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1. Introduction

Tpetra [33] is a package in the Trilinos project [32]

implementing the Petra Object Model (POM) [14,17].

The POM is an abstract model describing the construc-

tion and interaction of parallel, distributed-memory

matrices and vectors. This object model currently

has three implementations: Epetra [33], a double-

precision implementation emphasizing stability, scal-

ability, portability, and interoperability with legacy C/

FORTRAN codes; Jpetra [33], a Java implementation;

and Tpetra, an implementation focusing on generic

programming and multi-core/many-core node support.

Tpetra, in its current release as part of Trilinos 10.8,

supports the following features:

• parameterization by type of scalar and ordinal

fields, allowing varying precision, capability, stor-

age and performance, as needed by the algorithm,

application or platform;

• suitability for mixed-precision algorithms, with

support for mixed-precision primitives and struc-

tures;

• usage of the Trilinos/Kokkos [7,8] shared-memo-

ry node API, with support for any parallel node
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supported by the API, including serial, CUDA [23]

(via Thrust [19]), Intel TBB [20,26], Pthreads [31]

(via the Trilinos ThreadPool package) and

OpenMP [24];1 and

• exposure of the underlying parallel node API,

supporting hybrid (distributed + shared) parallel

execution of user-provided kernels.

This paper discusses the Tpetra design, detailing these

features and examining the benefits and trade-offs of a

generic programming paradigm in the context of scien-

tific computing. The audience of the paper is scientific

computing practitioners: scientific library developers,

domain specialists, numerical analysts and application

programmers. We assume familiarity with C++ and its

syntax, in general, and object-oriented and generic pro-

gramming paradigms, in particular. Appropriate refer-

ences for these concepts include [29,34,35] and many

other texts.

Section 2 discusses the Tpetra design in the con-

text of the Petra object model and other Trilinos pack-

ages. Section 3 details the use and benefits of the

generic programming approaches employed in Tpetra.

Examples are interspersed throughout, to illustrate the

specifics of the discussion and provide empirical moti-

vation.

1OpenMP support is finished in the developer branch, slated for

released with 11.0; a preliminary version is available from the devel-

opers.
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2. Design of Tpetra

The Tpetra package was designed to implement

the Petra Object Model [14,17]. This programming

model was first implemented in the Epetra package,

which serves as the foundation for a majority of al-

gorithm development in Trilinos. As such, implement-

ing the POM leverages a proven model and eases

the code migration for developers already familiar

with Epetra. Having said that, the generic program-

ming paradigm requires some considerations, and Tpe-

tra’s goal of supporting a hybrid-parallel programming

environment (shared-memory nodes communicating

via a distributed/message-passing layer such as MPI)

means that Tpetra is not simply a “templatization” of

Epetra. Additionally, at the time of Epetra’s implemen-

tation and release (circa 2003), compiler support for

C++ templates was not robust enough to allow sophis-

ticated use of this language feature, especially on many

scientific platforms. Therefore, Tpetra’s current imple-

mentation (begun in 2008) is able to leverage nearly a

decade of improved language support, as well as ad-

vances in the state of software engineering.

2.1. Teuchos memory management

One of Tpetra’s most notable departures from Epetra

is the use of automatic memory management classes

from the Teuchos package [33]. These classes allow

developers to replace explicit calls to new and delete

with higher-level templated C++ classes that encapsu-

late and protect the allocations. In addition, raw pointer

and array accesses are replaced by run-time checked

operations (though many checks are disabled in a re-

lease/optimized build). For example, an array of float-

ing point number that would be represented in primi-

tive C/C++ as follows:

void someMethod(double ∗A, int ALEN) {...}

may instead be treated like so:

void someMethod(Teuchos::ArrayView<double> A) {...}

where the pointer and length are encapsulated in the

ArrayView object. Traversal is done via the iterator asso-

ciated with this class:

for ( iter = A.begin() ; iter != A.end() ; ++ iter )

∗iter = someValue;

Table 1

Teuchos memory management classes

Class Semantics Description

Array<T> std :: vector<T> Dynamically-allocated,

dynamic length container,

with entries of type T

Ptr<T> T∗ Safe pointer

RCP<T> boost :: shared_ptr Safe and reference-counted

pointer

ArrayView<T> T[] and length Safe view of an array

ArrayRCP<T> n/a Safe and reference-counted

array

where each access of the iterator under a debug build

is checked for bounds errors and dangling references.

However, under a release build, the code is compiled

down to raw pointers, so that the overhead is minimal.

The significant Teuchos memory management classes

are listed in Table 1, in order to advertise the capabil-

ity of this package and to provide explanation for their

occurrence in any code examples in this paper.

A detailed description of the Teuchos memory man-

agement classes, their implementation and their use

cases is not in the scope of this paper; see the refer-

ence [13] for more information. However, it is worth

pointing out that this is a significant departure from

many scientific libraries. While the memory manage-

ment classes have been designed to avoid any unnec-

essary runtime overhead in optimized builds, there is

a significant amount of developer overhead associated

with replacing all raw pointers with these classes. The

benefit, however, is that Tpetra classes contain robust

controls against common memory management errors.

As Tpetra classes sit at the bottom of what is of-

ten a deep and convoluted software stack, it is criti-

cal that these errors are avoided, both in user applica-

tion of Tpetra classes and its internal development as

well.

