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Nematode infections, in particular gastrointestinal nematodes, are widespread and

co-infections with other parasites and pathogens are frequently encountered in humans

and animals. To decipher the immunological effects of a widespread protozoan

infection on the anti-helminth immune response we studied a co-infection with

the enteric nematode Heligmosomoides polygyrus in mice previously infected with

Toxoplasma gondii. Protective immune responses against nematodes are dependent

on parasite-specific Th2 responses associated with IL-4, IL-5, IL-13, IgE, and IgG1

antibodies. In contrast, Toxoplasma gondii infection elicits a strong and protective Th1

immune response characterized by IFN-γ, IL-12, and IgG2a antibodies. Co-infected

animals displayed significantly higher worm fecundity although worm burden remained

unchanged. In line with this, the Th2 response to H. polygyrus in co-infected animals

showed a profound reduction of IL-4, IL-5, IL-13, and GATA-3 expressing T cells.

Co-infection also resulted in the lack of eosinophilia and reduced expression of the

Th2 effector molecule RELM-β in intestinal tissue. In contrast, the Th1 response to the

protozoan parasite was not diminished and parasitemia of T. gondii was unaffected

by concurrent helminth infection. Importantly, H. polygyrus specific restimulation of

splenocytes revealed H. polygyrus-reactive CD4+ T cells that produce a significant

amount of IFN-γ in co-infected animals. This was not observed in animals infected

with the nematode alone. Increased levels of H. polygyrus-specific IgG2a antibodies in

co-infected mice mirrored this finding. This study suggests that polarization rather than

priming of naive CD4+ T cells is disturbed in mice previously infected with T. gondii. In

conclusion, a previous T. gondii infection limits a helminth-specific Th2 immune response

while promoting a shift toward a Th1-type immune response.
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INTRODUCTION

Gastrointestinal nematode infections affect around 24% of the human population (WHO,
2017 last modified January, 2017 http://www.who.int/mediacentre/factsheets/fs366/en/; Horton,
2003). These parasites are not necessarily fatal though they cause high morbidity including
malnourishment, intestinal inflammation and anemia in both acutely and chronically infected
patients. In particular, school children are affected hindering their mental and physical
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development. Moreover, individuals living in endemic areas get
frequently re-infected and immunity only develops after several
decades (Mosmann and Coffman, 1989). Most areas endemic
for nematodes are co-endemic for various diseases, such as
malaria, tuberculosis, toxoplasmosis (Bahia-Oliveira et al., 2009),
leishmaniasis and salmonellosis (Hotez and Kamath, 2009).
Every pathogen should be encountered by a tailored immune
response engaging a certain set of effector molecules, however
this is a problem for the immune system during co-infections.
Seroprevalence of Toxoplasma gondii reaches up to 70% in
certain areas with high chances of co-infection with different
pathogens among the human population (Bahia-Oliveira et al.,
2009; Pappas et al., 2009). High prevalence of T. gondii is found in
tropical regions, such as Latin America, Middle East, Africa and
Southeast Asia. On the other hand T. gondii infection evokes and
is controlled by a very different immune response compared to
helminth infections. Detailed experimental studies are required
to unravel how acute or chronic infections with certain pathogens
affect the immune system, when faced with new challenges by
unrelated infections.

Helminth infections are typically characterized by the
activation and expansion of CD4+ T helper 2 (Th2) cells,
which express the transcription factor GATA-3 and secrete
interleukin (IL)-4, IL-5, IL-9, and IL-13, leading to IgG1 and
IgE antibody production. In addition, the Th2 response leads to
eosinophilia, enhanced mucus production, specific granuloma-
formation around larvae, as well as specific priming of innate
cells, such as macrophages. This immune response can directly,
or via upregulation of effector molecules, such as RELM-β
produced by goblet cells, reduce worm fecundity and enhance
parasite expulsion (Artis et al., 2004; Owyang et al., 2006).

Helminths evade the host immune responses due to host-
parasite interactions (McSorley and Maizels, 2012) whereby
the Th2 immune responses are actively regulated by the
worm (Yazdanbakhsh et al., 2001). Thus, the Th2 response is
accompanied by the emergence of parasite-induced regulatory
cells, such as regulatory B-cells (Breg) (Hussaarts et al., 2011),
regulatory T-cells (Treg) (Taylor et al., 2012) and alternatively
activated macrophages (AAM) (Gordon and Martinez, 2010),
which are known to limit parasite-specific and unspecific
immune responses (Steinfelder et al., 2016). Heligmosomoides
polygyrus is a well-studied strictly intestinal helminth of mice
featuring all of the aforementioned characteristics (Reynolds
et al., 2012). In addition to this, it is a widespread natural
infection of wild mice (Maaz et al., 2016). The parasites are orally
taken up as infective stage 3 larvae (L3), which subsequently
embed themselves into the small intestinal wall to develop into
L4. They then emerge as adults into the lumen, where they prevail
for weeks before being expelled, depending on the mouse strain
(Bansemir and Sukhdeo, 1994; Reynolds et al., 2012).

