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Abstract 

Background: In order to correctly decode phenotypic information from RNA-sequencing (RNA-seq) data, careful 

selection of the RNA-seq quantification measure is critical for inter-sample comparisons and for downstream analyses, 

such as differential gene expression between two or more conditions. Several methods have been proposed and 

continue to be used. However, a consensus has not been reached regarding the best gene expression quantification 

method for RNA-seq data analysis.

Methods: In the present study, we used replicate samples from each of 20 patient-derived xenograft (PDX) models 

spanning 15 tumor types, for a total of 61 human tumor xenograft samples available through the NCI patient-derived 

model repository (PDMR). We compared the reproducibility across replicate samples based on TPM (transcripts per 

million), FPKM (fragments per kilobase of transcript per million fragments mapped), and normalized counts using 

coefficient of variation, intraclass correlation coefficient, and cluster analysis.

Results: Our results revealed that hierarchical clustering on normalized count data tended to group replicate sam-

ples from the same PDX model together more accurately than TPM and FPKM data. Furthermore, normalized count 

data were observed to have the lowest median coefficient of variation (CV), and highest intraclass correlation (ICC) 

values across all replicate samples from the same model and for the same gene across all PDX models compared to 

TPM and FPKM data.

Conclusion: We provided compelling evidence for a preferred quantification measure to conduct downstream 

analyses of PDX RNA-seq data. To our knowledge, this is the first comparative study of RNA-seq data quantification 

measures conducted on PDX models, which are known to be inherently more variable than cell line models. Our 

findings are consistent with what others have shown for human tumors and cell lines and add further support to the 

thesis that normalized counts are the best choice for the analysis of RNA-seq data across samples.
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Background
RNA-sequencing (RNA-seq) has replaced gene expres-

sion microarrays as the most popular method for tran-

scriptome profiling [1, 2]. Various computational tools 

have been developed for RNA-seq data quantification 

and analysis, sharing a similar workflow structure, but 

with some notable differences in certain processing steps 

[3, 4]. Starting from a FASTQ file containing sequence 

reads and corresponding quality scores, the sequence 

reads can be mapped and aligned to a reference genome 

using algorithms such as TopHat2 and/or STAR read 

aligner. Gene counts are then generated from the result-

ing SAM or BAM file using tools such as SAMtools and 

HTSeq. �is process is time consuming and yields gene-

level counts only. Because alternative splicing creates 

multiple structurally-distinct transcripts of the same 

gene that may produce different phenotypes, several tools 

have been developed for RNA-seq isoform quantification 

such as Salmon_aln, eXpress, RSEM, and TIGAR2, which 

all require transcriptome-mapping BAM files [5]. In 

contrast to the aforementioned alignment-based meth-

ods, transcript quantification tools Salmon, Sailfish, and 

kallisto were designed to boost processing speed and to 

decrease memory and disk usage by bypassing the crea-

tion and storage of BAM files [6–8]. �is approach is 

particularly useful for the discovery of novel transcripts, 

when sequencing poorly annotated transcriptomes, and 

to detect lowly expressed genes [9]. Raw read counts 

cannot be used to compare expression levels between 

samples due to the need to account for differences in 

transcript length, total number of reads per samples, and 

sequencing biases [4]. �erefore, RNA-seq isoform quan-

tification software summarize transcript expression lev-

els either as TPM (transcript per million), RPKM (reads 

per kilobase of transcript per million reads mapped), or 

FPKM (fragments per kilobase of transcript per million 

reads mapped); all three measures account for sequenc-

ing depth and feature length [4].

Because of the nature of the quantification measures 

and embedded implicit normalization process, TPM, 

RPKM, and FPKM expression levels are suitable for 

the comparison of RNA transcript expression within 

a single sample. However, none of these measures can 

be used universally for cross-sample comparisons and 

downstream analyses such as the determination of dif-

ferentially expressed genes between two or more bio-

logical states. Issues arise, especially in the case of lowly 

expressed genes, when attempts are made to correct for 

gene length differences [9]. In a comprehensive evalu-

ation of normalization methods for Illumina high-

throughput RNA-seq data analysis, Dillies et  al. [9] 

concluded that total gene counts and RPKM were not 

recommended quantifications for use in downstream 

differential expression analysis. Only DESeq2 and TMM 

normalization methods were shown to produce quanti-

fications robust to the presence of different library sizes 

and widely different library compositions. Conesa et  al. 

[4] conducted a survey of best practices for RNA-seq 

data analysis and indicated that RPKM, FPKM, and TPM 

methods normalize away the most important factor for 

comparing samples, which is sequencing depth, whether 

directly or by accounting for the number of transcripts, 

which can differ significantly between samples. RPKM, 

FPKM, and TPM tend to perform poorly when transcript 

distributions differ between samples. Highly expressed 

features in certain samples can skew the quantitative 

measure distribution and adversely affect normalization, 

leading to the spurious identification of differentially 

expressed genes. Zhao et  al. [10] recently reported the 

misuse of RPKM and TPM normalization when com-

paring data across samples and sequencing protocols. 