2.2. Kokkos node API

The Petra Object Model, and the initial release of

Epetra, were concerned with high-performance com-

puting on distributed-memory machines. As such,

there was initially no concern or support for shared-

memory programming, though the most recent re-

lease of Epetra supports OpenMP on shared mem-

ory nodes [16]. As a new development effort with

no requirements on backwards compatibility, Tpetra

was designed to support a hybrid parallel program-

ming model, where a distributed-memory, message-
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passing interface is used to communicate among a set

of shared-memory parallel nodes. In order to maximize

the utility from developing this shared memory capa-

bility by making it available to other Trilinos packages

and software efforts, it was placed into a separate Trili-

nos package called Kokkos and is referred to as the

Kokkos Node API [7,8].

This API was primarily designed to handle two chal-

lenges associated with portable numerical linear alge-

bra kernels on current multi-core/many-core proces-

sors:

(1) Portable, parallel execution of user kernels. In

particular, we are interested in the parallel for

loops and parallel reductions that comprise the

bulk of linear algebra operations.

(2) Recognition and management of distinct memory

spaces associated with accelerators, e.g., general

purpose graphics processors (GPUs), Cell multi-

processors, and Intel MIC (“Knights Corner”).

As such, the Kokkos Node API comprises two main

components. The first is the Kokkos memory model,

describing methods for allocating memory regions

suitable for shared-memory parallel computing (so-

called parallel compute buffers) and transferring data

between compute buffers and host memory.

The second component of the API is the parallel

compute model. This is the interface by which user

kernels are executed, in parallel, on the underlying

shared-memory architecture. The goal of this effort

was to enable write-once, run-anywhere kernels. The

need to perform this inside the structures of C++ and

while supporting templates favored the use of tem-

plate metaprogramming. The mechanism works as fol-

lows:

(1) An API user writes a stateless, serial kernel; for

example, the body of an AXPY (alpha-x-plus-y)

operation: y = α ∗ x+ y, for vectors x and y and

a scalar α:

struct DAXPY {

double alpha ;

const double ∗x;

double ∗y;

inline void execute ( int i ) { y[ i ] += alpha∗x[i]; }

};

(2) An API developer writes a skeleton for a parallel

for loop for a particular shared memory architec-

ture; for example, Kokkos::SerialNode:

class SerialNode {

template <class Kernel>

void parallel_for ( int beg, int end, Kernel k) {

for ( int i=beg; i < end; ++i) k. execute ( i ) ;

}

};

(3) At compile time, the compiler fuses the kernel

and the node, producing a shared-memory paral-

lel DAXPY on the given architecture:

void SerialNode<DAXPY>::

parallel_for ( int beg, int end, DAXPY op) {

for ( int i=beg; i < end; ++i)

op.y[ i ] += op.alpha ∗ op.x[i ];

}

(4) At run time, user code will ask the node to allo-

cate and initialize a parallel compute buffer, and

then execute the AXPY kernel in parallel using

the node object:

Kokkos::OpenMPNode node;

DAXPY op;

op.x = node. allocBuffer <double>(10);

op.y = node. allocBuffer <double>(10);

op.alpha = 2.0;

// perform y = y + 2.0 ∗ x

node. parallel_for (0, 10, op);

The API defines the syntax and semantics for both the

nodes and the user kernels. This arrangement is prefer-

able as it performs a separation of concern, between

the library/application developer familiar with the ker-

nels and the Node API developer familiar with a partic-

ular shared-memory node (which may utilize its own

development API). Currently, two parallel skeletons

are provided by the API: parallel for and parallel re-

duce.

One consequence of this is that the template meta-

programming approach is a compile-time polymor-

phism approach, which requires that the node type

must be known at compile time. For this reason, the

Tpetra design is such that all classes in Tpetra are

templated on a Kokkos node, which is responsible for

allocating compute buffers and executing the kernels

needed by the Tpetra objects.

More information is available from the Kokkos web-

site [33] or one of the following presentations [3,4,8].
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2.3. Petra Object Model

The Petra Object Model, as initially defined in the

implementation of Epetra, is concerned with the defi-

nition of distributed-memory SPMD (single-program/

multiple-data) parallel linear algebra primitives. The

POM provides a set of utility classes and methods,

a set of linear algebra objects, and methods to inter-

act with these linear algebra objects for the purpose of

implementing numerical algorithms on a distributed-

memory parallel system. The POM defines the follow-

ing abstractions:

• Map defines a list of global elements, the distri-

bution of global elements across a system, and the

mapping between global elements and local ele-

ments on a particular node of the system.

• Distributed Object is an object, described by a

Map, that is distributed and, potentially, redis-

tributable.

• Import/Export are data structures containing the

information necessary to move data between to

Distributed Objects, defined by a source Map and

a destination map.

• Vector is a distributed vector, representing an el-

ement of a vector space in the linear algebraic

sense.

• MultiVector is a collection of vectors. This is a

first-class object in the POM (and most of Trili-

nos), intended to provide optimal performance for

block algorithms.

• Operator is an abstraction for a linear operator,

encapsulating the application of the operator from

one Vector/MultiVector into another.

In the Epetra implementation of the POM, the global

and local indices are stored as int values (typically

a 32-bit signed integer), and the scalars associated

with Vector and MultiVector objects are stored as type

double (typically a 64-bit floating point number). In

Tpetra, these same abstractions are realized, but the

underlying data components are templated. The list

of template common template parameters in Tpetra is

contained in Table 2. Some of the more commonly

used Tpetra classes are listed in Table 3.

