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Abstract

The performance of deep neural networks is strongly

influenced by the quantity and quality of annotated data.

Most of the large activity recognition datasets consist of

data sourced from the web, which does not reflect chal-

lenges that exist in activities of daily living. In this paper,

we introduce a large real-world video dataset for activities

of daily living: Toyota Smarthome. The dataset consists of

16K RGB+D clips of 31 activity classes, performed by se-

niors in a smarthome. Unlike previous datasets, videos were

fully unscripted. As a result, the dataset poses several chal-

lenges: high intra-class variation, high class imbalance,

simple and composite activities, and activities with simi-

lar motion and variable duration. Activities were annotated

with both coarse and fine-grained labels. These character-

istics differentiate Toyota Smarthome from other datasets

for activity recognition. As recent activity recognition ap-

proaches fail to address the challenges posed by Toyota

Smarthome, we present a novel activity recognition method

with attention mechanism. We propose a pose driven spatio-

temporal attention mechanism through 3D ConvNets. We

show that our novel method outperforms state-of-the-art

methods on benchmark datasets, as well as on the Toyota

Smarthome dataset. We release the dataset for research

use1.

1. Introduction

Recent studies show that improvements in recognition

methods are often paired with the availability of annotated

data. For instance, significant boosts in image recognition

accuracy on the AlexNet and VGG architectures [20, 37]

were possible thanks to ImageNet [9] dataset. Similarly,

the Inflated 3D Convolutional Networks (I3D) for activ-

ity recognition [4] largely benefited from the Kinetics [4]

dataset.

1https://project.inria.fr/toyotasmarthome

Most of the available activity recognition datasets such

as UCF101 [39], HMDB51 [21] , Kinetics [4] are gathered

from video web services (e.g. YouTube). Such datasets in-

troduce data bias as they mainly contain activities concern-

ing sports, outdoor activities and playing instruments. In

addition, these activities have a significant inter-class vari-

ance (e.g. bike riding vs. sword exercising), which usually

does not characterize daily living activities. Besides, most

video clips only last a few seconds.

ADL datasets proposed in the past years [33, 46, 45, 40]

were typically recorded using static cameras from a sin-

gle viewpoint. The activities were performed in front of

cameras by actors (often voluntary students), who were in-

structed beforehand. As a consequence, activities were per-

formed in a similar, somewhat unnatural way. Finally, most

of the datasets do not include complex, composite activities

as they focus only on short, atomic motions. Table 1 pro-

vides a list of the most popular ADL datasets, outlining their

key features along with the limitations mentioned above.

We introduce a new dataset that aims at addressing these

limitations: Toyota Smarthome. Toyota Smarthome, here-

after Smarthome, contains approx. 16.1K video clips with

31 activity classes performed by 18 subjects. The chal-

lenges of this dataset are characterized by the rich diver-

sity of activity categories perfomed in a real-world domes-

tic environment. The dataset contains fine-grained activi-

ties (e.g. drinking with a cup, bottle or a can) and compos-

ite activities (e.g. cooking). The activities were recorded in

3 different scenes from 7 camera viewpoints. Real-world

challenges comprise occlusion and high intra-class varia-

tion. Another unique feature of Smarthome is that activities

are performed by subjects who did not receive any informa-

tion about how to perform them.

To address the real-world challenges in Smarthome,

we propose a novel attention mechanism on top of cur-

rently high-performing spatio-temporal convolutional net-

works [4] (3D ConvNet). Inspired by [11], our method uses

both spatial and temporal attention mechanisms. We disso-

ciate the spatial and temporal attention mechanisms (instead
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Figure 1. Sample frames from Smarthome dataset: 1-7 label at the right top corner respectively correspond to camera view 1, 2, 3, 4, 5, 6

and 7 as marked in the plan of the apartment on the right. Image from camera view (1) Drink from can, (2) Drink from bottle, (3) Drink

form glass and (4) Drink from cup are all fine grained activities with a coarse label drink. Image from camera view (5) Watch TV and (6)

Insert tea bag show activities with large source-to-camera distance and occlusion. Images with camera view (7) Enter illustrate the RGB

image and the provided 3D skeleton.

of coupling them). In our architecture, two sub-networks

independently regress the attention weights, based on 3D

human skeletons inputs. The proposed attention mecha-

nism aims at addressing the diversity of activity categories

present in Smarthome. On the one hand, activities with

human-object interaction require spatial attention to encode

the information on the object involved in the activity. On the

other hand, activities with temporal dynamics such as sitting

or standing up require temporal attention to focus on the key

frames that characterize the motion. The proposed method

achieves state-of-the-art results on Smarthome and two pub-

lic datasets: large-scale NTU-RGB+D [33] and a human-

object interaction dataset - Northwestern-UCLA [46].

