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The ambient logic is a modal logic proposed to describe the structural and

computational properties of distributed and mobile computation. The structural part of

the ambient logic is, essentially, a logic of labeled trees, hence it turns out to be a good

foundation for query languages for semistructured data, much in the same way as first

order logic is a fitting foundation for relational query languages. We define here a query

language for semistructured data that is based on the ambient logic, and we outline an

execution model for this language. The language turns out to be quite expressive. Its

strong foundations and the equivalences that hold in the ambient logic are helpful in the

definition of the language semantics and execution model.

1. Introduction

Unstructured collections, or unstructured data, are collections that do not respect a
predefined schema, and hence need to carry a description of their own structure. These
are called semistructured when one can recognize in them some degree of homogeneity.
This partial regularity makes semistructured collections amenable to be accessed through
query languages, but not through query languages that have been designed to access
fully structured databases. New languages are needed that are able to tolerate the data
irregularity, and that can be used to query, at the same time, both data and structure.
Semistructured collections are usually modeled in terms of labeled graphs, or labeled
trees (Abiteboul et al., 1999).

The ambient logic is a modal logic proposed to describe the structural and computa-
tional properties of distributed and mobile computation (Cardelli and Gordon, 2000). The
logic comes equipped with a rich collection of logical implications and equivalences. The
structural part of the ambient logic is, essentially, a logic designed to describe properties
of labeled trees. It is therefore a good foundation for query languages for semistructured
data, much in the same way as first order logic is a fitting foundation for relational query
languages.
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In this paper we present TQL, a query language for semistructured data that is based
on the ambient logic.

The language turns out to be quite expressive, even though a TQL query is not much
more than a nesting of comprehensions operations, each built around a logical formula
expressed in our “tree logic”. The fact that the tree logic can be naturally used to
express types and constraints over semistructured data opens interesting possibilities. In
a nutshell, problems like subtyping, constraint implication, constraint satisfiability, query
correctness and query containment, become special cases of the validity problem for this
logic. The same holds for their combinations, such as query containment in presence of
constraints, or query correctness in presence of subtyping. The high level of expressiveness
of the logic allows us to describe complex types and constraints. For example, the type
and constraint languages proposed in (H. Hosoya, 2000) and (Buneman et al., 2001c) can
be easily translated into the tree logic. Of course, if the full power of the logic is used,
every aspect of static query analysis (correctness, containment, subtyping...) becomes
undecidable, since validity of a tree-logic formula is undecidable in general. However, we
believe that decidable subsets of the logic can be defined, which are expressive enough
to encode interesting type and constraint systems. The search for decidable subsets with
the “right” balance of expressiveness and cost is an open problem, but the first results
in this field are emerging (Calcagno et al., 2003; Cohen, 2002). This unified framework
for types, constraints, and queries is a central, but long-term, aim of the TQL project,
and we are currently taking just the first steps in this direction.

In this paper we first introduce the query language TQL through some examples, then
we present its full formal definition, and finally we define a formal execution model that
is the basis of the current TQL implementation.

The paper is structured as follows. In Section 2 we present a preview of the query
language. In Section 3 we define the tree data model. In Section 4 we present the logic
upon which the query language of Section 5 is based. In Section 6 we briefly discuss how
to represent types and constraints in TQL logic. In Section 7 we present the evaluation
model. In Section 8 we compare TQL with related proposals. In Section 9 we draw some
conclusions.

2. TQL by examples

2.1. The Simplest Queries

We present here TQL through some examples. We begin with standard queries, borrowed
from the W3C XMP Use Cases (W3C, 2002a). TQL queries are evaluated with respect
to a global environment, defined by the user, where some variables are bound to local
or remote XML files. We assume here that the variable $Bib has been bound to the
document available at //tql.di.unipi.it/tql/pubb.xml, which contains bibliographic
entries, as in the fragment below, written using TQL syntax:

bib[

book[year[1999]

| title[DataOnTheWeb]
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| author[ first[Serge] | last[Abiteboul] ]

| author[ first[Dan] | last[Suciu] ]

| author[ first[Peter] | last[Buneman] ]

| publisher[MorganKaufmann]

| price[45]

]

book[year[1995]

| title[FoundationsDatabases]

| author[ first[Serge] | last[Abiteboul] ]

| author[ first[Richard] | last[Hull] ]

| author[ first[Victor] | last[Vianu] ]

| publisher[Addison]

| price[60]

]

| book[year[1999]

| title[ProcICDT99]

| editor[ first[Peter] | last[Buneman] ]

| publisher[Springer]

| price[12]

]

...

]

In this format, bib[C] stands for an element tagged bib whose contents are C, while
C1|C2 is the concatenation of two elements, or, more generally, of two sets of elements.
TQL notation is different from XML because TQL is intended as a language to query
semistructured data in general, i.e. unordered trees with labeled edges; XML is just one
way to construct such trees, using tagged elements (and attributes) to build labeled
edges.

The basic TQL query is from Q |= A select Q’, where Q is the subject (or data
source) to be matched against the formula A, and Q’ is the result expression. The match-
ing of Q and A returns a set of bindings for the variables that are free in A. Q’ is evaluated
once for each of these bindings, and the concatenation of the results of all these evalua-
tions is the result of the query.

For example, consider the following TQL query, which returns the titles of all books
written in 1999, and is evaluated in an environment where $Bib is bound as specified
above:
from $Bib |= .bib[.book[.year[1999]

And .title[$t]

]

]

select title[$t]

The formula:
.bib[ .book[ .year[1999] And .title[$t] ] ]

is a logical formula, which should be read as: “there is a path .bib[.book[ ]] that
reaches a place that matches .year[1999] And .title[$t], i.e. a place where you find
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both a path .year[] leading to 1999 and a path .title[ ] leading to something that we
shall call $t”. Since //tql.di.unipi.it/tql/pubb.xml contains two books with year
1999, and with titles DataOnTheWeb and ProcICDT99, the query first computes the set
of bindings:

{[$t = DataOnTheWeb]; [$t = ProcICDT99]}
The subquery title[$t] is then evaluated once for each binding, yielding the result:

title[DataOnTheWeb] | title[ProcICDT99].

The formula .t[A] reads “there exists an element t whose contents satisfy A”; it is
actually defined in terms of three primitive operators, truth T, horizontal splitting A1 |
A2, and element matching t[A]. The element formula t[A] only matches a one-element
document: while .t[A] matches both trees t[D] and t[D]|u[E]|... (provided that A

matches D), the formula t[A] only matches the first one. The truth formula T matches
every tree. Finally, the formula A1 | A2 matches D iff D is equal, modulo reordering, to
D1 | D2, with A1 matching D1 and A2 matching D2. For example, the following tree/formula
pairs match, provided that $A is bound to Date:

title[IDB] | author[Date] | year[1994] author[$A] | title[IDB] | year[1994]

title[IDB] | year[1994] T

title[IDB] | author[Date] | year[1994] author[$A] | T

author[Date] author[$A] | T

The formula used in the last two lines can be read as “there is author[$A] and some-
thing else”, hence it is equivalent to .author[$A] (the fourth pair matches since the
empty tree matches T). For this reason, we do not take .t[A] as primitive, but define it
as an abbreviation of t[A]|T.

The decomposition operator | is more expressive than the derived step operator .t[A],
since it can be also used to analyze the horizontal structure of a tree. For example, in
the next query, by matching the formula year[1999] | $EverythingElse against each
book, we return, for any book whose year is 1999, everything but the year. Here .a.b[A]
abbreviates .a[.b[A]]:

from $Bib |= .bib.book[year[1999]

| $EverythingElse

]

select BookOf1999[$EverythingElse]

Since we have two 1999 books, there are two possible bindings for $EverythingElse,
each corresponding to the whole contents of a 1999 book without its year edge; hence
the result is:

BookOf1999[ title[DataOnTheWeb] | author[ first[Serge] | last[Abiteboul] ] ... ]

| BookOf1999[ title[ProcICDT99] | editor[ first[Peter] | last[Buneman] ] ... ]

While in these examples we match variables with trees, a TQL variable can also be
matched against a tag.

For example, the following query returns any tag inside a book tagging an element
that contains first[Serge] (the result is SergeTag[author]):
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from $Bib |= .bib.book.$tag.first[Serge]

select SergeTag[$tag]

Hereafter, as a convention, we use lowercase initials for variables that are bound to
tags and uppercase initials for variables that are bound to trees.

2.2. Matching and Logic

TQL logic, being a dialect of the ambient logic, contains both structural and first-order-
logic operators. The structural operators (t[A], A1 | A2, . . . ) can be used to express
matching conditions, and the others can be used to combine such conditions, and to
quantify variables.

For example, the condition in the following query requires the existence of a title

field, of a $x field containing Springer, and of either an author.last or an editor.last

path leading to Buneman.†

from $Bib |=

.bib.book [.title[$t]

And Exists $x. .$x[Springer]

And (.author.last[Buneman] Or

.editor.last[Buneman])

]

select title[$t]

The pattern Exists $x. .$x[A] is common enough to deserve the abbreviation .%[A],
which will be used hereafter (‘%’ can be read as ‘match any label’).

Conjunction, disjunction, and existential quantification can be found in many match-
based languages. TQL, however, has the full power of first-order logic, hence we can also
express universal quantification and negation of arbitrary formulas. This will be discussed
later.

Finally, TQL logic also includes a recursion operator that can be used, for example, to
define another derived path operator, .%*[A], that matches a path of arbitrary length
(this is formally described in Section 4.3).

For example, the following query finds, at any nesting depth, any publication $pub

where Suciu plays a role $role. It returns the title of the publication and the field where
Suciu appears, preserving the tags of both.
from $Bib |= .%*.$pub[ .title[$T]

And .$role[.lastname[Suciu]]

]

select $pub[ title[$T] | $role[Dan Suciu] ]

2.3. Restructuring the Data Source

In TQL, a subquery can appear wherever a tree expression is expected. This feature can
be exploited to use the nesting structure of the query in order to describe the nesting

† In Exists $x. .$x[Springer] we have two dots: the first belongs to Exists (as in ∃x.P (x)), while

the second belongs to .$x[Springer], and means $x[Springer] | T.
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structure of the result. For example, in our data source there is an entry for each book,
containing the list of its authors. We can restructure it to obtain an entry for each author,
containing the list of its books. The structure of the result can be visualized as follows,
where t[F]* indicates an arbitrary repetition t[F] | t[F] | ... of the t[F] structure:

author[ authorname[...]

| book[...]*

]*

Observe how this structure is reflected in the structure of the following query, with a
from-select for each *.

from $Bib |= .bib.book.author[$A]

select author[ authorname[$A]

| from $Bib |= .bib.book[author[$A]

| $OtherFields

]

select book[$OtherFields]

]

This query performs a nested loop. For each binding of $A to a different author, it re-
turns an edge author[authorname[$A]]|book[...]|...|book[...]], where book[...]

|...| book[...] is the result of the inner query, i.e. it contains one book element for each
book whose author is $A. As in a previous example, we extract, from the input book, all
the fields but the author.

This query also exemplifies the double role of variables inside formulas. The outer
formula provides the bindings for $A that satisfy the outer condition, while the inner
formula, which is evaluated once for each binding [$A = C], provides those bindings of
$A and $OtherFields that bind $A with C and satisfy the inner condition. Hence, we
may say that the first occurrence binds $A and the others verify that binding. This will
be formalized later on.

2.4. Checking Schema Properties and Key Constraints

In this section we show how TQL can be used to check structural properties of semistruc-
tured data. When a closed formula A expresses a property of interest, we can check it by
running a query like from Q |= A select success: this query returns an edge labeled
success if A holds for Q, and an empty tree otherwise.

As a first example we consider a query that verifies if the tag title is mandatory for
book elements in the $Bib document.

from $Bib |= bib[Not .book[Not .title[T]]]

select title_is_mandatory

The formula Not .book[Not .title[T]] means: it is not the case that there exists a
book whose contents do not contain any title, i.e., each book contains a title. TQL actually
features an operator !t[A] defined as Not .t[Not A] which we can directly use, as in
the following query. Here !book.title[T] is an abbreviation for !book[.title[T]],
hence it means: for every book there is a title.
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from $Bib |= bib[ !book.title[T] ]

select title_is_mandatory

The formula !t[A] is dual to .t[A] in the same sense as ∀x.A is dual to ∃x.A, or
∧ is dual to ∨. In TQL, every primitive operator has a derived dual; this implies that
negation can always be pushed inside any operator. Hence we can rewrite any query so
that only atomic formulas are negated. In fact, when negation appears in a query, in
most cases the TQL optimizer pushes it down to the atomic formulas (tree variables,
tree emptiness, comparisons), since negation is quite expensive. This is the reason why,
although we claim that unlimited negation is an important feature of TQL, we will see
very little explicit use of negation in our examples.