3. Generic programming in Tpetra

The Tpetra library utilizes generic programming

techniques to multiple ends. For the purpose of dis-

cussion, a distinction can be made, for example, be-

Table 2

Tpetra template class parameters

Parameter Abbreviation Description

LocalOrdinal LO Local element indices/labels

GlobalOrdinal GO Global element indices/labels

Scalar S Scalar field for arithmetic values,

e.g., of vectors and matrices

Node N Kokkos node supporting a class

Table 3

Tpetra template classes

Map<LO,GO,N> Map from global to local ordinals,

dictating partitioning

Import<LO,GO,N> Database for importing data based

on requested elements

Export<LO,GO,N> Database for exporting data based

on available elements

DistObject<Packet, Abstract base class for

LO,GO,N> distributed/redistributable objects

of type Packet, described by a

Map<LO,GO,Node>

Vector<S,LO,GO,N> Vector over field of type S

MultiVector<S,LO,GO,N> MultiVector of over field of type S

Operator<S,LO,GO,N> Abstract base class for linear

operators over Vector<S,LO,GO,N>

CrsMatrix<S,LO,GO,N> Compressed-sparse-row sparse

matrix class with indices

of type LO and values of type S

CrsGraph<LO,GO,N> Compressed-sparse-row graph class

with indices of type LO

tween templated data (e.g., the scalars contained in a

vector), templated operations (e.g., the arithmetic type

associated with a mathematical operation), and the use

of template metaprogramming (e.g., arithmetic oper-

ations associated with a comparison or reduction). In

this section, however, with the goal of best motivat-

ing Tpetra’s design to an audience of scientific pro-

grammers, we will distinguish the generic program-

ming features in Tpetra according to their use case in

scientific programming.

3.1. Templated data for capability and performance

One of the most common use case of templates in

C++ involves template parameters dictating the data

members of a so-called template class. The pedagog-

ical examples are the template containers in the C++

Standard Template Library (STL). For example, std ::

vector<double> and std :: list <int> respectively refer to a
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STL vector of double-precision floating point numbers

and a STL list of integers.

The Tpetra data classes outlined in Section 2 are

each defined according to multiple template parame-

ters. For example, the class Tpetra :: Map implements a

POM Map abstraction and is parameterized on three

types: a local ordinal type, a global ordinal type, and

a Kokkos node. Table 2 lists the common template pa-

rameters utilized in Tpetra, and Table 3 lists the Tpetra

template classes parameterized in this way. The design

decision in Tpetra is to represent all resource intensive

data as template types, the goal being extended capa-

bility of the code, improved portability and increased

performance.

By templating the ordinal types used to label ele-

ments and indices, the capability of the Tpetra library

is extended, with respect to the standard types – 32-bit

integers and 64-bit floating point numbers. By distin-

guishing between the data type of local and global

coordinate indices, the user is allowed to grow the

GlobalOrdinal – and therefore, the global problem size –

without necessarily growing the storage associated

with local indices. This should be contrasted against

a single ordinal type, perhaps decided before build-

ing the library, but fixed at that point. In the case of

a sparse matrix, the smaller LocalOrdinal type reduces

the footprint of the associated sparse graph, and there-

fore the bandwidth necessary to process the entire ma-

trix; as sparse matrix–vector multiplication is typically

a bandwidth-constrained operation, the result is that a

smaller LocalOrdinal will often result in faster matrix–

vector multiplications. Of course, the reduced footprint

is inherently valuable, such as in situations where the

matrix data is close to exceeding the system memory.

Similarly, “smaller” scalar types results in a more effi-

cient utilization of memory resources, as well as arith-

metic resources. One can imagine a scenario where a

sparse matrix with double the number of total non-

zeros (corresponding, perhaps, to a physical discretiza-

tion of a finer resolution) can be applied in the same

amount of time, by reducing by half the associated

data.

Of course, selection of the scalar and ordinal type

is useful for extending the capability of the software

as well. Larger local and global ordinal types allow

for larger problems to be solved; the standard choice

of 32-bit integer currently limits global problem sizes

to between 2 and 4 billion entries (depending on

signed/unsigned encoding) for many existing scientific

libraries. On even modest clusters, this limitation in

the software may take effect long before the resources

of the computer are exceeded. Furthermore, flexibility

in determining the scalar field of matrices and vectors

(and, therefore, the arithmetic associated with the al-

gorithms they realize) can be very useful. Examples of

useful scalar types include:

• complex-valued types such as std :: complex<T>, en-

abling the direct implementation of complex-

valued algorithms;

• automatic differentiation types [25,33], enabling

automatic computation of derivatives and sensi-

tivities;

• extended precision types, e.g., QD’s qd_real and

dd_real [18] and ARPREC’s mp_real [1,2]; and

• utility types, e.g., flop-counting and shadow types

(dual-scalar types used for evaluating the effects

of different precision levels).

As an example, Table 4 gives the timings and solu-

tion accuracies for extended precision linear solves us-

ing the Tpetra templated linear algebra primitives and

the Belos templated Block Conjugate Gradient itera-

tive linear solver [33]. The source code for this exam-

ple is in the Trilinos repository in the file:

packages/belos/tpetra/test/BlockCG/
test_bl_cg_hb_multiprec.cpp

It should be noted, this is possible because the Belos

linear solvers, as well as the Anasazi eigensolvers [9,

33], are templated on the scalar type and the underly-

ing linear algebra objects. Performing a linear solve in

quad-double extended precision is as simple as instan-

tiating a solver

Belos :: PseudoBlockCGSolMgr<

qd_real,

Tpetra :: MultiVector<qd_real,int>,

Tpetra :: Operator<qd_real,int>

> solver ;

and calling the solve routine. This allows these solvers

to be portable across linear algebra component li-

braries and scalar/ordinal types.