In contrast, T. gondii is an obligate intracellular protozoan
parasite, which orally infects warm-blooded vertebrate hosts.
After an initial intestinal phase,T. gondii spreads systemically and
converts into a dormant stage inmuscle and brain tissues (Dubey,
2008). Human infections with T. gondii are common and are
mostly asymptomatic in immunocompetent individuals (Ho-Yen
and Joss, 1992), although they may trigger basal inflammation

(Parlog et al., 2015). Here, IFN-γ plays an important role in the
containment of T. gondii (Ely et al., 1999). However, a previous
latent infection in immunocompromised humans can reactivate
and cause life threating encephalitis if left untreated (Luft et al.,
1984; Montoya and Liesenfeld, 2004). During T. gondii infection
a T helper 1 (Th1) immune response is elicited. This provides
a strong, protective immune response and is characterized by
dendritic cells (DC) producing IL-12. The production of IL-
12 leads to the differentiation of CD4+ T cells into Th1 cells
expressing the transcription factor T-bet and the secretion of
IFN-γ. Additionally, innate cells, such as neutrophils, NK-cells
and innate lymphoid cells provide other early sources of IFN-
γ (Gazzinelli et al., 1994; Sturge et al., 2013; Klose et al.,
2014).

Differentiation of Th1 and Th2 cells has been well
documented in the literature. In vitro-based studies have
shown that Th1 or Th2 polarizing conditions cause differentiated
cells to lose their ability to completely switch phenotype after
increased cell division (Murphy et al., 1996; Grogan et al., 2001).
However, other studies have shown that Th subsets have the
flexibility to produce non-lineage-specific cytokines (Murphy
and Stockinger, 2010; O’Garra et al., 2011; Coomes et al., 2013).
Furthermore, we have previously reported a subset of Th hybrid
cells expressing both transcription factors T-bet and GATA-3, as
well as producing IFN-γ and IL-4 at intermediate levels during
helminth infections (Peine et al., 2013).

Studies on H. polygyrus and T. gondii co-infection in mice
have so far focused on a previous infection with helminths and
have shown that initially CD4+ and CD8+ T cell immunity
against T. gondii is suppressed in mice. At later stages the T.
gondii-specific CD4+ T cell response recovers whereas the CD8+

response remains disrupted (Khan et al., 2008). In line with this,
other studies have shown that prior infection with H. polygyrus
induced suppression of IL-12 dependent differentiation of
effector CD8+ T cells as well as IFN-γ production against
T. gondii. Interestingly, IL-4 and IL-10 deficiency was necessary
to reverse the obstructing effect of H. polygyrus infection on the
CD8+ T cell response toward Toxoplasma (Marple et al., 2017).
The majority of co-infection studies despite being protozoan,
viral or bacterial infection, have focused on infections with
helminth first due to their ability to downmodulate immune
responses (Rousseau et al., 1997; Liesenfeld et al., 2004; Chen
et al., 2005, 2006; Graham et al., 2005; Su et al., 2005, 2014a,b;
Weng et al., 2007; Khan et al., 2008; Noland et al., 2008; Miller
et al., 2009; Frantz et al., 2010; Dias et al., 2011; Potian et al.,
2011; Kolbaum et al., 2012; du Plessis et al., 2013; Osborne
et al., 2014; Budischak et al., 2015; Coomes et al., 2015; Gondorf
et al., 2015; Rafi et al., 2015; Obieglo et al., 2016). In light of
the fact, that Th2 immunity against helminths is an ongoing
challenge in humans and livestock, we aimed to investigate
how a previous protozoan infection affects the development
of Th2 responses in CD4+ T cells and protection against
helminths.

We observed that a previous T. gondii infection leads to
an overall suppression of H. polygyrus-specific Th2 immunity
and enables H. polygyrus-specific CD4+ T cells to produce
IFN-γ.
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MATERIALS AND METHODS

Animals
Female NMRI and C57BL/6 mice (8 weeks old; purchased
from Janvier, Saint Berthevin, France) were bred under specific
pathogen-free (SPF) conditions at the Institute of Medical
Microbiology, Universitätsklinikum Magdeburg, Germany or
at the Institute of Immunology, Department of Veterinary
Medicine, Freie Universität Berlin. The experiments performed
followed the National Animal Protection Guidelines and were
approved by the German Animal Ethics Committee for the
protection of animals.

Isolation of T. gondii Tissue Cysts and Oral
T. gondii Infection
Female NMRI mice were infected orally (p.o.) with type II
ME49 strain T. gondii cysts. After 8–10 months, tissue cysts
were collected from the brains of chronically infected mice. After
perfusion, brains were mechanically homogenized in 1 mL sterile
PBS. Cysts were quantified using a light microscope and 8–10
weeks old female C57BL/6 mice were infected with 2-tissue cysts
p.o. by oral gavage in a total volume of 200 µl/mouse (Möhle
et al., 2016)

H. polygyrus Infection
The parasite Heligmosomoides polygyrus was retained by serial
passage in C57BL/6 mice as described previously (Rausch et al.,
2008). Mice aged 8–10 weeks old were infected by oral gavage
with 200 L3 larvae in drinking water. On day 14 post infection
(p.i.) mice were sacrificed by isofluorane inhalation.