2. Related work

In this section, we briefly review publicly available daily

living activity datasets and state-of-the-art activity recogni-

tion algorithms, focusing on attention mechanisms.

2.1. ADL real­world datasets

To deploy activity recognition algorithms on real-world

sites, a validation on videos replicating real-world chal-

lenges is crucial. To well comprehend the limitations of

currently-available datasets, we identify a set of indicators

of how well each of these datasets addresses the main real-

world challenges. Context: The context is the background

information of the video. Some activity datasets feature a

rich variety of contextual information (context biased). In

some cases, the contextual information is so rich that it is

sufficient on its own to recognize activities. For instance, in

UCF and kinetics, processing the part of the frames around

the human is often sufficient to recognize the activities. On

the other hand, in datasets recorded in environments with

similar backgrounds (context free), the contextual informa-

tion is lower and thus cannot be used on its own for ac-

tivity recognition. This is true, for instance, for datasets

recorded indoor such as Smarthome and NTU RGB+D [33].

Spontaneous acting: This denotes whether the subjects

tend to overstate movements following a guided script (low

spontaneous acting). Subjects acting freely a loose script

tend to perform activities spontaneously in a natural way

(high spontaneous acting). Camera framing: This de-

scribes how the video has been recorded. Internet videos

are recorded by a cameraman (high camera framing) and

thus capture the subject performing the activity centered

within videos and facing the camera. In contrast to this,

real-world videos with fixed cameras (low camera framing)

capture activities in an unconstrained field of view. Cross-

view challenge: In real-world applications, a scene may

be recorded from multiple angles. As activities can look

different from different angles, activity recognition algo-

rithms should be robust to multi-view scenarios. We there-

fore indicate which of the datasets pose the cross-view chal-

lenge. Duration variation: The duration of activities may

vary greatly both inter-class and intra-class. A high vari-

ation of duration is more challenging and more represen-

tative of the real-world. We assign high duration variation

to datasets in which the length of video samples varies by

more than 1 minute within a class; low duration variation
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Table 1. Comparative study highlighting the challenges in real-world setting datasets

Dataset Context Duration Cross-view Composite View Type Spontaneous Camera Fine-grained Type

variation challenge activities acting framing activities

ACTEV/VIRAT [7] free Medium Yes No Monitoring Medium Low No Surveillance

SVW [32] biased Low No No Shooting High High No Sport

HMDB [21] biased Low No No Shooting Medium High No Youtube

Kinetics [4] biased Low No No Shooting Medium High No Youtube

AVA [15] biased Low No No Shooting Medium High No Movies

EPIC-KITCHENS [6] free High No Yes Egocentric Medium High Yes Kitchen

Something-Something [14] free Low No No Shooting Low High Yes Object interaction

MPII Cooking2 [31] free High Yes Yes Monitoring Medium Medium Yes Cooking

DAHLIA [42] free High Yes No Monitoring Medium Medium No Kitchen

NUCLA [46] free Low Yes No Shooting Low High No Object interaction

NTU RGB+D [33] free Low Yes No Monitoring Low High No ADL

Charades [35] free Low Yes Yes Shooting Low High Yes ADL

Smarthome free High Yes Yes Monitoring High Low Yes ADL

otherwise. Composite activities: Some complex activities

can be split into sub-activities (e.g., cooking is composed

of cutting, stirring, using stove, etc.). This indicator simply

states whether the dataset contains composite activities and

their sub-activities. Fine-grained activities: Recognizing

both coarse and fine-grained activities is often needed for

real-world applications. For example, drinking is a coarse

activity with fine-grained details of the object involved in it,

say can, cup, or bottle.

