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Pathways of Human Epilepsy, 
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One third of humans are infected lifelong with the brain-dwelling, protozoan parasite, Toxoplasma 

gondii. Approximately fifteen million of these have congenital toxoplasmosis. Although 
neurobehavioral disease is associated with seropositivity, causality is unproven. To better understand 

what this parasite does to human brains, we performed a comprehensive systems analysis of the 

infected brain: We identified susceptibility genes for congenital toxoplasmosis in our cohort of infected 
humans and found these genes are expressed in human brain. Transcriptomic and quantitative 

proteomic analyses of infected human, primary, neuronal stem and monocytic cells revealed effects 
on neurodevelopment and plasticity in neural, immune, and endocrine networks. These findings were 
supported by identification of protein and miRNA biomarkers in sera of ill children reflecting brain 
damage and T. gondii infection. These data were deconvoluted using three systems biology approaches: 

“Orbital-deconvolution” elucidated upstream, regulatory pathways interconnecting human 

susceptibility genes, biomarkers, proteomes, and transcriptomes. “Cluster-deconvolution” revealed 

visual protein-protein interaction clusters involved in processes affecting brain functions and circuitry, 
including lipid metabolism, leukocyte migration and olfaction. Finally, “disease-deconvolution” 

identified associations between the parasite-brain interactions and epilepsy, movement disorders, 
Alzheimer’s disease, and cancer. This “reconstruction-deconvolution” logic provides templates of 

progenitor cells’ potentiating effects, and components affecting human brain parasitism and diseases.

�e �rst half of the 20th century achieved remarkable advances in control of some communicable diseases, with 
development of immunizations, antimicrobial therapies, and increasing ability to identify new pathogenic organ-
isms1. �e second half shi�ed to understanding chronic degenerative diseases as prevailing causes of death in 
older populations. One primary challenge for contemporary medicine is to control non-communicable diseases 
with complex gene-environment etiologies and progression2, 3, postulated to arise from complex interactive cas-
cades of genetic and environmental factors. Historical e�orts to �nd causes and cures for such illnesses, including 
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brain diseases, have had a glaring omission of a signi�cant environmental factor: Over 2 billion humans are 
infected with the neurotrophic parasite Toxoplasma gondii. Congenital and postnatal infections with T. gon-
dii persist in all infected persons. �e parasite interconverts between slow-growing, encysted bradyzoites and 
rapid-growing tachyzoites4. In mice, T. gondii creates a chronic intra-neuronal infection and an in�ammatory 
process4. Mice with acute and chronic infection have alterations in neurotransmitters, memory, seizures, and 
neurobehaviors5, 6. Some epidemiologic-serologic studies show associations between seropositivity for T. gondii 
and human neurologic diseases, for example, Parkinson’s and Alzheimer’s diseases7, 8. Serologic studies of humans 
with diverse genetics are not optimal to detect strong associations or directionality. Epidemiologic associations 
also do not reveal parasite-modulated gene networks in human brain that could provide insights into how to cure 
and prevent resultant diseases. We need integrative approaches to examine relationships between brain parasitism 
and other brain diseases9, 10, to provide a foundation to identify key pathways and molecules for drug and vaccine 
design.

To address these problems, we considered two central questions: (i) If chronic brain parasitism associates 
with other neurologic diseases, what are they? and (ii) Which macromolecular networks are modulated by the 
parasite in human brain that lead to neuropathology which could underpin and facilitate design of treatments? 
We hypothesized that a systems approach integrating multiple levels of host parasite interactions might resolve 
these questions. To gain insights into relationships between human T. gondii infections and brain disorders, we 
studied a unique cohort, the National Collaborative Chicago Based Congenital Toxoplasmosis Study (NCCCTS), 
and identi�ed human susceptibility genes, as well as serologic biomarkers of active brain disease. �e NCCCTS 
has diagnosed, treated and followed 246 congenitally infected persons and their families continuously beginning 
in 198111–39. Next in our study, we obtained new transcriptomic and proteomic data from infections of primary, 
human, neuronal stem cells, and monocytic cells that in�ltrate brain, to determine whether there are di�erent 
phenotypic e�ects of Type I, II, or III T. gondii tachyzoites. We used these four data sets to construct an integrated 
molecular model of the infected human brain. In a second phase, the model was further analyzed using systems 
biology approaches to provide insights into the molecular mechanisms by which T. gondii infection may cause 
disease. �e broader goal was to provide a robust database and informatic analysis for the scienti�c community 
to use for their research. �is report described only a limited number of important observations. �is e�ort to 
integrate multiple levels of intrinsic and extrinsic factors o�ers an original template to unravel pathogenesis of 
complex diseases in humans.

Our studies presented here were performed to examine genetic and parasite e�ects we hypothesized would 
in�uence outcomes (Fig. 1a). We utilized a novel systems approach expanding from gene-environment paradigms 
to include a third component of development (Fig. 1a). In Fig. 1a, there is intersection/overlap between the circles 
representing components of the host-parasite interactions. �ese circles include host-parasite genetics, toxoplas-
mosis susceptibility genes, and serum biomarkers in children in the NCCCTS [T. gondii infection, red circle], 
human neuronal stem cell functional assays including transcriptomics and proteomics [Brain pathology mech-
anisms, blue circle], and disease pathogenesis/pathology susceptibility genes for other diseases [others, green 
circle]). �is overlap/intersection in the Venn diagram indicates the circumstances in which we hypothesize that 
manifestations of other diseases will occur. To test this hypothesis, we isolated the infected brain as a system. �is 
sequence of our work presented herein, and structure of our studies, and these results are shown in a �ow chart 
(Fig. 1b), detailed outline (Fig. 1c), and schematic diagram of our model created based on this work (Fig. 1a and d).  
�e overall plan was to gain access to the network interactome and biosignatures of T. gondii and the human 
brain, which �rst reconstructed the T. gondii brain infection. Our �rst steps of reconstructing T. gondii brain 
infection included discovery, integration and systems analysis of our original data. �ese systematic analyses 
of our novel human data sets used empiric studies of human T. gondii infections of persons with toxoplasmosis 
and their families, and infectomes of primary, human brain stem and monocytic cells (Fig. 1b,c). In our work, 
the human infectome is de�ned as the human host and parasite molecules, and pathways that are perturbed by 
the interaction of the human host and parasite T. gondii, as has been characterized by others for studies of other 
pathogens in earlier literature. An interactome is the whole set of molecular interactions such as protein-protein 
and genetic interactions. �is can provide a global “Omic” view of molecular e�ects as in the resource APID inter-
actome (http://cicblade.dep.usal.es:8080/APID/init.action). To our knowledge, this study herein is the only single 
human cohort that is directly observed by a uniform group of examiners, longitudinally in a variety of ways, 
combined with human, primary, neuronal stem cell Omics Systems analysis for the T. gondii infectome, then 
interrogated for disease susceptibility genes/proteins. We obtained cellular data to test a few pathways relevant to 
pathogenesis. �ese �rst were considered individually and then together to determine whether we identi�ed key 
biologic processes and biosignatures a�ected by T. gondii. Second, the integrated brain infectome became a global 
map that was deconvoluted to determine functional clusters and disease correlates (Fig. 1d). We termed this 
approach “Reconstruction and Deconvolution” (Fig. 1d). Speci�cally, Reconstruction was based on our unique 
cohort of infected persons, most of whom showed neuropathologic symptoms13, to identify novel human genet-
ics of susceptibility to toxoplasmosis. �en, serologic biomarkers were studied for a limited number of infected 
humans to assay readout of an infected brain. We selected neural stem cells to uncover potential developmental 
mechanisms because of their multipotency central to neurodevelopment and neuroplasticity. Most brain dis-
eases result from abnormal neurodevelopment (e.g., epilepsy) and neuroplasticity (e.g., neurodegeneration). 
Hence, transcriptomic and proteomic infectomes of human neural stem cells were studied for parasite e�ects 
using primary cultures of cells from the hippocampus-temporal lobe. �ese datasets were integrated into a total 
brain infectome. �ey were unraveled, or “deconvoluted”, to identify functional and disease correlates. �is was 
accomplished by analyzing upstream regulators in all our datasets. �ereby, we determined how di�erent brain 
infectome components were interrelated. Cluster protein-protein interaction analysis revealed additional, func-
tional correlates. Associations between the T. gondii brain infectome and other diseases that share these signature 
interactions were determined using our empirical, primary data.

http://cicblade.dep.usal.es:8080/APID/init.action
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Figure 1. Methodology and analyses for understanding interaction of Toxoplasma gondii with human brain.  
(a) Gene-environment-pathology paradigm. �e Venn diagram shows model of pathogenesis with con�uence of 
permissive host and parasite genetics, and exposure. (b) Flow diagram of empirical genetic and biomarker data from 
NCCCTS, transcriptomics and proteomics. (c) Structure of the manuscript. �is includes original empiric data, 
methods for analyses, and contributions of components to analyses in each �gure. *Empiric but not from NCCCTS 
cohort; **Cell culture, IFA, microarray gene expression, mRNAseq, miRseq, quantitative proteomics, miR qPCR. 
d. Reconstruction and deconvolution analyses. Reconstruction is the discovery, integration and systems analysis 
of interrelatedness of four areas of primary, original data: genetics, transcriptomics and proteomics of infected 
cells and circulating serum biomarkers in ill persons. Deconvolution refers to the systems analysis that examines 
upstream regulatory genes, protein-protein cluster interactions and diseases with which biosignature pathways 
associate. �ese are the topics of the current work and are elaborated on throughout this manuscript. Image of 
family reproduced with their permission and also from “�e Billion Brain Parasite”, Science Life (Easton, 2014).
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Results
Reconstruction and deconvolution of Toxoplasma gondii brain infection. Reconstruction 
1. Susceptibility genes expressed in human brain provide insight into signature pathways of T. gondii in human 
brain. Our unique NCCCTS cohort of persons with congenital toxoplasmosis and their families have been care-
fully characterized longitudinally13, 40–44 (Fig. 1). Ongoing evaluations of this cohort contributes to the �rst phase 
of our present analyses as shown in the �ow diagram in Fig. 1a. Figure 1b presents an outline of the work in this 
study including how the genetic and cohort analyses form a basis for the work. Figure 1c shows that these cohort 
and genetics analyses are integrated with other aspects of the current work in a model. Our NCCCTS cohort 
is the source of previously published analyses11–39 which earlier provided a powerful tool to identify genes and 
pathways causing susceptibility to toxoplasmosis (Table 111–39, Figs 1 and 2). �ese susceptibility genes identi�ed 
earlier are considered along with susceptibility genes newly identi�ed herein. All these genes are part of our fur-
ther analyses in this present manuscript. In our earlier work, the human susceptibility alleles of candidate genes 
identi�ed for those in the NCCCTS were HLA Class I and II genes, ERAP 1, COL2A1, ABCA4, P2RX7, ALOX12, 
NALP1, IRAK4 (Table 1). Some of these gene/susceptibility associations were further con�rmed using samples 
from the European Cohort study (EMSCOT)12, 14. One association, with NOD239, was present in a Brazilian 
Cohort with eye disease, but not found in the NCCCTS. Characterization of mechanisms associated with ERAP1 
were extended in studies of cross presentation of antigen45. Peptides interacting with MHC Class I genes of greater 
than usual octamer/nonamer lengths45 also were identi�ed, suggesting that T. gondii subverts its host’s immune 
defenses with aberrant splicing of polypeptides46. �ese genetic data and their analysis are summarized in Table 1 
and Fig. 2a and b. �e newly identi�ed genes or phenotypes identi�ed herein are labeled “AM” or “OD” in Table 1. 
�ese susceptibility alleles indicated that the candidate genes were playing a role in susceptibility to toxoplasmosis 
and some have been studied for corresponding phenotypes to explain that susceptibility. �e previously described 
genes are combined with newly identi�ed genes for the analyses herein.

In a preliminary, initial network reconstruction analysis performed with Ingenuity Pathway (IPA), we noted 
that NFκB and TGFβ were central nodes in the network (McLeod, R, Lorenzi H, et al., JCVI White Paper; http://
gcid.jcvi.org/docs/Toxoplasma_gondii_06152012.pdf). �erefore, they became predicted candidate susceptibility 
genes. Using Transmission Disequilibrium Testing (TDT) with DNA from the families in the NCCCTS, we fur-
ther con�rmed herein that NFkB and TGFβ were actually empirically con�rmed human toxoplasmosis suscep-
tibility genes (Table 1, Fig. 2b, Supplement B: Table S1). Our sequential analysis of other candidate susceptibility 
loci presented herein, found that TREX1, TIRAP MAL, FOXQ, and TLR9 also had allelic variants signi�cantly 
associated with susceptibility to congenital toxoplasmosis in the NCCCTS (p < 0.05) (Table 1).

It is noteworthy that all these identi�ed, critical genes are expressed in the human brain, as shown in red color-
ation in Fig. 2a. Speci�cally, expression analysis using the Allen Human Brain Atlas (ABA) followed by 3-D Brain 
Explorer 2 so�ware analysis revealed that all 17 candidate susceptibility genes are expressed in the human brain47. 
Z-scores of RNA expression of 6 human brains in the ABA database demonstrated localization and increased or 
decreased expression of these genes in these human brains (Fig. 2a) in the hippocampus, choroid plexus, and 
globus pallidus.

Our genetic analyses provided a foundation for systems analysis of congenital toxoplasmosis as it a�ects the 
human brain (Figs 2b, S2). Upstream regulators of all these genes also were identi�ed: a network of our suscepti-
bility genes and upstream regulators was constructed with IPA (p-value of overlap <5 × 10−3; Fig. 2b) to identify 
critical connecting nodes (genes). IFNϒ, TLR4, TAP 1, JUN, MYC, TNFR were identi�ed as upstream regulators, 
among others (Fig. 2b). Among 112 upstream regulators of these genes (Fig. 2b), 96 mediate both cellular growth 
and proliferation (p = 5.22 × 10−35) and cell death and survival (p = 3.26 × 10−37; Supplement B: Table S2).