However, due to the lack of experimental data generated 

from different types of replicates to further validate their 

recommendation, consensus regarding which RNA-seq 

quantification measure should be used for cross-sample 

comparison seems not to have been reached by the scien-

tific community. Many recent peer-reviewed articles, as 

well as publicly-available databases and websites, are still 

using TPM or RPKM/FPKM for pooled data analyses, 

cross-sample comparisons, and differential expression 

(DE) analysis [11–15]. Furthermore, some researchers 

have attempted to improve comparability of the expres-

sion measures by applying certain transformations (e.g., 

median centering and unit variance scaling, also referred 

to here as Z-score) or re-normalizing on either TPM or 

RPKM/FPKM data.

In recent years cancer models developed from patient 

tumors have come to replace late passage cell lines as the 

preferred tool in pre-clinical cancer research [16]. �e 

resulting patient-derived xenograft (PDX) models reca-

pitulate most histological and genetic characteristics of 

their human donor tumor, thus facilitating the predic-

tion of clinical outcomes and the investigation of drug 

efficacy, biomarker identification, and development of 

personalized medicine strategies. �e National Cancer 

Institute (NCI) is developing a national repository of 
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Patient-Derived Models (PDMs) comprised of hundreds 

of patient-derived xenograft (PDX) models spanning 

a wide variety of tumor types. �e publicly-accessible 

database, NCI PDMR (https:// pdmr. cancer. gov/), pro-

vides clinical annotations as well as molecular charac-

terization information, whole exome sequencing, and 

RNA-seq data for early-passage PDXs, and if available, 

for originator patient specimens, to aid in selection of 

the best model for the investigation of a specific research 

question.

Here we report on our evaluation of TPM, FPKM, 

and normalized counts on an RNA-seq dataset of PDX 

models from the NCI PDMR. Our study examined 61 

replicate samples belonging to 20 different PDX models 

originating from patients with different cancer types to 

determine which quantitative measures should be used 

to minimize differences between replicate samples, while 

preserving biologically meaningful expression differences 

between genes and across PDX models.

Methods
Sample selection and RNA-seq data acquisition

We focused on early-passage PDXs due to the similar-

ity of their genomic and transcriptional profiles to those 

of the original tumor [17]. RNA-seq data for 61 early-

passage (passage 0, 1, and 2) tumor xenografts of human 

origin belonging to 20 distinct patient-derived xenograft 

(PDX) models were downloaded from the publicly-acces-

sible NCI PDMR website (https:// pdmr. cancer. gov/). In 

this paper, we used the term “replicate” to denote sam-

ples from the same tumor implanted into different mice 

(i.e., biological replicates). Of the 20 PDX models, 19 had 

three replicate samples from the same passage with avail-

able RNA-seq data, while the remaining model had four 

replicate samples from the same passage. �e 20 PDX 

models covered 15 different cancer subtypes (Additional 

file 1: Table S1).

�e detailed standing operating procedures for the 

RNA-seq library preparation and data processing can 

be found in the SOP section of the NCI PDMR website 

(https:// pdmr. cancer. gov/ sops/). Briefly, the samples 

were sequenced on the Illumina HiSeq Sequencing plat-

form. FASTQ files were generated with bcl2fastq (ver-

sion: 2.17.1.14, Illumina). Adaptors were trimmed within 

this process using the default cutoff of the adapter-

stringency option. PDX mouse reads were bioinformati-

cally removed from the raw FASTQ files using bbsplit 

(bbtools v37.36). �e fastq files were mapped to the 

human transcriptome based on exon models from hg19 

using Bowtie2 (version 2.2.6). �e resulting SAM files 

were converted to BAM format using samtools, and the 

transcriptomic coordinates from the BAM file were con-

verted to the corresponding genomic (hg19) coordinates 

using RSEM (version 1.2.31). Gene and transcript level 

quantification were also performed with RSEM (ver-

sion 1.2.31). In our comparative study, we focused on the 

gene level output files, which contained the TPM, FPKM, 

expected counts, and effective length for 28,109 genes.

Quanti�cation and normalization methods

�e aim of the present study was to compare the per-

formance of different RNA-seq gene expression quan-

tification measures for downstream analysis. All gene 

expression measures included in our study are defined 

below.

RPKM and FPKM

�e measure RPKM (reads per kilobase of exon per mil-

lion reads mapped) was devised as a within-sample nor-

malization method; as such, it is suitable to compare gene 

expression levels within a single sample, rescaled to cor-

rect for both library size and gene length [1].

FPKM stands for fragments per kilobase of exon per 

million mapped fragments. It is analogous to RPKM and 

is used specifically in paired-end RNA-seq experiments 

[17]. �e calculation of RPKM or FPKM for gene i uses 

the following formula:

where qi are raw read or fragment counts, li is feature 

(i.e., gene or transcript) length, and 
∑

j

qj corresponds to 

the total number of mapped reads or fragments. �e 

RSEM output files containing RNA-seq data for the 

selected samples downloaded from the NCI PDMR 

include both FPKM and TPM expression values.