Table 4

Belos linear solve using QD for BCSSTK18 [15], N = 11k

Scalar float double dd_real qd_real

Solve time (s) 2.6 5.3 29.9 76.5

Solution accuracy 10−6 10−12 10−24 10−48
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3.2. Reduction/transformation interface

Tpetra currently provides support for shared-mem-

ory parallel nodes via the Kokkos Node API. As a re-

sult, the kernels associated with the Tpetra computa-

tional classes are written once, as stateless serial rou-

tines, and then fused with the specified Kokkos nodes

at compile time. Commonly-used methods – e.g., stan-

dard norms, inner products, vector combinations – are

provided for computational classes. However, there is

a limit to the number of computational primitives that

can be provided for a given data class. It is not pos-

sible for the library developers to anticipate every op-

eration that an application developer or algorithm de-

signer could require; even if these were enumerated,

the maintenance of these by Tpetra developers is not

appropriate.

The support for generic shared-memory parallel pro-

gramming becomes a liability at this point. A devel-

oper wishing to extend to the functionality of a Tpetra

computational class on a shared-memory node seems

to have two choices: utilize an appropriate (perhaps

identical) programming model to implement this new

functionality; or forgo node-level parallelism, extract

the data from the target class and perform the necessary

computation, thereby introducing a serial bottleneck.

Fortunately, the Kokkos API that Tpetra uses can

be exposed to Tpetra users as well, in order to allow

extension of native library capability. Tpetra provides

the Tpetra Reduction/Transformation Interface (Tpe-

tra::RTI), an API for executing user-provided kernels

on Tpetra vectors. Under this approach, a user authors

a stateless serial kernel that is compiled and executed

on the data associated with one or more Tpetra vectors.

This may be contrasted with the standard approach for

extending scientific library objects, namely, to grab a

pointer to the data and perform some computation. The

latter requires the user to bring the data to the (external)

code and to write the code efficiently. The Tpetra::RTI

approach, however, can be thought of as providing a

channel by which the user may send the code to the

data (whether it be local or in distinct memory space,

such as with accelerators). This adheres to the guid-

ing principle that domain specialists should, whenever

possible, be permitted to focus solely on the applica-

tion code, without having to worry about the idiosyn-

crasies of shared-memory computing.

The Tpetra::RTI allows the user to provide kernels at

nested levels of complexity, where more complex lev-

els require more work on the part of the user but allow

for greater descriptive ability. At the finest grain level,

the user can author a bonafide Kokkos kernel, as spec-

ified by the Kokkos Node API. For example, consider-

ing the DAXPY example from Section 2.2, with some

cosmetic changes to the DAXPY kernel, we could im-

plement a DAXPY for Tpetra :: Vector objects like fol-

lows:2

RCP<Tpetra::Vector<double> > x=createVector<double>(map);

RCP<Tpetra::Vector<double> > y=createVector<double>(map);

Tpetra :: RTI:: detail :: binary_transform (∗y, ∗x, DAXPY(2.0));

For operations consisting of simple, element-wise

combinations of the input/output vectors, a function

object operating on these values will suffice. These

simple functors can be converted, at compile-time

via zero-overhead compile-time polymorphism, into

Kokkos kernels. Some of these methods are listed in

Table 5. The example is modified as so:

struct DAXPYfunctor {

double alpha ;

double operator() (double y, double x){return y+alpha∗x;}

};

DAXPYfunctor daxpy; daxpy.alpha = 2.0;

Tpetra :: RTI:: binary_transform ( ∗y, ∗x, daxpy );

More recently, features to facilitate generic pro-

gramming in the newly approved C++11 standard

have become available. One of these features is lambda

expressions/anonymous functions. Using C++11

lambdas, the definition for the functor from the above

example can be constructed inline. This makes the

above example much more concise, while also having

the benefit that the code defining the functor is inline

with its usage:

Tpetra :: RTI:: binary_transform (

∗y, ∗x,

[]( double y, double x) {return y + 2.0∗x;}

) ;

While an improvement on the previous example,

this is still not optimal; there is redundancy in the

provision of the kernel, making the code harder to

read and more prone to errors (e.g., the ordering of

the arguments must be correct). Therefore, Tpetra::RTI

provides some convenience macros to construct these

lambdas, call the appropriate Tpetra::RTI method, and

2Here we have also utilized the non-member constructor Tpetra ::

createVector , which encapsulates a newly allocated Tpetra :: Vector

object into a Teuchos RCP smart-pointer, according to a provided

Tpetra :: Map object.
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Table 5

Selected Tpetra RTI non-member methods

unary_transform(Vector <...> &vec_inout, OP op)

Transform the values of vec_inout using via unary function operator op.

binary_transform (Vector <...> &vec_inout, const Vector <...> &vec_in2, OP op)

Transform values of vec_inout using vec_inout, vec_in2 and binary function operator op.

reduce(const Vector <...> &vec_in1, const Vector <...> &vec_in2, Glob glob)

Reduce values of vec_in1 and vec_in2 using the operators described by glob.

kernelOp(Kernel kernel , const RCP<const Map<...> > &domainMap, const RCP

<const Map<...> > &rangeMap, const RCP<const Import<...> > \&importer,

const RCP<const Export<...> > &exporter)

Non-member constructor for a Tpetra :: Operator built from Kokkos kernel object

kernel , with optional import/export capability.

binaryOp (Op op, const RCP<const Map<...> > &domainMap, const RCP<const

Map<...> > &rangeMap, const RCP<const Import<...> > \&importer ,

const RCP<const Export <...> > \&exporter )

Non-member constructor for a Tpetra :: Operator built from binary function object

op, with optional import/export capability.