Reconstruction 2: T. gondii modulates human brain stem cell transcriptomes and proteomes. Human primary 
neural stem/progenitor cells (stem/progenitor, stem or progenitor can be used to describe them because the 
degree of stemness of the two primary cell lines studied here is still not certain, even though both are highly 
potent clonogenic cells that should have many common phenotypic characteristics since both lines were iso-
lated and expanded from human hippocampus following temporal lobectomy for intractable epilepsy48, 49) were 
selected for these studies because they are multipotent cells central to neurodevelopment and neuroplasticity. To 
determine whether T. gondii can perturb human neural pathways that contribute to the generation, di�erentia-
tion and survival of normal circuitry components, including cell death and protein misfolding and degradation, 
we characterized the host cell functional response, at transcript and protein level, of these two primary human 
temporal-lobe neural stem cell lines (NSC, Table 2) generated in two di�erent laboratories. One of these cell lines, 
we named L-NSC, is a partially di�erentiated neuronal stem/progenitor cell48. L-NSC (Fig. 3a le� panel, Table S3) 
is known to immunostain with antibodies to well-established neural stem cell/astrocytic and neuronal progen-
itor markers Nestin and glial �brillary acidic protein, “GFAP” (data not shown here). L-NSC are shown here to 
also be immunoreactive for NFκB which is involved in DNA transcription, cell survival, cytokine and growth 
factor production, and Stat3 which is also involved in cell growth and survival. �ese cells, as well as the second 
neuronal stem cell line studied named S-NSC, are able to take up the thymidine analogue bromodeoxyurdine, 
“BrdU”, indicating their ability to replicate and expand impressively in vitro. �e second NSC studied was ini-
tially isolated and characterized by Steindler et al.49 (S-NSC, Supplement B: Table S3). �ese genetically distinct, 
primary human temporal-lobe neural stem/progenitor cells also express the neural stem cell markers Nestin and 
GFAP and can be di�erentiated into neurons and glia both in vitro and following intracerebral transplantation49 
(Fig. 3a right panel, showing phase microscopic and immunostaining for astroglial stem/progenitor cell markers 
of the human neural progenitor cell line). S-NSC allowed us to study a second biologically distinct human brain 
NSC to compare with our L-NSC. Because of distinguishable isolation and in vitro growth conditions between the 
two laboratories, along with known interclonal heterogeneity that has previously been shown for clonogenic NSC 
lines even generated from the same human hippocampal specimen50, it is always anticipated that pro�ling of the 

http://gcid.jcvi.org/docs/Toxoplasma_gondii_06152012.pdf
http://gcid.jcvi.org/docs/Toxoplasma_gondii_06152012.pdf
http://S1
http://S2
http://S2
http://S3
http://S3
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Gene SNP (Allele) P Value
Reason Candidate 
Gene Replicate/Proof of Principle/Phenotype

Reference/
Supporting Data

HLA Class II
DQ3 <0.02

MD
Hydrocephalous in children (DQ3), Fewer 
cysts in HLA transgenic mice (DQ1)

11
DQ1 <0.0005

COL2A1

rs6823 (G) <0.03 (brain)

ED
EMSCOT replicates, imprinted, brain and 
eye disease

12, 13

rs2276455 (A) <0.03

rs2276455 (G)* <0.0005

rs1635544 (C) <0.03

rs2070739 (T) <0.02

rs2276454 (A) <0.007

rs3803183 (T) <0.02

rs3803183 (T)* <0.003

ABCA4

rs952499 (C) <0.03

HC
EMSCOT replicates, imprinted, localized in 
human brain

12, 13, HC

rs952499 (T)* <0.005

rs2297633 (G)* <0.0003

rs1761375 (G)* <0.0001

rs3112831 (C)* <0.02

P2RX7

rs1621388(C1772T) <0.021

OI
EMSCOT replicates for di�ering alleles; ATP 
mediated cell death, cytokine signaling, pro-
in�ammation

14, 15, OD
rs1718119(T1068C) <0.015

HLA Class I

A

<0.01 MD

Genotype association and phenotypes 
humans and mice. PBMC from cohort. 
Peptides for HLA A2, A11, B7 confer 
protection

16–22, ODB

C

ERAP1
rs149173(T/C) <0.0077

LfL
Genotype association and phenotypes 
humans and mice

16, OD
rs17481856(C/T) 0.0253

IRAK4
rs1461567 <0.023

IOID
Genotype; phenotype, cell death, 
in�ammation

23
rs4251513 <0.045

NALP1

rs8081261 <0.002

MD TRNG
Genotype (MD region; human); phenotype, 
cell death, in�ammation; MD

24–30rs11652907 <0.02

rs9902174 <0.04

ALOX12

rs6502997 <0.0003

MD TRNG
Genotype and phenotype, cell death 
proin�ammation

31

rs312462 (C) <0.03

rs6502998 (C) <0.03

rs434473 <0.04

TLR9
rs574386 (T1905C) <0.008

TLRs
Brazil and Poland replicates; phenotype, 
ligand

32

rs352140 (C) <0.0001 AM

TIRAP rs8177374(S180L) <0.006 IOID
Genotype; Phenotype TLR signaling and 
cytokines

AM

FOXQ1 rs920209 <0.02 HC Note NK cells mice 33, OD

TREX1 rs 2242150(A/T) 0.02 SPD
Related clinical & Type 1 IFN phenotype, 
LFL

34, 35, OD or 
AM

NFκβ1 rs997476(C/A) <0.02 CtoPiEA
Phenotype, nuclear localization, signaling 
pathway

36, OD

TGFβ1
rs10417924 (G 
overtranscribed)

0.016 CtoPiEA, MD Phenotype transcriptomics, GRA1 37, 38

NOD2 (Brazil) rs3135499 (C/A)† <0.04 LfL Brazil Eye Disease, IL17, CD4+ 39

Table 1. Genes with Susceptibility/Resistance Alleles De�ned with National Collaborative Toxoplasmosis 
Study and EMSCOT Cohorts. Abbreviations: Reason for selection of gene to test sequentially as single 
candidate gene in NCCCTS (1981–2016): MD, Murine model data; ED, Eye disease in humans caused 
by mutation of this gene; HC, Hydrocephalous caused in humans by gene mutation and adult macular 
degeneration associated with allelic variants; OI, Implicated alleles for other infections; LfL, Logical to test 
from literature and other �ndings, for example MHC Class I presentation of antigen for ERAP1; IOID, Gene 
in other diseases in the literature; MD TRNG, Toxo 1 region, not gene initially in humans based on rat Toxo 
1 region; TLRs, Testing TLR genes now replicated by other cohorts and proven to be important in mice; 
SPD, similar pattern of brain disease as AG brain disease due to DNA ligase mutations; CtoPIEA, Central to 
genetic pathway identi�ed with original analysis led to TDT analysis herein. Note: LfL Brazil, Minas Gerais, 
did not replicate in US full cohort; no *, signi�cant in NCCCTS not EMSCOT;* signi�cant in EMSCOT 
cohort not NCCCTS. P values are nominal. Supporting Data [SD]: References (#) with narrative summary 
of �ndings and gene function for published work or in preparation (AM) or original data in this manuscript 
(OD) in Fig. 1 or online supplement.
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two lines under any condition should reveal similar but not identical molecular signatures. For both cell types, 
and the di�erentiated form of S-NSC (S-NDC), the transcriptional responses were characterized using di�ering 
in vitro culture conditions (Table 2), with and without T. gondii infection. �ese studies were complemented 
with transcriptomics analyses on a human monocytic cell line (MonoMac6, MM6, Supplement B: Table S13)25 to 
re�ect in�ammatory cells that enter the human brain. All four types of cells were infected with parasite isolates 
representative of the three clonal types of T. gondii that predominate in the U.S. and Europe (Types I, II and III). 
To characterize the transcriptional response of each of the four human cell types to the infection of genetically 

Figure 2. Susceptibility genetics. (a) Expression and localization in human brain utilizing Allen Brain Atlas 
of genes with alleles conferring susceptibility to congenital toxoplasmosis in National Collaborative Chicago 
Based Congenital Toxoplasmosis Study (NCCCTS). Transcript expression is visualized for brain of the youngest 
donor (H0351.2001, 24 years, male, African-American). Z-score of microarray data ranges between −3 and +3 
to quantify the lowest to highest expression (see Supplement B: Table S2). (b) Ingenuity Pathway Analysis (IPA) 
of NCCCTS susceptibility genes and upstream regulators. Cut o� of p value at 5 × 10−3 generated a network of 
117 predicted upstream regulators (see Supplement B: Table 2). Upstream regulators and susceptibility genes 
are consolidated/bundled and graphically mapped. Susceptibility genes are manually relocated in IPA graphic to 
show connectivity to upstream regulators. Note NFκB and TGFβ are central nodes that are visual.

http://S13
http://S2
http://2
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diverse parasite strains, we performed di�erential gene expression analyses of both protein-coding (L-NSC, 
S-NSC, S-NDC and MM6) and miRNA-coding (S-NSC, S-NDC and MM6) genes for each infected culture con-
dition compared to its respective uninfected control. Figures 3 and 4 summarize results of RNA pro�ling and 
analysis of the T. gondii RNA brain infectome for L-NSC, S-NSC, S-NDC and MM6 cells. Signi�cant modulations 
(>1.5 log fold change of infected versus uninfected cells) were evident at 18 hours post infection with Type I, II 
and III T. gondii tachyzoites. �e bar on the heat map for L-NSC is the RMA normalized intensity.

�e relatedness of results from all four types of host cells and identi�cation of the signature pathways that the 
parasites modulate were analyzed by heat maps (Fig. 3) and gene set enrichment analysis using Gene Ontologies 
(GO) and KEGG pathways knowledgebase (Fig. 3c, Supplement B: Tables S16 and S17). �is comparison revealed 
critical similarities and di�erences between di�erent cell types and culture conditions. Some of these modula-
tions were unique to di�erent parasite strains and cell types. �e heat maps also showed e�ect of host cell type in 
Fig. 3b. �e overlap and di�erences of expression are shown in Fig. 4a–e. In MM6, modulation of P53 signaling, 
JAK-STAT signaling, programmed cell death, arachidonic acid metabolism, response to hypoxia were noteworthy 
(red arrows in Fig. 3c, right panels). E�ects on translational elongation, apoptosis, cell cycle, vesicle mediated 
transport, ribosomes, amino acid metabolism, TGFβ signaling, p53 signaling, MAP kinases, circadian rhythm, 
and cell cycle were some especially noteworthy in GO and KEGG pathways for S-NSC (red arrows in Fig. 3c). In 
infected L-NSC, transcriptomes also showed that parasites modulate pathways of sensory perception of smell, 
mitochondrial organization, protein modi�cation by small protein conjugation, cognition, neurologic system 
processes, neddylation, oxidative phosphorylation, G protein coupled receptor protein signaling, androgen and 
estrogen metabolism, ribosomes, translational elongation, and particularly noteworthy, pathways of Parkinson’s, 
Alzheimer’s and Huntington’s diseases (Fig. 3c). Speci�c genes in the L-NSC pathway analysis are shown in 
Tables 16 (GO) and 17 (KEGG). Speci�c T.gondii susceptibility genes that also contribute to these pathways and 
functions are in Table 1 and Supplement B: Tables S16 and S17. �is transcriptomic analysis also served as a basis 
for an analysis of upstream regulatory genes shown later.

It was notable that a signi�cant number of pathways modulated by T. gondii in human NSC re�ect immuno-
logic mechanisms. �is made the comparison of the transcriptomic di�erences between NSC and this monocytic 
cell line at a stage before maturation (Mono-Mac 6) of interest. �is allowed us to identify the distinct and com-
mon modi�cation in each of these cell types. We also compared their messenger RNAs (mRNA) and micro-RNAs 
(miRNA) with NSC that are stimulated (NDC) by Nerve Growth Factors for 7 days. Human MM6, NSC, and 
NDC each were infected with Type I (GT1), or Type II (PRU or ME49) or Type III (VEG) parasites for 18 hours. 
�e di�erential transcriptional responses are signi�cantly di�erent between NSC and NDC, as well as when 
compared to MM6 (Fig. 4). Direct comparison of the transcriptome pro�les also demonstrated that di�erences in 
protein and miRNA coding gene expression were mostly in�uenced by host cell types rather than parasite type, in 
particular for MM6 and S-NSC cells (Fig. 4a–e). �is comparison further demonstrated the substantial numbers 
of human genes modulated during parasite infection that were not shared among the di�erent host cell types 
assessed and the NDCs in di�erent culture conditions. �is comparison underscores immune-type responses 
in human neural stem cells but also that they are not the only pathways perturbed. In addition, we identi�ed 
some interesting parasite-speci�c pathways perturbations. Notably, pathways for Alzheimer’s, Parkinson’s, and 
Huntington’s diseases have the same genes being a�ected by infection modifying oxidative phosphorylation that 
were prominently modulated for L-NSC, but only when infected by Type II (ME49) parasites. Baseline levels also 
di�ered between cell types (Fig. S1).

Signi�cant changes in gene expression were also evident by miR-seq for MM6, S-NSC and S-NDC cells at 
18 hours post-infection (Figs 3 and 4 and Supplement B: Tables S11 and S12). �ese included mirs 139, 132, 29a, 
107, 218, 143, 155, 199a, 21, 16, 181b-1.

L-NSC and S-NSC infections with Type I, II, III parasites were also studied using iTRAQ quantitative pro-
teomics (Fig. 5). Di�erential protein expression analysis of L-NSC cells identi�ed only three primary candi-
date proteins with signi�cant fold change increases in infected cells. �ese proteins were Ataxin 2-like protein 
(ATXN2L); Fragile X-related protein 1 (FXR1); and Niemann-Pick-like protein (NPC2) (Fig. 5a, Supplement B: 
Table S4). An IPA later showed how these three proteins were linked to transcriptomic infectomes and identi�ed 
congenital toxoplasmosis susceptibility genes (Figs 6, 7). �ese proteomics and transcriptomics (Figs 3–5) de�ned 
empirically, responses of human L-NSC to infection with T. gondii.