TPM

TPM was introduced in an attempt to facilitate com-

parisons across samples. TPM stands for transcript per 

million, and the sum of all TPM values is the same in 

all samples, such that a TPM value represents a relative 

expression level that, in principle, should be comparable 

between samples [18].

where qi denotes reads mapped to transcript, li is the 

transcript length, and 
∑

j

(qj/lj) corresponds to the sum of 

mapped reads to transcript normalized by transcript 

length.

RPKMi or FPKMi =

qi

li
103

∗

∑
j qj

106

=

qi

li ∗
∑

j qj
∗ 10

9

TPMi =

qi/li
∑

j

(

qj/lj
) ∗ 10

6

https://pdmr.cancer.gov/
https://pdmr.cancer.gov/
https://pdmr.cancer.gov/sops/
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�e TPM measure can easily be converted to 

FPKM: TPMi =

(

FPKMi
∑

j FPKMj

)

∗ 10
6
.

Count normalization methods

�e R package tximport was used to prepare gene level 

count data from RSEM output files [19]. Subsequently, 

normalized count data were derived using the DESeq2 

package [20]. �e normalization approach used by 

DESeq2 is to form a “virtual reference sample” by taking 

the geometric mean of counts over all samples for each 

gene [20]. �en, DESeq2 normalizes each sample to this 

virtual reference to get one scaling factor per sample.

TMM stands for a weighted trimmed mean of M val-

ues, which are gene-wise log-fold change quantities 

originally defined by Robinson and Oshlack [21]. Nor-

malization using the TMM method was performed on 

count data generated from tximport with the ‘tmm’ func-

tion in Bioconductor package NOISeq [22]. �e TMM 

normalization method is also implemented in the edgeR 

package [21].

Z-score normalization on TPM-level data

Z-score normalization is considered a centering and vari-

ance stabilization method. Z-score on TPM-level data 

was calculated using the following formula:

where the indices i and j stand for gene and sample index, 

respectively; and SD stands for standard deviation.

Measures of variation

Hierarchical clustering

�e R function ‘hclust’ was used for sample clustering 

based on gene expression matrices. �e distance matrix 

is based on 1 − r, where r is the Pearson correlation coef-

ficient between sample pairs. Ward’s minimum variance 

method (i.e., linkage method option ‘ward.D2’) was used 

as the agglomeration method [23, 24]. Euclidean distance 

metric was also computed to evaluate which measure 

could more closely align the replicates, in terms of abso-

lute expression measures, for each PDX model.

Median CV

�e coefficient of variation (CV) was defined as the ratio 

of the standard deviation to the mean expression of each 

gene across replicate samples within each of the 20 PDX 

models. �e median CV, as well as the interquartile 

range, were documented for each PDX model.

Zij =
log2

(

TPMij + 1
)

− median
(

log2(TPMi + 1)
)

SD
(

log2(TPMi + 1)
)

Intraclass correlation coe�cient (ICC)

For each PDX model, an intraclass correlation coefficient, 

denoted by  ICCg, was computed to examine the impact 

of each quantification measure on the variability between 

genes relative to the total variation (across genes and rep-

licate samples) [24–26].

�is analysis was based on a components of variance 

model:

where Yij denotes the log transformed unit of gene i in the 

replicate j for a particular model. �e error variance com-

ponent σ 2
e  associated with eij (technical error) reflects the 

reproducibility of the measure. �e variance component 

σ
2
g   associated with gi (true gene expression) represents 

the true gene-to-gene variability.

�e intra-class correlation  (ICCg) for each PDX model 

is defined as

and estimated by the following equation defined by 

Shrout et al. [25]:

where MSg is the between-genes mean squares, MSe  is 

the between-samples mean squares, k is the number of 

samples. �e  ICCg, which ranges between 0 and 1, esti-

mates the proportion of the total variance due to the 

between-gene variance. Larger  ICCg values indicate 

higher similarity (i.e., agreement) between replicate sam-

ples while preserving biological differences among genes 

within a PDX model. Computing an  ICCg for each PDX 

model, as described above, resulted in a set of 20  ICCg 

values for each quantification method.

Next, in order to evaluate which measure can better 

preserve true biological differences within the same gene 

across different PDX models, another version of intra-

class correlation, denoted by  ICCm, was computed for 

each gene. �is metric allowed for examination of the 

impact of each quantification measure on the variabil-

ity between PDX models relative to the total variation 

(across models and replicate samples). �is analysis was 

based on a components of variance model:

where Yij denotes the log transformed unit of PDX model 

i in the replicate j for a particular gene. For simplicity of 

notation, gene index was not included in the formula. 

�e error variance component σ
2
e  associated with eij 

Yij = gi + eij

ICCg =

σ
2
g

σ
2
g + σ

2
e

MSg − MSe

MSg + (k − 1)MSe

Yij = mi + eij
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(technical error) reflects the reproducibility of the meas-

ure. �e variance component σ 2
m associated with mi (true 

gene expression) represents the true model-to-model 

variability.

