for rats and mice range from 100 to 
2,000 mg/kg [5,6]. Acute oral toxicities of greater 
than 4,000 have been reported for three pyrethroids 
in three species of birds [3,7,8], indicating that 
avian species are also highly resistant to pyrethroid 
intoxication. 

Aquatic species seem to be much more sensitive 
than terrestrial vertebrates to pyrethroids. Perme
thrin was found to have an i.p. LD50 of 14 mg/kg 
to rainbow trout [9], and fenvalerate had an i.p. 
LD50 of 0.7 mg/kg in bluegill [2]. A more environ
mentally sound comparison would be between the 
terrestrial oral LD50 and the aquatic LC50 because 
these are the most likely routes of natural exposure. 
Most pyrethroids are toxic at extremely low con
centrations, with LC50s of generally less than 10 
#Lg/L. Cypermethrin was found to have LC50s of 
1.2, 0.9 and 0.5 #Lg/L in brown trout, carp and 
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rainbow trout, respectively [10]. In studies using 

fathead minnows, LC50s were determined to be 0.2 

!'giL for flucythrinate [11], 1.1 J.tg/L for fenvaler
ate [2] and 16 J.tg/L for permethrin [12]. 

Pyrethroids are also very toxic to aquatic insects 

and crustaceans, with most LC50 values being well 
below 1 J.tg/L. When a variety of mosquito and 
midge larvae and pupae were tested, 24-h LC50 val

ues for deltamethrin, cypermethrin, fenvalerate 

and permethrin ranged from 0.02 to 13 J.tg/L [13]. 
Deltamethrin and cypermethrin have 96-h LC50s of 

about 0.01 J.tg/L in lobster (Homarus americus) 
and shrimp ( Crangon septemspinosa), with fen val

erate being four to five times less toxic [14,15]. 
In addition to acute toxicity, many pyrethroids 

may have potentially deleterious effects at sublethal 

levels. Anderson [16] noted behavioral changes 

within hours of exposure in several aquatic inver

tebrates, resulting in a cessation of feeding and in

sect drift. 
Sublethal and chronic studies of pyrethroids 

have demonstrated that fish are very susceptible to 

growth effects, and low survivability has been 

noted in several species, especially affecting the 
early life stages [11,17,18]. Similarly, no observable 

effect levels are quite low for chronic and sublethal 
impact on aquatic invertebrates such as daphnids, 

copepods and chironomids [19,20]. Many deleteri

ous effects occur at concentrations below 1 J.tg/L, 
including effects on reproduction, growth and be

havior [21 ,22]. 
In contrast to insects and crustaceans, molluscs 

are relatively tolerant of pyrethroids, with acute ef
fect levels not observed at water solubility [11, 16]. 

The reasons for these differences in species suscep

tibilities are not clear. 

Toxicity of isomers 

Synthetic pyrethroids generally are a mixture of 

stereoisomers. Technical permethrin, for example, 
is a mixture of both the cis and trans isomers. Fen

valerate, which contains chiral centers at the 2C 
and o:C, is a mixture of four stereoisomers. 

Stereochemical structure affects the lethality of 

both these compounds to insects and mammals 
[23,24]. The more potent esters of fenvalerate are 

those with an S configuration in the acid moiety 
(i.e., the 2S,RS esters). The isomer with the great

est toxicity to two insects (2.7 to 3.5 times more 

toxic than the technical material) has an S config
uration in the alcohol moiety as well (i.e., the 
2S,aS isomer). Esters with an R configuration in 

the acid moiety have oral LD50s to mice in excess 

of 5,000 mg/kg and are about 100 times less toxic 
to insects than the technical material [23]. 

Stereochemical structure is also an important fac
tor in pyrethroid toxicity to aquatic species. Miya

moto [25] observed the (-)-isomers of permethrin 

to be much less toxic to killifish than the ( + )-iso
mers, whereas Zitko et al. [14] reported 1R-cis per

methrin to be more toxic than technical permethrin 
to salmon. Virtually all the toxicity of fenvalerate 

to fathead minnows and bluegill was attributed to 

the 2S,aS isomer, while isomers containing an R 
configuration in the acid moiety were found to be 

essentially nontoxic [2]. Differences in stereochem

ical structure significantly altered the toxicity of 
fenvalerate, cypermethrin and fenpropanate to 

mosquito larvae [23]. 
Although fenvalerate isomers remained resolved 

throughout an aerobic soil study [26], spontaneous 

racemization has been found to occur in water, eth
anol, methanol, DMF and DMSO [2,27]. 

Although some optical integrity may be re

tained, racemization would reduce most pure iso

mer preparations to a mixture of configurations. 