Quantitative proteomics of S-NSC identified 20 proteins that presented at least a significant (p < 0.05) 
1.5-fold change in abundance in response to T. gondii infection compared to uninfected controls (Supplement 
B Table S15). Interestingly, this includes a number of proteins that participate in the regulation of the immune 

Cell Medium Serum

Growth Factors (ng/ml)

Other Markers
Days to 
Di�erentiationEGF bFGF NGF

NPC-LS* DMEM/F12
0,5, or 10% 
FCS

20 20 0
N2 supplement/ 1 µg/
ml laminin

Nestin, GFAP, 
Neur

N/A

S-NSC DMEM/F12 5% FCS 40 40 0
N2 supplement/ 
Bovine Pituitary 
Extract

Not Present 0

S-NSC-LNS DMEM/F12 0 0 0 25
c-AMP 05 um IBMX 
0.5 uM

Rare: Nestin, 
GFAP, Neur

14

S-NDC DMEM/F12 0 0 0 25
c-AMP 05 mM IBMX 
0.5 mM

Nestin, GFAP, 
Neur

7

Table 2. Neuronal cells, culture conditions, and markers. *Called L-NSC.
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Figure 3. Transcriptomics and their Analyses. (a) Immunostaining of L-NSC and S-NSC cell lines. Le� panel 
in a shows L-NSC cells stained for nestin (green) and Tuj1 (red) (upper row, 20X), Stat 3 (middle row, red) and 
NFκB (lower row, green), nuclear counterstain blue, DAPI (40X). �e right side of the le� panel in a shows 
L-NSC cells immunostained for the cell proliferation marker bromodeoxyuridine, BrdU(upper panel), and 
propidium, PI (lower panel), nuclear counterstained, DAPI blue (40X). A, right panel, phase microscopic image 
of S-NSC cells in culture; top panel shows DAPI counterstaining of a nucleus from a cell immunopositive for 
the cytoskeletal and neural stem/progenitor cell marker proteins nestin (red) and GFAP (green). �e panel 
below shows a single double labeled S-NSC cells double labeled for nestin and GFAP, merged image. �e S-NSC 
double labeled cell interestingly possesses the same morphology and immunostaining pattern of cytoskeletal 
elements as originally shown in immunocompromised mouse xenogra�s of the original parental line following 
intracerebral transplantation and their homing to neurogenic regions (Fig. 3f in Walton et al. Development, 
200649). (b) Heat maps showing di�erentially expressed protein coding and miRNA genes. Le� panel, L-NSC 
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response, cell proliferation and cancer, protein ubiquitination, and neurodevelopmental disorders. Modulated 
proteins of interest included WDF41, PPP4C, USP8, UBE3A, ECF1A2 (Fig. 5b, Supplement B: Table S6). 
Contrary to L-NSC, S-NSC cells did not show any signi�cant change in the level of ATXN2L, FXR1 or NPC2 
proteins. S-NSC proteomics also revealed that some of the pathways whose gene expression was perturbed dur-
ing T. gondii infection (Fig. 5b,c) were also modulated at the protein level. (Please see response to wounding and 
regulation of TOR-signaling pathway in Fig. 5c, right panel; Supplement B Table S15). In summary, S-NSC pro-
teomics, pathway and GO enrichment analyses showed signaling pathways impacting on cell death, TOR, protein 
transport/localization and RNA splicing. Oxidation reduction, vesicle mediated transport, iron homeostasis and 
glucose metabolism were also in�uenced, some di�erentially by parasite type (Fig. 5c). Consistent with these 
enrichment results, prediction of alternative spliced isoforms in our transcriptomics datasets identi�ed a number 
of candidate genes predicted51 to be di�erentially spliced during parasite infections (Supplement B: Table S14).

Reconstruction 3: Serologic biomarkers re�ect infection and neuron damage. Human serum biomarkers of three 
ill congenitally infected children from the NCCCTS (A1,B1,C1 in Fig. 6a–c) re�ected T. gondii infection and neu-
ronal damage when compared against age, sex, and demographically matched controls (A2,B2,C2) in Fig. 6a–c. 
Each of the three ill children had new myoclonic-“infantile” spasms, or hypsarrhythmic seizures (Fig. 6a). For 
two of them, A1 and B1, this was associated with a rise in or high T. gondii speci�c IgG antibody titers. IgG was 
not measured for the third ill child, C1. Child C1, who decades earlier, was recognized to have congenital tox-
oplasmosis and later developed hypsarrhythmic seizures decades. A1 and B1, diagnosed more recently, had T2 
weighted abnormalities in brain MRIs. C1, with this clinical problem was cared for prior to the development of 
regular clinical use of MRIs. �e �ndings in the ill children were similar to active in�ammatory and parasitic 
caused brain disease such as epilepsy and motor abnormalities, and the T2 weighted abnormalities, seen in a 
murine model4. �ese similarities prompted us to look for serum biomarkers for active brain damage in the 
setting of chronic congenital toxoplasmosis. In the murine model studies, T2 weighted abnormalities in MRIs 
correlated with chronic and active in�ammatory brain pathology characterized with light and electron micros-
copy studies. To identify potential serologic biomarker signatures associated with the aforementioned neurologic 
manifestations of toxoplasmosis, we assessed a panel of 700 miRNA transcripts by RT-qPCR and performed 
proteomics on serum samples obtained at the time of appearance of this new illness for the ill children and at the 
same age for the control children. �ese miRNA panels had shown biomarkers associated with neurodegenera-
tive diseases52. Serum miRNA pro�ling detected four miRNA transcripts with more than 2–fold increases in the 
sera of at least one of the three infected children compared to their paired healthy controls (Fig. 6b and c). �ese 
include mirs 17, 186, 19a, 124 all encoded by miR 17-92 family cluster. Proteins that increased included clusterin 
(CLU), serum amyloid P component (APCS), and Oxytocin (OXT) (Fig. 6d,e). N-acetylmuramoyl-L alanine 
amidase (PGLYRP2) and Apolipoprotein A1 (APOA1) decreased (Fig. 6).

To elucidate potential relationships between candidate serologic biomarkers, our susceptibility genes and their 
upstream regulatory pathways, and toxoplasmosis, we performed IPA network analysis (Fig. 6e). �is analysis 
revealed that biomarkers from sera of some cohort members, and susceptibility genes and their upstream reg-
ulators are interconnected. IPA analysis was performed to elucidate potential relationships between candidate 
serologic proteins and toxoplasmosis susceptibility genes, such as upstream regulators (Fig. 6e, Supplement B: 
Tables S2 and 7). Comparison of top-scored IPA canonical analysis showed that atherosclerosis signaling may 
relate to interactions between CLU and proteins encoded by congenital toxoplasmosis susceptibility genes 
(TGFβ1, COL2A1, ALOX12, NFκB1). Atherosclerosis was also facilitated by association with other genes in RNA 
infectomes of L-NSC (2 genes) and S-NSC (10 genes). Disease and function analysis indicated that additive e�ect 
of congenital toxoplasmosis biomarkers activate mechanisms of immune cells and neurons, synthesis of prosta-
glandins and a dominant shi� to cancer potentiation.

Deconvolution 1. IPA analyses reveal upstream regulators. First using only the �ndings from L-NSC, the four pri-
mary original data sets were combined as a total brain infectome. �e sum is 1,678 human genes that were assem-
bled from Type I (347 genes), Type II (1,225 genes), and Type III (801 genes) parasitic infections (Supplement 
Table S7). We determined by IPA analysis the top 25 upstream regulators and created an ‘Orbital’ design to 

microarray gene expression data. Upregulated and downregulated genes in infected cells are shown in red 
and blue respectively. Middle panel, S-NSC di�erentially expressed protein-coding genes. Red and green 
represent genes over- or under-expressed in infected cells respectively. Right panel, microRNA genes over- 
(red) and under-expressed (green) in infected S-NSC. (c) Functional enrichment analysis of transcriptomics 
datasets focused on KEGG pathways and GO Biological Processes. Le� panels, enrichment analysis on L-NSC 
transcriptomes; right panels, enrichment analysis on MM6 cells and Steindler’s NSC and NDC cells. Red 
arrows indicate interesting pathways. DEGs, GO Biological Processes enriched with DAVID so�ware v6.7. GO 
Biological Processes, p-value < 0.01, number of genes associated with certain GO term >5. (j) KEGG pathway 
enrichment analysis. Identi�ed DEGs, KEGG pathways enriched with DAVID so�ware v6.7. KEGG pathways, 
p-value < 0.05. For L-NSC GO and KEGG analysis show neddylation, pathways of Alzheimer’s, Parkinson’s and 
Huntington’s diseases. For S-NSC there are a variety of interesting pathways marked by red arrows, as in MM6 
and NDCs as well involving ribosomes, p53 signaling, cell cycle, TGFβ, purine metabolism, NOD receptor 
signaling, MAPK signaling, vesicle mediated transport among others. Nominal p values were utilized for KEGG 
and GO analyses; p-values for pathways that were robust to Benjamini Hochberg correction also are shown 
in Supplement B: Table S16, 17. Comparison of the nominal and corrected p values indicate the most robust 
pathways.
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visualize the connections between 5 “layers” (Fig. 7). Each data set represented a ‘layer” visually: (I) Human 
susceptibility genes; (II) Human brain serum biomarkers; (III) Di�erential proteins in neuronal progenitor cell 
(L-NSC); (IV) Di�erential RNAs in neuronal progenitor cells (L-NSC, S-NSC); and (V) Predicted Upstream 
Regulators.

�e top-ranked 25 upstream regulators were modulators of important pathways of the neural, immune and 
endocrine systems, including cytokines (CSF2, IFNA2, IFNG, IL1B, TNF), growth factors (HGF, TGFβ1, VEGF), 
immunological transmembrane receptors (TLR4, TREM1), transcriptional regulators (CTNNB1, EP300, RB1, 
SMARCA4, SP1, STAT3, TP53, TP73) and hormone regulators (ESR1, Cg complex) (Fig. 7). Predicted upstream 
regulators connected the proteins detected in infected NSC in layer III such as FXR1 to oncogene TP73 and NPC2 
to SMARCA4. �e brain biomarker (called “layer II”) also showed connectivity, e.g., hormone oxytocin detected 
in the infected brain serum associated with immunological upstream regulators TREM1 and IL6, whereas pep-
tidoglycan recognition PGLYRP2 connected with oncogene TP53 regulatory networks. Portions of analyses are 
shown in Supplement B: Table S7.

�e transcriptome and proteome of the S-NSC were not included in this initial analysis. �erefore, we per-
formed an upstream regulatory gene analysis (Fig. 8) which shows separate and overlapping upstream regulatory 
genes for our two experimental types of primary neuronal stem cells. �is analysis includes all the genes identi-
�ed by both transcriptomics and proteomics from L-NSC and S-NSC. �e upstream regulators, had been shown 
earlier to be related to the susceptibility genes and circulating biomarkers in the ill children (Figs 2b, 7a,b). �ese 
are apparent and those upstream regulators that are common to both types of cells are seen in the Venn diagram 
and Table in Fig. 8. �at the di�erent cell types also have distinct upstream regulators is also notable in the Venn 
diagram (Fig. 8). �e colors in Fig. 8 indicate which analysis and type of cells contribute which components to this 

Figure 4. Comparative analysis of MM6, S-NSC and S-NDC transcriptomics pro�les by cell type and parasite 
strains. (a) Number of protein-coding genes (DEGs, le� panel) and miRs (DEmiRs, right panel) di�erentially 
expressed between infected and uninfected conditions. �is is with a false discovery rate ≤0.01 and absolute 
log2-fold-change ≥1. (b–e). Number of shared over- or under-expressed protein-coding genes (b and c) or miR 
genes (d and e) grouped by host cell type (b and d) or parasite type (c and e). Both cell type and parasite strain 
drive di�erential response, with a predominant e�ect from the host cell type. Nominal p values were utilized 
for KEGG and GO analyses. Pathways that were robust to Benjamini Hochberg correction also are shown in 
Supplement B: Tables S16, 17.
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upstream regulator analysis. Some of the genes critical in a variety of chronic complex disease pathways, immune 
response, and neurodegeneration are seen in this analysis. A few examples of key upstream regulators and their 
functions are NFkB, VEGF, MYC, EGFR, FGF, TGFβ, PI3K/AKT/PTEN, ERK, PI3K, FoxOs, GM-CSF, and FGRR1. 
Additional details of and from this analysis is provided in the methods.

Deconvolution 2. Cluster protein interactions reveal critical mechanisms of pathogenesis. Our second deconvolu-
tion approach used network analyses of protein-protein interactions on L-NSC total infectome (Fig. 9). Whereas 
IPA is designed to annotate pathways and networks, STRING database and web tool provide an analysis that 
detects protein-protein interactions53. Due to the limit of 30,000 interactions in STRING graphical tool, clus-
tering deconvolution was only completed for L-NSC brain infectome (susceptible genes + biomarkers + L-NSC 
RNA + L-NSC proteins). We analyzed separate and combined data sets of Type I, II, and III infections.