�e intra-class correlation  (ICCm) for each gene is 

defined as

and estimated by the following equation defined by 

Shrout et al. [25]:

where MSm is the between-models mean squares,MSe 

is the between-samples mean squares, k is the num-

ber of samples. �e  ICCm, which ranges between 0 and 

1, estimates the proportion of the total variance due to 

the between-model variance. Larger  ICCm values indi-

cate higher similarity (i.e., agreement) between replicate 

samples. Computing an  ICCm for each gene, as described 

above, resulted in a set of 28,109  ICCm values for each 

quantification method. A known feature of the ICC esti-

mator used here is that sometimes it could produce nega-

tive values when the true ICC is close to zero and sample 

size is small. For practical purposes, these negative esti-

mates of ICC are considered to be equivalent to ICC ≈ 0.

Model 947758-054-R is the only model that has four 

replicates, while the other 19 models all have three rep-

licates. For simplicity, the first three replicates of model 

947758-054-R were selected to form a uniform data 

matrix (20 × 3 for each gene) for the calculation of ICC 

for each gene. �e resulting balance in number of repli-

cates allowed for easier calculation of the  ICCg and  ICCm 

estimates using the irr R package (version 0.84.1) [25, 26].

Calculation of percentages of TPM for the top �ve most 

abundant genes

To help identify what may cause transcript distribution 

differences between replicates, we calculated the per-

centage of TPM for the top five most abundant genes. For 

each PDX model, the 28,109 genes were first sorted by 

the sum of TPMs across the replicate samples. �e TPM 

percentages of the top five most abundant genes in each 

replicate was then calculated as the sum of TPMs corre-

sponding to the top five most abundant genes identified 

for each model divided by  106.

ICCm =
σ
2
m

σ
2
m + σ

2
e

MSm − MSe

MSm + (k − 1)MSe

Results
Hierarchical clustering on normalized count data performs 

the best for grouping replicate samples from the same PDX 

model

We performed hierarchical clustering analysis on all 61 

samples using different quantification measures, i.e., 

TPM, FPKM, normalized counts, as well as Z-score nor-

malization on TPM-level data. �e pattern of sample 

clustering differed depending on the gene expression 

quantification measure used (Fig. 1A, B). Previous stud-

ies have shown that for clusters with nearly equal sample 

sizes, Ward’s method performed significantly better than 

the other clustering procedures [27–30]. We also tried 

the “complete” linkage method and found similar pat-

terns to those obtained with Ward linkage for each sce-

nario. In our dataset which is comprised of three or four 

replicates each for 20 different PDX models, the imple-

mentation of different agglomeration methods did not 

noticeably affect the results.

For clustering based on 1-Pearson correlation dis-

tance matrix generated using TPM data (Fig.  1A, right 

panel), the three samples from PDX model 475296-

252-R (rectum) did not cluster together despite being 

replicate samples originating from the same human 

tumor. Two of its samples (475296-252-R-KPNPN8 and 

475296-252-R-KPNPP2) clustered with a different PDX 

model from the same cancer type (945468-187-T, rec-

tum), while the third sample (475296-252-R-KPNPN9) 

clustered with PDX model 328469-098-R (colon). When 

Euclidean distance was used instead of 1-Pearson cor-

relation as the distance matrix, the performance of the 

clustering for TPM data was worse. In addition to model 

475296-252-R, replicates in another three PDX models, 

821394-179-R (Malignant fibrous histiocytoma), 695221-

133-T (Melanoma), and K98449-230-R (Glioblastoma), 

were also not grouped in the same cluster (Fig.  1A, left 

panel).

When normalized count data using DESeq2 (Fig. 1B) or 

TMM (Additional file 1: Figure S1A) were used, all repli-

cate samples from the sample PDX model clustered with 

each other no matter which distance matrix was used, 

that is, either 1-Peason correlation or Euclidean distance. 

�is was also true when FPKM was used for clustering 

(Additional file 1: Figure S1B); however, we noticed that 

for certain models, the maximum distance (1-Pearson 

correlation) among samples was noticeably larger com-

pared to clustering on DESeq2 or TMM-normalized data 

(Additional file  1: Figure S2). Table  1 summarizes the 

number of discordant models while Table 2 lists the max-

imum height in hierarchical cluster analysis for each data 

normalization method.



Page 6 of 15Zhao et al. J Transl Med          (2021) 19:269 

A

B

Fig. 1 A Hierarchical clustering of 61 patient-derived xenograft (PDX) samples using TPM data. B Hierarchical clustering of 61 PDX samples using 

DESeq2 normalized count data. Distance metric 1-Pearson correlation was used to generate the dendrogram in each right panel and Euclidean 

distance was used for the dendrogram in each left panel. Discordant models are highlighted with different color labels
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Normalized count data has the minimum median CV 

across replicates from the same PDX model

We then calculated the median coefficient of variation 

(CV) across the replicate samples for each PDX model. 