Table 1 shows the comparison of the publicly available

real-world activity datasets based on the above indicators.

ADL are usually carried out indoor, resulting in low con-

text information. NTU-RGB+D [33] is one of the largest

dataset for ADL, comprising more than 55K samples with

multi-view settings. However, NTU-RGB+D was recorded

in laboratory rooms and the activities are performed by ac-

tors with strict guidance. This results in guided activities

and actors facing the cameras. MPII Cooking 2 [31] is an

ADL dataset recorded for cooking recipes in an equipped

kitchen. The dataset has 8 camera views, with compos-

ite activities. This dataset focuses on one cooking place,

thus limiting the spatial context and the diversity of activity

classes. Charades [35] and Something-Something [14] were

recorded by hundreds of people in their own home with very

fine-grained activity labels. However, self-recorded activi-

ties are very short (10 seconds/activity), often not natural,

and always performed facing the camera. Hence, current

ADL datasets address only partially the challenges of real-

world scenarios. This motivates us to propose Smarthome:

a dataset recorded in a semi-controlled environment and

real-world settings. Here we summarize the key charac-

teristics of Smarthome: (1) The dataset was recorded in

a real apartment using 7 Kinect sensors [49] monitoring

3 scenes: dining room, living room and kitchen (2) Sub-

jects were recorded for an entire day, during which they per-

formed typical daily activities without any script. (3) Activ-

ity duration ranges from a couple of seconds to a few min-

utes. (4) As the camera positions were fixed, the camera-

to-subject distance varies considerably between videos. (5)

Sub-activity labels are available for composite activities

such as cooking, make coffee, etc. Our annotations include

fine-grained labels together with the coarse activity per-

formed using different objects (e.g., drink from cup, drink

from can, and drink from bottle).

2.2. ADL recognition methods

A large variety of algorithms have been proposed for

ADL datasets. For a long time, activity recognition was

dominated by approaches using local features, like dense

trajectories [43, 44], combined with fisher vector encod-

ing [27]. These approaches are simple and effective on

small datasets. To tackle large datasets, researchers usually

concatenate local features with those learned from convo-

lutional networks [5, 36, 10]. A common issue with these

popular deep learning approaches for activity recognition,

such as Two-stream ConvNets [36], is the difficulty of en-

coding long-range temporal information. As a possible so-

lution, Donahue et al. in [10] extracted spatial features from

CNN network to feed sequential networks (LSTM). It was

later shown that even when fed with large and sparse CNN

features, sequential networks fail to learn the temporal dy-

namics [8]. Thus, sequential networks are often fed with

3D pose information [48, 33] to model the body dynam-

ics of the subject performing the activity. However, 3D

pose information by itself is not sufficient to encode con-

text information such as objects involved in the activities.

Spatio-temporal convolutional operations [41] have been

used for activity recognition of large scale internet videos.

These spatio-temporal operations are inflated from 2D ker-

nels (I3D), pre-trained on ImageNet [9] and Kinetics [4]

to recognize diverse activities with high accuracy [4, 12].

However, such 3D convNets do not exploit the salient part

of the video. Recently, attention mechanisms on top of deep

networks, such as LSTMs [38, 23] and I3D [47], have pro-

duced performance improvements.

Attention mechanisms focus on the salient part of the

scene relative to the target activity. Attention mechanisms

have gained popularity in the activity recognition commu-
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nity [38, 1, 3]. Sharma et al. [34] proposed an attention

mechanism on RGB data where spatial attention weights

are assigned to different parts of the convolutional feature

map extracted from CNN. Liu et al. [38], and Baradel et

al. [1] extended the aforementioned attention mechanism

for both spatial and temporal attention on either 3D joint

coordinates or RGB hand patches. Here, the pose driven

spatial attention selectively focuses on the pertinent joints

or RGB patches, while the temporal attention focuses on

the key frames. All these methods [1, 38, 3, 2] use spatio-

temporal attention for optimizing features computed by

RNNs. As discussed earlier, the effectiveness of 3D Con-

vNets w.r.t. RNNs inspired us to use 3D ConvNets for our

spatio-temporal attention mechanism.