T. gondii brain infection was deconvoluted into six simpli�ed functional clusters (Fig. 9, Supplement B: 
Table S6). Four clusters (1a, 1b, 2, 3) pivoted around a central node de�ned by NEDD8 (neural precursor cell 
expressed, developmentally down-regulated 8). �is central node was potentially involved in hijacking cellular 
proliferation and cell death by either protein neddylation or sumoylation. �e largest Cluster 1a was predom-
inantly associated with cellular movement and migration that utilizes mechanisms described for immune and 
endocrine signaling. Cluster 1b appeared to be more speci�c for leukocyte migration and may involve parasitism 
of brain’s lipid metabolism. Cluster 2 also mediated cellular proliferation but appears to be more speci�c to the 
role of ubiquitin-mediated protein degradation in cell cycle control. Cluster 3 pinpointed the parasite’s hijacking 
of protein synthesis to regulate the host cell cycle. Cluster 4 revealed the parasite’s capacity to modulate the brain’s 

Figure 5. Proteomics and their Analyses. a-b. Proteins di�erentially expressed during parasite infection of 
L-NSC (a) or S-NSC (b). ATXN2L, Ataxin 2-like; NSC2, Niemann-Pick disease, type C2; FXR1, Fragile X 
Mental Retardation Autosomal Homolog 1; WDFY1, WD Repeat And FYVE Domain Containing 1; UBE3A, 
Ubiquitin Protein Ligase E3A; USP8, Ubiquitin Speci�c Peptidase 8; PPP4C, Protein Phosphatase 4 Catalytic 
Subunit). (c) Le� panel, number of di�erentially expressed proteins (DEPs) in S-NSC infected with T. gondii 
types I, II and III; right panel, GO Biological Processes signi�cantly overrepresented (p-value < 0.01) in the set 
of 3,359 proteins di�erentially expressed in infected S-NSC compared with their respective uninfected controls 
(>2-fold change and false discovery rate <0.1). Nominal p-values were utilized for KEGG and GO analyses. 
Pathways that were robust to Benjamini Hochberg correction also are shown in Supplement B: Table S15.
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Figure 6. Serum biomarkers from boys with active brain disease due to T. gondii re�ect infection and 
neurodegeneration. (a) Tabular clinical summary: �ree pairs of children, matched demographically; one in 
each pair had severe disease and the other mild or no manifestations. One pair dizygotic, discordant twins. 
Each ill child had new myoclonic or hypsarrythmic seizures. Two children had T2 weighted abnormalities on 
brain MRIs similar to active in�ammatory and parasitic disease in murine model4. (b–d) Protein and miRNA 
serum biomarkers: Panel of protein and miRNA pro�ling performed on serum obtained at time of new illness. 
Changes in serum miRNA concentration between each infected child and corresponding control is expressed 
as the di�erence in RT-qPCR Ct-values for miR-124 (b) and miR-17, miR-19a and miR-18b (c). Abundance of 
peptides measured. In Fig. 6b and c, these data are extracted directly from the qPCR panel for miRNA pro�ling. 
(d) Le� panel, schematic representation of the genes targeted and pathways modulated by miRNA clusters 
17–92; right panel, peptide abundances from the 10 most intense peptide ions detected by proteomics in the 
three children pairs. Peptides with higher or lower abundance in ill children compared to healthy controls 
are depicted above or below the dashed line respectively. (e) Bundling of upstream regulators predicted from 
susceptibility genes (red box) and brain biomarkers (blue box). See Supplement 2 for IPA analysis of upstream 
regulators with p-value <5 × 10–3. Circulating biomarkers detected in the T. gondii infected brain are clusterin 
(CLU), oxytocin/neurophysin I prepropeptide (OXT), peptidoglycan recognition protein 2 (PGLYRP2), and 
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ATP production by mitochondrial oxidative phosphorylation. Cluster 5 suggested the alteration of olfactory 
response due to brain parasitism. Nedd8 is a critical, key central node (Fig. 9).

Deconvolution 3. T. gondii modulates proteins involved in neurodegeneration, epilepsy, motor diseases and malig-
nancy. �e third deconvolution approach was to predict global correlation between T. gondii infection and com-
mon neurological diseases using IPA disease and function tools. Only top-ranked canonical, diseases-functions 
and network pathways were included, with complete tabulations in Fig. 10. We discovered correlations with four 
major groups of epilepsy (81 genes), neurodegeneration (101 genes), motor disease (162 genes), and brain malig-
nancy (1,188 genes) (Fig. 10, Supplement B: S10A,B). We found only 1 association with a schizophrenia network 
(p = 8.63E-12) of 19 genes.

IPA canonical analysis was performed to determine potential networks associating with diseases. Epilepsy 
gene group indenti�ed top-ranking signaling pathways that were associated with retinoic acid receptor (6 genes), 
endothelin-1 (6 genes), Gq alpha protein (5 genes) and corticotropin releasing hormone (5 genes). Movement dis-
orders mediated by the brain temporal lobe indicates signaling pathways mediated by G-Protein coupled receptor 
(13 genes), cAMP (10 genes), transcriptional regulator 14-3-3 (7 genes), cytokine Endothelin-1 (8 genes), poly-
peptide hormone relaxin (9 genes) and corticotropin releasing hormone (8 genes). �e neurodegenerative disease 
gene network was potentially mediated by signaling pathways of adaptor protein 14-3-3 (7 genes), retinoic acid 
receptor LXR/RXR (7 genes), tumor suppressor protein p53 (7 genes), cytokine IL-17A (5 genes) and glucocor-
ticoid receptor (13 genes). �e most signi�cant disease correlation to total brain infectome was cancer in which 
1,188 of 1,678 genes are associated with a wide range of cancers (Fig. 7e, Supplement B: Tables S8; 10A,B). �e top 
10 canonical pathways determined by IPA reveal important mechanisms that may potentiate cancer development 
in the T. gondii-infected brain, such as Wnt/Ca + (14 genes) and in�ammatory IL-17A (14 genes) pathways.

Selected phenotypes: T. gondii type I, II and III induce activation of the NFκB pathway in human 
neuronal stem cells. Reconstruction and deconvolution of the T. gondii infected brain provides a substantial 
number of biologically relevant mechanisms to investigate. A few selected phenotypes found in the informatics in 
our human neuronal stem cells were selected for study. �ese studies provide empirical validation of the conclu-
sions from bioinformatics analyses (Fig. 11). Pathways identi�ed through systems analyses of genetics, transcrip-
tomics, proteomics, and with circulating biomarkers from matched pairs of well and ill children suggested that 
we might �nd empirically that these parasites would in�uence similar functional phenotypes in primary, human, 
neuronal stem cells which have not been characterized with Types I, II, III isolates of this common brain pathogen 
before. As downstream signaling molecules associated with an in�ammatory process including NFκB and STAT3 
had been identi�ed in human neuronal stem cells (Fig. 2), we investigated whether Type I, II or III tachyzoites 
would modulate host gene expression in NSC by determining whether there was modulation of the NFκB path-
way by the parasite. We infected S-NSC with Type I, II or III tachyzoites for 24 hours and followed translocation of 
NFκB p50 subunit and STAT 3 by immuno�uorescence. As shown in Fig. 11, NFκB and STAT3 also were found in 
human neuronal stem cells in this experiment (Fig. 11a). We found that Types I,II,III tachyzoites infection of cells 
all a�ected nuclear localization of NFκB1 and STAT3 (Fig. 11a). Supplement B Table S9 shows canonical pathways 
that include NFκB1 determined by IPA.

Another selected phenotype studied was neurotransmitters in T. gondii and NSC. T. gondii’s e�ect on path-
ways associated with neurotransmission has been reported by others including e�ects on tyrosine hydroxylase, 
dopamine, and GABA receptors and distribution of GAD67 in murine brain infected by Type II but not Type III 
tachyzoites. To investigate whether either tyrosine hydroxylase or dopamine, is expressed by T. gondii tachyzoites 
when they are within NSC, we infected NSC with Type I, II, and III T. gondii tachyzoites for 24 hours. Type I, II, 
and III T. gondii tachyzoites in NSC immunostain with antibodies to tyrosine hydroxylase and dopamine. Both 
human host NSC dopamine and tyrosine hydroxylase were expressed in the parasite cytoplasm (Fig. 11b). We 
�nd this dopamine-like immunostaining in Type I, II, and III tachyzoites (Fig. 11b,c). We have not con�rmed the 
exact nature and release of dopamine or other neurotransmitters including glutamate from these cells. A prelimi-
nary study (data not shown) also showed alterations of GABA and glutamate5 in S-NSC due to T. gondii infection 
(Roberts, El Bisatti, Zhou, McLeod et al., unpublished studies in progress).

Intersecting susceptibilities and human diseases. Protein degradation and cell cycle are a�ected by T. 
gondii. Our transcriptomic and proteomic analyses indicated that this parasite alters neddylation (NEDD8) and 
ubiquitination which are key in clearing misfolded proteins, neuronal cell viability, and synaptic plasticity (Figs 3, 
4, 9 and 11c). In the proteomics analyses, we also found that T. gondii modi�ed alternative splicing (Fig. 5) and 
that an rMATS analysis51 predicted transcripts that are alternatively spliced based on the S-NSC transcriptomics 

microRNAs (miR214, miR-17, miR-18b, miR-19a) (Fig. 4B, Supplement B: Table S7). �ese speci�c miRNAs 
were not annotated in the IPA database, so the analysis focuses on the 3 protein biomarkers. PGLYRP2 is a 
hydrolase that recognizes and digests bacterial active peptidoglycan into biologically inactive fragments that 
triggers innate immune responses to intracellular pathogens. Clusterin/Apolipoprotein J is a secreted chaperone 
which is proposed to be a biosensor of oxidative injury. �e ‘love/bonding hormone’ Oxytocin is a posterior 
pituitary hormone that is synthesized in the hypothalamus. OXT hormonal activity in�uences cognition, 
tolerance, adaptation and complex sexual and maternal behavior, as well as the regulation of water excretion 
and cardiovascular functions. Presence of markers of neurodegeneration and in�ammation include Clusterin, 
PGLYRP2, and Oxytocin in ill children compared with their healthy controls.
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Figure 7. Deconvolution of total brain infectome reveals upstream regulatory pathways. a. Statistical 
probability of 25 upstream regulators of total brain infectome (BI) with most signi�cant p-values. �e Total 
Brain infectome included 1,678 genes from all datasets of genetics susceptibility, brain biomarkers, messenger 
RNAs of L-NSC and S-NSC, and proteins of L-NSC. �e BI is segregated into Type I, II and III infection 
(see Supplement B: Table S7). IPA analysis of BI identi�ed 1,640 upstream candidates (see Supplement B: 
Table S7). ‘Target’ indicates the number of T. gondii-induced genes found in each upstream regulatory pathway. 
TNF, TGFβ1, IFNG, TP53 and IL1β are the most dominant upstream regulators found in the T. gondii brain 
infectome. (b) “Orbital” visualization. �e 25 highest statistical valued upstream regulators (a) are added to 
the brain infectome and graphically mapped by IPA. �e relationships between the 5 reconstruction layers are 
visualized in the “orbital diagram”. Speci�c genes are manually repositioned in each empirical ‘layer’ drawn to 
‘orbit’ the core gene datasets. Upstream regulatory network (V) connects RNA (IV) and Protein (III) of human 
NSCs, brain biomarkers (II), and NCCCTS Susceptibility genes (I). Since the IPA drawing program is limited 
to 30,000 interactions lower than the cut-o�s, ATXN2L was not found in this visual analysis. �e total brain 
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data (Table S14) providing mechanisms whereby T. gondii may contribute to neurodegeneration, motor abnor-
malities, epilepsy, and malignancies (Figs 10, 11).

Discussion
�e Venn diagram in Fig. 1a provides a model and an explanation that addresses why some persons might have 
diseases to which T. gondii contributes, as suggested by our current analyses, and why other persons do not 
have these diseases. We hypothesize that disease occurs in the presence of the relevant susceptibility genes, par-
asite genotype and other innate and environmental factors such as other infections, the microbiome, or stress 
that in�uence immune responses, as shown in Fig. 1a. �is reconstruction and deconvolution analysis presented 
herein (Fig. 1b,c) and summarized schematically in Fig. 1d unveils a plethora of pathways known in neurologic, 
immune and endocrine systems. �ese are likely to interact to cause neuropathologic diseases, depending on 
genetics of infected individuals (Figs 1a, 2a). Focus on neuronal stem cells reveals pathologic mechanisms in neu-
rodevelopment and neuroplasticity. For example, cytokines mediate migration and homing of immune cells that 
serve parallel roles in spatial guidance of NSC in proper development and plasticity of human brain54. Cytokines 
stimulating CD8+ T cells to control T. gondii in brain55 may disrupt normal brain development and plasticity. A 
wide range of cytokines are evident in our data and interactome. Little is known about endocrine-type mecha-
nisms in T. gondii infection56. �is study provides a foundation to delineate endocrine in�uences and cross-talk 
with immune and neural systems.

Certain of our observations of speci�c genes/molecules, interactions, and pathways apparent in our data 
sets are particularly noteworthy: For example, in our genetics data (Table 1, Fig. 2), TREX1, TLR9, TIRAP Mal, 
ALOX12, NALP1, NFκB, and TGFβ connect to pathogen sensing, changes in lipids, and cell death and replication 
(Fig. 2). Characterization of phenotypes of our newly identi�ed susceptibility genes is ongoing (Table 1): TREX1 
was studied because of the similarity between the brain calci�cations in congenital toxoplasmosis and in the 
genetic Aicardi Goutiere’s disease that could be due to mutations in TREX1 (Naranjo-Galvis et al., manuscript in 
preparation). TIRAP MAL (Hargrave et al., manuscript in preparation) (Table 1) was selected as a candidate gene 
studied individually as a downstream signaling molecule from TLR2 and 4. FOXQ (Table 1) was next chosen as a 
candidate gene because of a hydrocephalus association and subsequently has been shown to have a natural killer 
(NK) cell mediated phenotype33. TLR9 was studied next as a candidate gene involved in recognition of small 
fragments of DNA (Hargrave et al., manuscript in preparation). Noting this association for TLR9 in the NCCCTS 
(Table 1), we also have replicated the importance of TLR9 in susceptibility to ocular toxoplasmosis in a cohort in 
Brazil32.

�e localization of these T. gondii susceptibility genes in human brain (Fig. 2a) also provides insights consist-
ent with our clinical observations of toxoplasmosis in mice and humans who develop seizures originating in the 
hippocampus-temporal lobe, impaired movement and hydrocephalus4, 41. Z-scores indicated that all of the 17 
genes except COL2A are downregulated in the hippocampus. Memory, spatial navigation and control of atten-
tion occur in the hippocampus, which is also the dominant niche for neural stem cells. In the choroid plexus of 
the lateral ventricle where cerebrospinal �uid is produced, eight susceptibility genes are up-regulated (ABCA4, 
HLA-A, HLA-B, HLA-C, IRAK4, NFκB1, TGFβ1, TREX1), while �ve are down-modulated (ALOX12, COL2A1, 
P2RX7, TIRAPMAL, TLR9). In the globus pallidus that regulates voluntary movement, the susceptibility genes, 
other than ABCA4, ALOX12, COL2A1, NOD2, TIRAP, TLR9, are upregulated.