Figure  2 displays the median CVs for each model using 

different quantification measures. Among all PDX mod-

els, median CVs from either DESeq2-normalized count 

data (Fig. 2, red bars) or TMM-normalized data (Fig.  2, 

green bars) were on par with each other (ranging from 

0.05 to 0.15), and were low when compared to median 

CVs from TPM (Fig. 2, purple bars) or FPKM data (Fig. 2, 

cyan bars). Among the four different quantification 

measures, TPM was the worst performer with the larg-

est median CVs (ranging from 0.08 to 0.52), while FPKM 

Table 1 Number of discordant models in hierarchical cluster analysis under all scenarios

Distance matrix TPM (Fig. 1A) CountDEseq2 
(Fig. 1B)

CountTMM 
(Additional �le 1: 
Figure S1A)

FPKM (Additional 
�le 1: Figure S1B)

TPM-Zscore 
(Additional �le 1: 
Figure S1C)

TPM-TMM 
(Additional �le 1: 
Figure S3A)

1-Pearson 1/20 0 0 0 1/20 0

Euclidean 4/20 0 0 0 6/20 0

Table 2 Maximum height in hierarchical cluster analysis under all scenarios

a Since Ward method is used as the linkage method, the height is not limited to the original scale and can be larger than 2

Distance matrix TPM (Fig. 1A) CountDEseq2 
(Fig. 1B)

CountTMM 
(Additional �le 1: 
Figure S1A)

FPKM (Additional 
�le 1: Figure S1B)

TPM-Zscore 
(Additional �le 1: 
Figure S1C)

TPM-TMM 
(Additional �le 1: 
Figure S3A)

1-Pearson 0.613 0.091 0.089 0.106 3.152a 0.102
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Fig. 2 Bar plot of median coefficients of variation (CV) for gene expression levels from replicate samples of each PDX model using different 

quantification measures
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also performed worse than normalized count data, but 

better than TPM in the majority of the models. Over-

all, normalized count data had the smallest median CVs 

compared to TPM and FPKM data across replicate sam-

ples in all 20 PDX models. Summary statistics on CVs, 

including the interquartile range, are listed in Additional 

file 1: Table S2 for different quantitative measures.
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0.0

4.0

8.0

Method

IC
C

m

Method

COUNTDESEQ2

COUNTTMM

FPKM

TPM

Fig. 3 A Bar plot of gene intraclass correlation coefficients  (ICCg) across replicate samples of each PDX model using different quantification 

measures. B Boxplots of model intraclass correlation coefficients  (ICCm) for gene expression levels from replicate samples across 20 PDX models 

using different quantification measures
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Normalized count data has better ICC values over TPM 

and FPKM data for all PDX models

Next, we explored which quantitative measure mini-

mized differences between replicate samples, while pre-

serving biologically meaningful expression differences 

between genes and across PDX models. �ese assess-

ments were based on the distributions of 20  ICCg and 

28,109  ICCm values for each quantification method. 

Higher ICC values are indicative of better reproducibility 

between replicates [31].

Figure  3A illustrates the comparison of  ICCg when 

using different RNA-seq quantification measures on the 

20 PDX models. Although all  ICCg values were above 

0.85, quantification measures still performed variably 

in at least four PDX models. Among them, TPM data 

(Fig. 3A, purple bars) had the lowest  ICCg values for PDX 

models 475296-252-R, 695221-133-T, 821394-179-R, and 

K98449-230-R [ranges of  ICCg in four models was (0.859, 

0.944)], while normalized count data using either DESeq2 

(Fig. 3A, red bars) or TMM (Fig. 3A, green bars) had the 

highest  ICCg values [ranges of  ICCgs in four models were 

(0.931, 0.979) for DESeq2 and (0.931, 0.979) for TMM]. 

Furthermore, FPKM data had lower  ICCg values than 

DESeq2 and TMM-normalized count data in the above 

four models. �ose four models were the same models 

identified in hierarchical clustering using Euclidean dis-

tance whose replicates did not cluster with each other. 

�ese results indicate that the normalized count data 

were more reproducible across replicate samples, in the 

sense of having generally higher between-gene variance 

relative to the total variation (across genes and replicate 

samples) across PDX models.

We also calculated  ICCm for each gene to examine the 

impact of each quantification measure on both within-

model error variance (between replicate samples for the 

same gene) and between-model variance for each gene 

(model  ICCm). Similarly, larger  ICCm indicates that the 

replicate error variance is relatively small compared to 

the biological differences across PDX models for each 

gene.

Figure 3B shows the comparison of model  ICCm when 

using different RNA-seq quantification measures on all 

28,109 genes. Normalized count from DESeq2 or TMM, 

as well as FPKM performed similarly well with median 

 ICCm around 0.69, while TPM performed the worst with 

median  ICCm of 0.64. �ese results indicate that the nor-

malized count data were more reproducible across rep-

licate samples, in the sense of having generally higher 

between-model variance relative to the total variation 

(across models and replicate samples) across genes.