Recently, some approaches using high-level I3D features

have been proposed [15, 13]. The spatio-temporal convolu-

tion is guided by object detections in order to focus on the

salient part of the images. In [47], the authors proposed a

module on top of I3D that computes the attention of each

pixel as a weighted sum of the features of all pixels along

the space-time volume. However, this module is extremely

dependent on the appearance of the activity, i.e., pixel po-

sition within the space-time volume. As a result, it fails to

recognize activities with similar appearance and low mo-

tion. Thus, a more robust and general attention mecha-

nism that soft-weights the salient parts of the feature map

is required. With this aim, we propose a novel separable

spatio-temporal attention mechanism.

3. Toyota Smarthome dataset

Toyota Smarthome is a video dataset recorded in an

apartment equipped with 7 Kinect v1 cameras. It contains

31 daily living activities and 18 subjects. The subjects,

senior people in the age range 60-80 years old, were aware

of the recording but they were unaware of the purpose of

the study. Each subject was recorded for 8 hours in one day

starting from the morning until the afternoon. To ensure

unbiased activities, no script was provided to the subjects.

The obtained videos were analyzed and 31 different activ-

ities were annotated. The videos were clipped per activity,

resulting in a total of 16,115 video samples. The dataset has

a resolution of 640 × 480 and offers 3 modalities: RGB +

Depth + 3D skeleton. The 3D skeleton joints were extracted

from RGB using LCR-Net [30]. For privacy-preserving rea-

sons, the face of the subjects is blurred using tinyface detec-

tion method [18].

Challenges. The dataset encompasses the challenges of

recognizing natural and diverse activities. First, as subjects

did not follow a script but rather performed typical daily

activities, the number of samples for different activities is

imbalanced (fig. 2). Second, the camera-to-subject distance

varies considerably between videos and sometimes subjects

are occluded. Third, the dataset consists of a rich variety of

Figure 2. Number of video clips per activity in Smarthome and the

relative distribution across the different camera views. C1 to C7

represent 7 camera views. All the activity classes have multiple

camera views, ranging from 2 to 7.

activities with different levels of complexity. Sub-activity

labels are available for composite activities such as cook-

ing, make coffee, etc. Fourth, the coarse activity is assigned

with fine-grained labels when performed using different ob-

jects (for instance, drink from cup, can, or bottle). Finally,

the duration of activities varies significantly: from a cou-

ple of seconds (for instance, sit down) to a few minutes (for

instance, read book or clean dishes). All these challenges

make the recognition of activities in Smarthome a difficult

task. Figure 1 gives a visual overview of the dataset.

3.1. Evaluation protocols

We define two protocols for activity classification eval-

uation on Smarthome: cross-subject and cross-view. For

each criterion, we report the mean per-class accuracy.

Cross-subject evaluation In cross-subject (CS) evalu-

ation, we split the 18 subjects into training and testing

groups. In order to balance the number of videos for each

category of activity in both training and testing, the training

group consists of 11 subjects with IDs: 3, 4, 6, 7, 9, 12, 13,

15, 17, 19, 25. The remaining 7 subjects are reserved for

testing.

Cross-view evaluation For cross-view evaluation we

propose two protocols, CV1 and CV2, containing 19 activ-

ities 2. Both protocols use camera 2 for testing and camera

2Some activities could not be included as they do not appear in the

considered cameras.
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5 for validation.

For CV1, we pick all samples of camera 1 for training.

Camera 1 and camera 2 are both recorded in the dining

room, having activities being performed in the same scene

from two different viewpoints. This protocol also allows us

to verify the generalization of the recognition system as it

provides a smaller, highly imbalanced training set.

For CV2, we take samples from all cameras: camera 1,

3, 4, 6, 7 for the training set. We select only the samples of

the 19 activities as mentioned in the CV1 protocol.

4. Proposed method

To address ADL recognition challenges, we introduce a

new pose driven attention mechanism on top of the 3D Con-

vNets [4]. The spatial and temporal saliency of human ac-

tivities can be extracted from the time series representation

of pose dynamics, which are described by the 3D joint co-

ordinates of the human body.