For this reason, i.p., i.m. or i.v. exposure routes 
are preferred because the optical purity of the tox

icant delivered can be more closely controlled. 
Spontaneous racemization may still occur in vivo, 

however. It was determined that whole-body resi

dues of fenvalerate at mortality were similar in 
both i.p. and aqueous exposures of fathead min

nows and bluegills [2]. 

Temperature effects on toxicity 

Pyrethroid insecticides are more toxic at lower 

temperatures to both insects [28-30] and trout 
[31]. This phenomenon is known as a negative tem
perature coefficient and is relatively uncommon. 

Poikilotherm metabolism is reduced at lower tem

peratures, so the pyrethroid effect may be a tem

perature-dependent interaction at the site of action. 
Nerves may be more sensitive to the effects of pyre

throid-induced toxicity, although toxicokinetic fac
tors such as uptake, distribution and detoxification 

may contribute to increases in toxicity at lower tem
peratures. Other environmental factors that canal

ter the aquatic ecosystem can also stress organisms 
there, e.g., pH, oxygen concentration, sunlight, nu
trient input and turbidity. 

Hardness and salinity effects on toxicity 

Differences in water hardness and salinity have 
been shown to alter the toxicity of pyrethroids to 
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aquatic species [32,33]. Because one mode of action 

is involved with ionic regulation by ATPases, it 
may be that, in addition to direct nerve toxicity, py
rethroids cause an osmoregulatory imbalance. Ionic 

homeostasis in fish is largely regulated by the tran
sepithelial potential of the gill and by active trans

port processes involving enzymes, such as ATPases. 

Monovalent and divalent ions are actively regulated 
by Na-K-ATPase [34] and Ca-ATPase [35], respec

tively. DDT has been shown to inhibit Na-K-ATPase 
in gill epithelia [36]. Squid axon Ca-ATPase have 

been inhibited by both DDT and pyrethroids [37]. 

Ionic characteristics of the water, such as hardness 
and salinity, have been demonstrated to influence 

the toxicity of fen valerate to bluegill [38]. Ion bal

ance in the urine has also been observed to be af
fected by fenvalerate [39]. Fenvalerate was the least 

toxic in very soft water. This secondary osmotic 

stressor may help explain why aquatic species are 
so extremely susceptible to pyrethroid intoxication. 

Toxicokinetics 

Uptake. Efficient uptake of insecticides across 

the gills and into the bloodstream can result in high 
toxicity to fish. Water solubility and lipophilicity, 

parameters generally accepted to influence uptake, 

have been correlated with the toxicity of insecti
cides [17], including pyrethroids [ 18]. Fen valerate, 

because of its unusually high lipophilicity (log P of 
7 .2), is taken up at only a 300Jo efficiency per pass 

through the gills of a rainbow trout, compared with 

twice that rate for many other organic chemicals, 
and uptake is not dose-dependent [1]. This inverse 
relation between gill uptake efficiency and lipophi

licity noted by McKim et al. [40] tends to limit the 

amount of highly lipophilic insecticide entering the 
bloodstream, thereby indicating that efficient up
take is not a factor in the extreme toxicity of fen

valerate to fish. 
Distribution in the body. The LD50 values for 

fish exposed to pyrethroids generally are 10 to 
1,000 times less than the corresponding values for 

mammals and birds [41]. Owing to their high lipo
philicity, both fenvalerate [1] and permethrin [9] 

were found to concentrate in the fat of fish. Brad
bury et al. [1] also found that more fenvalerate was 

associated with the packed-cell fraction of the 
blood than with the plasma. Typically, insecticides 

are transported in the plasma fraction of the blood. 
Synthetic pyrethroid bioconcentration factors 

(BCFs) determined at the end of chronic studies 

were generally in the range of several thousand. 
Mean BCFs for fenvalerate [42], permethrin and 

flucythrinate [11] of 3,200, 2,800 and 4,000, respec

tively, were reported for the fathead minnow. 

BCFs of 480 and 570 have been reported for per
methrin and fenvalerate, respectively, in the sheeps

head minnow [43]; flucythrinate was not detected 
in fish that survived exposure. The BCFs for these 

compounds are substantially lower than would be 
expected from their high octanol!water partition 
coefficients (log P). The relatively low BCFs noted 

for pyrethroids may be due to a number of factors, 
including chemical instability, inability to cross the 

gill/blood barrier or the ability of the fish to effec· 

tively metabolize or eliminate these compounds. 
Concentrations of fenvalerate in the liver at 

death in rainbow trout were 10-fold higher than 

those measured in the brain and the remaining car
cass [39]. This degree of accumulation in the liver 

was not observed in rainbow trout during sublethal 

exposures [1] and may reflect changes in kinetics 
with dose rate. The fenvalerate body burden asso

ciated with mortality in rainbow trout was 0.25 
mg/kg and was 1.0 mg/kg in fathead minnows 
[39,44]. 