Neither Z-score nor an additional normalization step can 

resolve the potentially problematic issue of TPM data

We further checked whether Z-score transformation or 

an additional normalization step would help to resolve 

the potentially problematic issue of TPM data, especially 

for PDX model 475296-252-R. We found that even after 

Z-score normalization of TPM data, the replicate sam-

ples for PDX model 475296-252-R remained separated 

following hierarchical clustering (Additional file 1: Figure 

S1C, right panel), similar to what was shown in Fig. 1A. 

When Euclidean distance was used, the replicate samples 

from 6 PDX models were not clustered with each other 

(Table 1; Additional file 1: Figure S1C, left panel), which 

indicates that Z-score transformation cannot resolve the 

normalization issue for this model. We also performed 

TMM normalization on TPM data. Following this 

approach, the three replicates for model 475296-252-R 

did cluster with each other (Additional file  1: Figure 

S3A). However, the scatter plots of TMM-normalized 

TPM data for pairwise comparison of all genes among 

the three replicates still demonstrated a coordinated shift 

for highly expressed genes (Additional file 1: Figure S3B). 

Moreover, the median CV of TMM-normalized TPM 

data (pink bar, Additional file 1: Figure S4) for all genes 

across the replicates for each model were much higher 

than those based on TMM-normalized count data (gold 

bar, Additional file 1: Figure S4).

A few very highly expressed genes skewed the distribution 

of TPM expression values

In order to identify factors that possibly contribute to 

the potentially problematic issue of TPM values across 

replicate samples, we took a closer look at the pairwise 

scatter plots for expression of all genes among the 3 

replicate samples from PDX model 475296-252-R (sam-

ples KPNPP2, KPNPN8, and KPNPN9)—the model for 

which replicate samples did not cluster with each other 

in the hierarchical cluster analysis (Fig.  4). Figure  4A 

contains scatter plots using TPM values, while the scat-

ter plots in Fig. 4B were drawn using DESeq2-normalized 

count values. In the TPM based scatter plots, there was 

an upward shift pattern (away from the 45-degree line) 

between KPNPN8 and KPNPN9, and a downward shift 

pattern between KPNPP2 and KPNPN9. �ose patterns 

implied that the expression of the majority of genes was 

systematically skewed towards larger pairwise differ-

ences between samples from the same model, which we 

do not expect to see in replicate samples. When we used 

the normalized count data, these patterns disappeared, 

which supports the use of DESeq2 for proper RNA-seq 

data normalization.

We extracted the top five most highly expressed 

genes in the four PDX models for which TPM data had 
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the lowest ICCs compared to the other gene expres-

sion measures (models 475296-252-R, 695221-133-T, 

821394-179-R, and K98449-230-R, circled in Fig.  3), 

and calculated the percentage of total TPM assigned 

to these top five genes in each replicate sample under 

each model. We found that the proportion of the top 

five genes differed significantly among replicates for 

the four models (Fig. 5A). �e majority of those genes 

were either ribosomal RNA or mitochondrial RNAs 

(Additional file 1: Table S3A). �ose four models hap-

pened to have the highest median CV values in Fig. 2, 

and the largest distance in the clustering using TPM 

data in Fig.  1B and Figure S2. Because the sum of all 

TPM values is the same for all samples, the fraction of 

the top five most highly expressed genes in a given sam-

ple affects the distribution of the TPM values for the 

remaining genes in that sample. �erefore, differences 

in the abundance of the top five most expressed genes 

are likely to affect the relative abundance of all other 

transcripts in a sample, thus leading to larger clustering 

distances, larger median CV values, and lower ICCs.

For comparison, we applied the same procedure to 

the top five most highly expressed genes in the five 

PDX models whose TPM data had the lowest median 

CV values (i.e., models with the least variance between 

replicates in TPM-quantified gene expression). Among 

them, while three out of the five models showed minor 

differences (<  5%) in CVs between the replicates, two 

of the models still displayed relatively high differ-

ences between replicates (Fig.  5B; Additional file  1: 

Table  S3B). We further examined the pairwise scat-

ter plots of the replicate samples for the two models 

(983718-287-R and 884782-307-R) and found that in 

both cases, there was only one very highly expressed 

outlier gene driving the trend (i.e., 5S_rRNA) in each 

model, while gene expression values for the other genes 

were very well aligned, as indicated by the distribu-

tion of points around the 45-degree line in the pairwise 

scatter plots of all genes among the replicates (Addi-

tional file 1: Figure S8A, B).

Discussion
Choosing an appropriate gene quantification measure is 

a key step in the downstream analysis of RNA-seq data. 