4.1. Spatio­temporal representation of a video

The input of our model are successive crops of human

body along the video and their 3D pose information. We fo-

cus on the pertinent regions of the spatio-temporal represen-

tation from 3D ConvNet, which is a 4-dimensional feature

map. Starting from the input of 64 human-cropped frames

from a video V , the spatio-temporal representation g is the

feature map extracted from an intermediate layer of the 3D

ConvNet I3D [4]. The intermediate layer we use is the one

preceding the Global Average Pooling (GAP) of I3D. The

resulting dimension of g is t×m× n× c, where t is time,

m× n is the spatial resolution and c are the channels.

We define two separate network branches, one for spatial

and one for temporal attention (see fig. 3). These branches

apply the corresponding attention mechanism to the input

feature map g and output the modulated feature maps gs
(for spatial attention) and gt (for temporal attention). gs
and gt are processed by a GAP layer and then concatenated.

Finally, the prediction is computed from the concatenated

feature map via a 1×1×1 convolutional operation followed

by a softmax activation function.

4.2. Separable spatio­temporal attention

In this section, we elaborate on our pose driven spatio-

temporal attention mechanism shown in fig. 4. Coupling

spatial and temporal attention is difficult for spatio-temporal

3D ConvNet features as the spatial attention should focus

on the important parts of the image, and the temporal at-

tention should focus on the pertinent segments of the video.

As these processes are different, our idea is to dissociate

them. We learn two distinct attention sets, one for spatial

and one temporal weights. These weights are linearly mul-

tiplied with the feature map g, to output the modulated fea-

ture maps gs and gt.
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Figure 3. Proposed end-to-end separable spatio-temporal attention

network. The input of the network is human body tracks of RGB

videos and their 3D poses. The two separate branches are dedi-

cated for spatial and temporal attention individually, finally both

the branches are combined to classify the activities. Dimension

c for channels has been suppressed in the feature map for better

visualization.

Figure 4. A detailed picture of pose driven RNN attention model

which takes 3D pose input and computes m×n spatial and t tem-

poral attention weights for the t × m × n × c spatio-temporal

features from I3D.

We use 3D skeleton poses to compute the spatio-

temporal attention weights. The inputs to the attention net-

work are the feature vectors calculated by an RNN on the

3D poses. This RNN is a 3 layered stacked LSTM pre-

trained on 3D joint coordinates for activity classification.

The input is a full set of J joints per skeleton where the joint

coordinates are in the form x = (x1, ..., xJ) for xj ∈ R
3.

The attention network consists of two separated fully

connected layers with tanh squashing followed by fully

connected layers that compute the spatial and temporal at-

tention scores s1 and s2, respectively (see fig. 4). The scores

s1 and s2 express the importance of the elements of the con-

volutional feature map g along space and time. These scores

sr (i.e., s1 and s2 for r = 1, 2) can be formulated as:

sr = Wsr tanh(Whr
h∗

r + bhr
) + bsr (1)

where Wsr , Whr
are learnable parameters and bsr , bhr

are

the biases. h∗

r is the concatenated hidden state vector of all

the timesteps from the stacked LSTM.
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The attention weights for spatial (α) and temporal (β =
{β1, β2, ..., βt}) domain are computed from the scores s1
and s2 as:

α = σ(Wσs1 + bσ); βk =
exp(s2,k)

Σt
i=1

exp(s2,i)
(2)

where s2 = {s2,1, s2,2, ..., s2,t} is obtained from equa-

tion 1. Normalizing the high number of m×n spatial atten-

tion weights with softmax leads to extremely low values,

which can hamper their effect. To avoid this, we use sig-

moid activation as in [38]. This attention weights play the

role of soft selection for m× n spatial elements of the con-

volutional feature map g.

Finally, the modulated feature maps with spatial and tem-

poral attention (gs & gt) are computed as

gs = reshape(α) ∗ g; gt = reshape(β) ∗ g (3)

where reshape(x) operation is performed to transform x to

match the dimension of the feature map g. The attention

model is joint-trained with the 3D ConvNet.