Detection of T. gondii Parasitemia by PCR
Toxoplasma gondii burden was determined using Roche FastStart
Essential DNA Green Master kit with manufacturer’s protocol.
TgB1 (TIBMolbiol, Berlin, Germany) was used as a target gene
and Mm.ASL (TIBMolbiol, Berlin, Germany) as a reference
(Heimesaat et al., 2014). Target/reference ratios were all
calculated using the LightCycler R© 480 Software release 1.5.0
(Roche, Germany).

Worm Fecundity and Worm Burden
Adult worms were isolated from the small intestine and counted.
Female worms were subsequently kept individually (8 permouse)
in a 96 well round-bottom plate containing RPMI, 200U/ml
penicillin and 200 µg/ml streptomycin (all from PAA, Austria) at
37◦C. After 24 h female H. polygyrus adults were removed from
the wells and fecundity was determined by counting the eggs shed
per female worm using a binocular microscope.

Preparation of Parasite Antigen
Heligmosomoides polygyrus antigen (HpAg) was prepared from
adults worms that were kept in culture containing 100U/ml
penicillin and 100 µg/ml streptomycin for 24 h as described
before (Rausch et al., 2008).

Cell Culture
Cells were cultured in complete RPMI 1640 medium
(cRPMI) containing 10% FCS 200 U/ml penicillin, 200 µg/ml

streptomycin (all from PAA, Austria) in an incubator at 37◦C
and 5% CO2.

Single Cell Suspension Preparation
Spleen and mesenteric lymph nodes (mLN) were isolated from
mice, homogenized and filtered through 70µm cell strainers (BD
Bioscience, San Jose, CA) to obtain single cell suspensions. The
cells were then washed and re-suspended in cRPMI. Cells were
counted using a CASY automated cell counter (Roche-Innovatis,
Reutlingen, Germany). Small intestinal lamina propria (siLP)
and epithelium (siE) cells were isolated by the removal of the
whole small intestine that was then stored on ice in cold HBSS
(w/o Ca2+ Mg2+) (PAA, Pasching, Austria) containing 2% FCS
and 10 mM HEPES (PAA, Pasching, Austria). Small intestines
were washed through with 20ml cold buffer using a 20G
needle. After washing, mesenteric fat and Peyer’s patches were
removed. The small intestines were then cut open longitudinally
and mucus scraped off with forceps. Additionally adult H.
polygyrusworms were removed and counted using forceps. Small
intestines were then washed in HBSS/FCS/HEPES and cut in
1 cm pieces and stored in 20ml HBSS/FCS/HEPES containing
0.154mg/ml DTE (Sigma-Aldrich, St. Louis, MO). The 1 cm
pieces were incubated in a tube shaker water bath (200 rpm,
37◦C) for 15min. This step was repeated twice and then the
intestinal pieces were transferred into 20ml HBSS/FCS/HEPES
containing 5mM EDTA and agitated at room temperature for
15min, repeated three times. Intestinal pieces were put into
fresh 20mlHBSS/FCS/HEPES and the cell suspension containing
epithelium and intraepithelial lymphocytes retrieved for density
gradient isolation. Intestinal pieces were washed in RPMI to
remove residual EDTA and then placed in 10ml 37◦C complete
RPMI 1640 medium containing 0.1mg/ml Liberase (Roche,
Basel, Switzerland) and 0.1mg/ml DNAse (Sigma-Aldrich, St.
Louis, MO, USA). Intestinal pieces were then incubated at 37◦C,
200 rpm for 30min. After incubation, tubes containing intestinal
pieces were vortexed vigorously to disturb remaining intestinal
pieces. The intestinal pieces were then forced up and down
through an 18G needle. Suspensions were then filtered over a
70 µm cell strainer and washed twice with HBSS/HEPES. The
cell suspensions from siLP and siE were added on a percoll
gradient (GE healthcare life sciences, Sweden). Lamina propria
and epithelial cells were collected from the 40%/70% interface
after centrifugation. Cells were washed in cRPMI and counted
using Neubauer chambers (C-Chip, Biochrom GmbH, Berlin,
Germany).

Generation and Antigen Loading of Bone
Marrow-Derived Dendritic Cells
Naïve female C57BL/6 mice were used for isolation of
bone marrow from the femur and tibia. Bone marrow cells
were washed in RPMI medium and 1 × 106 cells/ml were
cultured in 10ml/petri dish for 6 days in cRPMI containing
10 ng/ml recombinant murine GM-CSF (PeproTech, Hamburg,
Germany). On day 3, 10ml of cRPMI with 10 ng/ml GM-CSF
was added. On day 6 BmDC were counted, seeded at 1 × 105

cells/well in a 96 well plate and stimulated with 50 µg/ml of
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H. polygyrus antigen (HpAg) for 24 h. Cells were then washed and
used for the co-culture experiment.

Antigen-Specific Restimulation of CD4+

Splenocytes
1× 106 splenocytes were co-cultured with 1× 105 BmDC pulsed
overnight with HpAg for 5 h in the presence of 3 µg/ml Brefeldin
A (eBioscience, San Diego, CA, USA) followed by intracellular
staining for CD154 and cytokines.