We explored the performance of a few widely used meas-

ures on a comprehensive collection of replicate sam-

ples of 20 PDX models in RNA-seq experiments across 

15 cancer types to address this question. We compared 

TPM, FPKM, normalized counts using DESeq2 and 

TMM approaches, and we examined the impact of using 

variance stabilizing Z-score normalization on TPM-level 

data as well. We found that for our datasets, both DESeq2 

Fig. 4 A Pairwise scatter plots comparing TPM values for all genes between replicate samples of PDX model 475296-252-R. B Pairwise scatter plots 

comparing DESeq2 normalized count values for all genes between replicate samples of PDX model 475296-252-R. The x- and y- axes are normalized 

 log2 counts on all pairwise scatter plots. Plots along the diagonal represent the density of the respective variable
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Fig. 5 A Bar plot of the sum of TPM values for the top 5 most highly expressed genes in four PDX models with the lowest  ICCg. B Bar plot of the 

sum of TPM values for the top 5 most highly expressed genes in five PDX models with the highest  ICCg
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normalized count data (i.e., median of ratios method) 

and TMM normalized count data generally performed 

better than the other quantification measures.

Each normalization method comes with a set of 

assumptions; thus, the validity of downstream analy-

sis results depend on whether the experimental setup 

is congruent with the assumptions [32]. For instance, 

library size normalization approaches such as RPKM and 

its variant FPKM rely on the assumption that the total 

amount of mRNA/cell is the same for all conditions. In 

contrast, approaches such as TMM and DESeq perform 

normalization by comparing read count distribution 

across samples, and assume symmetrical differential 

expression between conditions (i.e., most genes are not 

differentially expressed between two conditions, and the 

number of upregulated and downregulated genes is com-

parable) [20, 21, 32]. In these cases, all genes are scaled 

by the same normalization factor—whether they are dif-

ferentially expressed or not—derived from the distance 

to an empirical reference sample. In practice, RPKM/

FPKM and TPM tend to perform worse than distribution 

normalization methods because the requirement for the 

same amount of mRNA/cell does not hold, as substanti-

ated by multiple reports of a few highly expressed genes 

dominating the number of mapped reads [9, 33, 34]. We 

made a similar observation in our study of 61 PDX sam-

ples (Fig. 5; Additional file 1: Table S2).

Reproducibility data (i.e., a dataset comprised of n sets 

of replicate samples) can be used effectively to evaluate 

the performance of different normalization methods. 

Wagner et al. [35] discussed some of the benefits of TPM 

over FPKM and advocated for the use of TPM based on a 

small data set of six human tissue/cell samples with only 

two replicates. Additionally, Abrams et  al. [37] recently 

published a protocol to evaluate RNA sequencing nor-

malization methods using a pool of well-characterized 

RNA samples from the Universal Human Reference 

RNA (UHRR, from ten pooled cancer cell lines, Agi-

lent Technologies, Inc.) and the Human Brain Reference 

RNA (HBRR, from multiple brain regions of 23 donors, 

Life Technologies, Inc.) [36, 37]. �e authors performed 

a two-way ANOVA to assess the relative contribution 

of biology and technology to the measured gene expres-

sion variability, and concluded that TPM was the best 

performing normalization method because it retained 

biological variability without introducing much addi-

tional bias in their dataset of reference cancer cell lines 

and human brain samples [37]. �eir conclusion was 

based on the analysis of technical replicates (i.e., same 

samples sequenced in different laboratories) from pooled 

human cancer cell lines and human brain tissue samples. 

A recent study from �e Jackson Laboratory outlined a 

genomic data analysis workflow for PDX tumor samples 

from 455 models, wherein gene expression estimates 

were determined using RSEM. Both expected count and 

TPM data were used in their data analysis examples. 

However, recommendations were not made on optimal 

RNA-seq quantification measures for cross-sample com-

parison as the study did not include a systematic compar-

ison of replicate samples [38].

�e focus of our study was PDX samples, which are 

inherently more heterogeneous than cell lines, thereby 

making selection of a sequencing data normalization 

method critical. We opted to use early passage PDXs 

because they encountered less evolutionary pressure to 

adapt to a new environment. �erefore the PDX repli-

cates from 20 models that we chose are more genetically 

similar to the original tumor [39]. Furthermore, noise 

may have been introduced in the RNA extraction and 

library preparation steps; and the presence of host mouse 

cells within the xenografted tumor requiring a bioin-

formatic filtration step, constitutes a further challenge 

[40–42].

Using the data in NCI PDMR database we compared 

different RNA-seq quantification measures in 20 his-

tologically diverse PDX samples with three or more 

replicates to evaluate the three different quantifica-

tion measures TPM, FPKM, and normalized count. In 

our study, TPM seemed to perform the worst accord-

ing to multiple evaluation metrics. Similar to FPKM, 

TPM performed poorly when replicate samples from 

the same PDX model had heterogeneous transcript dis-

tributions, as seen in Fig. 4; that is, highly and differen-

tially expressed features can skew the count distribution. 