4.3. Training jointly the attention network and 3D
ConvNet

Unlike the existing attention networks for activity clas-

sification [38, 1], jointly training the separable spatio-

temporal attention network and the 3D ConvNet is relatively

straightforward. The training phase involves fine-tuning the

3D ConvNet without the attention branches for activity clas-

sification. Then, the attention network is jointly trained with

the pre-trained 3D ConvNet. This ensures faster conver-

gence as demonstrated in [3]. The 3D ConvNet along with

the attention network is trained end-to-end with a regular-

ized cross-entropy loss L formulated as

L = LC + λ1

m×n
∑

j=1

∥

∥αj

∥

∥

2
+ λ2

t
∑

j=1

(1− βj)
2 (4)

where LC is the cross-entropy loss for C activity labels. λ1

and λ2 are the regularization parameters. The first regular-

ization term is used to regularize the learned spatial atten-

tion weights α with the l2 norm to avoid their explosion.

The second regularization term forces the model to pay at-

tention to all the segments in the feature map as it is prone to

ignore some segments in the temporal dimension although

they contribute in modeling activities. Hence, we impose a

penalty βj ≈ 1.

5. Experiments

5.1. Other datasets and settings

Along with Smarthome, we performed experiments on

two popular human activity recognition datasets: NTU

RGB+D Dataset [33] and Northwestern-UCLA Multiview

activity 3D Dataset [46].

NTU RGB+D Dataset (NTU) - The NTU dataset was ac-

quired with a Kinect v2 camera and consists of 56880 video

samples with 60 activity classes. The activities were per-

formed by 40 subjects and recorded from 80 viewpoints.

For each frame, the dataset provides RGB, depth and a 25-

joint skeleton of each subject in the frame [33]. We per-

formed experiments on NTU using the two split protocols

proposed in [33]: cross-subject (CS) and cross-view (CV).

Northwestern-UCLA Multiview activity 3D Dataset

(NUCLA) - The NUCLA dataset was acquired simultane-

ously by three Kinect v1 cameras. The dataset consists of

1194 video samples with 10 activity classes. The activities

were performed by 10 subjects, and recorded from the three

viewpoints. As NTU, the dataset provides RGB, depth, and

the human skeleton of the subjects in each frame. We per-

formed experiments on NUCLA using the cross-view (CV)

protocol proposed in [46]: we trained our model on samples

from two camera views and tested on the samples from the

remaining view. For instance, the notation V 3

1,2 indicates

that we trained on samples from view 1 and 2, and tested on

samples from view 3.

5.2. Implementation details

Training - For separable spatio-temporal attention

model, we initialize the I3D base network from the

Kinetics-400 classification models. Data augmentation and

training procedure for training the I3D on tracks of hu-

man body follow [4]. For training the pose driven at-

tention model, we use three-layer stacked LSTM. Each

LSTM layer consists of 512, 512 and 128 LSTM units

for Smarthome, NTU and NUCLA respectively. Simi-

larly to [33], we clip the videos into sub-sequences of 30

(Smarthome), 20 (NTU) and 5 (NUCLA) frames and then

sample sub-sequences to input to the LSTM. We use 50%

dropout to avoid overfitting. We set λ1 & λ2 to 0.00001

for all the datasets. For training the entire network, we

use Adam Optimizer [19] with an initial learning rate set

to 0.001. We use mini-batches of size 16 on 4 GPUs. We

sample 10% of the initial training set and use it for vali-

dation only, specifically for hyper-parameters optimization,

and early stopping. For training the I3D base network for

NUCLA, we used NTU pre-trained I3D and then fine-tuned

on NUCLA.

Testing - Each test video is processed 3 times to extract the

human centered crop and two corner crops around the hu-

man bounding box. This is to cover the fine detail of the

activity, as in [12]. The final prediction is obtained by aver-

aging the softmax scores.
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5.3. Comparative study

Tables 2 & 3 show that our model achieves state-of-

the-art results on both NTU and NUCLA. We argue that

PEM [25], whose results are close to those obtained by our

attention mechanism, uses saliency maps of pose estima-

tion. However, these saliency maps can be noisy in case of

occlusions, which occur often in Smarthome as well as in

most real-world scenarios. On the contrary, our attention

mechanism computes attention weights from poses, and the

classification ultimately relies on the appearance cue. Our

attention mechanism significantly improves the results on

these datasets, especially on NTU, by focusing on people

interaction and human-object interaction. An important re-

quirement is the availability of a large number of training

samples, which is an issue in NUCLA. For this reason, the

improvement achieved by our attention mechanism on NU-

CLA is less significant.