Table 6

Selected Tpetra RTI C++11 lambda macros

TPETRA_UNARY_TRANSFORM(out,expr)

Construct a unary functor based on expression expr and apply it to the vector out.

TPETRA_BINARY_TRANSFORM(out,in,expr)

Construct a binary functor based on expression expr and apply it to the vector out and in.

TPETRA_TERTIARY_TRANSFORM(out,in2,in3,expr)

Construct a tertiary functor based on expression expr and apply it to the vector out, in2 and in3.

pass the appropriate vectors. Some of these macros are

listed in Table 6. Using a convenience macro, the ex-

ample from above becomes:

// y = y + 2.0 ∗ x

TPETRA_BINARY_TRANSFORM(y, x, y + 2.0∗x );

This single line of code, via macro substitution,

compile-time polymorphic adapters and template

metaprogramming is changed into a loop over the vec-

tor data that executes in a hybrid parallel fashion,

where the user needed only to write a few characters of

code. The significance of this cannot be over-stated. By

allowing application and algorithm developers to de-

fine new kernels in-situ that will execute in parallel, we

allow highly parallel, readable and efficient code with

kernels designed for a particular algorithm (instead of

being adapted from those kernels provided by the li-
brary developer).

Tpetra contains an example which implements the
conjugate gradient (CG) linear solver, using no na-
tive primitives of the Tpetra :: Vector class, where all
arithmetic is defined in-situ using the Tpetra::RTI. In
addition to demonstrating the usage of Tpetra::RTI,
this example demonstrates the benefit of algorithm-
specific kernels. In the case of this CG solver, for ex-
ample, the algorithm can easily be implemented us-
ing the library-provided Tpetra::Vector primi-
tives. However, the in-situ approach allows neighbor-
ing primitives to be fused, performing in one pass
through a vector what would have otherwise required
either multiple passes or the extension of the library
with an algorithm-specific kernel. This example illus-
trates the benefit of easily passing algorithm-specific
kernels to the parallel node API, as it allows the fu-
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template <class S, class LO, class GO, class Node>

void RTICG(const RCP<const Tpetra::Operator<S,LO,GO,Node>> &A,

RCP<Tpetra::Vector<S,LO,GO,Node>> r)

{

UNARY_TRANSFORM( x, 0 ); // x = 0

S rr = REDUCE( r, r∗r, ZeroOp<S>, plus<S>() ); // r’∗r

BINARY_TRANSFORM( p, r, r ); // p = r

for (k=0; k<numIters; ++k) {

A−>apply(∗p,∗Ap); // Ap = A∗p

S pAp = REDUCE2( p, Ap, // p’∗Ap

p∗Ap, ZeroOp<S>, plus<S>() );

const S alpha = rr / pAp;

BINARY_TRANSFORM( x, p, x + alpha∗p ); // x = x + alpha∗p

S rrold = rr ;

rr = BINARY_PRETRANSFORM_REDUCE(

r , Ap, // fused !

r − alpha∗Ap, // : r − alpha∗Ap

r∗r, ZeroOp<S>, plus<S>() ); // : sum r’∗r

const S beta = rr / rrold ;

BINARY_TRANSFORM( p, r, r + beta∗p ); // p = r + beta∗p

}

}

Listing 1. A templated CG solver using Tpetra::RTI. TPETRA_macro prefixes have been truncated for brevity.

sion of what would otherwise be multiple independent

library calls. This example is contained in the Tpetra

source distribution [5]; a concise version appears in

Listing 1.

3.3. Multiple and mixed precision computing

One of the benefit of the templated classes in Tpetra

is that it supports a wide range of use cases for multiple

and mixed precision algorithms. Scientific libraries in

C/C++/Fortran that are not based on templates typi-

cally employ one of two methods for changing the pre-

cision:

(1) a type definition set at configure time that deter-

mines the scalar types across the library, or

(2) multiple version of each library method and

structure, one for each supported type.

The first approach is utilized by PETSc [10–12].

When configuring and building the PETSc library,

a user specifies whether the scalars should be real

or complex valued, and whether the underlying field

should be float , double, long double or int. Choosing

32-bit or 64-bit ordinal types is done in a similar man-

ner. The downside of this approach is that the library is

available for only this selection of types. Without mak-

ing any distinction in the class and method names, it

is not even possible to link together multiple diverse

builds of the library.

The second approach is utilized, for example, by the

ARPACK [21,22] and PRIMME [27,28] eigensolver

libraries. This approach typically requires implement-

ing the same algorithm multiple times, once for each

desired data type (or combination of data types). The

downsides of this are multiple: increased development

and maintenance effort on the part of the developer,

and the lack of a generic interface for the users. The

former of these should not be underestimated. In the

case of ARPACK (a Fortran code), most subroutines

are implemented four times, for the four Fortran float-

ing types (single, double, complex single and complex

double).

The templated approach used in Tpetra requires that

Tpetra developers write and maintain a single, generic

implementation. C++ template specialization allows

distinct versions to be written for particular types,

when necessitated by efficiency or analytic considera-

tions (e.g., differences between real and complex im-

plementations of an algorithm). However, our experi-

ence in eigensolver and linear solver development in

Trilinos suggests that these changes are typically local-

ized to local components of an algorithm.

The decision as to which scalar, ordinal and node

types are built into the library is decided at configure

time; the default is to build against the standard double

/ int, for all enabled Kokkos nodes. However, users can

always add support for any additional scalar/ordinal

combinations that they need. This includes any non-



C.G. Baker and M.A. Heroux / Tpetra, and the use of generic programming in scientific computing 123

standard scalars or ordinals, a capability which is not

possible for non-templated libraries without modifica-

tions to their source (fortunately, the bulk of these sci-

entific libraries are open source, so this is a possibility).