The next query verifies that title never appears twice in a field, showing once more
how | can be used to express horizontal properties.

from $Bib |= Not bib[.book[ .title[T] | .title[T] ] ]

select title_never_appears_twice

Another important property is whether a given tag is a key. There are many possible
generalizations of the relational notion of key to the semistructured case. The statement
below, for example, says that title is a mandatory field, and that it is impossible to find
two separate books with the same title (more precisely, with one title in common). As
above, the | operator can be used to express the fact that we have two distinct subtrees
with the same title. In traditional logical approaches, based on first order or modal logics,
we need some notion of “node identity”, or “world identifier”, in order to express the
existence of two distinct nodes that satisfy a given property.

from $Bib |=

bib[!book[.title[T]]

And foreach $X. Not (.book.title[$X] |

.book.title[$X])

]

select each_title_is_key

Of course, if the system knows that $Bib satisfies bib[!book[.title[T]]], this knowl-
edge implies that

bib[ !book[.title[T]]

And foreach $X. Not (.book.title[$X] | .book.title[$X]) ]

is equivalent (over $Bib) to

bib[foreach $X. Not (.book.title[$X] | .book.title[$X])].

Properties like bib[!book[.title[T]]] can be easily derived from type declaration
expressed using TQL logic (see Section 6.1), and the equivalence above is a simple con-
sequence of the rules that we present later (Section 4.2). We do not comment further on
this point, since this kind of optimization is not exploited by the current implementation
of TQL.

The next query checks that the $Bib element contains only elements labeled book, by
asking that each tag inside the outer bib is equal to book.
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from $Bib |= bib[foreach $x .$x[T] implies $x=book]

select only_book_inside_bib

This query can be rewritten using path operators as follows:

from $Bib |= bib[Not (.Not book)[T]]

select only_book_inside_bib

Here Not book is a tag-expression that stands for any tag different from book. Hence,
.Not book[T] means: there exists a subelement whose tag is different from book. Hence,
Not (.Not book[T]) means: there exists no subelement whose tag is different from book.

2.5. Extracting the Tags That Satisfy a Property

In a TQL query a tag variable can appear wherever a tag can appear. Hence, we can take
the query that checks whether title is a key, and substitute title with $k, as follows:

from $Bib |=

bib[!book[.$k[T]]

And foreach $X. Not (.book.$k[$X] |

.book.$k[$X])

]

select key[$k]

This query is well formed, and it returns the set of all subtags of book whose content
is a key for our set of books.

This is an instance of a general property of TQL. For every query Q that checks a
property P of a tag t, if we substitute t with a tag variable, we obtain a query that
finds the set of all tags that satisfy P . And if this set is finite, our implementation will
compute it.

This unique property is due to the fact that TQL does not constraint the appear-
ance of free variables in formulas. For example, in the query above we have a universal
quantification foreach $X of a formula with a free variable $k. We are not aware of
other query languages where such a quantification over an open formula is allowed. The
query evaluation algorithm we exploit to allow this kind of quantification is indeed non
standard, and quite sophisticated. It is described in (Conforti et al., 2003).

In the other query languages, this kind of generalization is definitely less trivial. For
example, in XQuery, one has to modify the structure of the query, for example by adding
an outer for clause to bind the variable that replaces that tag.

A similar generalization can be performed for the queries that check whether a label
is mandatory, or occurs only once, inside another one. We present below a query that
almost produces a DTD for any input XML file (modulo ordering). The query extracts
all the tags in the database and lists, for each one, all the labels that must or may appear,
and distinguishes among those the ones that may be repeated and the ones that appear
only once. This query may look frightening, at a first sight, but it is just a generalization
of the simple queries we presented above.

We first extract all tags that appear anywhere (.%*.$tag...) and contain some subtag
(.%*.$tag[.%[T]]). For each such tag, we return a structure



TQL: A Query Language for Semistructured Data 9

$tag[mandatory subtags[]*

| optional subtags[]*

| list subtags[]*

| non list subtags[]* ]

that computes two partitions of its subtags, the first that divides mandatory from optional
tags, and the second that divides list (i.e., repeatable) vs. non-list subtags.

A subtag is mandatory if it is never the case that we find $tag without $subtag inside:
Not (.%*.$tag[Not .$subtag[T]]).

A subtag is optional if there is a $tag element with a $subtag inside, and there is one
with no $subtag inside: .%*.$tag[ .$subtag[T]] And .%*.$tag[Not .$subtag[T]].

A subtag is a list-subtag if there is a $tag element where it appears twice:

.%*.$tag[ .$subtag[T] | .$subtag[T] ].

A subtag is a non-list-subtag if it sometimes appears once (.%*.$tag[ .$subtag[T]])
but it never appears twice: Not .%*.$tag[ .$subtag[T] | .$subtag[T] ].

Here is the query, defined over a database $parts.

from $parts |= .%*.$tag[.%[T]]

select $tag[ mandatory_subtags

[from $parts |= Not (.%*.$tag[Not .$subtag[T]])

select $subtag[]

]

| optional_subtags

[from $parts |= .%*.$tag[ .$subtag[T]]

And .%*.$tag[Not .$subtag[T]]

select $subtag[]

]

| list_subtags

[from $parts |= .%*.$tag[ .$subtag[T] | .$subtag[T] ]

select $subtag[]

]

| non_list_subtags

[from $parts |= .%*.$tag[ .$subtag[T]]

And Not .%*.$tag[ .$subtag[T] | .$subtag[T] ]

select $subtag[]

]

]

2.6. Recursion

TQL logic also includes two recursion operators (rec and maxrec), very similar to the µ

and ν operators (minimal and maximal fix point) of modal logic. These can be used to
traverse arbitrarily deep paths, generalizing the .%* operator we have seen before, and
to express recursive tree properties. Consider for example the following formula:

rec $Binary. 0 Or (%[$Binary] | %[$Binary])
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The formula describes a binary tree, defined as either an empty tree, or a tree with two
children, both of them binary.

The following query features a combination of horizontal analysis and vertical recur-
sion. In order to check whether the tag tt only appears once, we split the source into
one edge where tt only appears once, and the rest where tt never appears. In the first
edge, either tt appears immediately, and never more (tt[NoTtHere]), or it is not here,
but appears once inside (%[$ttOnce] And Not tt[T]). Hence, the formula looks like:

rec $ttOnce. ( tt[NoTtHere] Or (%[$ttOnce] And Not tt[T] ))

| NoTtHere

This is the actual query, where NoTtHere is expressed by Not .%*.tt[T]:

from $Source |= rec $ttOnce. ( tt[Not .%*.tt[T]] Or (%[$ttOnce] And Not tt[T] ))

| Not .%*.tt[T]

select ttAppearsOnce

As before, by substituting tt with a variable, we get a query that computes the tags
that only appear once.

All the queries in this section, as written here, have been checked on the TQL imple-
mentation. Running such queries on realistic pieces of data requires, in our prototype,
quite a long time. This is not surprising, since the current implementation is a ‘proof
of concept’, aimed at showing that such a language can be implemented. Much work
remains to be done on query optimization.

We hope that the reader is now curious about the complete and formal definition of
TQL. This is theme of the next sections.

3. TQL Data Model

We represent semistructured data as information trees. In this section we first define
information trees, then we give a syntax to denote them, and finally we define an equiva-
lence relation that determines when two different expressions denote the same information
tree. The syntax, and in a sense the semantics, of information trees corresponds to the
‘spatial’ subset of the ambient calculus, i.e. to ambients with no actions (Cardelli and
Gordon, 2000).

3.1. Information Trees

In this section, we formally define unordered edge-labeled trees as nested multisets; of
course, any other model for unordered labeled trees would do. Ordered trees could be
represented as nested lists. This option would have an impact on the logic, where the
symmetric A | B operator could be replaced by an asymmetric one, A;B. This change
might actually simplify some aspects of the logic, but in this paper we stick to the original
notion of unordered trees from (Cardelli and Gordon, 2000).

For a given set of labels Λ, we define the set IT of information trees, ranged over by
I, as the smallest collection such that:

— the empty multiset, {}, is in IT ; we use 0 as a notation for {};
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— if m is in Λ and I is in IT then the singleton multiset {〈m, I〉} is in IT ; we use m[I]
as a notation for {〈m, I〉};

— IT is closed under multiset union
⊎

j∈J M(j), where J is an index set, and M ∈ J →
IT ; we use Par j∈J M(j) as a notation for

⊎
j∈J M(j), and I | I ′ for binary union

I ] I ′.

3.2. Information Terms

We denote finite information trees by the following syntax of information term (info-
terms), borrowed from the ambient calculus (Cardelli and Gordon, 1998). We define a
function JF K mapping the info-term F to the denoted information tree.

Table 3.1. Info-terms and their information tree meaning

F ::= info-term
0 denoting the empty multiset
m[F ] denoting the multiset {〈m,F 〉}, where m∈Λ
F | F denoting multiset union

J0K =def 0 =def {}
Jm[F ]K =def m[JF K] =def {〈m, JF K〉}
JF ′ | F ′′K =def JF ′K | JF ′′K =def JF ′K ] JF ′′K

We often abbreviate m[0] as m[], or as m. We assume that Λ includes the disjoint union
of any basic data type of interest (integers, strings. . . ), hence 5[0], or 5, is a legitimate
info-term. We assume that “|” associates to the right, i.e. F | F ′ | F ′′ is read F | (F ′ | F ′′).

3.3. Congruence over Info-Terms

The interpretation of info-terms as information trees induces an equivalence relation
F ≡ F ′ on info-terms. It coincides with ambient-calculus congruence, when restricted to
this set of terms. This relation is called info-term congruence, and it can be axiomatized
as the minimal congruence that includes the commutative monoidal laws for | and 0, as
follows.

Table 3.2. Congruence over info-terms

F ≡ F

F ′ ≡ F ⇒ F ≡ F ′

F ≡ F ′, F ′ ≡ F ′′ ⇒ F ≡ F ′′

F ≡ F ′ ⇒ m[F ] ≡ m[F ′]
F ≡ F ′ ⇒ F | F ′′ ≡ F ′ | F ′′

F | 0 ≡ F

F | F ′ ≡ F ′ | F
(F | F ′) | F ′′ ≡ F | (F ′ | F ′′)
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This axiomatization of congruence is sound and complete with respect to the information
tree semantics. That is, F ≡ F ′ if and only if F and F ′ represent the same information
tree.

3.4. Information Trees and other data models

We can compare our information trees with three popular models for semistructured
data: OEM data (Papakonstantinou et al., 1996), UnQL trees (Buneman et al., 1996),
and XML Query Data Model (W3C, 2002c). The first obvious difference is that OEM and
UnQL models can be used to represent both trees and graphs, while here we focus only
on trees. Our approach can be applied to graphs as well, by substituting the tree-edge
constructor m[F ] with a graph-edge constructor label(fromNode, toNode), and the tree
logic with the corresponding graph logic defined in (Cardelli et al., 2002). However, we
believe that a full graph language would also need operators to create new nodes and to
hide the identity of nodes. For this reason, we prefer to focus here on the simpler issue of
trees, which is rich enough to warrant a separate study, and we leave the issues of node
hiding and generation to future studies (Cardelli et al., 2003).

UnQL trees are characterized by the fact that they are considered equivalent modulo
bisimulation, which essentially means that information trees are seen as sets instead of
multisets. For example, m[n[] | n[]] is considered the same as m[n[]]; hence UnQL trees
are more abstract, in the precise sense that they identify more terms than we do.

On the other hand, information trees are more abstract than OEM data, since OEM
data can distinguish a DAG from its tree-unfolding.