Cell Proliferation Assay
Spleen cells were isolated and stained with CFSE
(Carboxyfluorescein succinimidyl ester). 1 × 106 CFSE
labeled cells were cultured with 20 µg/ml H. polygyrus antigen.
Cells were cultured for 6 days and restimulated with 1 µg/ml
PMA and 1 µg/ml Ionomycin (both Sigma-Aldrich, St. Louis,
MO, USA) in the presence of 3 µg/ml Brefeldin A (eBioscience,
San Diego, CA, USA) followed by intracellular staining.

Realtime PCR
RNA was isolated from intestinal tissue sections previously
stored at −80◦C via homogenization in RNA lysis buffer.
The tissue supernatant was processed with a innuPREP RNA
kit (Analytik Jena, Jena, Germany) following manufacturer’s
instructions. 2 µg of RNA was reverse transcribed to cDNA
using the High Capacity RNA to cDNA kit (Applied Biosystems,
Foster City, CA). The relative expression of β-actin, resistin-like
molecule-beta (Relm-β), IL-12 and IFN-γ, was determined by
Real Time PCR using 10 ng of cDNA and the FastStart Universal
SYBR Green Master Mix (Roche, Basel, Switzerland). Primer
pairs used for gene amplification were as follows: β-actin forward:
GGCTGTATTCCCCTCCATCG, reverse: CCAGTTGGTAAC
AATGCCATGT, Relm-β (Retnlb) forward: GGCTGTGGATCG
TGGGATAT, reverse: GAGGCCCAGTCCATGACTGA. IL-12
forward: ATGGCCATGTGGGAGCTGGAGAAAG, reverse:
GTGGAGCAGCAGATGTGAGTGGCT. IFN-γ forward: ATg
AACgCTACACACTgCATC, reverse: CCATCCTTTTgCCAg
TTCCTC. Primer pair efficiency was determined via a standard
curve. The mRNA expression was normalized to the β-actin
housekeeping gene and calculated by Roche Light Cycler 480
software.

Cytokine Detection by ELISA
3.5× 105 splenocytes were stimulated with 20µg/mlH. polygyrus
antigen or 2 µg/ml anti-CD3 and anti-CD28 (both eBioscience,
San Diego, CA, USA) for 6 days. Supernatants were analyzed
for IL-4, and IFN-γ using Ready-Set-Go Elisa Kits (eBioscience,
San Diego, CA, USA) according to the manufacturer’s
instructions.

Antibody Isotype Detection by ELISA
Heligmosomoides polygyrus-specific IgG1 and IgG2a were
measured in serum. 96 well microtiter plates coated with
10 µg/ml H. polygyrus antigen were incubated with serum
diluted 1:100 with 3% BSA in PBS. Bound antibody isotypes
were detected using alkaline phosphatase conjugated anti-mouse
IgG1 and IgG2a antibodies diluted 1:5000 each (Rockland,

PA, USA) and para-nitrophenylphosphate (Sigma, Steinheim
am Albuch, Germany). All samples were run in duplicates.
Arbitrary units were calculated using pooled samples as
reference.

Flow Cytometry
For surface and intracellular staining, the monoclonal antibodies
listed were used: CD4 (PerCP) (RM4-5); CD192 (CCR2)
(Alexa 647) (SA203G11) all from BioLegend (Biozol); CD8
(53-6.7); IL-4 (PE-Cy7) (11B11); IL-5 (PE) (TRFK5); IL-
13 (Alexa 488) (eBio13A); IFN-γ (eFluor 450) (XMG1.2);
CD154 (PE) (MR1); Foxp3 Alexa 488 (FJK-16s); GATA3
(eFluor 660) (TWAJ); Dead Cell Exclusion Marker (DCE)
(efluor 780); DCE (efluor 506); Siglec F (PE) (E50-2440); T-
bet (PE) (eBio4B10); IL-13 (eFluor 660) (eBio13A); CD11b
(PE) (M1/70); F4/80 (PerCP-Cy5.5) (BM8); Ly-6G (Gr-1)
(PE-Cy7) (RB6-8c5); Ly-6C (eFluor 450) (HK1.4); TNF-α
(Alexa488) (MP6-XT22) all from eBioscience, San Diego, CA,
USA.

For intracellular staining of cytokines and transcription
factors cells were fixed and permeabilized using the fix/perm
buffer kit (eBioscience, San Diego, CA, USA). FACSCantoII
flow cytometer and FACSAriaIII sorter (both BD Bioscience,
Heidelberg, Germany) were used for cell analysis. FlowJo
software 10.2 was used for final analysis (Tree star Inc., Ashland,
OR, USA).

Statistics
Experiments were performed as shown and displayed as mean
± SD or mean ± SEM as indicated. Statistical analysis was
performed using GraphPad Prism software (La Jolla, CA,
USA). The level of significance was determined using the
Mann Whitney U-test or Kruskal-Wallis with Dunn’s multiple
comparison test.