Another benefit of the templated approach is to sup-

port simultaneous usage of different precisions. Code

can be written which utilizes Tpetra objects templates

on different scalar or ordinal types. This allows the de-

velopment of algorithms using multiple precisions, the

goal being to compute a quantity to a specified preci-

sion while exploiting lower precision data and arith-

metic in some computations in order to lower the cost

of the computation or communication required by the

algorithm.

For example, one provision for multi-precision al-

gorithms in Tpetra comes via wrappers for the Tpetra

sparse matrix class. The Tpetra class CrsMatrix<Scalar>

inherits from Operator<S>; the latter describes a virtual

method to apply linear operators to vectors/multivec-

tors:

virtual void Tpetra :: Operator<S>::apply(

const Tpetra :: Vector<S> &x,

Tpetra :: Vector<S> &y,

...

) const ;

However, the CrsMatrix<S> also contains a templated

multiplication method:

template <class S2, class S3>

void Tpetra :: CrsMatrix<S>:: localMultiply (

const Tpetra :: Vector<S2> &x,

Tpetra :: Vector<S3> &y,

...

) const

This method is fully generic, allowing a sparse matrix

with values of type S to be multiplied by a vector with

values of type S2 into a vector with values of type S3.

Typically, such methods are not directly used. It is cus-

tomary to utilize a wrapper, such as the following:

template <class SIN, class SOUT>

RCP<Tpetra::Operator<SOUT> >

Tpetra :: createCrsMatrixMultiplyOp(

RCP<const CrsMatrix<SIN> A);

This method accepts a sparse matrix with values of

type SIN and wraps it in an operator over the field SOUT.

The matrix entries are unchanged, but it allows the ma-

trix to be transparently used in algorithms with vec-

tors of scalar type SOUT. Of course, it must make nu-

merical sense to do so; applying a complex-valued ma-

trix to a real-valued vector will in general not pro-

duce a real-valued vector. However, the contrast is rea-

sonable; you can encapsulate a real-valued matrix into

a complex-valued operator and utilize an algorithm

implemented with complex-valued vectors. Similarly,

you could use a single-precision-valued matrix in a

double-precision-valued algorithm. This will result in

a significant speedup of the sparse matrix–vector mul-

tiplications.

Another possibility is the construction of explicit

mixed-precision algorithms. While the Tpetra library

supports templating on extended precision types, these

are computationally expensive. One solution is to em-

ploy the extended precision types where necessary, and

to fall back on less expensive types where it is numer-

ically acceptable to do so. To demonstrate this, Tpe-

tra contains an example [6] implementing a flexible

conjugate gradient method that recursively calls itself

for preconditioning. The result is that a linear prob-

lem in quad-double precision can be preconditioned

by a solver in double–double precision, which can it-

self be preconditioned by a solver in double precision,

and so forth. The result is that the lower precision it-

erations act as excellent and efficient preconditioners

for the more expensive higher-precision iteration. The

output of the example is listing in Fig. 1 for the case

where a solve over qd_real is preconditioned by dd_real

which is preconditioned by double. The solution to 62

digits requires 2.84 s, almost all of this time consumed

by the double-precision iteration. This is compared to

13.0 s for qd_real preconditioned by dd_real and 29.4 s

for qd_real alone. The algorithm is in Listing 4; note,

the bottom level of precision is preconditioned using

a diagonal preconditioner and solved to a looser tol-

erance. The types used are provided by the Tpetra ::

TypeStack utility; this is a static linked-list of types, and

its usage is illustrated in the algorithm and in the driver

in Listing 3. These examples are simple illustrations

of what is possible using mixed-precision. Upcoming

work in Tpetra will allow for arbitrary scalar types in

other phases of computation, as well as bandwidth-

saving methods for mixed-precision communication.

3.4. Heterogeneous architecture support

The typical usage of Tpetra falls under the single-

program/multiple-data model, where all participating

nodes are running the same program. For example,
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Running test with Node==Kokkos::SerialNode on rank 0/1

Beginning recursiveFPCG<qd_real>
Beginning recursiveFPCG<dd_real>

|res|/|res_0|: 9.877869e-15
|res|/|res_0|: 5.294857e-28

|res|/|res_0|: 6.209196e-42
Convergence detected!

Leaving recursiveFPCG<dd_real> after 2 iterations.
|res|/|res_0|: 1.528114e-32

Beginning recursiveFPCG<dd_real>
|res|/|res_0|: 1.975142e-13

|res|/|res_0|: 2.597052e-27
|res|/|res_0|: 1.352672e-40

Convergence detected!
Leaving recursiveFPCG<dd_real> after 2 iterations.

|res|/|res_0|: 3.512840e-62
Convergence detected!
Leaving recursiveFPCG<qd_real> after 1 iterations.

|b - A*x|/|b|: 3.513031e-62
================================================================

Timer Name Global time (num calls)
----------------------------------------------------------------

recursiveFPCG<qd_real> 0.04362 (0)
recursiveFPCG<dd_real> 0.02304 (0)

recursiveFPCG<double> 2.78 (0)
================================================================

Figure 1. Recursive linear solve using the implementation from Listing 2.

#include <Tpetra_HybridPlatform.hpp>

#include ‘‘MyUserDriver.hpp’’

int main(int argc , char ∗argv[])

{

// Get the default communicator

RCP<Comm> comm = ...