Smarthome consists of very diverse videos of activities

performed with or without interactions with objects. Ex-

isting state-of-the-art methods fail to address all the chal-

lenges posed by Smarthome (see Table 4). The dense trajec-

tories (DT) [43] obtain competitive results for actions with

relatively high motion. However, dense trajectories are lo-

cal motion based features and thus fails to model actions

with fine-grained details and to incorporate view-invariance

in recognizing activities. LSTM, fed with informative 3D

joints, model the coarse activities based on body dynamics

of the subject performing the activity, but fails to discrimi-

nate fine-grained activities due to the lack of object encod-

ing.

Recent inflated convolutions [4] have shown significant

improvement compared to RNNs. As a comparative base-

line with our proposed spatio-temporal attention method,

we have plugged a non-local module [47] on top of I3D.

The non-local behavior along space-time in Smarthome is

not view-invariant because its attention mechanism relies on

appearance. On the contrary, our proposed attention mech-

anism is guided by 3D pose information, which is view-

invariant. The significant improvement of our separable

STA on cross-view protocols shows its view-invariant prop-

erty compared to existing methods. In fig. 5 we provide

some visual example in which our proposed approach out-

performs I3D (without attention).

5.4. Other strategies for attention mechanism

Table 5 evaluates other strategies to implement the pro-

posed attention mechanism. Among the strategies we in-

cluded the implementation of single attention mechanisms

(spatial or temporal) and all the different ways to combine

them. The strategies included in the study are: I3D base net-

work with (1) no attention (No Att); (2) only m× n dimen-

sional spatial attention (SA); (3) only t dimensional tempo-

ral attention (TA); (4) temporal attention applied after SA

Figure 5. Separable STA correctly discriminate the activities with

fine-grained details. The model without attention (I3D) is mislead

by imposter objects (displayed in red boxes) in the image whereas

our proposed separable STA manages to focus on the objects of

interest (displayed in green boxes).

(SA+TA); (5) spatial attention applied after TA (TA+SA);

and with (6) m × n × t spatio-temporal attention at one

go from pose driven model (joint STA). For the implemen-

tation of SA+TA and TA+SA, we adopt the joint training

mechanism proposed in [38]. Our proposed separable STA

outperforms all other strategies by a significant margin. It is

interesting to note that, unlike in RNNs [38, 1, 2], coupling

spatial and temporal attention in 3D ConvNets decreases the

classification accuracy. The reason for this can be seen from

the classification accuracy achieved by SA and TA sepa-

rately on the different datasets. In Smarthome and NUCLA,

spatial attention is much more effective than temporal atten-

tion because several activities of both datasets involve inter-

actions with objects. On the other hand, NTU contains ac-

tivities with substantial motion (such as kicking, punching)

and human-object interaction. Therefore, both spatial and

temporal attention contribute to improve the classification

accuracy. However, the possibility for the second attention

to significantly modify the I3D feature maps is limited once

the first attention has modified it. For this reason, we be-

lieve that dissociating both attention mechanisms is more

effective than coupling them in series.

5.5. Ablation study

Figure 6 compares I3D base network with or without

separable STA. The comparison is based on the per-class

accuracy on Smarthome and NTU-CS (cross-subject pro-

tocol). Our separable STA improves I3D’s accuracy by

an average of 4.7% on Smarthome and 6.7% on NTU.

For Smarthome, the spatial attention alone contributes

to a large improvement due to the ability to recognize

fine-grained activities involving interactions with objects,

such as Pour.fromkettle (+21.4%) for CS and Uselaptop

(+13.4%), Eat.snack (42.8%) for CV. The temporal atten-

tion improves the classification of activities with low and

high motion. Examples of this are static activities such as

WatchTV (+8.8%) for CS and Readbook (+9.6%) for CV;

and dynamic activities such as sitdown (+22.2%). For NTU-

CS, the largest accuracy gains are observed for brushing
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Table 2. Results on NTU RGB+D dataset with cross-subject

(CS) and cross-view (CV) settings (accuracies in %); Att indi-

cates attention mechanism, ◦ indicates that the modality has been

used only in training.