As pointed out by Pachter [43], the dependency of TPM 

on effective lengths means that abundances reported 

in TPM are very sensitive to the estimates of effective 

length. Zhao et  al. [10] suggested a workflow to follow 

for analysis of TPM or FPKM/RPKM level-data, which 

includes different paths depending on whether the same 

protocol and library were used, and whether the fractions 

of ribosomal, mitochondrial, and globin RNA were simi-

lar. In our examples, the top five most highly expressed 

genes have imbalanced fractions across the replicates 

hence leading to larger variations. Additionally, we noted 

that the genes with the highest TPM expression levels 

tended to overrepresent ribosomal and mitochondrial 

genes (Additional file 1: Table S2). �ese factors, in addi-

tion to differences in sequencing depth, may all contrib-

ute to the observed variation between replicate samples 

in our study, thus cementing the need for a robust nor-

malization routine.

�ere have been discussions on the pitfalls of using 

TPM for cross-sample comparisons. �ese pitfalls will 

lead to some major problems in downstream analy-

ses for RNA-seq data. For example, when correlation 
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of gene expression values with some other continuous 

variable across experimental subjects is of interest, one 

must rely on comparability of gene expression measure-

ments to both reduce technical noise that may attenu-

ate correlations and avoid extreme measurements that 

could produce spurious correlations. Certain features 

of the underlying data may adversely affect the perfor-

mance of some of these quantification methods. For 

example, high expression of ribosomal RNA may lead 

to a skewed distribution of TPM-normalized expres-

sion measures for a particular sample. Consequently, 

a computed correlation will not be accurate even if 

the rank statistics are used because the comparison is 

at the gene-level. Secondly, for differential expression 

(DE) analysis, statistical models usually assume that 

the data follow some probability distribution. Cur-

rently, the majority of the DE analysis tools for RNA-

seq assume a Poisson/negative binomial distribution 

for the data. Since TPM/FPKM are not count data, 

they cannot be modeled using these types of discrete 

probability distributions. In addition, shrinkage meth-

ods implemented in many DE analysis tools require 

those distribution assumptions to hold, which clearly 

they will not, for length-normalized measures such as 

TPM or FPKM/RPKM. �irdly, some gene set enrich-

ment analysis methods rely on parametric assumptions 

about the data distribution for calculation of test sta-

tistics and p values [e.g. Fisher (LS) statistics]. TPM 

and FPKM/RPKM may be acceptable to use if the ranks 

of genes in each sample are used, as opposed to their 

quantitative expression values. For example, �e Broad 

Institute’s gene set enrichment analysis (GSEA) tool 

allows users to perform pathway analyses by uploading 

single rank-based gene list [44, 45]. Finally, our analyses 

demonstrated that neither Z-score nor additional nor-

malization steps can resolve the potentially problematic 

issue in TPM data. We recommend using raw count 

matrix normalized by either DESeq2 or TMM for PDX 

studies.

As described above, each normalization method is 

based on its own assumptions. When the assumptions 

are violated, the method could fail [32]. In this paper, 

we showed examples of such scenarios where TPM and 

FPKM did not perform as reliably as normalized counts 

by DESeq2 or TMM in at least four PDX models. �ere-

fore, it is important to consider context when selecting 

normalization methods and not arbitrarily use a single 

method for all purposes [38]. Researchers need to be 

aware of assumptions made by various methods, and data 

characteristics that might violate those assumptions, in 

order to choose the right normalization method for their 

study.

Conclusion
Our results strongly support the notion that normalized 

count data are the preferred quantification measure for 

between-sample analysis of RNA-seq data generated 

from tumors grown in PDX models. �ese quantifica-

tions exhibit greater comparability among replicate sam-

ples and are more robust to technical artifacts; hence, 

they should be the first choice whenever cross-sample 

comparisons are of interest. Further data transforma-

tions or normalizations on TPM-level data are not able to 

resolve potential issues inherent in TPM quantifications. 

We hope that our findings will promote the use of nor-

malized count data instead of TPM or FPKM/RPKM in 

PDX studies using RNA-seq to avoid inaccurate results 

arising from sub-optimal gene expression quantification.
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samples of PDX model 821394-179-R. (B) Pairwise scatter plots comparing 

DESeq2 normalized count values for all genes between replicate samples 

of PDX model 821394-179-R. The x- and y-axes are normalized  log2 counts 

on all pairwise scatter plots. Plots along the diagonal represent the density 

of the respective variable. Figure S7. (A) Pairwise scatter plots comparing 

TPM values for all genes between replicate samples of PDX model K98449-

230-R. (B) Pairwise scatter plots comparing DESeq2 normalized count val-

ues for all genes between replicate samples of PDX model K98449-230-R. 

The x- and y-axes are normalized  log2 counts on all pairwise scatter plots. 

Plots along the diagonal represent the density of the respective variable. 

Figure S8. (A) Pairwise scatter plots comparing TPM values for all genes 

between replicate samples of PDX model 983718-287-R. (B) Pairwise scat-

ter plots comparing TPM values for all genes between replicate samples 

of PDX model 884782-307-R. The x- and y-axes are normalized  log2 counts 

on all pairwise scatter plots. Plots along the diagonal represent the density 

of the respective variable.
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