A brain residue of approximately 0.15 mg/kg 
was found to be associated with 100% mortality in 
rainbow trout for fenvalerate [35], 2 mg/kg for 
permethrin [45] and 0.2 mg/kg for cypermethrin 

[46]. These are 3- to 18-fold less than the lethal 
brain residues in mice for permethrin [45], for 

cypermethrin in mice and Japanese quail ( Coturnix 
coturnix) [46], and for fenvalerate in bobwhite 

quail (Colin us virginianus) [3). The difference in le

thal brain concentrations between species for fen
valerate, permethrin and cypermethrin suggests 
that the specific mode of action for pyrethroids 

may be an important factor in aquatic species 
sensitivity. 

Elimination. Warm-blooded vertebrates have 
been shown to be very efficient in eliminating syn

thetic pyrethroids [3,47]. Aquatic species, however, 
do not readily eliminate pyrethroids. Half-lives for 

elimination in trout are well in excess of 24 h, 
whereas half-lives in mammals and birds are in the 

range of 6 to 12 h. The carcass and bile of rainbow 
trout exposed to fenvalerate were found to contain 

80 to 90% and 10 to 20% of the gill-absorbed dose, 
respectively, after 48 h of depuration [1]. No fenval
erate was eliminated via the gills and urine, while 

feces and blood each contained less than 2% of the 

dose. These findings are generally similar to those 
found for permethrin after aqueous and i.p. expo

sures of rainbow trout [9]. Analysis of biliary me

tabolites for fenvalerate [1], permethrin [9] and 
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cypermethrin [46] yielded similar results in that the 
glucuronide of the 4' -hydroxymetabolite was the 

only product recovered. This relatively slow rate 
of pyrethroid elimination may be partly respons

ible for the sensitivity of this salmonid to these 
insecticides. 

Biotransformations. In rats and mice, 80% of 

the orally administered doses of fenvalerate were 
eliminated in the excrement as a variety of oxida

tive and hydrolytic products [48,49]. In trout ex
posed to fen valerate and permethrin, however, 
little or no esterase activity or ester hydrolysis has 

been observed. The only oxidative step that is noted 

is at the 4' position, followed by glucuronidation 
[1,9). It was also established that microsomal oxi

dation of trans-permethrin was 35 times slower in 

trout than in mice [45). With cypermethrin, minor 
levels of ester hydrolysis products were recovered 
from exposed trout along with the glucuronide of 

4'-hydroxycypermethrin, but there was still an 

overall deficiency in enzymatic activity as com
pared with levels in mouse and Japanese quail [46]. 

When fenvalerate was studied in a model 
aquatic ecosystem [50], metabolism of the S-acid 

isomer in four aquatic species proceeded through 
hydroxylation at the phenoxy group, hydrolysis of 

the CN group, and cleavage of the ester linkage. 
None of these metabolites tended to accumulate to 

high levels in the organisms, however. In addition 
to metabolic reactions, it has been suggested that 

effects on respiratory surface and ion regulation 

may be associated with the mechanisms of pyre
throid action in fish [39,51]. Although mammals 

and birds seem to metabolize and excrete synthetic 
pyrethroids readily via a variety of pathways, 

aquatic species are less efficient in detoxifying these 

compounds and are therefore highly susceptible to 

them. 
Bioavailability. The sensitivity of aquatic species 

to pyrethroid toxicity may be altered by a variety of 

environmental conditions, including temperature 

and the presence of suspended or dissolved solids. 

It was demonstrated that fenvalerate 96-h LC50s 
were 40 times higher in channel catfish when the 

toxicant was first applied to soil particles than 
when introduced directly into clean water [52]. A 

concentration of cypermethrin that caused 100% 
mortality in rainbow trout in microfiltered water 

did not cause mortality in trout when pond water 

containing 14.5 mg/L suspended solids was em
ployed [53]. The bioavailability of insecticides to 
Daphnia magna has been shown to be reduced in 

the presence of suspended solids [54], and Chiro-

nomus tentans larvae accumulated significantly 

more permethrin when allowed to enter sediment 

than when held in water above the sediment [55]. 
Pyrethroids, being highly hydrophobic, are ad

sorbed to particulate matter present in the test sys
tem, thereby making them unavailable to aquatic 

species in the water column. The dynamics of hydro
phobic toxicants in sediments, although previously 

not well understood, now is a rapidly expanding 

field of study. 

In addition to suspended solids, dissolved ma
terial can also affect toxicity. One commonly found 
dissolved organic material, humic acid, is a prod

uct of the degradation of organic carbon. When 
mosquito larvae were exposed to fenvalerate in the 

presence of different amounts of humic acid, sig
nificant differences in toxicity were noted (Table 1). 