Our data model is essentially an unordered version of the XML Query Data Model,
as defined by the W3C (W3C, 2002c). Apart from order, the other main difference is
that the W3C model consider seven different kinds of nodes (elements, attributes, text,
. . . ), while we only consider one (essentially, elements), and the W3C model also assigns
a node identity to every node, which we do not consider. In practice, the node identity
allows two nodes to be compared in a way that distinguishes them if they have been built
by two different applications of a node constructor.

The W3C model describes data as node-labeled forests, while we talk in terms of edge-
labeled trees. The two are perfectly isomorphic. TQL data can be seen as node-labeled
forests by interpreting 0 as the empty forest, F | F ′ as forest union, and t[F ] as a tree,
rooted in a node labeled by t, whose children are the trees in the forest F .

Finally, the implemented version of TQL has a richer data model, since we consider
there two types of edges (or “nodes”), element edges t[F ] and text (or PCData) edges t,
which always lead to a leaf. Text edges have very little impact on the language structure,
so in this paper we simply assume that a piece of text t in the XML input is mapped to
a terminal edge t[0].

4. The Tree Logic

In this section we present the tree logic. The tree logic is based on Cardelli and Gordon’s
modal ambient logic, defined with the aim of specifying spatial and temporal properties
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of the mobile processes that can be described through the ambient calculus (Cardelli and
Gordon, 2000). The ambient logic is particularly attractive for us because it is equipped
with a large set of logical laws for tree-like structures, in particular logical equivalences,
which provide a foundation for query rewriting rules and query optimization. Moreover,
we hope to exploit the current research on decision procedures for (sublogics of) the
ambient logic (Calcagno et al., 2003; Cohen, 2002), to build tools to decide the problems
(query correctness, containment, equivalence) that we described in Section 1.

We start here from a subset of the ambient logic as presented in (Cardelli and Gordon,
2000), but we enrich it with information tree variables, label comparison, and recursion.
All the results in Sections 4.1 and 4.2 are standard results of the ambient logic transposed
to this specific variant. For this reason we do not detail here the proofs, but give only
the essential outline.

4.1. Formulas

The syntax of tree logic formulas is presented in the following table.
The symbol ∼, in the label comparison clause, stands for any label comparison operator

chosen in a predefined family Θ; we assume that Θ contains at least equality, the SQL
string matching operator like, and their negations. A recursion variable ξ can only appear
positively in its scope; this means that an even number of negations must be traversed
in the path that goes from each occurrence of ξ to its binder.

We assume that the quantifiers ∃x.A, ∃X .A, and µξ.A, bind their variables as far to
the right as possible; for example, ∃x.A ∧ A′ means ∃x.(A ∧ A′). Negation binds more
strongly than any other operator, so that ¬A∧A′ means (¬A)∧A′. No other precedence
rule is assumed.

Table 4.1. Formulas

η ::= label expression
n label constant
x label variable

A,B ::= formula
0 empty tree
η[A] location
A | B composition
T true
¬A negation
A ∧ B conjunction
X tree variable
∃x.A quantification over label variables
∃X .A quantification over tree variables
η ∼ η′ label comparison
ξ recursion variable
µξ.A recursive formula (least fixpoint); ξ may appear only positively



Giorgio Ghelli and Luca Cardelli 14

The interpretation of a formula A is given by a semantic map JAKρ, δ that maps A to a
set of information trees, with respect to the valuations ρ and δ. The valuation ρ maps
label variables x to labels (elements of Λ) and tree variables X to information trees, while
δ maps recursion variables ξ to sets of information trees.
Table 4.2. Formulas as sets of information trees

J0Kρ, δ =def {0}
Jη[A]Kρ, δ =def {ρ(η)[I] | I ∈ JAKρ, δ}
JA | BKρ, δ =def {(I | I ′) | I ∈ JAKρ, δ, I

′ ∈ JBKρ, δ}
JTKρ, δ =def IT
J¬AKρ, δ =def IT \ JAKρ, δ

JA ∧ BKρ, δ =def JAKρ, δ ∩ JBKρ, δ

JX Kρ, δ =def {ρ(X )}
J∃x.AKρ, δ =def

⋃
n∈Λ JAKρ[x7→n], δ

J∃X .AKρ, δ =def

⋃
I∈IT JAKρ[X 7→I], δ

Jη ∼ η′Kρ, δ =def if ρ(η) ∼ ρ(η′) then IT else ∅
Jµξ.AKρ, δ =def

⋂
{S ⊆ IT | S ⊇ JAKρ, δ[ξ 7→S]}

JξKρ, δ =def δ(ξ)

We say that F satisfies A under ρ, δ, when the information tree JF K is in the set
JAKρ, δ, and then we write F �ρ,δ A:

F �ρ,δ A =def JF K∈JAKρ, δ

We also talk about information trees satisfying a formula, as follows:

I �ρ,δ A =def I∈JAKρ, δ

The context will disambiguate the notation. In both cases we omit δ when it is the empty
function.

The semantic definition is probably easier to understand in terms of the associated
satisfaction relation. For example, the interpretation of ∃ corresponds to the following
property of the satisfaction relation:

F �ρ,δ ∃X .A ⇔def JF K ∈
⋃

I∈IT JAKρ[X 7→I], δ

⇔ ∃I ∈ IT . JF K ∈ JAKρ[X 7→I], δ

⇔ ∃I ∈ IT . F �ρ[X 7→I],δ A

Along the same lines, one can prove the following properties of conjunction and negation:

F �ρ,δ ¬A ⇔ ¬(F �ρ,δ A)
F �ρ,δ A ∧ B ⇔ F �ρ,δ A ∧ F �ρ,δ B

The | case is characterized by the following property:

F �ρ,δ A | B
⇔def ∃I ′, I ′′. JF K = I ′ | I ′′, I ′∈JAKρ, δ, I ′′∈JBKρ, δ

⇔ ∃I ′, I ′′, F ′, F ′′. JF K = I ′ | I ′′, I ′ = JF ′K, I ′′ = JF ′′K, F ′ �ρ,δ A, F ′′ �ρ,δ B
⇔ ∃F ′, F ′′. JF K = JF ′ | F ′′K, F ′ �ρ,δ A, F ′′ �ρ,δ B
⇔ ∃F ′, F ′′. F ≡ F ′ | F ′′, F ′ �ρ,δ A, F ′′ �ρ,δ B.
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We list the essential property of each operator in Table 4.3 below. One may use these
properties as a definition of the satisfaction relation, as done in the original ambient-
logic paper (Cardelli and Gordon, 2000); we follow here the style of (Caires and Cardelli,
2003), because it works better with the recursion operator.

The semantics of µξ.A is defined here as the least fixpoint of a function that maps a set
of trees S to a set of trees JAKρ, δ[ξ 7→S]. The definition above is actually formulated in terms
of the least (

⋂
) pre-fixpoint, which coincides, by standard lattice-theory arguments, with

the least fixpoint of λS. JAKρ, δ[ξ 7→S], since that function is monotone in S (Lemma 2). This
definition of the semantics induces, on the satisfaction relation, the following property:
F �ρ,δ µξ.A ⇔ F �ρ,δ A{ξ ← µξ.A} (Lemma 3).

The valuation ρ is the mechanism that connects our logic to pattern matching; for
example, m[n[0]] is in Jx[X ]Kρ, δ if ρ maps x to m and X to n[0]. The process of finding
all possible ρ’s such that I ∈ JAKρ, δ is our logic-based way of describing the process of
finding all possible answers to a query with respect to a database I.

Table 4.3. Some properties of satisfaction

F �ρ,δ 0 ⇔ F ≡ 0
F �ρ,δ η[A] ⇔ ∃F ′. F ≡ ρ(η)[F ′] ∧ F ′ �ρ,δ A
F �ρ,δ A | B ⇔ ∃F ′, F ′′. F ≡ (F ′ | F ′′) ∧ F ′ �ρ,δ A ∧ F ′′ �ρ,δ B
F �ρ,δ T
F �ρ,δ ¬A ⇔ ¬(F �ρ,δ A)
F �ρ,δ A ∧ B ⇔ F �ρ,δ A ∧ F �ρ,δ B
F �ρ,δ ∃x.A ⇔ ∃m∈Λ. F �ρ[x7→m],δ A
F �ρ,δ ∃X .A ⇔ ∃I∈IT . F �ρ[X 7→I],δ A
F �ρ,δ η ∼ η′ ⇔ ρ(η) ∼ ρ(η′)
F �ρ,δ µξ.A ⇔ F �ρ,δ A{ξ ← µξ.A}
F �ρ,δ X ⇔ JF K = ρ(X )
F �ρ,δ ξ ⇔ JF K ∈ δ(ξ)

Most of the properties in Table 4.3 are easy to prove. For the recursive case, we need a
couple of lemmas.

Lemma 1 (Substitution).

JAKρ, δ[ξ 7→JA′Kρ, δ] = JA{ξ ← A′}Kρ, δ

Lemma 2 (Monotonicity). For any A, if ξ appears only positively in A, then

S ⊆ S′ ⇒ JAKρ, δ[ξ 7→S] ⊆ JAKρ, δ[ξ 7→S′].

If ξ appears only negatively, then

S ⊆ S′ ⇒ JAKρ, δ[ξ 7→S] ⊇ JAKρ, δ[ξ 7→S′].

Lemma 3 (Properties of Satisfaction). The properties of Table 4.3 hold.

Proof. A few cases are proved in the text before the table; the others are trivial, apart
from the recursive case.
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For the property

F �ρ,δ µξ.A ⇔ F �ρ,δ A{ξ ← µξ.A},
we first observe that λS. JAKρ, δ[ξ 7→S] is monotone by Lemma 2, since ξ only appears
positively in A. Hence, by Knaster-Tarski lemma, Jµξ.AKρ, δ is a fixpoint of that function,
i.e. (1): Jµξ.AKρ, δ = JAKρ, δ[ξ 7→Jµξ.AKρ, δ]. The thesis now follows:

F �ρ,δ µξ.A ⇔ (By def.) JF K ∈ Jµξ.AKρ, δ

⇔ (By 1) JF K ∈ JAKρ, δ[ξ 7→Jµξ.AKρ, δ]

⇔ (By Lemma 1) JF K ∈ JA{ξ ← µξ.A}Kρ, δ

⇔ (By def.) F �ρ,δ A{ξ ← µξ.A}

4.2. Some Derived Operators

As usual, negation allows us to define many useful derived operators, as described in the
following table.

Table 4.4. Derived Operators

η[⇒ A] =def ¬(η[¬A]) A || B =def ¬(¬A | ¬B)
F =def ¬T A ∨ B =def ¬(¬A ∧ ¬B)
∀x.A =def ¬(∃x.¬A) ∀X .A =def ¬(∃X .¬A)
νξ.A =def ¬(µξ.¬A{ξ ← ¬ξ})

F � m[⇒ A] means that ‘it is not true that, for some F ′, F ≡ m[F ′] and not F ′ � A’,
i.e. ‘if F has the shape m[F ′], then F ′ � A’. To appreciate the difference between m[A]
and its dual m[⇒ A], consider the following statements.

— F is a book where Date is an author: F � book [.author [Date]]
— If F is a book, then Date is an author: F � book [⇒ .author [Date]]

F � A || B means that ‘it is not true that, for some F ′ and F ′′, F ≡ F ′ | F ′′ and F ′ � ¬A
and F ′′ � ¬B’, which means: for every decomposition of F into F ′ | F ′′, either F ′ � A
or F ′′ � B. To appreciate the difference between the | and the || operators, consider the
following statements.

— There exists a decomposition of F into F ′ and F ′′, such that F ′ satisfies book [A], and
F ′′ satisfies T; i.e., there is a book inside F that satisfies A: F � book [A] | T

— For every decomposition of F into F ′ and F ′′, either F ′ satisfies book [⇒ A], or F ′′

satisfies F; i.e., every book inside F satisfies A: F � book [⇒ A] || F
The dual of the least fixpoint operator µξ.A is the greatest fixpoint operator νξ.A; this
operator is not very useful in the present context, since we only use TQL to query finite
trees. For example, on finite trees, both µξ.0 ∨ m[ξ] and νξ.0 ∨ m[ξ] describe every
information tree that matches m[m[. . .m[0] . . .]]. However, the infinite tree m[m[. . .]] is
only matched by νξ.0 ∨m[ξ].