Upstream regulator analysis using IPA elucidates statistically signi�cant upstream regulators including mole-
cules which alter expression of downstream molecules. �e systems analysis of upstream regulators of our suscep-
tibility genes (Fig. 2b) underscores how this intracellular parasite in�uences the intricate balance between growth 
and death of its host’s cells. Upstream regulatory networks associated with these genes by IPA (Fig. 2b) include 
human genes that participate in in�ammation, cell death, and cytokine signaling, as well as genetic, neurologic, 
and retinal diseases.

�e transcriptomics analyses demonstrate some e�ects that are similar and some that di�er between cell types 
(Figs 3 and 4). Possible explanations of the di�erences between cells include a number of variables including dif-
ferences in the genetics of the host cells, fundamental di�erences in the cell types’ basal transcriptomics(Fig. S1), 
di�erences in culture conditions including media, growth factors and timing when cells were studied, or di�erent 
responses to parasites. We also noted di�erences in responses when we studied another parasite called EGS which 
grows as encysted bradyzoites in tissue culture in HFF, MM6, and S-NSCs. Pathways that are perturbed suggest 
profound e�ects on host cells. �ese include for S-NSC: translational elongation, apoptosis, cell cycle, vesicle 
mediated transport, ribosomes, amino acid metabolism, TGF-β signaling, p53 signaling, MAP kinases, circadian 
rhythm, and cell cycle. For L-NSC: sensory perception of smell, mitochondrial organization, protein modi�cation 

infectome is deconvolved into functional correlates by IPA Core Analysis. Canonical pathway annotation 
reveals the predominant mechanism of IL-17 pathways in arthritis, psoriasis and allergy with related cell 
types (macrophages, �broblasts, endothelial cells, osteoblasts, osteoclasts, chondrocytes) playing a role in 
the in�ammation. Top pathways also include cardiogenesis, adipogenesis, hepatic stellate cell activation and 
diapedesis of agranulocytes and granulocytes, molecular mechanisms of cancer accompanied with the signaling 
of colorectal cancer metastasis. Wnt/Ca + pathway moderates axonal guidance signaling and other cell growth 
and developmental pathways. �e top scored canonical pathway shows also cell cycle control of chromosomal 
replication as possibly a prevailing molecular mechanism. Supplement B:Table S8 describes the IPA analysis 
of canonical pathways with functional mechanisms in neural stemness, neurodevelopment, neurobiology, 
immunology, cancer, and cell cycle. Supplement B: Table S9 identi�es pathways associated with the nuclear 
factor NFkB.
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by small protein conjugation, cognition, neurologic system processes, neddylation, oxidative phosphorylation, 
G protein coupled receptor protein signaling, androgen and estrogen metabolism, ribosomes, translational elon-
gation, and particularly noteworthy, pathways of Parkinson’s, Alzheimer’s and Huntington’s diseases. For MM6: 
modulation of P53 signaling, JAK-STAT signaling, programed cell death, arachidonic acid metabolism, response 
to hypoxia. Further, many of the perturbed miRNAs in the transcriptome have been associated with di�erent 
cancer types, neurodegenerative diseases and the NFkB activation pathway. For instance, both infected S-NSC 
and S-NDC cells overexpressed mir-139, a microRNA that is overexpressed in the hippocampus of a mouse 
model for Alzheimer’s Disease (AD) and associated with impaired hippocampus-dependent learning and mem-
ory57. In addition, S-NSC cells infected with T. gondii PRU tachyzoites had more than a two-fold reduction in 
the expression of mir-29a and mir-107, found to be down-regulated in patients with AD58–61. mir-132, that is 
under-regulated in post-mortem Huntington’s disease patients and in a mouse model for this disease62, showed a 
~four-fold down-regulation in GT1 and PRU-infected S-NSC cells. Expression of other miRNA molecules, that 
have been associated with the NFκB network and cancer, was also perturbed in S-NSC infected cells, such as mir-
218, mir-143, mir-155, mir-199a, mir-21, miR-16 and mir-181b-163–71.

In the quantitative proteomics with L-NSC (Fig. 5a), ATXN2L, FXR1, and NPC2 were modulated. ATXN2L 
is a paralog of Ataxin 2, a protein that causes spinocerebellar ataxia type 272. It has been shown that ATXN2L is 
functionally similar to Ataxin 2 with respect to RNA metabolism and also plays a role in the regulation of stress 
granules and processing bodies in mammalian cells73. Overexpression of FXR1, a member of the Fragile X-related 
family of RNA-binding proteins, has been associated with suppression of cellular senescence and cancer74. NPC2 
regulates the transport of cholesterol through the late endosomal/lysosomal system and mutations in this gene 
have been associated with Niemann-Pick disease type C2, a disease with a broad range of visceral, neurological 
and psychiatric clinical presentations75.

In the quantitative proteomics of S-NSC (Fig. 5b) many more genes transcripts were modulated. Some of 
particular interest are shown in Fig. 5b as follows: WDFY1 and PPP4C, two proteins known to modulate NFκB 
activity, a key factor to control parasite infections, were downregulated in infected S-NSC (Fig. 5b). WDFY1 
induces TLR3- and TLR4-mediated activation of NFκB and the production of type I interferons and in�am-
matory cytokines76, while PPP4C is the catalytic subunit of protein phosphatase 4, a protein implicated in the 
activation of NFκB-mediated transcription77. �is strongly suggests that T. gondii inhibits the human host NFkB 
pathway at multiple levels in addition to promoting p65 degradation through the virulence factor ROP 1878. 
Another two proteins, UBE3A and USP8, involved in protein ubiquitination, were also downregulated in infected 
S-NSC (Supplement B: Table S15). Interestingly, deubiquitin USP8 regulates the turnover of the epidermal growth 
factor receptor (EGFR) and its hyperactivation has been associated to constitutive EGFR-signaling leading to 
corticotroph tumorigenesis79. USP8 also regulates parkin-mediated mitophagy, a process believed to be central to 
the pathogenesis of Parkinson’s disease80, 81. Loss of function of the HECT-type E3 ubiquitin ligase UBE3A leads 
to Angelman syndrome, characterized by microcephaly, severe developmental delay, ataxia, seizures, and happy 
disposition82. Decrease expression of UBE3A has also been observed in Rett syndrome patients83. Within the 
proteins that were upregulated during S-NSC infection, was eEF1A2, a translation elongation factor that has been 

Figure 8. Upstream regulators targeting genes and proteins di�erentially expressed in S-NSC or L-NSC. (a) 
Relationships of upstream regulators: 913 and 83 molecules were identi�ed as upstream regulators of genes or 
proteins di�erentially expressed in S-NSC and L-NSC, respectively (p-value ≤ 0.01). (b) Regulators in common. 
Venn diagram shows that among the upstream regulators, 22 molecules are common between L-NSC and 
S-NSC. (c) Gene regulatory network targeted by the 22 common upstream regulators.
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Figure 9. Cluster deconvolution uncovers six clusters of protein-protein interactions e�ecting brain functions 
and circuitry. STRING192 analysis of the brain infectome was carried out to elucidate protein-protein interaction 
networks modulated by parasite infection (see Supplement B: Table S6). STRING analysis was performed on 
a dataset composed of human susceptibility genes and biomarkers identi�ed from patients with congenital 
toxoplasmosis (CT, panel e) or plus a collection of genes di�erentially expressed in L-NSC infected with 
type I parasites (panel a), type III (panel b), type II (panel c) or all strains (panel d). Six distinct clusters were 
visualized from the integration of genetics, biomarkers and L-NSC expression data (panel e) in which clusters 
1–3 radiate from NEDD8 (dashed circle, panel c,d), a central node modulated during Type II infection (panel 
c). �e genetics and biomarkers generated clusters 1a and 1b that were further expanded with connections to 
genes modulated in Type I-III infectomes (panel a–c). Clusters 4 and 5 do not interact with NEDD8 (panel 
c and d). Panel f shows a detail of the genes belonging to the odorant receptor cluster 5 that are perturbed in 
L-NSC infected with T. gondii type I (Type I), II (Type II), III (Type III) or all three types (Type I-III) plus the 
sum of genes modulated in S-NSC infected with types I, II and III parasites (Total). In panels a-e edge thickness 
indicates con�dence of interactions, with thin edges having middle con�dence combined scores and thick edges 
high con�dence combined scores, as de�ned by STRING. In panel f, edge color represent interaction evidence 
source as de�ned in STRING: light blue, curated database; yellow, text mining; purple, protein homology. Note: 
odor attraction of mice and chimpanzees to cats56, 126.
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Figure 10. Deconvolution of brain infectome by disease correlation. �e 3rd deconvolution approach of the 
total brain infectome predicts correlation between T. gondii infection and common neurological diseases using 
IPA disease and function tool (see Supplement B: Table S10A,B). (a) Grouping of disease annotations included 
p-value and group size. �e 4 disease groups are detected for all Type I, II and III infections. (b) Alzheimer 
group included Alzheimer’s disease, tauopathy and amyloidosis annotations. IPA Canonical analysis indicates 
this disease gene network is mediated by signaling pathways of adaptor protein 14-3-3 (7 genes), retinoic 
acid receptor LXR/RXR (7 genes), tumor suppressor protein p53 (7 genes), cytokine IL-17A (5 genes) and 
glucocorticoid receptor (13 genes). (c) Movement disorders. �is entails predictions for movement disorders, 
disorder of basal ganglia, neuromuscular disease, dyskinesia and Huntington’s Disease. IPA canonical analysis 
of this gene network indicates signaling pathways mediated by G-Protein coupled receptor (13 genes), by cAMP 
(10 genes), transcriptional regulator 14-3-3 (7 genes), cytokine Endothelin-1 (8 genes), polypeptide hormone 
relaxin (9 genes) and corticotropin releasing hormone (8 genes). (d) Epileptic disorders pathways for seizures, 
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proposed to play a signi�cant role in tumorigenesis and as an anti-apoptotic factor84–86 (Table S15). Pathways of 
cell death, TOR, protein transport/localization, RNA splicing, alternative splicing, oxidation reduction, vesicle 
mediated transport, iron homeostasis, glucose metabolism are noteworthy in this proteomics analysis.

We found it remarkable that we identi�ed serum biomarkers in the ill children compared with those who 
were well (Fig. 6a–c). In considering these biomarkers in serum, three of those miRNAs, mir-17, mir-18b and 
mir-19a, are all encoded by the miR-17-92 family of miRNA clusters that modulate a number of protein-coding 
genes implicated in apoptosis, cell proliferation and angiogenesis87 (Fig. 6d). One of these miRs88, mir-17, is 
over-expressed in Human Foreskin Fibroblast cultures infected with the RH strain of T. gondii89. Also note-
worthy, mir-124 associated with neurodegeneration90, was increased in sera of the three ill children (Fig. 6b,c). 
In addition, proteomics identi�ed that ill children compared with their paired healthy controls had increases 
or decreases in certain serum proteins. Elevated proteins included clusterin (CLU)91–93, serum amyloid 
P-component (APCS)94, 95, and oxytocin(OXT)96–99 (Fig. 6d,e)91, 92, 95, 100–106. PGLYRP2 (Peptidoglycan recognition 
protein 2, with N-acetylmuramoyl-L-alanine amidase activity), that degrades an innate immunity recognition 
factor for peptidoglycans, was decreased in three of the ill children in the pairs (Fig. 6d). Apolipoprotein A1 also 
was decreased in the ill children (Fig. 6). �ese proteins are known to be associated with neurodegeneration. 
Speci�cally, clusterin is a chaperone which is increased in neurodegenerative diseases. It aids protein folding 
of secreted proteins, with three isoforms that are di�erently involved in pro- or anti-apoptotic processes. �us 
this protein is involved in many diseases where there is oxidative stress including neurodegenerative diseases 
and aging. It is associated with Lewy bodies in Parkinson’s disease, with the pathology in Alzheimer’s disease 
and multiple system atrophy, Cerebrospinal �uid levels of clusterin may re�ect pathology in neurodegenerative 
disease. Amyloid P is in amyloid �brils and protects them from degradation, thus contributing to neurodegener-
ation in Alzheimer’s disease94. It is also an acute phase reactant. Oxytocin was present in the sera of the ill boys. 
Oxytocin diminishes in�ammation, decreases anxiety, increases trust and empathy and mutations have been 
associated with autism spectrum disorder96–99. Hypothalamic cells produce oxytocin which is then secreted into 
the bloodstream by the posterior pituitary gland96–99. Secretion occurs when there is electrical activity, excitation, 
of hypothalamic neurons96–99. �ese �ndings suggest active brain destruction by the parasite or the response to 
it. �ese circulating miRNAs and proteins might prove clinically useful biomarkers to identify active toxoplasmic 
brain (or possibly retinal) disease if con�rmed with more children’s sera correlated with their clinical �ndings.

Key upstream regulators were identi�ed as shown in Figs. 7 and 8. Descriptions of target and upstream reg-
ulatory genes analyzed for L-NSC, cohort genetics and cohort biomarkers considered together are illustrated in 
Fig. 7. Key regulators we have found herein have been demonstrated to have signi�cance in earlier work with 
other cell types: �ose known empirically include HIF1α/VEGF107, 108 and others such as EGFR109 (Fig. 7; Details 
in Supplement B Table S7). IPA annotations of the total brain infectome and upstream regulatory bundle includes 
core (Supplement B: Table S7) and comparison (Supplement B: Table S7) analyses of target genes, upstream reg-
ulators and both. �e convergence of the genes, biomarkers, trancriptomic data, proteomic data on the upstream 
regulators seen in this orbital diagram makes a model of the infectome which can be further empirically tested. 
T. gondii molecules which modify them then can be identi�ed. Upstream regulatory genes such as JUN, MYC, 
EGFR, and VEGF110 provide examples of genes already known to be modulated by speci�c parasite proteins in 
other cell types109, 111–113. �e biologic relevance of this �nding for humans is evident from the observation that 
VEGF is very important in choroidal neovascular membranes that occur in clinical toxoplasmic chorioretinitis. 
�ese resolve when treated with antibody to VEGF administered in conjunction with anti-T. gondii medicines108.