// Read machine file from XML and initialize the HybridPlatform

RCP<Teuchos::ParameterList> machinePL = Teuchos::parameterList () ;

Teuchos::updateParametersFromXmlFile(xmlFileName, machinePL);

Tpetra :: HybridPlatform platform (comm,∗machinePL);

// instantiate a driver object , set any data , have platform run the driver

MyUserDriver driver (...) ;

platform .runUserCode(driver) ;

}

Listing 2. An example using the HybridPlatform utility.

they may all be participating in the construction of a

Tpetra :: Map or the addition of two Tpetra :: Vector objects.

However, “single program” here means that while the

outline of the program with respect to the Tpetra ob-

jects is typically the same, the Tpetra objects them-

selves may be templated on different Kokkos node

types. For example, it is fully appropriate for a Tpetra

<double,int , int ,Kokkos::SerialNode> to be running in par-

allel (perhaps on MPI rank 0) with a Tpetra<double,

int , int ,Kokkos::OpenMPNode> (perhaps on MPI rank 1).

The communication between them happens from some

MPI-capable thread on the CPU and makes no assump-

tion on the node type.

In order to easily manage this capacity for hetero-

geneity among the nodes, Tpetra provides the utility

class Tpetra :: HybridPlatform. This class has two signifi-

cant methods. The first is the constructor:

Tpetra :: HybridPlatform (RCP<Comm> comm,

ParameterList machine_file )
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int main(int argc , char ∗argv[])

{

/ ∗ ... boilerplate setup ... ∗/

// create the platform object

Tpetra :: HybridPlatform platform (comm,∗machine_file);

// Define the type stack : qd_real −> dd_real −> double

TPETRAEXT_TYPESTACK3(MPStack, qd_real, dd_real, double )

// instantiate a driver on the scalar stack

MultiPrecDriver<MPStack> driver;

// run the driver

platform .runUserCode(driver) ;

}

Listing 3. A driver for the recursive, mixed-precision CG in Listing 4, using the TypeStack and HybridPlatform utilities.

template <class TS, class LO, class GO, class Node>

void recursiveFPCG(ParameterList &db)

{

typedef typename TS::type T;

typedef typename TS::next:: type T2;

/ ∗ ... get vectors / matrices from my database ... ∗/

for ( int k=0; k<numIters; ++k)

{

A−>apply(∗p,∗Ap); // Ap = A∗p

T pAp = REDUCE2( p, Ap,

p∗Ap, ZeroOp<T>, plus<T>() ); // p’∗Ap

const T alpha = zr / pAp;

BINARY_TRANSFORM( x, p, x + alpha∗p ); // x=x+alpha∗p

BINARY_TRANSFORM( rold, r, r ); // rold=r

T rr = BINARY_PRETRANSFORM_REDUCE(

r , Ap, // fused !

r − alpha∗Ap, // r−alpha∗Ap

r∗r, ZeroOp<T>, plus<T>() ); // sum r’∗r

if (TS::bottom) {

// bottom of the type stack ; precondition by diagonal

TERTIARY_TRANSFORM( z, diag, r, r/diag ); // z=D\r

}

else {

// precondition by recursion

ParameterList &db_T2 = db. sublist (‘‘ child ’ ’ ) ;

auto bx_T2 = db_T2.get< RCP<VectorT2>>(‘‘bx’’);

BINARY_TRANSFORM( bx_T2, r, as<T2>(r) ); // b_T2 = (T2)r

recursiveFPCG<typename TS::next,LO,GO,Node>(db_T2);

BINARY_TRANSFORM( z, bx_T2, as<T>(bx_T2) ); // z=(T)bx_T2

}

const T zoro = zr ;

typedef ZeroOp<pair<T,T>> ZeroPTT;

auto plusTT = make_pair_op<T,T>(plus<T>());

pair<T,T> both = REDUCE3( z, r, rold , // fused !

make_pair(z∗r, z∗rold), // z’∗r

ZeroPTT, plusTT ); // z’∗r_old

zr = both . first ;

const T znro = both .second;

const T beta = (zr − znro) / zoro;

BINARY_TRANSFORM( p, z, z + beta∗p ); // p=z+beta∗p

}

}

Listing 4. A recursive, mixed-precision CG solver using Tpetra::RTI. TPETRA_macro prefixes have been truncated for brevity.
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where comm is a Teuchos communicator (an abstract

class for performing message passing) and machine_file

is a database of rules for determining the Kokkos node

type for each participating process. The second method

accepts a user-authored class:

template<class UserCode >

void runUserCode (UserCode &code)

The template parameter UserCode is required to have a

method run, templated on node type and accepting a

Kokkos node and a communicator object. The function

of the method Tpetra :: HybridPlatform :: runUserCode is to:

(1) query the communicator object for the process id;

(2) determine the Kokkos node type (e.g., SomeNode)

according to the machine file and the process id;

(3) instantiate a Kokkos node of type SomeNode, with

parameters from the machine file; and

(4) call the method run<SomeNode>, passing the com-

municator object and the newly instantiated

node.

The benefit of this class is that a Tpetra user is not re-

sponsible for allocating nodes, or even knowing which

nodes are present in the library. The enumeration of the

available nodes occurs inside the HybridPlatform class, as

does the allocation of these nodes, according to the ma-

chine file. Furthermore, the contents of the machine file

are not static; the database can be modified at runtime

or read from an XML file. The file takes the following

format:

<ParameterList>
<ParameterList name="MATCH">

<Parameter name="NodeType" type="string"
value="NODE">

... parameters used to construct this node type ...