Satisfaction over the derived operators enjoys the following properties. The first two
are obvious, while the next two are more subtle, and include a coinduction principle.
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Again, these properties form the basis for a pattern matching algorithm. We omit the
obvious properties of F, disjunction, and universal quantification.

Table 4.5. Some properties of satisfaction for derived operators

F �ρ,δ η[⇒ A]⇔ ∀F ′. (F ≡ ρ(η)[F ′] ⇒ F ′ �ρ,δ A)
F �ρ,δ A || B ⇔ ∀F ′, F ′′. F ≡ F ′ | F ′′ ⇒ (F ′ �ρ,δ A ∨ F ′′ �ρ,δ B)
F �ρ,δ νξ.A ⇔ F �ρ,δ A{ξ ← νξ.A}
F �ρ,δ νξ.A ⇔ ∃B. F �ρ,δ B ∧ ∀F ′. F ′ �ρ,δ B ⇒ F ′ �ρ,δ A{ξ ← B}

Many logical equivalences have been derived for the ambient logic, and are inherited
by the tree logic. These equivalences can be exploited by a query logical optimizer. For
example, the properties we list below can be used to reduce the size of the formula to
be evaluated; the first six may generate a F/T, the last six would propagate it. More
equations are listed in Appendix B.

Table 4.6. Some equations

η[A] ∧ 0 ⇔ F η[⇒ A] ∨ ¬0 ⇔ T
η[A] ∧ η′[A′] ⇔ η[A ∧A′] ∧ η = η′ η[⇒ A] ∨ η′[⇒ A′] ⇔ η[⇒ A∨A′] ∨ η 6= η′

η[A] ∧ (η′[A′] | η′′[A′′] | A′′′) ⇔ F η[⇒ A] ∨ (η′[⇒ A′] || η′[⇒ A′] || A′′′) ⇔ T
η[F] ⇔ F η[⇒ T] ⇔ T
F || F ⇔ F T | T ⇔ T
A | F ⇔ F A || T ⇔ T

4.3. Path Formulas

All query languages for semistructured data provide some way of retrieving all data that
is reachable through a path described by a regular expression. The tree logic is powerful
enough to express this kind of queries. We show this fact here by defining a syntax for
path expressions, and showing how these expressions can be translated into the logic.
This way, we obtain a more compact and readable way of expressing common queries, as
partially exemplified in Section 2.

Consider the following statement: X is some book found in the BOOKS collection,
and some author of X is Abiteboul . We can express it in the logic using the m[A] | T
pattern as:

BOOKS � book [X ∧ (author [Abiteboul ] | T)] | T

Using the special syntax of path expressions, we express the same condition as follows.

BOOKS � .book(X ).author [Abiteboul ]

Our path expressions support also the following features:

— Universally quantified paths: X is a book and every author of X is Abiteboul.

BOOKS � .book(X )!author [Abiteboul ]
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— Label negation: X is a book where Date is the value of a field, but is not the author.

BOOKS � .book(X ).(¬author)[Date]

— Path disjunction: X is a book that either deals with SSD or cites some book Y that
only deals with SSD.

BOOKS � .book(X )(.keyword ∨ .cites.book(Y)!keyword)[SSD]

— Path iteration (Kleene star): X is a book that either deals with SSD, or from which
we can reach, through a chain of citations, a book that deals with SSD.

BOOKS � .book(X )(.cites.book)∗.keyword[SSD]

— Label matching: there exists a path through which we can reach some field X whose
label contains e and mail (% matches any substring).

BOOKS � (.%)∗(.%e%mail%)[X ]

We now define the syntax of paths and its interpretation.

Table 4.7. Path formulas

α ::= label matching expression
η matches any n such that n like η

¬α matches whatever α does not match
β ::= path element

.α some edge matches α

!α each edge matches α

p, q ::= path
β elementary path
pq path concatenation
p∗ Kleene star
p ∨ q disjunction
p(X ) naming the tree at the end of the path

A path-based formula p[A] can be translated into the tree logic as shown below.
We first define the tree formula Matches(x, α) as follows:

Matches(x, η) =def x like η

Matches(x,¬α) =def ¬Matches(x, α)

Path elements are interpreted by a translation, J Kp, into the logic, using the patterns
m[A] | T and m[⇒ A] || F that we have previously presented:

J.α[A]Kp =def (∃x.Matches(x, α) ∧ x[JAKp]) | T
J!α[A]Kp =def (∀x.Matches(x, α) ⇒ x[⇒ JAKp]) || F

General paths are interpreted as follows. p∗[A] is recursively interpreted as ‘either A
holds here, or p∗[A] holds after traversing p’. Target naming p(X )[A] means: at the end of
p we find X , and X satisfies A; hence it is interpreted using logical conjunction. Formally,
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path interpretation is defined as shown below; path interpretation translates all non-path
operators as themselves, as exemplified for T and |.

Jpq[A]Kp =def Jp[q[A]]Kp Jp∗[A]Kp =def µξ.A ∨ Jp[ξ]Kp

J(p ∨ q)[A]Kp =def Jp[A]Kp ∨ Jq[A]Kp Jp(X )[A]Kp =def Jp[X ∧ A]Kp

JTKp =def T JA | A′Kp =def JAKp | JA′Kp

5. The Tree Query Language

In this section we build a full query language on top of the logic we have defined.

5.1. The Query Language

A query language must provide the following functionalities:

— binding and selection: a mechanism to select values from the database and to bind
them to variables;

— construction of the result: a mechanism to build a result starting from the bindings
collected during the previous stage.

Our Tree Query Language (TQL) uses the tree logic for binding and selection, and tree
building operations to construct the result. Logical formulas A are as previously defined.

Table 5.1. TQL queries

Q ::= query
from Q � A select Q′ valuation-collecting query
X matching variable
0 empty result
Q | Q composition of results
η[Q] nesting of result
f(Q) tree function, for any f in a fixed set Φ

We allow some tree functions f , chosen from a set Φ of functions of type IT → IT ,
to appear in the query. For example:

— count(I), which yields a tree n[0], where n is the cardinality of the multiset I;
— sum(I), yielding n[0], where n is the sum of (the multiset of) all the integers i such

that i[. . .] appears in I.

In the implemented systems, the set Φ can be extended by the user with any Java function
with an appropriate signature.

The definition of free variables in a query is standard, except for the from Q �
A select Q′ case. The binder Q � A computes valuations for all the variables that
are free in A and uses them to evaluate Q′, hence it binds in Q′ all variables that are
free in A; this is formalized in the first line in the following table.

Table 5.2. Free variables in TQL queries

FV (from Q � A select Q′) =def FV (Q) ∪ (FV (Q′) \ FV (A))
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FV (X ) =def {X}
FV (0) =def {}
FV (Q | Q′) =def FV (Q) ∪ FV (Q′)
FV (η[Q]) =def FV (η) ∪ FV (Q)
FV (f(Q)) =def FV (Q)

from Q � A, Q′ � A′ select Q′′ is an abbreviation for from Q � A select from Q′ �
A′ select Q′′.

5.2. Query Semantics

Hereafter V ranges over finite sets of variables V1, ...,Vn, where each variable Vi is either
an information tree variable X , whose universe U (X ) is defined to be the set IT of all
information trees, or a label variable x, whose universe U (x) is defined to be the set Λ of
all labels. ρV ranges over valuations with schema V, i.e. finite domain functions mapping
each Vi∈V to an element of U (Vi).

The semantics of a query is defined with respect to a ‘context valuation’ ρV, that binds
all the variables that occur free in the query. This context valuation is used to bind some
top-level names, like $Bib in Section 2, to the documents to be queried. Moreover, in a
query from Q � A select Q′, the binder Q � A generates the context valuations that will
be used to evaluate Q′, by enriching the current context valuation with values for the
variables in FV (A).

The semantics of a binder and of a query are defined in the following table.
A binder Q � A denotes a function that takes one valuation ρV such that V ⊇ FV (Q)

and returns a set of valuations JQ � AKρV . More precisely, it returns all valuations ρ′V
′

that extend the context valuation ρV and such that JQKρV �ρ′V′ A. The notation ρ′V
′ ⊇

ρV means that the graph of the function ρ′V
′

includes that of ρV. This means that
V′ ⊇ V and that ρ′V

′
and ρV coincide over V, i.e. the new valuations do not change the

already defined variables, but assign values to the other free variables.
A query Q denotes a function that takes a valuation ρV such that V ⊇ FV (Q) and

returns a tree JQKρV . A query from Q � A select Q′ is evaluated by evaluating the
subquery Q′ once for each valuation ρ′ that is computed by the binder; all the resulting
trees JQ′Kρ′ are then combined using Par , the n-ary version of the binary operator |,
defined in Section 3.

Table 5.3. Query semantics

JQ � AKρV = {ρ′V′ | V′ = V ∪ FV(A), ρ′V
′ ⊇ ρV, JQKρV �ρ′V′ A}

JX KρV = ρV(X )

J0KρV = 0

JQ | Q′KρV = JQKρV | JQ′KρV

Jm[Q]KρV = m[JQKρV ]

Jx[Q]KρV = ρV(x)[JQKρV ]
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Jf(Q)KρV = f(JQKρV)
Jfrom Q � A select Q′KρV = Parρ′V′∈JQ�AKρV

JQ′Kρ′V′

According to this interpretation, the result of a query from Q � A select Q′ can be an
infinite multiset. Therefore, in a nested query, the database Q can be infinite, even if
we start from a finite initial database. Obviously, one would not like this to happen in
practice. One possible solution is to syntactically restrict Q to a variable X . Another
solution is to have a static or dynamic check on the finiteness of the result; the static-
check option is discussed in Section 5.4. The current implementation of TQL executes
a run-time test that, whenever JQ � AKρV is infinite, raises an ‘infinite result’ run-time
exception. We discuss this theme in the next two subsections.

5.3. Safe Queries

It is well-known that disjunction, negation, and universal quantification create ‘safety’
problems in logic-based query languages. The same problems appear in our query lan-
guage.

Consider for example the following query:

from DB � (author [X ] ∨ autore[Y]) | T
select author [X ] | autore[Y]

Intuitively, every entry in DB that is an author binds X but not Y, and vice-versa for
autore entries. Formally, an unbound variable corresponds to an infinite amount of valu-
ations; for example, if ρ(DB) = author [m[]], then JDB � (author [X ] ∨ autore[Y]) | TKρ

is the infinite set of triples:

{(DB 7→author [m[]], X 7→m[], Y 7→I) | I ∈ IT } .

Negation creates a similar problem. Consider the following query.

from DB � ¬author [X ]
select notAuthor [X ]

Its binder, with respect to the above context valuation, generates the following infinite
set of bindings:

{(DB 7→author [m[]], X 7→I) | I ∈ (IT \ {m[]})} ,

and the query has the following infinite result:

Par I∈(IT \{m[]}) notAuthor [I]

Some queries generate either a finite or an infinite tree, depending on the context
valuation. For example, if A is a closed formula, then we have:

JDB � A ∧ ¬X Kρ = {ρ′ | ρ′ ⊇ ρ, ρ(DB) �ρ′ A ∧ ¬X }
= {ρ′ | ρ′ ⊇ ρ, ρ(DB) � A, ρ′(X ) 6= ρ(DB) }

=
{
∅ if ¬ρ(DB) � A
{ρ′ | ρ′ ⊇ ρ, ρ′(X ) 6= ρ(DB) } if ρ(DB) � A
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Hence the query

from DB � A ∧ ¬X select a[X ]

returns an infinite tree if ρ(DB) � A, and the empty tree otherwise.
We say that a query is safe when its semantics is always finite, independently of the

context valuation. We say that a formula A is safe with respect to a set of bound variables
V when, for each X /∈ (V ∪ FV (A)) and for each valuation ρ for V ∪ X , its semantics
JX � AKρ is finite; in this case, we also say that, if the variables in V are bound, then A
binds its other free variables.

Formula and query safety are undecidable. Consider again the formula A ∧ ¬X ; it
generates an infinite set of bindings if and only if is applied to a database I such that
I �ε A. Hence, it is safe iff A is unsatisfiable, i.e. ¬A is valid. But validity is undecidable
for the tree logic (Charatonik and Talbot, 2001).