Upstream regulatory genes contributing to the signature pathways with important biologic impact were 
compared when both L-NSC and S-NSC transcriptomic and proteomic data were analyzed together (Fig. 8). 
Noteworthy upsteam regulators were identi�ed. For example, �broblast growth factor114 and its receptors (e.g. 
FGRR1115), TGF-β, as well as the, ERK genes, PI3K, FoxOs116, and GM-CSF47, 117 are all involved in developmental 
and adult neurogenesis. Both TGF-β118 and PI3K/Akt119 are involved in ROS and in�ammation-related actions 
during normal and pathological neurogenesis. In addition, TGF-β has been implicated in normal neural stem/
progenitor cell growth and di�erentiation, as well as in cancer stem cell-mediated gliomagenesis120. Likewise, 
ERK signaling121 is involved in normal neural stem/progenitor cell fate choice during development. Another stem 
cell pathology involving PI3K/PTEN122 has shown that altering this pathway can result in interneuronal dysplasia 
and leukodystrophy as a result of altering neuronal and oligodendrocyte di�erentiation. All of these abnormal 
neurogenic phenotypes were present in the infected adult human neural progenitor cell population studied.

Cluster protein interactions of L-NSC total infectome provided profound insight into pathogenic mecha-
nisms (Fig. 9). �e functional clusters included cellular movement and migration important in mechanisms 
of immune and endocrine signaling, leucocyte migration, parasitism of lipid metabolism, ubiquitin-mediated 

seizure disorder and epileptic seizure. IPA canonical analysis of the 81-gene network indenti�es top-ranking 
signaling pathways that are associated with retinoic acid receptor (6 genes), endothelin-1 (6 genes), Gaq protein 
(5 genes) and corticotropin releasing hormone (5 genes). (e) Cancer group. �is illustrated mechanisms of 
cancer, malignant solid tumor, abdominal neoplasm, abdominal cancer, urogenital cancer and genital tumor 
that are potentially activated in the infected brain. �e top 10 canonical pathways (Supplement B: Tables S8,9) 
reveal important mechanisms that may potentiate cancer development in the T. gondii infected brain, such as 
Wnt/Ca + pathway (14 genes) and role of IL-17A in arthritis (14 genes). Wnt/Ca + pathway annotation contains 
6 frizzled class receptors (FZD2, FZD3, FZD4, FZD5, FZD8, FZD9) and receptor tyrosine kinase-like ROR1. 
Not shown in diagram is the association with the schizophrenia 19-gene network: ABAT, ABCB1, ADRA1D, 
ANK3, APOL1, CHRNA5, CHRNA7, E2F1, EGR3, EGR4, GAP43, GRIN2A, HOMER1, IL6, PMP22, PTGS2, 
SCG2, SOD2, TMTC1.
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protein degradation in cell cycle control, and hijacking protein synthesis in the cell cycle, all clustering around 
NEDD8123–125. As with ubiquitin and SUMO, NEDD8123–125 is conjugated to cellular proteins a�er the C-terminal 
tail is processed. T. gondii tachyzoites thereby alter host cell protein stability and degradation, potentially con-
tributing to ER “stress” and the misfolded protein response associated with neurodegeneration. Other clusters 
include modulation of brain ATP production by mitochondrial oxidative phosphorylation. Another cluster shows 
e�ect on olfactory receptors (Fig. 9) suggesting a mechanism whereby parasites alter host sense of smell as seen 
in attraction of rodents and chimpanzees to cat urine56, 126. Parasitic modulation of these essential functions of the 
brains could lead to a wide range of diseases, including those discussed below (Fig. 10).

One NSC phenotype suggested by our genetics and omics analyses led us to study phenotypic e�ect of T. gon-
dii isolates on NFκB in S-NSC with IFA (Fig. 11). E�ect on NFκB noted in murine cell lines, macrophages and 
human �broblasts and primary monocytes by others34, 36 were found mediated by Type II parasite dense granule 
protein (GRA) 15, whereas we found T. gondii infection of primary human neuronal stem cells by all three strains 
alters localization of NFκB (Fig. 11a). In other cell lines, STAT3 localization was modulated only by parasite Type 
I ROP16127–129. �is is similar, but not identical, to the nuclear translocation of STAT3 in our human neuronal 
stem cells, which was increased most, but not exclusively, by the Type I strain. �ere was some similar e�ect for 
Type II and III strains (Fig. 11a). E�ects on such cytokine signaling pathways have potential to contribute to 
maternal cytokine e�ects130 on fetal brain.

Another phenotype we selected for study included presence and localization of neurotransmitters (e.g., dopa-
mine) and an enzyme in the brain involved in synthesis of this neurotransmitter, tyrosine hydroxylase. As shown 
in Fig. 11, we found T. gondii a�ects both dopamine and tyrosine hydroxylase and T. gondii tachyzoites contain 

Figure 11. Phenotypes in NSC demonstrating functions that are biologically important empirically. NFkB (le� 
panel): T. gondii (I, II, III) infection of S-NSC alters localization of p50-NFkB(red) and Stat 3 (second panel, 
red): SAG1 (Green), Hoechst (blue); T. gondii, in NSC, expresses or alters host cells’ neurotransmitters. Tyrosine 
Hydroxylase (red) in the infected NSCs that synthesizes dopamine is present in T. gondii (middle panels 40X, 
60X). �is is further exempli�ed in the furthest right panel by a dopamine-like immunostaining pattern in 
the parasite (green). �e red arrow in the dopamine-like staining image points to a host cell dense perinuclear 
distribution of label. �is suggests potential to in�uence neurotransmission in human NSC. �is could 
contribute to abnormal circuitry function as seen in mice and as occurs in epilepsy in some persons5, 6. �ese 
experiments for immunostaining each of these molecules were performed at separate times, not simultaneously.
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dopamine. Disruption of neurotransmission is associated with epilepsy5, 131. Alteration of neurotransmitters is con-
sistent with association studies of seropositivity and human epilepsy131–134, and three separate studies of mice4, 5, 131.  
�ese results are consistent with theories of T. gondii’s e�ects on reward pathways and depletion of serotonin by 
precursor tryptophan starvation9, 135, 136. �ese �ndings concerning neurotransmitters may support alterations 
of infectomes caused by the parasite a�ecting behavior, but these are predictions based on putative mechanisms 
observed in cells in tissue culture and remain to be con�rmed empirically with experiments in vivo.

In other diseases, such as certain genetic diseases with repetitive DNA sequences, alternative splicing or 
mis-coding of transcripts can lead to truncated or misfolded proteins that are central causes of neurodegenerative 
diseases137. Perturbing genes associated with the misfolded protein response, and protein degradation seen in the 
IPA analyses, as well as in�ammation are mechanisms whereby T. gondii may contribute to neurodegeneration, 
alterations of cell cycle/replication and death, and epilepsy4, 133, 134, 138 (Figs 10 and 11).

When we place our �ndings presented herein in the broad context of diseases and mechanisms of speci�c dis-
eases, our work indicates T. gondii can cause a dominant alteration of the cell cycle and opposing regulation of cell 
growth and death. For example, as discussed above, in infected L-NSC, transcriptomes also showed that parasites 
modulate pathways of cell death, apoptosis and neddylation. Modulation in p53 signaling, ribosomes, amino acid 
metabolism, axon guidance, JAK-STAT, TGF-β, and cell cycle are especially noteworthy in the KEGG pathways 
for S-NSC (Fig. 2c). Transcriptomic analysis of L-NSC reveals pathways associated with Alzheimer’s, Parkinson’s 
and Huntington diseases and disruption of oxidative phosphorylation. Also alternative splicing pathways which 
might cause protein misfolding and neurologic diseases are a�ected (Fig. 5). Transcriptomics, proteomics, and 
cluster deconvolution identi�ed alterations in neddylation and ubiquitination key in clearing misfolded pro-
teins, neuronal cell viability, and synaptic plasticity (Figs 3–5, 9). We are investigating whether T. gondii causes 
alternative splicing which can be a central cause of protein misfolding, neurodegeneration, and other complex 
diseases137.

Although there are literature reports of associations between T. gondii seropositivity and schizophrenia in 
individual studies and in a meta-analyses of 38 studies139, there is no proven causality. An increase in dopamine 
metabolism is one possible pathologic mechanism140, 141. We detected dopamine and tyrosine hydroxylase immu-
nostaining in the cytoplasm of T. gondii tachyzoites (Type I, II, and III) in S-NSC (Fig. 11). Alteration in dopa-
mine neurotransmission has wide implications in behaviors and diseases, including epilepsy, neurodegeneration 
and movement disorders142. However, we do not identify any congenitally infected persons or their mothers with 
schizophrenia in our NCCCTS cohort (unpublished observations). Genetics and epigenetics of neuronal stem 
cells may be derived from donors who are not predisposed to schizophrenia. Primary cultures of NSC were tem-
poral lobe tissues transected from patients who have epilepsy.

Cancer is the largest disease correlate to our T. gondii brain infectome. One explanation may be relative 
robustness of cancer research in comparison to other diseases in literature-based analyses. Some population 
studies show correlation with brain cancer. �ere are anecdotal descriptions of lymphomas developing in eyes 
of those with recurrent Toxoplasmic retinal disease143, 144. Targeted genetics studies of these T. gondii induced 
cancer genes and pathways might reveal higher penetrance. A strong argument for a T. gondii-cancer link is long 
known protection against tumor cells in murine models145. Recently, injection of attenuated, non-replicating 
parasites increased long-term survival of mice with melanoma146, pancreatic147, and ovarian148 cancers by stimu-
lating high-level expression of co-stimulatory molecules CD80, CD86, IL-12, and tumor antigen speci�c CD8 + T 
cell populations and increasing cytolytic capacity of activated macrophages149. T. gondii may e�ect control of 
tumor growth and clearance through a network of 1,178 genes we have identi�ed. Furthermore, our data may 
illuminate likely ways T. gondii may a�ect cancer stem cells, including stemness pathways of Wnt, TGF-β, STAT, 
among others150 and potential associations with Alzheimer’s disease. Some population serologic studies show 
con�icting correlations for151, 152 and against153, 154 T. gondii as a risk factor of Alzheimer’s disease or memory 
impairment. �e parasite, however, inhibits neuronal degeneration as well as learning and memory impairments 
by immunosuppression in a murine model of Alzheimer’s disease155. T. gondii causes epilepsy131, possibly by alter-
ing GABAergic signaling6. Our analysis provides the systems map to study these correlations and applications of 
T. gondii as an immunotherapeutic tool.

Olfactory dysfunction is reported in Alzheimer’s disease and schizophrenia156. T. gondii increases cat pre-
dation of an infected rat by altering neural activity in limbic brain areas to block innate aversion of rats for cat 
urine. Infected chimpanzees lose their innate aversion towards urine of their natural predator, leopards126. �ere 
is a report that T. gondii might alter olfactory preferences in humans157. Our cluster deconvolution discovered 
12 olfactory receptors in humans modulated by the brain parasite possibly causing olfactory preferences and 
dysfunction.

Only a subset of people with T. gondii infection, at the outset, have some of the diseases, like epilepsy or 
malignancy, that share the alterations in the signature pathways we identi�ed. Our data indicate these signature, 
shared, molecular/cellular pathways, including in�ammation, protein misfolding and mis-splicing, are altered by 
T. gondii. We found that e�ects di�er in some cases for parasites with di�ering genetics and cells of di�erent types 
or from di�erent people. Our results provide insight into mechanisms whereby this parasite could cause these 
associated diseases under some circumstances. We show that tachyzoites, the rapidly growing form, can cause 
these158 alterations. In vivo this parasite interconverts from a dormant bradyzoite phase to an actively replicating 
tachyzoite phase and back again. �is interconversion may be relevant to associations we recognized. Biomarkers 
we found were in ill children with new seizures and the two where we looked for this had reactivation of infection 
with activity documented at the time. In a separate parallel analysis of dormant parasites that form de�nitive 
cysts in vitro, similar pathways also were altered159 KEGG and GO analyses159 demonstrated a bradyzoite phe-
notype organism, called EGS, a�ects pathways involved in Alzheimer’s, Parkinson’s and Huntington’s diseases, 
splicing, and oxidative damage159. �us, both tachyzoites and bradyzoites perturb critical host signaling pathways 
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in common with those perturbed in epilepsy, neurodegenerative diseases, motor diseases including movement 
disorders, and brain cancer.

In neurodegenerative diseases and cancer, we have also shown glioma-initiating cancer stem-like cells pos-
sess an altered stem cell/developmentally regulated gene and protein mutanome160–163. An Adult Human Neural 
Progenitor Cell (AHNP)49, has been suggested to be susceptible to chronic microenvironmental in�ammation 
in Parkinson’s Disease where it exhibits aberrant growth and di�erentiation164; in Alzheimer’s165, other neurode-
generative diseases and brain cancer. �ere are common growth-related programs and mutanomes in astrocytes 
and neurogenic astrocytes166 that are at-risk for transformation during chronic in�ammation. Altered levels of 
cytokines and other immune- and in�ammation-associated pathways, following T. gondii infection, have poten-
tial to support neurodegeneration and neoplastic transformation. It is notable that Zika virus infections also have 
a profound destructive e�ect on neuronal progenitor cells167 that share a normal or cancerous neuropoietic (i.e. 
persistent neurogenic) role during brain development and in the adult brain, including in the hippocampus168, 169. 
We have shown that pathology in this cell population is also involved in epilepsy, memory disorders, and autism 
in an interactome based on the literature. Carter et al. described similar overlap in neurologic susceptibility genes 
and those T. gondii modulates, based on a literature analysis. �is created an interactome of T.gondii infection 
and genes implicated in a variety of neurologic and other diseases9. �ese diseases included multiple sclerosis, 
neurodegenerative diseases, epilepsy, and malignancies9. Overlap in Carter et al.’s analysis with those genes and 
pathways that T. gondii perturbs is striking9, although it is possible that they all involve the same pathways without 
T. gondii causing the diseases. A large data analysis of insured U.S. patients revealed the same associations with 
these diseases without clear directionality10.