</ParameterList>
... parameter lists for other node types ...

</ParameterList>

where NODE is a string designating one of the sup-

ported node and MATCH is a string used to match pro-

cessor identifiers against node types:

%M=N matches any rank such that

mod(rank, M ) is N

[M,N] matches any rank in the interval [M , N ]

=N matches rank N

default matches if no other node matches

For example, a machine file using Kokkos::OpenMPNode

with 8 threads on even ranks and Kokkos::ThrustGPUNode

on odd ranks might look like:

<ParameterList>
<ParameterList name="%2=0">

<Parameter name="NodeType"
type="string"

value="Kokkos::OpenMPNode">
<Parameter name="Num Threads"

type="int"
value="15">

</ParameterList>
<ParameterList name="%2=1">

<Parameter name="NodeType"
type="string"

value="Kokkos::ThrustGPUNode">
<Parameter name="Device Number"

type="int" value="0">
</ParameterList>

</ParameterList>

A side effect is that the main(argc , argv) routine now

becomes boilerplate code; the significant portion of the

code happens in the run method. See Listing 2 for an

example.

3.5. Fine tuning/targeting through template

specializations

Another possibility with Tpetra involves the abil-

ity to use full or partial specialization to optimize/tune

implementations for cherry-picked scenarios. While

the hope is that the generic node support in Kokkos

will serve Tpetra classes well, some shared-memory

nodes are not amenable to this approach. For exam-

ple, unlike NVIDIA’s CUDA, the OpenCL [30] SDK

does not support templates or template metaprogram-

ming. Therefore, it is not currently possible to support

OpenCL using the current generic approach.

However, it is possible to write specialized versions

of the Tpetra classes, de novo, templated on OpenCL

and the needed data types:

class MyOpenCLNode { /∗ my implementation here ∗/ };

template <> class Tpetra :: Map<int,int ,MyOpenCLNode> {

// implement Map<int,int> using OpenCL

};

template <> class Tpetra :: Vector<double,int , int ,

MyOpenCLNode> {

// implement Vector<double, int , int > using OpenCL

};

// and so on, for other classes and scalar / ordinal

combinations that are needed
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While this example involves a non-trivial amount of

work,3 other classes may be more amenable to modifi-

cation in this way. One benefit of this specialization ap-

proach is that it happens external to the generic imple-

mentations in Tpetra. As such, it could be easily added

by a vendor or other external developer to support a

custom build of Tpetra.

4. Drawbacks

The generic programming techniques utilized in

Tpetra are not without their drawbacks. This section

lists some of the more significant downsides of this

programming paradigm and discusses the attempts to

address them in our design.

One of the biggest drawbacks associated with tem-

plated code is the cost paid at compile time. Because

the definition of a template class is not complete with-

out a specification of all template parameters, it is often

the case that large parts of the software are built repeat-

edly, as they are needed by different compilation units.

For example, building a test for the MultiVector class will

cause the header files for the Map and MultiVector class

to be included, and those classes compiled for all nec-

essary templated parameter combinations. Later, per-

haps, building a test of the CrsMatrix class will cause

these same headers to be included again, and their con-

tents built again. This replicated effort can cause a sig-

nificant amount of time to be spent in the compila-

tion phase. Furthermore, it may be the case that large

portions of the library code have to be read and com-

piled to create a single executable; this can consume a

large amount of resources, and this has been the cause

of more than a few failures for less-robust compilers

over the years. One solution is to use explicit instan-

tiation. Using this approach, a list of all instantiations

of the template classes is created, put into a source

file, and then built. Furthermore, these can be spread

across multiple source files, so that a multi-core ma-

chine can be occupied by building multiple files at

once. The downside of this approach is determining,

in advance, the myriad of combinations that need to

be built. This issue is further exacerbated when user-

defined ordinal and scalar types are considered. There-

fore, whatever support utilities (typically, explicit in-

stantiation macros) must be made available to the user

as well. The benefit of explicit instantiation is that, if it

is possible to implement correctly, the build mechanics

become similar to that of non-templated libraries.

3This is why it has not been done yet.

Another downside of compile-time polymorphism is

the size of the executable. In C++, all routines that

could possibly be called will be built and linked into

an executable; this requires extended time to build and

link, and potentially generates a large executable. This

applies to the instantiations (implicit or explicit) of a

template class. In a certain sense, this cost is a direct re-

flection of the benefit of templated code. For example,

the privilege of computing with both Vector<float > and

Vector<double> requires that both have been built and

linked into the executable. Still, this short-coming is

a consequence of compile-time polymorphism, and is

not necessary present in interpreted languages such as

Python and Matlab.

The single biggest risk for this approach concerns

the quality of the code produced by the compiler. Many

of the template metaprogramming use cases described

here rely on appropriate inlining by the compiler. This

is especially critical for the fusion of user kernels and

parallel skeletons in the Tpetra::RTI and Kokkos Node

APIs. The inability or unwillingness of the compiler to

perform this optimization will result in code that may

be unacceptably slower than hand-coded implementa-

tions. Unfortunately, the use of high-level languages

and sophisticated language constructs ultimately rests

on the availability of quality compilers.

5. Conclusion

This paper illustrated some of the benefits of generic

programming to applications in scientific computing,

as illustrated via the Tpetra package. This paper does

not cover the whole of this package; other functional-

ity, such as block entry vectors and matrices, is present,

in addition to utility code supporting advanced com-

munication and file I/O. Further development will ex-

pand on the generic programming capability, espe-

cially as concerns support for mixed-precision commu-

nication and algorithms.
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