Unsafe formulas are difficult to evaluate since they return an infinite set. But safe
formulas can be problematic too, since a safe formula may in general contain an unsafe
subformula. For example, the formula ((¬autore[X ])∧author [X ]) is safe but the first con-
junct is not. The formula ∀x. y[¬(x[T])] is safe, but the subformula inside the quantifier
is not.

This problem has been traditionally confronted by defining a decidable subclass of
‘hereditarily finite’ queries with the property that both the query and all its subqueries
yield finite results. Then one defines a larger, and still decidable, class of queries that
can easily be rewritten in this ‘hereditarily finite’ form. Queries in this larger class are
evaluated, while every other query is discarded as ‘not statically safe’ (Ullman, 1982;
Gelder and Topor, 1991; Abiteboul et al., 1995).

This approach is not very satisfactory, since many safe queries have to be discarded,
and because complex syntactic conditions have to be chosen, in order to capture a large
enough class of queries. The main advantage of this traditional approach, when applied to
relational queries, is that the static-safeness conditions can be chosen so that the allowed
queries can be translated into an efficient algebraic expression. We are not interested into
this aspect since we want here to search for a new tree-relational algebra better suited
for tree query languages, rather than studying the translation of TQL to traditional
relational algebras.

For these reasons, we pursue here a different road: we define an evaluation mechanism
that works with every formula, safe or unsafe. The mechanism is based on a finite repre-
sentation of every computed set of valuations, finite or infinite. This mechanism allows
us to evaluate every binder as it is, with no need to discard some as unsafe or to rewrite
others to a more acceptable form. In this way, our optimizer is free to rewrite any for-
mula into any other formula, without worrying about syntactic-safety conditions. This
approach is not new in the database field; it can be described as a generalization of the
constraint database approach (Kanellakis, 1995; Kuper et al., 2000).

When the top-down evaluation of a binder is completed, the final result may be either
finite or infinite, even if the intermediate results were infinite. At this point, if the com-
puted set of bindings R is infinite, we raise a run-time error, since we are not interested,
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in the current implementation, in defining a finite representation of the infinite tree that
would result if we used R to evaluate the select branch.

Hence, although we have solved the problem of evaluating unsafe binders, we have still
a reason to try and statically identify a class of formulas which are guaranteed never
to return an infinite set of valuations: this would allow us to statically analyze a query
and tell the programmer that it is guaranteed never to raise an ‘infinite-result’ exception.
However, this is quite different from relational safety tests. In that case, only the formulas
that pass the test are translated into the algebra and executed. In our case, every formula
can be translated and executed, but, if it did not pass the test, we know that it may
return an infinite result.

The formula evaluation mechanism that copes with infinite results is described in
Section 7, and an example of a static analysis algorithm to characterize a decidable
subset of the safe formulas is described in Section 5.4.

A different solution, widely studied in the database literature, is to modify the seman-
tics so that each query is evaluated using, instead of Λ, the active domain, i.e. the subset
of Λ that only contains the labels found in the database and in the query. In this way,
only finite results can be generated.

This approach is not satisfactory since it makes the semantics of a query depend on
the constants appearing in parts of the database that may be completely unrelated to
the query itself; for this reason, we will not consider it here. Actually, the active domain
semantics is mostly advocated as a tool for theoretic studies about the expressive power
of different query languages, or as a tool in the study of ‘domain independent queries’, i.e.
queries whose semantics does not depend on the set Λ. For a discussion of the classical
problem of domain independent queries, and for more references, the reader may consult
any database textbook, such as (Abiteboul et al., 1995; Ullman, 1988).

5.4. Restricted queries

We give here an example of a simple static analysis algorithm to compute a subset of
the variables that are bound by a formula, and we use it to define a notion of restricted
queries such that every restricted query is statically guaranteed to be safe, i.e. to always
generate a finite answer. For simplicity, we do not consider here recursive operators.

We define a predicate V ` A . V (A binds V if V is bound) that implies, informally,
that for any I and for any valuation for V, A can only extract finitely many matches
from I; (see Property 1 below for a formal definition). The set of already-bound variables
V is only used when dealing with the equality operator.

The binding predicate is defined as follows. For simplicity, we assume that negation is
pushed down to the leaves of the formula. We have no rules for ¬X , T, and η[⇒ A], since
these formulas do not bind any variable. We omit the symmetric rules (y = x, n = x) for
the equality case.

Observe that, as specified by Property 1, the predicate only computes a decidable
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approximation of the semantic binding relation sembinds:

sembinds(V,A,V)
⇔def ∀I, ρV, V′ ⊇ V ∪ FV (A) ∪ {V}. {ρ′V′

(V) | ρ′V
′ ⊇ ρV, I �ρ′V′ A} is finite

Property 1: V ` A . V ⇒ sembinds(V,A,V)

For example, the closed formula A = ∀X . X ∧ ¬X , binds every variable, since it is
unsatisfiable and hence {ρ′V′

(V) | I �ρ′V′ A} is empty, while our predicate does not
prove V ` A . V for any V. We may perform a better analysis, but the true binding
relation is in general undecidable, since it is at least as hard as unsatisfiability of closed
formulas, as discussed before.

Table 5.4. The binding predicate

V ` F . V for any V V ` X . X
V ` (x = y) . x ⇔ y ∈ V V ` (x = n) . x

V ` (A ∧ B) . V ⇔ V ` A . V ∨V ` B . V V ` (A ∨ B) . V ⇔ V ` A . V ∧V ` B . V
V ` (A | B) . V ⇔ V ` A . V ∨V ` B . V V ` (A || B) . V ⇔ V ` A . V ∧V ` B . V
V ` η[A] . V ⇔ V ` A . V ∨ η = V
V ` (∀V ′. A) . V⇔ V ` A . V ∧ V ′ 6= V V ` (∃V ′. A) . V⇔ V ` A . V ∧ V ′ 6= V

Now we can talk about query safety. A query Q is safe with respect to a context
valuation ρV if safe(Q,V) holds. safe(from Q � A select Q′,V) holds if: all free variables
in A are bound by A, it is safe to evaluate Q, and it is safe to evaluate Q′ using the
valuations produced by A. Any other query is safe unless it contains an unsafe subquery.

Table 5.5. Query safety with respect to a context substitution that binds V

binds(V,A) =def V ∪ {V | V ` A . V}
safe(from Q � A select Q′,V)

⇔ FV (A) ⊆ binds(V,A) ∧ safe(Q,V) ∧ safe(Q′, binds(V,A))
safe(X ,V)
safe(0,V)
safe(Q | Q′,V) ⇔ safe(Q,V) ∧ safe(Q′,V)
safe(m[Q],V) ⇔ safe(Q,V)
safe(x[Q],V) ⇔ safe(Q,V)
safe(f(Q),V) ⇔ safe(Q,V)

The soundness of this analysis is expressed by the following properties.

Property 1. If I ranges over finite information trees, and ρV ranges over valuations
mapping the variables in V to labels or to finite trees, then:

V ` A . V ⇒ ∀I, ρV, V′ ⊇ V ∪ FV (A) ∪ {V}.
the set {ρ′V′

(V) | ρ′V
′ ⊇ ρV, I ∈ JAKρ′V′ , ε} is finite

Property 2. If ρV ranges over valuations mapping the variables in V to labels or to
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finite trees, then:

safe(Q,V) ⇒ ∀ρV. JQKρV is finite

The relation V ` A . V is very similar to the relations that are used to define static
notions of safety for relational calculus queries, but we are more liberal with respect to
quantified variables. For example, in (Gelder and Topor, 1991), a query is considered
allowed when (a) all free variables are bound and (b) for every quantification ∃x.A,
x is bound by A (other authors embed (b) condition in the definition of the binding
relation (Abiteboul et al., 1995)). We only require (a). ‡

This difference derives from the fact that the classical notion of static safety is meant
to prove that the query is finite and can be translated to an algebraic query defined
over finite relations. We are interested in the finiteness of the query result, but we are
going to translate it into an algebra of infinite tables, where we are able to implement
quantification over infinite structures, hence we do not need to require that quantified
variables are bound.

6. TQL Logic, Schemas, and Constraints

6.1. Schemas

Traditional path-based query languages explore the vertical structure of trees. Our logic
can easily describe the horizontal structure as well, as is common in schemas for semistruc-
tured data. (E.g. in XML DTDs, XDuce Types (H. Hosoya, 2000), and XSD Schemas (W3C,
2002b); however, the present version of our logic only considers unordered structures.)

For example, we can extract the following regular-expression-like sublanguage, inspired
by XDuce and XSD types. Every expression of this language denotes a set of information
trees:

0 the empty tree
A | B an (element of) A next to an (element of) B
A ∨ B either an A or a B
n[A] an edge n leading to an A
A∗ =def µξ. 0 ∨ (A | ξ) a finite multiset of zero or more A’s
A+ =def A | A∗ a finite multiset of one or more A’s
A? =def 0 ∨ A optionally an A
T anything

In general, we believe that a number of proposals for describing the shape of semistruc-
tured data can be embedded in our logic.

However, such proposals usually come with an efficient algorithm for checking mem-
bership or other properties. For example, an efficient algorithm to check subtyping for
XDuce types, based on a set-inclusion constraint solver, is presented in (Hosoya et al.,
2000). These efficient algorithms, of course, do not fall out automatically from a general
framework such as ours.

‡ Van Gelder-Topor analysis is actually more sophisticated; we are simplifying it for ease of comparison.
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6.2. Constraints

While types constrain the shape of data, it is often useful to constrain the values too;
the canonical examples are key constraints and referential integrity constraints.

We have already provided an example of key constraint in TQL in Section 2.4, and we
observed that many different notions of keys have been studied for semistructured data.
For example, Buneman et al. (Buneman et al., 2001a) define a notion of relative keys.
Consider a set of books whose type, expressed as in the previous section, is:

BOOKS � books [ book [ chapter [number [T] | contents[T] ]∗
]∗

]

we say that number is a key for chapter relative to books.book, and this means that, for
each specific book, it is never the case that two different chapters have the same num-
ber. Of course, number is not an absolute key for books.book.chapter, since two different
chapters (in two different books) may have the same number. This is expressed in TQL
by the following formula.

BOOKS � ¬books.book [ .chapter .number [X ] | .chapter .number [X ] ]

A positive version of the formula can be used to find any chapter number that violates
the constraint, and the involved book Y:

from BOOKS � books.book(Y)[ .chapter .number [X ] | .chapter .number [X ] ]
select ReusedChapterNumbers[ book [Y] | number [X ] ]

The notion actually defined in (Buneman et al., 2001a) is slightly more complex. The
relative key constraint we have shown is there described as

(books.book(chapter,(number))),

which is a special case of a more general constraint (Q, (Q′, (P1, . . . , Pn))).
(Q, (Q′, (P1, . . . , Pn))) specifies that, for each element e that can be reached through

the path Q from the root (each book) and for each two different subelements e′, e′′,
reachable from e through Q′ (e.g., two chapters of the same book) one key-path Pi exists
such that any subelement of e′ reachable through Pi is different from any subelement of
e′′ reachable through Pi. This is quite verbose to express in first-order logic, especially
because the actual definition of (Buneman et al., 2001a) must distinguish between node-
equality, used to compare e′ and e′′, from value-equality, used to compare their Pi-
reachable subelements.

When TQL logic is used, instead of first-order logic, the same notion becomes much
easier to formalize. It is fully captured by the following formula, where the | operator
allows us to express the fact that we are talking about two different subtrees with no
need to exploit any notion of node identifier:

∀X1 . . .∀Xn. ¬.Q[ .Q′[.P1[X1] ∧ . . . ∧ .Pn[Xn]] | .Q′[.P1[X1] ∧ . . . ∧ .Pn[Xn]] ]

Referential integrity constraints can be exemplified by considering the following schema,
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describing a list of books and a list of authors.

books[ book [ author [auth-id [T]]∗ | T ]∗ ]
| authors[ author [ id [T] | T ]∗ ]

Each author is identified by an auth-id ; the referential constraint specifies that the auth-
id ’s have to be included into the actual id ’s of registered authors. In TQL, this can be
expressed as follows.