All of these �ndings together support the notion that the dormant parasite, which sometimes interconverts to 
active tachyzoites when cysts rupture, and are present in chronic T. gondii infection in the brain of 2 billion per-
sons, also has potential to contribute to these disease pathways. We identify some of the same mechanisms with 
tachyzoites. �ere is growing evidence for central nervous system transcellular spread of toxins, viruses, lectins 
and macromolecules including pathological proteins and nucleic acids. �is serves to transmit such infectious 
elements170, 171 to naïve cells in neurodegenerative diseases (e.g., Parkinson’s and Alzheimer’s diseases) and cancer. 
In these diseases particular neural sites and associated circuitries are hijacked and also a�ect the same neural 
stem/progenitor cell studied here. We found in primary, T. gondii infected human neuronal stem cells these cir-
cuitries are altered in pathways of neurodegeneration, motor disease, movement disorders, epilepsy, malignancy 
and in odorant receptors. Neddylation, ubiquitination, alternative splicing, cell replication, and autophagy are 
altered, among others. �ese alterations provide some predicted mechanisms for the various clinical disease asso-
ciations that also have been noted by others51, 138, 172–181.

Human chronic diseases are a complex interplay of genetic and environmental factors9, 136, 182–184 (Figs 1 and 10) 
requiring modi�ed approaches to reconstruct their multifactorial etiology and cascades of developmental-plasticity 
mechanisms in precipitating disease. Human brain parasitism by T. gondii provides a model and template to exam-
ine development of brain diseases. �is work provides a systems roadmap to design medicines and vaccines to 
repair and prevent neuropathologic e�ects of T. gondii infection of the human brain. Further, our original template 
provides a novel method to integrate multiple levels of intrinsic and extrinsic factors highlighting a way to unravel 
complexity in brain parasitism, toxoplasmosis speci�cally, and other complex diseases.

Materials and Methods
Genetics. Patient cohort and genotyping. Our approach to understand T. gondii brain infection (Fig. 1a) 
began with studies of families in which a child had congenital toxoplasmosis. We used clinical correlates 
and genetics approaches with data from our cohort, the National Collaborative Chicago Based Congenital 
Toxoplasmosis Study (NCCCTS). �is program has diagnosed, treated and followed 246 congenitally infected 
persons and their families continuously beginning in 1981, and therea�er in an ongoing manner through the 
present. In this work, evaluations of a�ected persons took place from as early as gestation, when possible, through 
older adulthood. �ese evaluations were/are at regular pre-speci�ed intervals with standardized protocols, in 
addition to other clinically indicated times. �ese evaluations occur in a single center in Chicago, performed by a 
single, consistent group of physician evaluators11–39. In our earlier, published work11–39, this cohort and method of 
analysis provided a powerful tool to identify genes and pathways causing susceptibility to toxoplasmosis (Table 1, 
Fig. 1). In this earlier work, human susceptibility alleles of candidate genes for those in the NCCCTS were identi-
�ed using Transmission Disequilibrium Testing (TDT).

As described in our earlier work, we used samples from patient-parent trios (a congenitally infected individual 
and his/her biological parents) from the National Collaborative Chicago-Based Congenital Toxoplasmosis Study 
(NCCCTS)12–14, 25, 31. We extracted DNA from peripheral blood mononuclear cells (PBMC) obtained from 149 
patient-parent groups that were genotyped at 12 single nucleotide polymorphism tags (tag-SNPs) throughout the 
speci�c gene. Tag-SNPs were then selected from the International HapMap Project, release 21 (http://www.hapmap.
org)12–14, 25, 31. �is was done using a 10-kb �anking sequence on either side of the gene12–14, 25, 31. A minor allele 
frequency (MAF) cuto� of 5% in Utah residents with Northern and Western European ancestry (CEU) and an r2 
threshold of 0.8 were used12–14, 25, 31. Tag-SNPs were selected using the Tagger tool in the Haploview program12–14, 25, 31.  
UNPHASED-2.404 https://sites.google.com/site/fdudbridge/so�ware/unphased-2-404 was used for the allelic asso-
ciation analysis of 124 infected children in the NCCCTS cohort who had a con�rmed presentation of clinical disease 
involving the eyes and/or brain12–14, 25, 31. Hardy Weinberg Disequilibrium: �e selected SNPs had an r2 threshold of 
0.8, a minor allele frequency of >0.2, and were in Hardy-Weinberg equilibrium in the unrelated parents12–14, 25, 31. 
For the genetic study, allelic association analysis was performed using conventional TDT to determine the linkage 
disequilibrium (LD). LD is the nonrandom association of alleles at two or more loci12–14, 25, 31. It is essentially an 
approximation of the existence of historical recombination between 2 loci12–14, 25, 31.

http://www.hapmap.org
http://www.hapmap.org
https://sites.google.com/site/fdudbridge/software/unphased-2-404
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NCCCTS informed consent and permissions. All studies involving human participants at the University of 
Chicago were approved by the University of Chicago IRB. Informed consent was obtained from all participants 
and/or their legal guardians. Informed consent to publish the image in Fig. 1b was obtained.

Statistical analysis for genetics. In the genetics study, allelic association was analyzed using a conventional trans-
mission disequilibrium test (TDT), and P values were calculated using Haploview (http://www.broadinstitute.
org/haploview), where P values less than or equal to 0.05 were considered signi�cant for association with disease. 
P values are nominal and not Bonferroni corrected.

Analysis of Allen Brain Atlas Data for expresson of human toxoplasmosis susceptibility genes. �e Allen Brain 
Atlas (http://human.brain-map.org) was used to search for each gene of interest. �e expression of each gene 
was then visualized using the Allen Human Brain Atlas Brain Explorer 2 so�ware (http://human.brain-map.
org/static/brainexplorer). �e expression of each gene in each region of the brain is shown using a heat map 
of the z-score for a speci�c probe for that gene. �e z-score represents the normalized gene expression of that 
probe across the entire brain. We used the following colors to illustrate gene expression: Red represents increased 
expression and blue represents decreased expression.

Cells, Culturing and Microscopy. L-NSC Cells. All human brain tissues used in these studies were 
obtained from the CPMC Neurosurgery Department, under an IRB approved protocol (Protocol #25.125-1). All 
patients provided written consent stating that they allowed for their samples to be used for basic research. �e 
California Paci�c Medical Center Institutional Review Board Panel#1 approved the tissue collection protocol, 
including the patient consent forms (Current IRB Assurance NO: FWA00000921). Samples were de-identi�ed 
before being processed, to protect patient privacy. �e L-NSC cell line was derived from the hippocampus tissue 
removed from a patient with intractable epilepsy. Cells were characterized by immuno�uorescence and found 
positive for the neural stem and progenitor cell markers Nestin, glial �brillary acidic protein or GFAP, Beta-III 
tubulin or Tuj1 as a neuronal marker, and Olig 2 as a neuronal and glial progenitor cell marker. All experiments 
were performed on passages 2–5 from the NPC culture. �is was discussed previously in http://cancerres.aacr-
journals.org/content/early/2011/09/06/0008-5n�2.CAN-11-07. All methods were performed in accordance with 
the relevant guidelines and regulations.

S-NSC Cells. IRB-approved and consented, from the University of Florida, S-NSC cells are adult human neural 
stem/progenitor cells originally referred to as adult human neural progenitor cells or “AHNP” cells, and they were 
cultured here according to the published protocol49. �e culture conditions and nomenclature are shown in 2.

Human monocytic cell line. In vitro culture-adapted human monocytes, i.e., MonoMac6 cells185, were used. 
MonoMac6 cells were seeded at 4 × 105/well in a 24-well plate in RPMI medium supplemented with 10% fetal 
calf serum, 2.05 mM L-glutamine, 1 × nonessential amino acids (Sigma), OPI medium supplement (Hybri Max; 
Sigma), and 1% penicillin-streptomycin (�ermo Fisher).

Toxoplasma gondii. Toxoplasma gondii type I (GT1, RH), type II (Me49; Pru), and type III (VEG) main-
tained in HFF were used to infect the cells at a m.o.i. of 4, and incubated for 18 hrs. Extracellular Toxoplasma gon-
dii were removed by washing with cold PBS before cells were harvested for total RNA extraction or IFA. Speci�c 
parasites used in each experiment are speci�ed in the results and �gures.

Immunostaining and IFA. For immunostaining study, AHNP (S-NSC) cells were grown on glass cover slip 
before infected with Toxoplasma gondii. 24 hours a�er infection, cells were �xed with paraformaldehyde and 
standard immune�uroescent staining protocol was adopted for studying the localization of targets of interest, 
including NFκB, STAT3, tyrosine hydroxylase, and dopamine. Antibodies utilized include: anti-NFκB p50 (Santa 
Cruz Biotech, SC-7178); P-STAT3 (Y705), cell signaling (#91315); anti-tyrosin hydroxylase (Sigma, T1299); and 
dopamine antibody (Novus Biologicals, NB120-1001).

RNA isolation, quantitation: RNA purification, RNA microarray and bioinformatics, RNA 
sequencing and bioinformatics, miR sequencing. Isolation of RNA. Type I-II-III single celled organ-
isms were grown in S-NSC, S-NDC or MM6. RNA was isolated and processed for sequencing as described. Below. 
In all cases puri�ed RNA had RIN scores >8. All experiments were done using biological replicates.

A�ymetrix chip. Gene expression pro�ling was performed using the A�ymetrix GeneChip® Human Gene 1.0 
ST Array (A�ymetrix Inc., Santa Clara, CA). Total RNA was isolated using miRNeasy Mini Kit (Qiagen), and 
converted to cDNA following the Ambion WT Expression protocol. Brie�y, total RNA (250 ng) was used for 1st 
and 2nd strand cDNA synthesis. cRNA was obtained by an in vitro transcription reaction, and was then used 
as the template for generating 1st strand cDNA. �e cDNA was fragmented and end-labeled with biotin using 
the GeneChip® WT Terminal Labeling kit. �e biotin labeled cDNA was hybridized to the array for 16 hours at 
45 °C using the GeneChip® Hybridization Oven 640. Washing and staining with streptavidin-phycoerythrin was 
performed using the GeneChip® Hybridization, Wash and Stain Kit, and the GeneChip® Fluidics Station 450. 
Images were acquired using the GeneChip® Scanner 3000 7 G and the GeneChip® Command Console® So�ware 
(AGCC).

Di�erential gene and miRNA expression analysis. Total RNA samples extracted from uninfected human cell 
cultures (controls) or from the same human cells infected with type I, II or III T. gondii strains for 18 hours, were 

http://www.broadinstitute.org/haploview
http://www.broadinstitute.org/haploview
http://human.brain-map.org
http://human.brain-map.org/static/brainexplorer
http://human.brain-map.org/static/brainexplorer
http://cancerres.aacrjournals.org/content/early/2011/09/06/0008-5nfk2.CAN-11-07
http://cancerres.aacrjournals.org/content/early/2011/09/06/0008-5nfk2.CAN-11-07
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treated with miRNeasy Mini Kit columns (Qiagen) following manufacturer instructions in order to separate 
both mRNA and miRNA fractions for each condition. �erea�er, Illumina barcoded sequencing libraries were 
constructed with TruSeq RNA Sample Preparation Kits v2 (Illumina) or NEBNext Multiplex Small RNA Library 
Preparation Kit (NEB) for mRNA or miRNA sequencing respectively. All sequencing libraries were sequenced 
using Illumina HiSeq. 2000 technology (100 bp single-end reads) and multiplexed in groups of 6 libraries per lane 
for mRNA (total sequencing data per mRNA sample ~3 Gb) and 9 libraries per lane for miRNA (total sequencing 
data per miRNA sample ~2 Gb). To quantify protein coding gene expression, CLC Genomic Workbench so�-
ware (CLC Bio-Qiagen, Aarhus, Denmark) was used to map sequencing reads to the human reference assembly 
(release GRCh38) and the T. gondii ME49 reference genome (ToxoDB release 13.0). A�erwards, to identify genes 
that were di�erentially expressed in infected cultures compared to their respective uninfected control samples, 
read counts per gene were analyzed with the R package edgeR using a generalized linear model likelihood ratio 
test.

On the other hand, to assess miRNA di�erential gene expression, miRNA sequencing reads were �rst depleted 
of adaptor and primer sequences and then mapped with CLC Genomic Workbench so�ware to the human 
reference genome assembly (GRCh38) using the miRNA annotations from miRBase v21 (www.mirbase.org). 
Identi�cation of human miRNA genes that were di�erentially expressed in infected host cells compared to their 
corresponding uninfected controls was carried out with edgeR using a generalized linear model likelihood ratio 
test.

For both mRNA and miRNA analyses, p-values were adjusted for multiple hypotheses testing using the False 
Discovery Rate method. MDS plots and heat maps were generated with the plotMDS tool from edgeR and the R 
tool heatmap. Di�erentially expressed genes in MM6 and NSC cell lines infected with Type I-II-III parasites were 
identi�ed under the criteria of 1% FDR and absolute log2-fold-change >1.5 (i.e. fold-change >2.8 and <0.35 for 
up- and down-regulated genes, respectively).

Proteomics. �e protocol was developed in 6 steps: (1) protein extraction with urea and SDS (2) protein diges-
tion with Lys-C/ trypsin, (3) peptide labeling with isobaric iTRAQ reagents, (4) peptide fractionation by isoelec-
tric point, (5) peptide identi�cation and relative quantitation by tandem mass spectrometry with “higher energy 
collision-induced dissociation” (HCD), and (6) bioinformatic analysis of mass spectroscopic data.