RESULTS

Prior Infection with T. gondii Results in
Increased Fecundity of H. polygyrus in
Co-infection
We investigated whether infection with T. gondii affects
the control of helminth parasites in the small intestine
(Figure 1A). Mice infected with T. gondii for 14 days followed
by H. polygyrus infection did not show altered parasitemia
of T. gondii in the heart compared to mice infected with
T. gondii alone (Figure 1B). Similarly, co-infected mice did
not show a significant difference in H. polygyrus adult
worm burden compared to H. polygyrus single infection
(Figure 1C). However, female worms retrieved from co-
infected mice showed a significantly higher fecundity compared
to worms from H. polygyrus single infection (Figure 1D).
Thus, a previous and on-going infection with the protozoan
parasite T. gondii leads to a decline of anti-helminthic
control in terms of fecundity leading to enhanced egg
production.
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FIGURE 1 | Experimental design (A), C57BL/6 mice were infected with 2 ME49 T. gondii tissue cysts and/or 200 H. polygyrus L3 larvae. (B) Parasitemia of T. gondii

in the heart, pooled from two independent experiments, fold change compared to uninfected, data shown as mean ± SEM, n = 6–7 (C) H. polygyrus worm burden.

(D) Fecundity of female worms. Panels (C,D) are representative of three independent experiments with n = 4. Data shown as mean ± SD; statistical analysis was

performed using the Mann-Whitney test, ***P ≤ 0.001.

Previous Infection with T. gondii Selectively
Restricts Th2 Polarization in Response to
Helminth Infection
The increased fecundity in co-infected mice, described as
number of eggs produced per female worm ex vivo, might
be due to insufficient Th2 immune pressure. To test this
we compared systemic and local immune responses in
co-infected and single infected groups. To differentiate
between the contrasting immune responses the Th2-
lineage marker GATA3 (Zheng and Flavell, 1997) and the
Th1-lineage marker T-bet (Szabo et al., 2000) were used.
GATA3 is also present on a subset of regulatory T cells
that also express Foxp3. Regulatory T cells were excluded
using their expression of Foxp3 (Figure 2A; Wohlfert et al.,
2011).

The frequency of GATA3+Foxp3−CD4+ was drastically
reduced in the spleen, small intestinal lamina propria (siLP)
and small intestinal epithelial layer (siE) in co-infected mice
compared to mice infected withH. polygyrus only. The reduction
in GATA3 was similar to levels found in uninfected mice
(Figure 2B). Furthermore, histology of the small intestine of
co-infected mice showed no GATA-3 expression compared to
H. polygyrus infected mice (Figure 2E). On the contrary, the
Th1-lineage marker T-bet in CD4+ T cells was expressed
in co-infected mice with higher levels to T. gondii alone
in all compartments (Figure 2C). In addition to this, T-bet+

expression in CD8+ T cells was higher in siLP, siEL and mLN in

co-infected mice compared to mice infected with T. gondii alone
(Figure 2D).

Co-infection Leads to Suppression of Th2
Cytokine Responses in CD4+ T Cells
The lack of GATA3 expression prompted us to investigate
whether the failure to differentiate into Th2 cells (Figure 2)
extends to the inability to secrete Th2 cytokines. CD4+ T
cells were restimulated with PMA/Ionomycin and cytokine
expression was assessed (Figure 3A). The frequency of CD4+

cells producing IL-4 in spleen, siLP and mLN showed a marked
reduction in co-infected mice compared to the H. polygyrus
single-infected group. However, only a trend in the reduction
of IL-4 was observed in siEL (Figure 3B). Also, the frequency
of IL-5 and IL-13 in spleen, siLP, siEL, and mLN showed
a significant reduction in co-infected mice in comparison to
H. polygyrus infection alone (Figures 3C,D). This observation
shows that the Th2 immune responses are suppressed locally
as well as systemically in mice previously infected with T.
gondii. On the contrary, CD4+ cells producing the Th1 cytokine
IFN-γ showed an increase in the co-infected group compared
to mice infected with T. gondii alone (Figure 3E), mirroring the
enhanced T-bet expression found in the same cell population
(Figure 2C). Similarly, T-bet and IFN-γ expression in CD8+ T
cells were comparable in mice single and co-infected with T.
gondii (Figure S1). To further investigate this finding, splenocytes
were stimulated with anti-CD3/28 to evaluate the ability of these
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FIGURE 2 | Restricted Th2 responses in co-infected mice. Cells from spleen,

mesenteric lymph nodes (mLN), small intestinal lamina propria (siLP) and small

intestinal epithelium (siE) were isolated and stimulated with PMA and

ionomycin in the presence of Brefeldin A followed by intranuclear staining for

the lineage transcription factors GATA3 and T-bet. Gating strategy shown in

(A), Bar graphs showing frequencies of CD4+ T cells expressing GATA3 (B),

T-bet (C), and T-bet expression in CD8+ T cells (D). GATA3 expression in the

duodeunum of the small intestine with scale bar of 100 µm (E), data shown as

mean ± SEM pooled from 2 independent experiments n = 6, statistical

analysis was performed using the Mann-Whitney test. (B–D) shown as mean

± SEM, pooled from two independent experiments with n = 8–10. Statistical

analysis was performed using the Kruskal-Wallis with Dunn’s multiple

comparison test, *P ≤ 0.05, **P ≤ 0.01, and ***P ≤ 0.001.

cells to produce the Th2 cytokine IL-4 (Figure 3F). The co-
infected group did not show any IL-4 production compared to
the H. polygyrus-infected group whereas IFN-γ was produced in
all groups.