∀X . .books.book .author .auth-id [X ] ⇒ .authors.author .id [X ]

As a conclusion, TQL logic allows types and constraints to be easily specified, and,
as we exemplified before, TQL allows one to write queries to check whether a constraint
holds, to discover where a constraint does not hold, and also to discover which constraints
hold (Section 2.4).

The next step is reasoning about constraints (and types), for example using them to
optimize queries and to pinpoint that some parts of a query are not compatible with
some constraint, or that some constraints are not mutually compatible, or that some
constraints are not compatible with some schemas.

If we restrict ourselves to the TQL version of families of constraints that have already
been studied, we can reuse known algorithms for deciding constraint implication; for
example, we can rephrase the study on the manipulation of key constraint of (Buneman
et al., 2001b), or the work about consistency between DTDs and constraints of (Fan and
Libkin, 2001), in terms of the TQL logic. Of course, the real issue is the generalization
of those result, to encompass a greater, or more natural, subset of TQL logic. To this
aim, we plan to exploit the emerging results about algorithms for checking the validity
of ambient logic formulas (Calcagno et al., 2003).

Although TQL is best suited to deal with constraints that are described in term of
paths, we can also express and compute constraints that are defined at the type level, such
as the UCM constraints defined in (Fan et al., 2001). In this case, however, a different
syntax to describe mutually recursive formulas would be useful.

7. Query Evaluation

In this section we define a query evaluation procedure. This procedure is really a refined
semantics of queries, which is intermediate in abstraction between the semantics of Sec-
tion 5.2 and an implementation algorithm, and constitutes a high level specification of
such an implementation.

The core of query evaluation is the binder evaluation procedure, used to execute the
from Q � A part of a query. It takes the value I of Q and a context valuation ρ, and
returns the set of all the valuations ρ′ such that I �ρ;ρ′ A. The basic feature of this
procedure is the fact that it does not compute ‘one valuation at a time’, in the style,
for example, of a Prolog interpreter, but it is based on set manipulation: the set of all
valuations associated with a pair I-A is obtained by combining, with set operations,
the sets of valuations extracted by the immediate subformulas of A. We chose set-based
evaluation because it is the only approach that guarantees reasonable performance in
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presence of large amounts of data, hence is the forced choice for database applications.
For this reason, our procedure is based on an algebra of tables (sets of valuations) and
trees, and is a precise, although abstract, specification of the actual TQL implementation.
The TQL implementation is described in (Conforti et al., 2002; Conforti et al., 2003),
and can be seen as the kernel of a realistic database-like implementation.

The procedure we describe here is abstract because it is based on the manipulation
of sets of valuations that may be infinite. In the implementation we adopt one specific
finite representation of these infinite tables, in terms of a finite disjunction of a set
of conjunctive constraints over the valuations, in the style of (Kanellakis, 1995; Kuper
et al., 2000). We are not going to describe it here, but more information can be found
in (Conforti et al., 2002; Conforti et al., 2003). Moreover, the implementation directly
supports the dualized logical operators indicated in the first table of Section 4.2. For
the sake of simplicity, we assume here instead that all derived operators are rewritten in
terms of the basic operators (which include, of course, negation) before execution.

Our query evaluation procedure shows how to directly evaluate a query to a resulting
tree. In our actual implementation, instead, we translate the query into an expression
over algebraic operators (which include also operators such as if-then-else, iteration and
fixpoint). These expressions are first syntactically manipulated to enhance their perfor-
mance. Then, they are evaluated. We ignore here issues of translation and manipulation
of intermediate representations.

Any practical implementation of a query language is based on the use of efficiently
implementable operators, such as relational join and union. We write our query evaluation
procedure in this style as much as possible, at least for the basic operators that we
consider here.

To describe the procedure, we first introduce an algebra over tables. Tables are sets of
valuations (here called rows). We then use this algebra to define the evaluation procedure.

7.1. The Table Algebra

As in the previous sections, V = V1, ...,Vn is a finite set of variables, and a row ρV with
schema V is a function that maps each Vi to an element of U (Vi). A table with schema
V is a set of rows over V. We use 1V to denote the largest table with schema V, i.e. the
set of all rows with schema V, and T V for the set P(1V) of all the tables with schema V.
We use RV as a meta-variable to range over T V, i.e. RV∈T V. We omit the superscript
V when it is irrelevant or it is clear from the context.

When V is the empty set, we have only one row over V, which we denote with ε; hence
we have only two tables with schema ∅, the empty one, ∅, and the singleton, {ε} = 1∅.

The table algebra is based on five primitive operators: union, complement, product,
projection, and restriction, each carrying schema information. They correspond to the
standard operations of relational algebra.

Table 7.1. The operators of table algebra

RV ∪V R′V =def RV ∪R′V ⊆ 1V

CoV(RV) =def 1V \RV ⊆ 1V
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V′ ∩V = ∅ : RV ×V, V′
R′V′

=def {ρ; ρ′ | ρ ∈ RV, ρ′ ∈ R′V′} ⊆ 1V∪V′

V′ ⊆ V :
∏V

V′RV =def {ρ′ | ρ′∈1V′
, ∃ρ ∈ RV. ρ ⊇ ρ′} ⊆ 1V′

FV(η, η′) ⊆ V : σV
η∼η′R

V =def {ρ | ρ ∈ RV, ρ+(η) ∼ ρ+(η′)} ⊆ 1V

Union, complement, product, and projection are completely standard. Since 1V is infinite,
the complement of a finite table is always infinite. The function ρV

+ , used to define
restriction, denotes the function that coincides with ρV over V, and maps every η 6∈ V
to η. Hence, for example, σV

x=nRV returns all rows ρ in RV such that ρ(x) = n. σV
x=yRV

returns all rows in RV such that ρ(x) = ρ(y). σV
n=nRV returns RV, while σV

n=mRV

returns ∅, if n 6= m.
We will also use some derived operators, defined in the following table.

Table 7.2. Table algebra, derived operators

V ⊆ V′ : ExtVV′(RV) =def RV ×V, V′\V 1V′\V ⊆ 1V′

RV ∩V R′V =def CoV(CoV(RV) ∪VCoV(R′V)) ⊆ 1V

RV 1V, V′
R′V′

=def ExtVV∪V′(RV) ∩V∪V′
ExtV

′

V∪V′(R′V′
) ⊆ 1V∪V′

Extension ExtVV′(RV) is a right-inverse of projection: it adds some new columns, and
fills them with every possible value. Extending a table always produces an infinite table
(unless V = V′). Intersection is standard, and is defined here by dualizing union. The
operator RV 1V, V′

R′V′
is well-known in the database field. It is called ‘natural join’,

and can be also defined as follows: a row ρV∪V′
belongs to RV 1V, V′

R′V′
iff its

restriction to V is in RV and its restriction to V′ is in R′V′
. One important property

of natural join is that it always yields finite tables when is applied to finite tables, even
if its definition uses the extension operator. Moreover, the optimization of join has been
extensively studied; for this reason we use this operator, rather than extension plus
intersection, in the definition of our query evaluation procedure.

7.2. Query Evaluation

We specify here the query evaluation procedure Q(Q)ρ and the binder evaluation proce-
dure B(I,A)ρ,γ .
B(I,A)ρ,γ takes an information tree I and a formula A and yields a table R that

contains all the valuations ρ′ with schema FV(A) \V such that I �(ρ;ρ′) A.
Q(Q)ρ takes a query Q and a row ρ that specifies a value for each free variable of Q,

and evaluates the corresponding information tree. A closed query “from Q � A select Q′”
is evaluated by first evaluating Q to an information tree I. Then, the set of valuations
R = B(I,A)ρ,ε is computed. Finally, Q′ is evaluated once for each row ρ of R; all the
resulting information trees are combined using |, to obtain the query result. This process
is expressed in the last case of the table below.

The binder evaluation procedure B(I,A)ρ,γ exploits a γ parameter to deal with re-
cursive formulas. Since a formula specifies a function from trees to tables, γ maps each
recursion variable ξ to a recursive function from information trees to tables. For any
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value of γ, γ̂ specifies its type, as follows:

∀ξ∈dom(γ). γ(ξ) : IT → T γ̂(ξ).

γ is only used in the rules for ξ and µξ.A.
When A contains no free recursion variable, the schema of the table returned by
B(I,A)ρV,γ is FV(A) \V. The situation is more comples when A contains free recursion
variables. For example, the schema of B(I, ξ)ρV,γ is γ̂(ξ). In general, the schema of the
table returned by B(I,A)ρV,γ is given by S(A,V, γ̂), where the schema function S is
specified in Table 7.4, and enjoys the expected property that S(A,V, ε̂) = FV(A) \V.

The notation {(x 7→ n)} represents a table that contains only the row (x 7→ n), and
similarly for {(X 7→I)}. Most definitions in Table 7.3 are easier to read if one ignores the
schema information.

Table 7.3. Binder and query evaluation

B(I,0)ρV,γ = if I = 0 then {ε} else ∅
B(I, n[A])ρV,γ = if I = n[I ′] then B(I ′,A)ρV,γ else ∅
B(I, x[A])ρV,γ = B(I, ρV(x)[A])ρV,γ if x ∈ V

B(I, x[A])ρV,γ = if I = n[I ′] then {(x 7→n)} 1{x},S(A,V,γ̂) B(I ′,A)ρV,γelse ∅ if x 6∈ V

B(I,A ∧ B)ρV,γ = B(I,A)ρV,γ 1S(A,V,γ̂),S(B,V,γ̂) B(I,B)ρV,γ

B(I,A | B)ρV,γ =
⋃S(A|B,V,γ̂)

I′,I′′∈{I′,I′′ | I′|I′′=I} (B(I ′,A)ρV,γ 1S(A,V,γ̂),S(B,V,γ̂) B(I ′′,B)ρV,γ)

B(I,T)ρV,γ = {ε}
B(I,¬A)ρV,γ = CoS(A,V,γ̂)(B(I,A)ρV,γ)
B(I,X )ρV,γ = if I = ρV(X ) then {ε} else ∅ if X ∈ V

B(I,X )ρV,γ = {(X 7→I)} if X 6∈ V

B(I,∃X . A)ρV,γ =
∏S(A,V,γ̂)
S(A,V,γ̂)\{X}B(I,A)ρV,γ

B(I,∃x. A)ρV,γ =
∏S(A,V,γ̂)
S(A,V,γ̂)\{x}B(I,A)ρV,γ

B(I, η ∼ η′)ρV,γ = σ
S(η∼η′,V,γ̂)
ρ+(η)∼ρ+(η′)1

S(η∼η′,V,γ̂)

B(I, µξ.A)ρV,γ = Fix (λM ∈IT → T S(µξ.A,V,γ̂).λY.B(Y,A)ρV,γ[ξ 7→M ])(I)
B(I, ξ)ρV,γ = γ(ξ)(I)

Q(X )ρV = ρV(X )
Q(0)ρV = 0

Q(Q | Q′)ρV = Q(Q)ρV | Q(Q′)ρV

Q(m[Q])ρV = m[Q(Q)ρV ]
Q(x[Q])ρV = ρV(x)[Q(Q)ρV ]
Q(f(Q))ρV = f(Q(Q)ρV)
Q(from Q � A select Q′)ρV = let I = Q(Q)ρV and RFV(A)\V = B(I,A)ρV, ε

in Parρ′∈RFV(A)\V Q(Q′)(ρV;ρ′)
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Table 7.4. The schema function S

S(0,V,Γ) = ∅
S(n[A],V,Γ) = S(A,V,Γ)
S(x[A],V,Γ) = S(A,V,Γ) ∪ ({x} \V)
S(T,V,Γ) = ∅
S(¬A,V,Γ) = S(A,V,Γ)
S(A ∧ B,V,Γ) = S(A,V,Γ) ∪ S(B,V,Γ)
S(A | B,V,Γ) = S(A,V,Γ) ∪ S(B,V,Γ)
S(X ,V,Γ) = {X} \V
S(∃X . A,V,Γ) = S(A,V,Γ) \ {X}
S(∃x. A,V,Γ) = S(A,V,Γ) \ {x}
S(η ∼ η′,V,Γ) = FV(η, η′) \V
S(µξ.A,V,Γ) = S(A,V,Γ[ξ 7→ ∅])
S(ξ,V,Γ) = Γ(ξ)

We explain now the evaluation procedure.
The 0 formula is evaluated by testing whether the subject is the empty tree, and

returning either the trivial singleton 1∅ or the empty set. Hence, in a query from Q �
0 select isZero, the select isZero branch will be executed once if, and only if, Q evaluates
to 0. More generally, if ρV is the context valuation and V′ = FV (A)\V, then 1V′

is the
set of valuations that corresponds to truth, i.e. to the case when JQKρV �ρV;ρ′V′ A holds
for any ρ′V

′
. Similarly, ∅ is the table that corresponds to the case when JQKρV �ρV;ρ′V′ A

does not hold, for any ρ′V
′
.