L-NSC Quantitative Proteomic using Multiplexed Isobaric Tandem Mass Tags. �e protocol for Protein quanti-
�cation, Protein extraction, iTRAQ labeling and mass spectrometry, Bioinformatics, and System Bioinformatics 
was developed in six steps:

Step 1. Infected (RH, ME49, VEG strains of Toxoplasma gondii) and uninfected human NPCs were denatured 
in 8 M Urea/ 0.4 M ammonium bicarbonate bu�er, pH 8.0, and the urea soluble fraction was collected by cen-
trifugation. Membrane proteins were extracted from the urea-insoluble pellet by adding 2% SDS to a �nal con-
centration of 0.125% (vol/vol) SDS. �is sample fractions were then sonicated six times on ice with two to three 
second bursts followed by a thirty second cooling period, using a Sonic Dismembrator 60 (Fisher Scienti�c). A�er 
centrifugation this second supernatant was pooled with the �rst protein extract. �e protein concentration in the 
pooled urea/ SDS solubilized protein extracts was determined using a BCA assay (control, RH, ME49, and VEG 
samples were 0.34, 0.49, 0.55 and 0.48 µg/uL, respectively).

Step 2. From this point, sample processing was performed in triplicate. For each sample, an aliquot containing 
100 µg of total protein was added to Eppendorf tubes. A ten microliter aliquot of a solution of MassPREP Protein 
Standard Mix (Waters, P/N 186004900) was added to each to serve as a process control. Next, proteins were pre-
cipitated using a cold acetone/TCA procedure. Samples were resuspended in 8 M urea/ 0.4 M ammonium bicar-
bonate bu�er (pH 8). A�er reduction and alkylation with dithiothreitol and iodoacetamide, the samples were 
diluted to 2 M urea/ 100 mM -ammonium bicarbonate, pH 8.0, �nal concentration. Lys-C was added at 1:200 
(w/w) Lys-C:protein ratio and allowed to digest for 4 hours at 37 °C. �en Trypsin (Promega Gold) was added at 
1:200 (w/w) and the digestion was allowed to digest overnight for approximately 16–20 hours total.

Step 3. A�er the proteolytic digestion, samples were desalted on a peptide macro trap (Michrom BioResources) 
and dried by vacuum centrifugation. Steps given in Applied Biosystems’ iTRAQ reagent protocol guide (part# 
4350831 Rev. C) titled Applied Biosystems iTRAQ Reagents: Amine-Modifying Labeling Reagents for Multiplexed 
Relative and Absolute Protein Quantitation were followed for isobaric peptide labeling. First the samples were 
dissolved in 40 µL of the dissolution bu�er from the iTRAQ bu�er kit. �e tryptic peptides in each sample were 
then labeled by the four tags (114: uninfected control; 115: RH; 116: ME49; 117: VEG) of a 4-plex iTRAQ kit. 
Isopropanol was used to dissolve the iTRAQ reagents instead of ethanol. A�er labeling, the four samples for each 
replicate were combined into a single Eppendorf tube. �e samples were again dried by vacuum centrifugation 
prior to removal of excess iTRAQ reagent by strong cation exchange chromatography, again as per the ven-
dor’s instructions. Finally, the samples were desalted again using a peptide macro trap in preparation for O�Gel 
fractionation.

Step 4. �e pooled labeled peptides were fractionated in-solution with an Agilent 3100 OFFGEL fractionator 
following the manufacturer’s recommendations (Agilent Technologies)186, 187. A set-up was used to separate pep-
tides according to their isoelectric point, consisted of a 13 cm IPG strip pH 3–10, and IPG bu�er, pH3-10 (GE 
Healthcare), and a 12 well frame set (Agilent Technologies). �e unit was operated according to the Agilent’s 
Operator Guide.

Step 5. O�Gel Fractions were analyzed by nano-�ow liquid chromatography tandem mass spectrometry (LC/
MS/MS). A nanoelectrospray source coupled an Ultimate 3000 LC system to a LTQ Orbitrap Velos Pro mass 
spectrometer (�ermo Fisher Scienti�c, Bremen Germany). During the injection sequence, peptides were con-
centrated on a Dionex u-Precolumn Acclaim PepMap100 (C18, 5 um, 100 A, 300 um × 5 mm) and washed/
desalted for twenty minutes. Peptides were separated on a Zorbax 300 SB C18 (3.5 um, 150 mm × 75 um) 
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nano-column from Agilent using a multi-step gradient spanning 100 minutes. Xcalibur was used to operate the 
system in data-dependent acquisition mode. �e ten most intense peptide ions detected by the orbital analyzer 
were sequentially isolated for fragmentation in the HCD cell.

Step 6. We analyzed three analytical replicates for each of the four samples. Mass spectral data from the anal-
ysis of 12 IEF fractions were converted to MGF �le formats using MassMatrix188, concatenated and submitted 
as a single large MGF �le for searches against NCBI human and Toxoplasma gondii databases using a Mascot 
2.2 (Matrix Science) search engine189. �e following search parameters were used: (i) enzyme, trypsin; (ii) one 
missed cleavage allowed; (iii) �xed modi�cations, iTRAQ 4-plex, carbamidomethylation of cysteines; (iv) variable 
modi�cation, oxidation of methionine; (v) peptide tolerance, 10 ppm; and (vi) MS/MS tolerance, 30 ppm. Mascot 
result �les (.dat) were imported into Sca�old Q3 + (Proteome So�ware). Protein reporting thresholds were 95% 
protein probability, 90% peptide probability, with at least two peptides per protein. Algorithms embedded in 
Sca�old Q3 + were used to extract and to report the quantitative data collected during the iTRAQ experiment.

S-NSC- proteomics. Worksheet “Sample Proc” summarizes the sample prep process. From each �ask, 
~180–190 ug proteins were extracted and 50 ug were used for 8-plex iTRAQ analysis. Worksheet “Pep Ratio” is 
the raw table listing relative ratios for all peptide identi�ed in all 8 samples. �e ratio should be 0.125 (1.000/8) 
if one peptide/protein evenly distributes among 8 samples. Ratios of peptides from the same proteins are then 
calculated to represent protein ratios. Worksheet “Ratio to Channel 0” includes a total of 4,367 identi�ed proteins 
with iTRAQ ratio. Note the protein ratios across 8 samples (4 conditions in duplicates) are raw data from mass 
spectrometry and converted to ratios against Channel 0, i.e. Control sample 1. �e data can also be normalized 
using the factors in Column O in worksheet “Sample Proc”. Columns X-Z are average ratios in each infection 
condition versus. average of controls. Worksheet “Prot with high score” has 3,359 proteins identi�ed by more 
than 1 peptide and with ProteinProphet probability >0.8 (=FDR < 1%). Among these 3,359 proteins with high 
con�dence, 10 protein concentrations increased by >2-fold in either of the 3 infected cells vs. controls, while 28 
proteins decreased by >2-fold.

Human serum samples used in biomarker discovery. �ese data were obtained as follows: �ree pairs 
of children called pairs A, B, C were studied. �ey are described with additional information in the legend of 
Fig. 4a, and in the methods, in each demographically-matched pair, one child had severe disease and the other 
had mild or no clinical illness. Each child had serum stored from evaluations at the same ages, 3.5 years old (pairs 
A and C). �e �rst pair (A1/A2) were Caucasian children of the same ethnicity, originally primarily British, back-
ground, and similar demographics. �e second pair (B1 and B2) were of Caucasian/Filipino ethnicity, dizygotic, 
discordant twins who live in the same household. �e third pair (C1 and C2) were children of Hispanic ethnicity 
from the same geographic regions and with similar demographic characteristics. Each clinically well child was 
identi�ed because he was similar to the ill child. �is was possible because we have in depth knowledge of the 
clinical �ndings and demographics of the children followed in the NCCCTS. �us, it was possible to identify 
demographically matched well children for two (pair A and C) and a well twin for the ill twin (pair B). Serum 
Collection for Children in the NCCCTS is as follows. �ese children have serum prepared from blood drawn at 
each visit and the sera herein were obtained at a visit when new seizures were noted for ill children. �e global 
proteome and miRNAome changes in sera were analyzed with iTRAQ and miRNA qPCR panels.

Bioinformatics and Additional Systems Biology Analyses. �e following analyses were performed at 
the Institute of Systems Biology and J. Craig Venter Institute:

DEGs and DEmiR analysis of e�ect of cell type and parasite type. Di�erentially expressed genes and proteins 
(iTRAQ) and human neuronal cells, culture conditions, and markers. A summary of DEG and DEmiRs. For 
RNAs, lowly expressed RNAs were removed; threshold was de�ned in #3 & #4 f. Distribution of read counts 
mapped to miRNAs. P < 0.01 and absolute log2-fold-change >1 (fold change >2 or <0.5). Relationship of 
di�erentially expressed genes (DEGs) by cell line, relationship of DEGs by strain, relationship of di�erentially 
expressed miRNAs (DEmiRs) by cell line, and relationship of DEmiRs by strain and functional enrichment 
analysis included. For identi�ed DEGs, GO Biological Processes were enriched with DAVID so�ware v6.7. GO 
Biological Processes with p-value < 0.01 and number of genes associated with certain GO term > = 5 summa-
rized. KEGG pathway enrichment analysis is shown. For identi�ed DEGs, KEGG pathways were enriched with 
DAVID so�ware v6.7. KEGG pathways with p-value < 0.05 summarized.

Upstream regulators for L-NSC and S-NSC transcriptomics and proteomics combined 
(ISB). �e upstream regulator analyses was performed to identify molecules regulating genes and proteins 
identi�ed from transcriptomic and proteomic data for L-NSC or S-NSC.

Genes and proteins di�erentially expressed in L-NSC or S-NSC were combined, respectively and used as an 
input for the analysis. Based on the p-value < 0.01, 913 and 83 molecules were identi�ed as upstream regulators 
of genes or proteins di�erentially expressed in S-NSC and L-NSC, respectively. Using interactions between 22 
common upstream regulators and their target genes/proteins, gene regulatory networks were constructed using 
Cytoscape.

�e Reconstruction-Deconvolution analysis was completed at BrainMicro LLC using Ingenuity Pathway 
Analysis tool (IPA, Inc.)190, 191 and STRING v9.1 web-tool53. Allen Atlas and IPA used human T. gondii suscepti-
bility genes. �ey show speci�c genes expressed in the brain. Additionally, it includes upstream regulators found 
in IPA analysis. p-value of overlap < 5.0 × 10−3. Biomarkers for 3 ill children compared to well controls were then 
added.
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STRING database provided analyses that are concentrated more on protein-protein interactions (Fig. 9; 
Supplement 6). IPA provided the core analysis of network annotations, canonical pathways (Supplement B: 
Tables S6, 9, 10), and disease-functions (Fig. 6; Supplement B:Table S6). In addition, IPA core analysis could 
detect predicted upstream regulators of gene networks that were potentially not captured in the snapshots of 
experimental design and data collection (Figs 1–6; Supplement B: S2, 7). In some cases when a larger dataset was 
parsed into smaller networks, a secondary IPA core analysis was completed to identify the properties of the seg-
regated datasets. Top-scored IPA analysis was also used to condense the large annotation prediction for compar-
ison. In these cases, only the top 10–25 pathways/networks with lowest P-value, highest Z-scores are shown (e.g., 
Fig. 4, Supplement B: Table S3). Due to the large number of citations for function of genes and pathways, when 
citations were not used, the information was obtained from the Ingenuity Knowledge Base (http://www.ingenuity.
com/science/knowledge-base). Cut-o� p-value for each analysis were shown in each analysis.

We approached the Reconstruction-Deconvolution analysis without any preconceptions. Our deep under-
standing in parasitology and biological processes were used to understand the signi�cant patterns emerged 
with highest statistical values. Reconstruction of the brain infection used the template in Fig. 1. We exam-
ined the 1st ‘layer’ (susceptibility genetics) by IPA for 3 features: canonical pathways, upstream regulation, and 
disease-functions. Each ‘layer’ of datasets was added sequentially in the following order of NSC transcript, NSC 
protein and toxoplasmosis biomarkers. Each new composite layer was thorough analyzed for the 3 IPA features 
to see the additive e�ects. Datasets were also segregated and analyzed separately by Type I, II and III infections. 
�e upstream regulators were further analyzed separately for canonical pathways and disease-functions. It was 
important to have a complete, unbiased view of how each layer of data contributes and connects to each other. 
Only selected, important observations were described in this report.

�e total brain infectome included all 4 ‘layers’ and segregated according to parasite strains (Supplement B: 
Table S7). Our Deconvolution strategy entailed 3 approaches. “Orbital Deconvolution’ was the visual design to 
show connections between the 4 layers including the upstream regulators (Fig. 7) and portion of IPA analysis is 
shown (Supplement B: Table S7). “Cluster Deconvolution’ utilized STRING to analyze meaning brain infectome 
of L-NSC, meaning that S-NSC data was excluded, due to the number limit of STRING interactions (Fig. 9, 
Supplement B: Table S6). We detected the 7 clusters based on visual detection of network maps. Genes for each 
cluster was analyzed for the 3 IPA features to determine their properties. “Disease Deconvolution” was derived 
from the IPA disease-functions analysis of the total brain infectome and graphically drawn in IPA (Fig. 10, 
Supplement B: Tables S10A, B).

Analysis of Alternatively Spliced Genes. To identify potential candidate protein coding genes that were di�er-
entially spliced between infected and uninfected S-NSC cells, mRNA sequencing reads derived from infected 
and uninfected S-NSC were mapped to the human reference assembly (GRCh38) with Tophat. Thereafter, 
mapping data were processed with rMATS51 to identify candidate alternative-spliced transcripts. Predicted 
alternative-spliced isoforms that were over- or under-represented in infected S-NSC cells compared to their 
respective controls with an adjusted p-value < 0.1 (false discovery rate method) were kept for future analyses(Ac-
cession numbers in Supplement D).
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