Next, we evaluated effector mechanisms that are downstream
of a Th2 response. As the appearance of Th2 cytokines in
helminth infection is associated with eosinophilia, we tested
the influence of a co-infection on the number of eosinophil
granulocytes. Consistent with the lack of Th2 cytokine secretion
(Figure 3), co-infected mice showed a significant reduction in
the frequency of eosinophils in spleen (Figure 4A) compared
to H. polygyrus single infection. Similarly, in mice infected
with both T. gondii and H. polygyrus there was reduction in
RELM-β expression in small intestinal tissue compared to H.
polygyrus single infection (Figure 4B). This indicates that effector
cells and molecules normally elicited by helminth infection
are directly affected by the absence of Th2 cytokines in a co-
infection setting. In contrast, no changes were observed in the
frequency of inflammatory monocytes (F4/80+GR1+Ly6C+) in
both single and co-infected mice (Figures 4C,D). However, a
significant reduction was observed in the production of TNF-α
in inflammatory monocytes of co-infected mice in comparison
to T. gondii single infected mice (Figure 4E),. In addition to
this, co-infected mice showed a drastic reduction in H. polygyrus
specific IgG1 compared to H. polygyrus single infection, which
showed a prominent parasite-specific IgG1 response (Figure 4F).
In contrast, helminth-specific IgG2a is increased in co-infected
mice compared to mice infected with helminths alone. Thus,
this data indicates that effector cells, effector molecules and
the respective antibody response normally elicited by helminth
infections are drastically altered in mice previously infected with
T. gondii.

Co-infection Results in a Helminth-Specific
Th1 Profile
The lack of the Th2 immune responses in co-infection may
suggest that the CD4+ T cells are not responding to H. polygyrus
infection. Thus, we aimed to identify helminth antigen-specific
CD4+ T cells in co-infected mice. For this we generated bone
marrow derived dendritic cells (BmDC) from naïve animals
pulsed with H. polygyrus antigen (HpAg) and co-cultured them
with splenocytes from single and co-infected animals. The
antigen-reactive CD4+ cells were subsequently detected by the
activation marker CD154 (CD40L) (Figure 5A; Frentsch et al.,
2005). We observed a reduction in IL-4 and IL-13 in activated
CD154+CD4+ cells in the co-infected group compared to the
H. polygyrus infected group. Interestingly, despite being unable
to produce Th2 cytokines, significant numbers of CD154+CD4+

T cells from the co-infected group were able to produce IFN-γ in
response to HpAg, which was not observed in the H. polygyrus-
single infected group (Figure 5B). CFSE staining can be used to
identify proliferating cells due to halving of CFSE in daughter
cells during proliferation. Here, we assessed the proliferation of
splenocytes from single and co-infected animals in response to
HpAg by gating on CFSE− cells. Interestingly, while CD4+ T cells
from both groups proliferated based on CFSE-staining, the Th2
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FIGURE 3 | Th2 but not Th1 immune responses are absent in co-infected

mice. Cells from spleen, mLN, siLP, and siE of single and co-infected animals

were isolated and stimulated with PMA and ionomycin in the presence of

Brefeldin A followed by intracellular cytokine staining. Gating strategy for the

cytokines IL-5 and IFN-γ in CD4+ cells isolated from spleen (A). Bar graphs

showing frequencies of CD4+ T cells expressing IL-4 (B), IL-5 (C), IL-13 (D),

and IFN-γ (E) in spleen, mLN, siLP, and siE. (F) IL-4 and IFN-γ production

detected by ELISA in supernatant from 3 × 105 splenocytes stimulated with

(black bars) and without (white bars) anti-CD3/CD28 antibodies. (B–F) Data

shown as mean ± SEM, pooled from two independent experiments with

n = 8–9 Statistical analysis was performed using the Kruskal-Wallis with

Dunn’s multiple comparison test, *P ≤ 0.05, **P ≤ 0.01, and ***P ≤ 0.001.