The formula n[A] tests whether I is an edge with label n. If it is not, the empty set of
binders is returned. Otherwise, the contents of I are matched against A. A formula x[A]
is evaluated in the same way if x is already bound by the context valuation. Otherwise,
if I is not an edge, no binder is returned, as in the previous case. If I = n[I ′], then
the result is built by joining {(x 7→n)} with the result R′V′

of matching I ′ with A. By
definition of natural join, if x is not bound by R′V′

, i.e. x /∈ V′, then {(x 7→n)} 1 R′V′

is just a cartesian product; otherwise, it is equivalent to σx=nR′V′
.

Truth and negation need no explanation. Set complement of a finite table produces
an infinite table, and is, in general, quite expensive to compute. For this reason, in our
implementation we actually minimize the use of this operator, by operating extensive
query rewritings.

Conjunction corresponds to natural join: a valuation satisfies I � A ∧ B if, and only
if, its restriction to the free variables of A satisfies I � A and its restriction to the free
variables of B satisfies I � B.

A valuation satisfies I � A | B if there exists a decomposition I ′ | I ′′ of I such that
I ′ � A and I ′′ � A. For this reason, we try all possible decompositions of the subject I,
and, for each of them, we compute the natural join of the sets of valuations for I ′ � A
and I ′′ � A. Any time a decomposition contributes some valuations, we put them in the
result (this is the aim of the big union outside). Since an information tree with n top-
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level branches admits 2n different decompositions, this operation is horribly expensive.
However, if A ⇒ ∃x. x[T], then A can only be satisfied by a one-edge subtree, hence
only the n different decompositions with shape n[I ′] | I ′′ have to be tried. The actual
implementation systematically exploits this observation; as a result, every decomposition
that appears in the queries presented in Section 2 is actually executed in linear time. This
optimization is based on a simple algorithm that tries to verify whether A ⇒ ∃x. x[T];
the simplicity and effectiveness of this algorithm is a consequence of the fact that all the
operators that appear in a TQL binder have a simple logic-based interpretation.

If X is bound by the context valuation, then Q � X checks whether JQKρ = ρ(X ). If
X is not bound, the valuation (X 7→JQKρV) is returned.

Projection is used to evaluate existential quantification, since, by definition:

ρ ∈
∏V

V\{x}R
V ⇔ ∃n ∈ Λ. (ρ; (x 7→n))∈RV

ρ ∈
∏V

V\{X}R
V ⇔ ∃I ∈ IT . (ρ; (X 7→I))∈RV

Since the rule for comparisons η ∼ η′ is subtle, we expand some special cases in
Table 7.5. The evaluation of η ∼ η′ always returns a table whose schema corresponds to
FV ({η, η′} \V). Hence, if both η and η′ are either constant or bound by ρV, it returns
a table with an empty schema, i.e. either 1∅ or ∅ (cases 3 and 5). If both η and η′ are
unbound variables, it returns the infinite table that defines the ∼ operator; for example,
when ∼ is equality, it returns the diagonal table that maps η, η′ to n, n (case 1).

Table 7.5. Some special cases of comparison evaluation

1. B(I, x ∼ x′)ρV,γ = σ
{x,x′}
x∼x′ 1{x,x′} if x 6∈ V, x′ 6∈ V

2. B(I, x ∼ x′)ρV,γ = σ
{x}
x∼ρV(x′)

1{x} if x 6∈ V, x′ ∈ V

3. B(I, x ∼ x′)ρV,γ = σ∅
ρV(x)∼ρV(x′)

1∅ if x ∈ V, x′ ∈ V

4. B(I, x ∼ n)ρV,γ = σ
{x}
x∼n1{x} if x 6∈ V

5. B(I, n ∼ n′)ρV,γ = σ∅n∼n′1
∅ (i.e. if n ∼ n′ then {ε} else ∅)

Finally, we have the recursive case. Fix (λM.λY.RV) denotes the minimal fixpoint of
a function mapping M to λY.RV; in a programming language, we would express this as:

letrec M = fun(Y).RV in M

So, we first transform the recursive formula into a recursive function from information
trees to tables, and then we apply this recursive function to the subject I. The correctness
of this evaluation technique is far from obvious, and is proved in detail in Appendix A.

To prove the correctness of the evaluation procedure we first need a couple of lemmas
to state that the types are correct.

Lemma 4. If A contains no free recursive variable, then:

S(A,V, ε) = FV (A) \V
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Proof. The thesis follows immediately from the following property:

dom(Γ) contains every free recursive variable in A
∧ ∀ξ∈dom(Γ). Γ(ξ) = ∅
⇒ S(A,V,Γ) = FV (A) \V \ dom(Γ)

This property can be proved by induction on the definition of S(A,V,Γ) and by case
inspection.

Lemma 5.

S(µξ.A,V,Γ) = S(A,V,Γ[ξ 7→ S(µξ.A,V,Γ)])

Proof. By induction on A. When A = µζ.B we commute the binding for ξ and ζ in
Γ[ξ 7→ . . .][ζ 7→ ∅]. When A = ξ we have:

S(ξ,V,Γ[ξ 7→ S(µξ.ξ,V,Γ)]) = (by def.) (Γ[ξ 7→ S(µξ.ξ,V,Γ)])(ξ) = S(µξ.ξ,V,Γ)

All other cases are immediate by induction.

Lemma 6.

B(I,A)ρV,γ ∈ T S(A,V,γ̂).

Proof. By induction on A and by cases. The only non-trivial case is recursion, where
we resort to Lemma 5.

We can now state the main lemma, which specifies the correctness of the binder eval-
uation procedure.

Lemma 7. Let A be a formula, V be a set of variables, let Ξ be a set {ξi} i∈I of recursion
variables that includes those that are free in A, and let γ be a function defined over Ξ
such that, for every ξi, γ(ξi)∈IT → T γ̂(ξi), where γ̂(ξi) is disjoint from V. then:

∀ρ ∈ 1V, I ∈ IT . B(I,A)ρ,γ = {ρ′ | ρ′ ∈ 1S(A,V,γ̂), I �(ρ;ρ′),d(γ,ρ′) A}

where d(γ, ρ) = λξ :Ξ.{I | ρ ∈ γ(ξ)(I)} .

Proof. See Appendix A.

Finally, the following theorem states that the query evaluation procedure is equivalent
to the query semantics of Section 5.2.

Theorem 1. ∀Q, V ⊇ FV (Q), ρV. Q(Q)ρV = JQKρV

Proof. By induction on Q and by cases.
Assume Q = from Q′ � A select Q′′. By definition:

Q(from Q′ � A select Q′′)ρV

= let I = Q(Q′)ρV and RFV(A)\V = B(I,A)ρV, ε in Parρ′∈RFV(A)\V Q(Q′′)(ρV;ρ′)

By induction, Q(Q′)ρV = JQ′KρV . Hence, by Lemma 7, and using Ξ = ∅ (A contains
no free recursion variables) we have:

RFV(A)\V = B(JQ′KρV ,A)ρV, ε = {ρ′ | ρ′ ∈ 1S(A,V,ε̂), JQ′KρV �(ρV;ρ′) A} (a)
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By induction, we also have that, for any ρ, Q(Q′′)ρ = JQ′′Kρ. Hence:

Q(from Q′ � A select Q′′)ρV

by def. = Parρ′′∈RFV(A)\V Q(Q′′)(ρV;ρ′′)

by (a) = Parρ′′∈{ρ′′ | ρ′′∈1S(A,V,ε̂), JQ′KρV�(ρV;ρ′′)A}
JQ′′K(ρV;ρ′′)

let ρ′V
′
= ρV; ρ′′: = Parρ′V′∈{ρV;ρ′′ | ρ′′∈1FV (A)\V, JQ′KρV�(ρV;ρ′′)A}

JQ′′K(ρ′V′ )
by ρ′V

′
= ρV; ρ′′: = Parρ′V′∈{ρ′V′ | V′=V∪FV (A), ρ′V′⊇ρV, JQ′KρV�

ρ′V′A}
JQ′′K(ρ′V′ )

by def. = Jfrom Q′ � A select Q′′KρV

The other cases are immediate.

8. Comparisons with Related Proposals

In this paper we describe a logic, a query language, and an abstract evaluation mecha-
nism.

The tree logic can be compared with standard first order formalizations of labeled
trees. Using the terminology of (Abiteboul et al., 1999), we can encode a labeled tree
with a relation Ref(source:OID, label:Λ, destination:OID). The nodes of the tree are the
OIDs (Object IDentifiers) that appear in the source and destination columns, and any
tuple in the relation represents an edge, with label label. Of course, such a relation can
represent a graph as well as a tree. It represents a forest if destination is a key for the
relation, and if there exists an order relation on the OIDs such that, in any tuple, the
source strictly precedes the destination.

First order formulas defined over this relation already constitute a logical language to
describe tree properties. Trees are represented here by the OID of their root. We can say
that, for example, “the tree x is t[]” by saying:

∃y. Ref (x, t, y) ∧ (∀y′, y′′. ¬Ref (y, y′, y′′)) ∧ (∀x′, x′′. x′′ 6= y ⇒ ¬Ref (x, x′, x′′))

There are some differences with our approach. First, our logic is ‘modal’, a term which
we use to mean that a formula A is always about one specific ‘subject’, which is the part
of the database currently being matched against A. First order logic, instead, does not
have an implicit subject: one can, and must, name a subject. For example, our modal
formula t[] implicitly describes the ‘current tree’, while its translation into first order
logic, given above, gives a name x to the tree it describes.

Being ‘modal’ is neither a merit nor a fault, in itself; it is merely a difference. Modality
makes it easier to describe just one tree and its structure, whereas it makes it more
difficult to describe a relationship between two different trees. Many modal logics have
been defined whose validity is decidable. This is not the case for TQL logic, but these
logics may provide hints for the definition of a decidable but expressive sublogic.

Apart from modality, another feature of the ambient logic is that its fundamental
operators deal with simple branches (t[A]) and with tree composition (A | A′), whereas
the first order approach describes everything in terms of existence of edges (Ref (o1, t, o2),
i.e. .t[. . .]). Composition is a powerful operator, at least for the following purposes:
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— It makes it easy to say that two properties are satisfied by two disjoint subtrees,
without using node or edge identity. For example, the following formula specifies that
title is not a key: ∃X . .title[X ] | .title[X ].

— It makes it easy to describe record-like structures both partially (b[] | c[] | T, meaning:
contains b[], c[], and possibly more fields) and completely (b[] | c[], meaning: contains
b[], c[] and only b[], c[]). Complete descriptions are difficult in the path-based approach.

— It makes it possible to bind a variable to ‘the rest of the record’, as in ‘X is everything
but the title’: paper [title[T] | X ].

This operator is what sets this logic apart from the other modal logics that have been
proposed for querying semistructured data, or for reasoning about schemas and types
for SSD, such as the logics proposed in (Alechina, 1999; Alechina et al., 2001; Calvanese
et al., 2002). Another essential difference is the fact that modal logics are better suited
to deal with graph structures, while our logic only deals with trees.

Composition is very similar to the ∗ operator of bunched logic and separation logic
(O’Hearn and Pym, 1999; O’Hearn et al., 2001). These different logics have been de-
fined independently of the ambient logic, with different motivations, but exhibit deep
similarities. The most important technical difference between these logics and the one
we presented here is that they only describe a flat horizontal structure, while the TQL
logic adds a second dimension, using the m[A] operator, that allows one to describe a
tree-shaped space.