The fenvalerate was six times less toxic to mosquito 
larvae in water with 50 mg/L humic acid than in 

clean water. 

Effect of route of entry on toxicity 

Mosquito larvae are exposed to lipophilic xeno
biotics by two routes of entry, cuticular and oral. 
The pyrethroid fenvalerate can enter the body of 

the larva by penetration through the cuticle after 
contact with the chemical in the water or by inges

tion after adsorption to food particles in the water. 

A comparison of the potency of fenvalerate by the 

two routes of entry was achieved by first determin
ing LC50 values in the water for the cuticular route 

and in the diet for the oral route. In a second exper
iment, the larvae were exposed to radiolabeled fen

valerate by the two routes at the respective LC50 
concentrations to determine the quantities of the 

insecticide actually taken up by the organism at 

those concentrations in the exposure media. 
The cuticular-exposure 24-h LC50 to fourth-in

star Culex pipiens pipiens larvae was 0.00045 mg/L 

Table 1. Toxicity of fenvalerate to second-instar 
mosquito larvae in different concentrations 

of humic acid 

Humic acid (mg/L) 

0.00 
0.05 
0.50 
5.00 

50.0 

a ±950Jo C.I. 

24-h LC5oa (ng/ml) 

0.26 ± 0.03 
0.43 ± 0.04 
0.51 ± 0.05 
0.49 ± 0.04 
1.61 ± 0.14 

,_...,.,j 
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in the water. The oral 24-h LC50 for fenvalerate 

was II mg/kg in the diet. The uptake studies using 

[ 3H]fenvalerate at the LC50 concentrations in the 
water and in the food revealed a mean body burden 

of 0.2 ng/insect for the cuticular-exposure groups 
through the 48-h trial (Fig. 2) and a higher concen

tration (up to I.2 ng/insect) for those feeding on 

fenvalerate-treated food. The two peak concentra
tion times in Figure 3 reflect the feeding behavior 

of the mosquito larvae in the dietary-exposure ex
periment. After feeding for the first hour and at

taining a high concentration of fen valerate in their 

cone. of 

fenvalerate 

(ng/insect) 

cone. of 

fenvalerate 
( ng/i nsect) 

.10 

time-hrs. 
16 

UPTAKE RATE -ORAL (LC50 LEVEL) 

bodies, the larvae became restless and stopped 

feeding. The same irritant or feeding-deterrent ac· 
tion of synthetic pyrethroids has been documented 

for other species of insects [56-59]. By I6 h, the lar· 
vae had recovered and resumed feeding, which re· 

suited in the high residue levels in their bodies. If 

the peak concentration of 1.2 ng/insect is taken as 
the requisite internal toxic dose for an LD50 re· 
sponse at the dietary LC50 exposure level and the 

0.2 ng/insect dose for fenvalerate by a cuticular 
route of entry, fenvalerate was approximately six 

times more toxic to mosquito larvae by the cuticular 

24 

Fig. 2. Uptake of [3H]fenvalerate 
from water by the mosquito larva 
Culex pipiens pipiens at the LC50 
concentration in water. 

Fig. 3. Uptake of [3H]fenvalerate in 
food ingested by the mosquito larva 
Culex pipiens pipiens at the LC50 
concentration in the diet. 
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exposure. The lipophilic compound adsorbs quickly 

to the aquatic dipteran larvae and readily penetrates 

into the cuticle, while much of the ingested insec
ticide may remain biologically unavailable in the 

digestive tract of the immature mosquitoes. 
Emulsifiers have been shown to influence the 

toxicity of pyrethroid insecticides to fish [41], 
although the magnitude of the effect is variable. 

Mosquito larvae were 67 times more susceptible to 

technical fenvalerate (24-h LC50, 0.00045 mg/L; 
950Jo C.l., 0.00040-0.00049) than to the emulsifi

able concentrate formulation Pydrin (24-h LC50, 
0.030 mg/L; 950Jo C.l., 0.026-0.033) when cor

rected for active ingredient. The emulsifier acted to 
keep more of the toxicant in solution while addition 

of the pure technical material to the water resulted 
in rapid adsorption to organic matter (i.e., waxy 
cuticle of the mosquito larvae) in the clean-water 

test. 
In summary, the photostable synthetic pyre

throid insecticides are innately quite toxic to many 
species of fish and aquatic arthropods, but many 

factors influence the degree of hazard that these 
chemicals present. Toxic mechanisms, isomer con

stituents, metabolism and bioavailability all affect 

selectivity and environmental impact. As new, 
more highly halogenated compounds are devel

oped, there must be concern about environmental 
fate and effects and an understanding of potential 

impact, based on the physical, chemical and biolog

ical properties of the new products. 
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