Methods Pose RGB Att CS CV

STA-LSTM [38] X × X 73.2 81.2

TS-LSTM [22] × X × 74.6 81.3

VA-LSTM [48] X × × 79.4 87.6

STA-Hands [1] X X X 82.5 88.6

altered STA-Hands [2] X X X 84.8 90.6

Glimpse Cloud [3] ◦ X X 86.6 93.2

PEM [25] X X X 91.7 95.2

Separable STA X X X 92.2 94.6

Table 3. Results on Northwestern-UCLA Multiview ac-

tivity 3D dataset with cross-view V
3

1,2 settings along with

indicating input data modalities (accuracies in %); Pose

indicate its usage only in the training phase.

Methods Data Att V 3

1,2

HPM+TM [29] Depth × 91.9

HBRNN [17] Pose × 78.5

view-invariant [24] Pose × 86.1

Ensemble TS-LSTM [22] Pose × 89.2

nCTE [16] RGB × 75.8

NKTM [28] RGB × 85.6

Glimpse Cloud [3] RGB+Pose X 90.1

Separable STA RGB+Pose X 92.4

Table 4. Mean average per-class accuracies (in %) on

Smarthome dataset with cross-subject (CS) and cross-

view (CV1 & CV2) settings. Note that here the poses are

extracted from RGB using LCRNET [30]. Att indicates

attention mechanism.

Methods Pose RGB CS CV1 CV2

DT [43] × X 41.9 20.9 23.7

LSTM [26] X × 42.5 13.4 17.2

I3D [4] × X 53.4 34.9 45.1

I3D+NL [47] × X 53.6 34.3 43.9

Separable STA X X 54.2 35.2 50.3

Table 5. Activity classification accuracy(in %) on NTU, NUCLA

and Smarthome datasets to show the effectiveness of our proposed

separable spatio-temporal attention mechanism (separable STA)

in comparison to other strategies. No Att indicates no attention.

Note: Here, for a fair comparison, we have computed the average

sample accuracy for Smarthome.

Datasets No Att SA TA SA+TA TA+SA Joint Separable

STA STA

NTU-CS 85.5 90.5 90.8 89 90 90.3 92.2

NTU-CV 87.3 93.7 91.2 92.4 92.6 92.5 94.6

NUCLA 85.5 90 79.3 74.6 74.3 87.9 92.5

Smarthome-CS 72 73.1 70.3 71.2 70.4 71.7 75.3

Smarthome-CV1 56.6 60.3 43 41.9 40.9 55.7 61

Smarthome-CV2 61.6 66.4 57 58.3 56.6 61.9 68.2

Figure 6. Per-class accuracy improvement on Smarthome and

NTU-CS when using separable STA in addition to I3D. For

Smarthome, we present the top 10, top5 and top 5 classes for CS,

CV1 and CV2 respectively (for the complete confusion matrices

see the supplementary material). For NTU-CS, we present the 10

best and 10 worst classes.

hair (+28.2%), taking off a shoe (+23.3%) and cross hands

in front (+20.6%). These are activities in which the distinc-

tive features are localized in space and time. Even for those

classes for which our separable STA performs worse than

I3D alone, the accuracy drop is very limited.

5.6. Runtime

Training the separable STA model end-to-end takes 5h

over 4 GTX 1080 Ti GPUs on Smarthome in CS settings.

Pre-training the I3D base network with RGB human crops

and stacked LSTM with 3D poses takes 21h and 2h respec-

tively. At test time, a single forward pass for a video takes

338ms on 4 GPUs.

6. Conclusion

In this paper, we introduced Toyota Smarthome, a

dataset that poses several real-world challenges for ADL

recognition. To address such challenges, we proposed

a novel separable spatio-temporal attention model. This

model outperforms state-of-the-art methods on Smarthome

and other public datasets. Our comparative study

showed that all tested methods achieve lower accuracy on

Smarthome compared to the other datasets. We believe

that this performance difference is due to the real-world

challenges offered by Smarthome. For this reason, we re-

lease Toyota Smarthome to the research community. To

learn more about Toyota Smarthome dataset please visit the

project website3. As future work, we plan to integrate the

additional challenge of recognizing activities in untrimmed

video streams. This will correspond to a new version of

Toyota Smarthome dataset.
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