FIGURE 4 | Impact of co-infection on Th1- and Th2-dependent effector cells,

effector molecules and antibody isotypes. (A) Bar graph showing the

frequency of Siglec-F+ eosinophils in the spleen, pooled from 2 independent

experiments n = 7–8. (B) Relative Gene Expression of RELM-β compared to

housekeeping gene β-actin (pooled from two experiments, n = 5–8). (C,D)

Gating strategy and bar graphs showing frequency of inflammatory monocytes

(F4/80+GR1+Ly6C+) in spleen stimulated with LPS (pooled from two

experiments, n = 8). (E) Percentage of TNFα, with the response of the T.

gondii infected group represented as 100%, stimulated with LPS, pooled from

two experiments, n = 9. (F) H. polygyrus specific IgG1 and IgG2a detected by

ELISA, n = 7–8 pooled from two independent experiments. Data shown as

mean ± SEM. Statistical analysis was performed using the Kruskal-Wallis with

Dunn’s multiple comparison test, *P ≤ 0.05, **P ≤ 0.01, and ***P ≤ 0.001.
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cytokine IL-4 was reduced in co-infected animals compared to
helminth single infection. On the other hand, IFN-γ production
in response to HpAg was increased in co-infected animals
(Figure 5C). Additionally, in vitro stimulation of splenocytes
with HpAg showed similar results. Here, significant amounts
of IL-4 and IL-10 could be detected in supernatants from mice
infected with H. polygyrus only, while IFN-γ was significantly
increased in co-infected animals (Figure 5D). Hence, this data
supports the observation that helminth-specific CD4+ T cells
from co-infected animals are unable to commit to the Th2 lineage
but produce the Th1 cytokine IFN-γ in response to a helminth
infection instead.

DISCUSSION

In this study a previous low-dose oral infection with T.
gondii prevented the establishment of local and systemic Th2
responses normally induced by infection with H. polygyrus.
Neither Th2 cytokines nor the transcription factor GATA3 as
well as features triggered by IL-4 (IgG1 antibodies, RELM-ß)
or IL-5 (eosinophilia) could be detected in co-infected animals.
The observed increase in female worm fecundity in co-infected
animals is a likely consequence of a lack in Th2 responses due
to the reduced antibody levels and effector molecule RELM-
ß, as both were shown to influence H. polygyrus fecundity
(Owyang et al., 2006; McCoy et al., 2008). Interestingly the
Th1 response to T. gondii was not diminished in CD4+

and CD8+ T cells in co-infected animals, since both subsets
were able to produce similar amounts of IFN-γ in contrast
to other studies, where the helminth infection precedes the
protozoan infection (Khan et al., 2008; Marple et al., 2017). This
observation is in line with unaltered parasitemia of T. gondii
during chronic phase of infection. Furthermore, inflammatory
monocytes expressing Ly6C infiltrate the brain to control T.
gondii via the production of pro-inflammatory mediators, such
as TNF-α, IL-1-α IL-1-β and nitric oxide synthase (Dunay
et al., 2008, 2010; Biswas et al., 2015). In co-infected animals
the frequency of inflammatory monocytes was not altered,
but the capacity to produce TNF-α in response to LPS was
reduced. However, this had no effect on parasitemia of T.
gondii.

The observation of an apparent reduction in Th2 responses
might be due to abolished priming and polarization events that
occur at various stages, such as insufficient priming of naïve
CD4+ helper T cells, altered function of dendritic cells (DC)
leading to aberrant polarization, or the local cytokine milieu
present at the time of helminth infection. Moreover, a recent
study has shown that systemic T. gondii infection leads to a
long-term defect in the generation and function of naive T
lymphocytes (Kugler et al., 2016). However, our findings suggest
that in a low-dose infection with T. gondii, this effect is not
as drastic,since helminth-specific CD4+ T cells were shown to
proliferate and respond to antigen as seen in Figure 5.

The differentiation between Th1 and Th2 cells requires
positive feedback loops and cross-inhibition of other lineages
for uniform Th cell differentiation (Mosmann and Coffman,

1989; Paul and Seder, 1994). In addition to this the transcription
factor specific for Th1, T-bet, has the ability to suppress
the Th2 transcription factor GATA-3. This might provide an
explanation for the cross-regulation of cytokines in Th cell
differentiation (Hwang et al., 2005). During T. gondii infection
T-bet can suppress IL-4 and GATA-3 expression, thus, preventing
endogenous Th2 cell associated programming (Zhu et al., 2012).
In our study, the observed up-regulation of T-bet was in line with
the significant reduction of GATA-3 in spleen, siLP and siEL.
The reduction in GATA-3 expression followed the absent Th2
cytokine production observed in co-infection with T. gondii. Our
study is in line with other studies showing suppression in the Th2
responses against helminths, when another pathogen is involved
prior or at the same time during infection (Liesenfeld et al., 2004;
Lass et al., 2013; Nel et al., 2014). Interestingly, the frequencies
of CD4+ T-cells from co-infected animals producing either T-
bet or IFN-γ are similar to mice infected with T. gondii alone
or even higher. This suggests that CD4+ T cells expressing T-bet
and IFN-γ in coinfected animals consist of pre-existing T. gondii-
specific T cells and H. polygyrus-specific T-cells able to produce
T-bet and IFN-γ in this coinfection setting.

In general, helminths are shown to actively induce a Th2
program that requires the programming of dendritic cells
(DCs) (Steinfelder et al., 2009). DCs from skin LN exposed to
Nippostrongylus brasiliensis showed transcriptional changes of
different DC subsets (Connor et al., 2017). Generally, DCs are
pivotal in eliciting Th2 cell responses in vivo. A depletion of the
CD11c+ DCs subset during infection with S. mansoni led to an
abolished Th2 response and an increase in the production of
IFN-γ (Phythian-Adams et al., 2010). This reduced Th2 response
was also observed in H. polygyrus infection when mice were
depleted of CD11c+ DCs (Smith et al., 2011). However, during T.
gondii infection, the induced Th1 immune response is dependent
on early IL-12 production by APCs (Scanga et al., 2002). DCs
prime naïve T cells, but are also a target of effector cytokines
produced by previously polarized effector T cells and innate
cells. In our study it is most likely that DCs are affected by the
previous and ongoing infection with T. gondii and the ensuing
cytokine milieu. The presence of IL-12 and IFN-γ at the time
point and site of infection as shown in Figure S2 might impact
the ability of local DCs to be able to prime naïve T cells for Th2
differentiation. Future studies should investigate the underlying
mechanisms and involvement of DCs, such as CD8α+ DCs that
are a source of IL-12 duringT. gondii infection (Mashayekhi et al.,
2011).

Dendritic cells can also be primed in response to epithelium-
derived cytokines known as alarmins. These cytokines are
released during epithelial tissue damage (Swamy et al., 2010).
Thymic stromal lymphopoietin (TSLP) plays an important
role in mounting a Th2 response in H. polygyrus infection
(Massacand et al., 2009). Also IL-33 is an alarmin and it has
been shown that when DCs are treated with IL-33 they polarize
CD4 T cells to produce Th2 cytokines (Besnard et al., 2011;
Eiwegger and Akdis, 2011). Another tissue derived cytokine;
IL-25 has been demonstrated to be involved in Th2 cytokine
responses and N. brasiliensis expulsion. However, this cytokine
has not been described to directly act on DCs (Fallon et al., 2006;
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FIGURE 5 | Helminth-reactive CD4+ T cells from co-infected mice show enhanced production of IFN-γ. BmDC (1 × 105) were pulsed with 50 µg/ml H. polygyrus

antigen (HpAg) and cultured with 1 × 106 splenocytes from single or co-infected animals for 5 h followed by intracellular staining for CD154 and cytokines. Gating

strategy is shown in (A) whereby the gate for cells coexpressing CD154 and IL-4, IL-13, or IFN-γ was set using CD4− cells. (B) Bar graphs showing frequencies of

CD154+GATA3+, CD154+ IL-4+, CD154+ IL-13+, and CD154+ IFN-γ+ in CD4+ T cells. Data shown as mean ± SD and representative of two independent

experiments with n = 4–5. (C) CFSE labeled CD4+ spleen cells were stimulated for 6 days with 20 µg/ml HpAg. Proliferating spleen cells were gated on

(CFSE-CD4+). CD4+ cells were re-stimulated with PMA/Ionomycin and stained for intracellular cytokines IL-4, and IFN-γ; data shown as mean ± SD and is

representative for two independent experiments n = 4. (D) Bar graphs show detection of IFN-γ, IL-4 and IL-10 by ELISA from collected supernatant of 3 × 105

splenocytes stimulated with H. polygyrus antigen for 6 days; representative of two independent experiments n = 4–5, mean ± SD. Statistical analysis was performed

using the Mann-Whitney test, *P ≤ 0.05, **P ≤ 0.01.

Wang et al., 2007). Since early Th2 polarization is dependent on
the release of these cytokines that act as alarmins it might be
fruitful to investigate these cytokines very early after infection
with H. polygyrus in previously infected T. gondiimice.

Importantly, we show that while helminth-reactive CD4+ T
cells are unable to produce Th2 cytokines in a co-infection, they
still express significant amounts of IFN-γ after restimulation with
helminth antigen. We identified IFN-γ producing H. polygyrus
antigen (HpAg)-reactive T cells in co-infected animals using
the activation marker CD154 and a short stimulation protocol
(Frentsch et al., 2005; Chattopadhyay et al., 2006). We also saw
this in CFSE−CD4+ T cells that expanded in response to HpAg.
In line with our findings, Coomes et al. have shown that a co-
infection with Plasmodium chabaudi and H. polygyrus led to
a reduction in Th2 responses. Furthermore, they observed up-
regulation of IFN-γ when Th2 cells from H. polygyrus-infected
mice were adoptively transferred into Rag1−/− mice infected
with P. chabaudi. However, blocking of IL-12 and IFN-γ only

partially preserved Th2 immunity in response to H. polygyrus
(Coomes et al., 2015).

In summary, our data on helminth-antigen specific
restimulation of CD4+ T cells suggest that naïve CD4+ T
cells harboring a cognate TCR for helminth antigen fail to
commit to the Th2 lineage and are polarized toward a Th1
phenotype in mice previously infected with Toxoplasma. This
switch in cytokine expression leads to the absence of effector
features downstream of the Th2 response and consequently
to higher worm fecundity in co-infected animals. Recent
studies emphasized the importance of bystander activation and
concurrent infections on the outcome of the immune response
to unrelated pathogens or vaccines (Reese et al., 2016; Tao and
Reese, 2017). In regards to the differences in the development of
protective Th2 immunity observed in our study and by others
in both mice and humans, it is important to focus on infections
not only in a “clean” host but also in the context of individual
infection history as well as co-infections.
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