TQL derives its essential from-select structure from set-theoretics comprehension, in
the SQL tradition, and this makes it similar to other query languages for semistructured
data, such as StruQL (Fernandez et al., 1997; Fernandez et al., 1998), Lorel (Abiteboul
et al., 1997; Goldman et al., 1999), XML-QL (Deutsch et al., 1999), Quilt (Chamberlin
et al., 2000), XQuery (Boag et al., 2002) and, to some extent, YATL (Cluet et al., 1998).
An in-depth comparison between the XML-QL YATL, and Lorel languages is carried out
in (Fernandez et al., 1999), based on the analysis of thirteen typical queries. In (Ghelli,
2001) we write those same queries in TQL. For the thirteen queries in (Fernandez et al.,
1999), their TQL description is quite similar to the corresponding XML-QL description,
with a couple of exceptions. First, those XML-QL queries that in (Fernandez et al.,
1999) are expressed using Skolem functions, have to be expressed in a different way in
TQL, since we do not have Skolem functions in the current version of TQL. However,
our Skolem-free version of these queries is not complex. Second, XML-QL does not seem
to have a general way of expressing universal quantification, and this problem shows up
in the query that asks for pairs of books with the same set of authors. We express this
query using the universal quantifier foreach: a pair $X,$Y matches the formula only if
every author for $X is an author for $Y too. We separate the two .book formulas using
| because, if we used ∧, every book would appear in the result, paired with itself (the
Lorel query that appears in (Fernandez et al., 1999) seems to exhibit this problem).
from $Bib |= foreach $Z. bib[ .book[$X And .author[$Z]]

|

.book[$Y And .author[$Z]]

]

select pair[original[$X] | copy[$Y]]
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The authors of (Fernandez et al., 1999) do not write the XML-QL version of this query,
but they say that: “XML-QL can express this with a rather complex, nested query, which
uses negation and the isEmpty predicate”.

TQL is also better than XML-QL-like languages at expressing queries dealing with the
non-existence of paths, such as ‘find all the papers with no title’ or ‘find all papers whose
only author, if any, is Buneman’. Lorel scores well in this case, thanks to the presence of
universal quantification.

Quilt, XQuery, and XDuce (H. Hosoya, 2000) are Turing complete, hence are more
expressive than the other languages we cited here. However, the binding mechanism
of Quilt and XQuery share the limitations of the path-based approaches of the other
languages of the StruQL-Lorel-UnQL-XML-QL family.

The presence of universal quantification in the binding mechanism is not the most
important difference between languages in this family and TQL. The most distinctive
feature of TQL is the declarative, rather than procedural, nature of its binding mecha-
nism.

As an example, consider the following query, which collects every work where Suciu
plays a role, and inverts the name with the role:

bib[from $Bib |= .%*.$B[ $A[Suciu] | $Rest ]

select $B[ Suciu[$A] | $Rest ]

]

In XQuery it would be expressed as follows,

<bib>

for $b in $Bib//*,

let $xx := $b/*,

for $y in $xx

where $y/data() = "Suciu"

return <xf:name($b)>

<Suciu>

xf:local-name($y)

</Suciu>,

{ op:except($xx,$y)}

</xf:name($b)>

<bib>

While the binding mechanism of XQuery requires the programmer to write a nested
loop to specify how the bindings are extracted from the data, in TQL one only specifies
the conditions that the variables $B, $A, and $Rest, should satisfy. This is even more
evident if one considers the query that verifies whether title is a key:

from $Bib |=

bib[!book[.title[T]]

And foreach $X. Not (.book.title[$X] |

.book.title[$X])

]

select each_title_is_key

In TQL, once the property is specified, the query is ready. In XQuery one has to do one
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more step: a specific algorithm to check whether the property is true has to be designed,
for example an algorithm that loops over all books, collects all titles in a multiset, and
finally checks whether this multiset contains repeated elements. Moreover, as we have
shown, the TQL program can be transformed in a program that finds every key, just by
changing a constant into a variable. The XQuery program would have to be rewritten,
since a different algorithm is needed.

Finally, a last essential feature of TQL is that it has a clean semantic interpretation,
which pays off in several ways. First, the semantics makes it possible to prove the cor-
rectness and completeness of a specific implementation. Moreover, it simplifies the task
of proving equivalences between different logic formulas or queries. To our knowledge,
no such formal semantics has been defined for YATL. The semantics of Lorel has been
defined, but looks quite involved, because of their extensive use of coercions. The seman-
tics of XQuery has been defined too, but is intermediate, in spirit, between our notions
of semantics (Section 5.2) and of abstract implementation specification (Section 7).

Other logic-based languages for semistructured data have been defined with a precise
semantics, but most of them focus on graphs rather than trees. For example, the language
defined in (Bidoit and Ykhlef, 1999) is based on a first-order logic enriched with a fixpoint
operator and with variables ranging over paths and graphs. The resulting language is very
different from ours, both for its non-modal character and for being focused on graphs,
although it may be interesting to try and import the idea of path variables in our logics.

9. Conclusions and Future Directions

We have defined a query language based on a logic that can also express types and
constraints. Many important optimization problems are based on the analysis of the re-
lationship between a query and a schema; a typical example is the removal of parts of a
query that are incompatible with the schema. The use of the same logical language for
queries, types, and constraints, should allow us to rephrase such problems in terms of im-
plications or equivalences of logical formulas. Other schema and query analysis problems,
like satisfiability of constraints (Arenas et al., 2002) or query path correctness (Colazzo
et al., 2002), can be similarly expressed. We may then be able to use ambient logic
techniques to approach these problems.

Our query language operates on information represented as unordered trees. One can
take different views of how information should be represented. For example as ordered
trees, as in XML, or as unordered graphs, as in semistructured data. We believe that each
choice of representation would lead to a (slightly different) logic and a query language
along the lines described here. We are currently looking at some of these options.

There are currently many proposals for languages for semistructured data that enrich
the regular-path-expression approach with mechanisms to describe tree shapes, instead
of linear paths only. Given the expressive power of general recursive formulas µξ.A, we
believe we can capture many such proposals, even though an important part of those
proposals is to describe efficient matching techniques.

In this study we have exploited a subset of the ambient logic. The ambient logic, and
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the calculus, also offer operators to specify and perform tree updates (Cardelli, 1999).
Possible connections with semistructured data updates should be explored.

An implementation of TQL, based on the implementation model we described, is avail-
able from http://tql.di.unipi.it/tql. The current prototype can be used to query
XML documents accessible through files or through web servers.
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Appendix A. Proof of Lemma 7

Lemma. Let A be a formula, V be a set of variables, let Ξ be a set {ξi} i∈I of recursion
variables that includes those that are free in A, and let γ be a function defined over Ξ
such that, for every ξi, γ(ξi)∈IT → T γ̂(ξi) and γ̂(ξi) is disjoint from V. then:

∀ρ ∈ 1V, I ∈ IT . B(I,A)ρ,γ = {ρ′ | ρ′ ∈ 1S(A,V,γ̂), I∈JAK(ρ;ρ′), d(γ,ρ′)}

where

d(γ, ρ) = λξ :Ξ.{I | ρ ∈ γ(ξ)(I)}

Proof. First observe that, even if d(γ, ρ) is defined for every ρ, we only care about
the result of its application to a ρ that belongs to 1S(A,V,γ̂). We prove the theorem by
induction on the size of A. For simplicity, we focus on the case when V = ∅, hence we
prove that:

∀I. B(I,A)ε,γ = {ρ | ρ∈1S(A,∅,γ̂), I∈JAKρ, d(γ,ρ)}

We first observe that for all A, γ, the following statements are logically equivalent; the
same is true if we reverse both ⊆ and ⇒, or if we consider set equality and ⇔.

∀I B(I,A)ε,γ ⊆ {ρ | ρ∈1S(A,∅,γ̂), I ∈ JAKρ, d(γ,ρ)}
∀ρ∈1S(A,∅,γ̂), I ρ ∈ B(I,A)ε,γ ⇒ I ∈ JAKρ, d(γ,ρ)

∀ρ∈1S(A,∅,γ̂) {I | ρ ∈ B(I,A)ε,γ} ⊆ JAKρ, d(γ,ρ)

We only consider the case when A = µξ.C; the other cases are far easier.
We proof the equality by considering the two inclusions:

B(I, µξ.C)ε,γ ⊆ {ρ | ρ∈1S(µξ.C,∅,γ̂), I∈Jµξ.CKρ, d(γ,ρ)}
{ρ | ρ∈1S(µξ.C,∅,γ̂), I∈Jµξ.CKρ, d(γ,ρ)} ⊆ B(I, µξ.C)ε,γ

We first prove that:

∀γ, I. B(I, µξ.C)ε,γ ⊆ {ρ | ρ∈1S(µξ.C,∅,γ̂), I∈Jµξ.CKρ, d(γ,ρ)}

By definition of B(I, µξ.C)ε,γ , this means:

∀γ, I. Fix (λM : IT → P(1S(µξ.C,∅,γ̂)).λY.B(Y, C)ε,γ[ξ 7→M ])(I)
⊆ {ρ | ρ∈1S(µξ.C,∅,γ̂), I∈Jµξ.CKρ, d(γ,ρ)}

This is equivalent to:

∀γ. Fix (λM : IT → P(1S(µξ.C,∅,γ̂)).λY.B(Y, C)ε,γ[ξ 7→M ])
⊆ λI. {ρ | ρ∈1S(µξ.C,∅,γ̂), I∈Jµξ.CKρ, d(γ,ρ)}

We prove it by showing that the r.h.s. is a fixpoint of the function λM.λY. . . .:

∀γ. (λM.λY.B(Y, C)ε,γ[ξ 7→M ])(λI. {ρ | ρ∈1S(µξ.C,∅,γ̂), I∈Jµξ.CKρ, d(γ,ρ)})
= λI. {ρ | ρ∈1S(µξ.C,∅,γ̂), I∈Jµξ.CKρ, d(γ,ρ)}

We apply β reduction; we abbreviate Jµξ.CKρ, d(γ,ρ) as Fρ:

∀γ. λY.B(Y, C)ε,γ[ξ 7→λI. {ρ | ρ∈1S(µξ.C,∅,γ̂),I∈Fρ}] = λI. {ρ | ρ∈1S(µξ.C,∅,γ̂), I∈Fρ}
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We reduce function comparison to pointwise comparison:

∀γ, I. B(I, C)ε,γ[ξ 7→λI. {ρ | ρ∈1S(µξ.C,∅,γ̂),I∈Fρ}] = {ρ | ρ∈1S(µξ.C,∅,γ̂), I∈Fρ}

The definition of Fρ (i.e., Jµξ.CKρ, d(γ,ρ)) implies that Fρ = JCKρ, d(γ,ρ)[ξ 7→Fρ]:

∀γ, I. B(I, C)ε,γ[ξ 7→λI. {ρ | ρ∈1S(µξ.C,∅,γ̂),I∈Fρ}] = {ρ | ρ∈1S(µξ.C,∅,γ̂), I∈JCKρ, d(γ,ρ)[ξ 7→Fρ]}

The proof follows immediately by induction, if we are able to prove that:

d(γ[ξ 7→ λI. {ρ | ρ∈1S(µξ.C,∅,γ̂), I ∈ Fρ}], ρ) = d(γ, ρ)[ξ 7→ Fρ]

The two functions coincide for ξ′ 6= ξ; when applied to ξ they yield:

d(γ[ξ 7→ λI. {ρ | ρ∈1S(µξ.C,∅,γ̂), I ∈ Fρ}], ρ)(ξ)
= {I | ρ ∈ {ρ | ρ∈1S(µξ.C,∅,γ̂), I ∈ Fρ}}
= {I | I ∈ Fρ}
= Fρ

= (d(γ, ρ)[ξ 7→ Fρ])(ξ)

We now prove the opposite inclusion:

∀γ, I. {ρ | ρ∈1S(µξ.C,∅,γ̂), I∈Jµξ.CKρ, d(γ,ρ)} ⊆ B(I, µξ.C)ε,γ

This is equivalent to:

∀γ, ρ∈1S(µξ.C,∅,γ̂). Jµξ.CKρ, d(γ,ρ) ⊆ {I | ρ∈B(I, µξ.C)ε,γ}

By the definition of Jµξ.CKρ, d(γ,ρ), it is sufficient to prove that:

∀γ, ρ∈1S(µξ.C,∅,γ̂). JCKρ, d(γ,ρ)[ξ 7→{I | ρ∈B(I,µξ.C)ε,γ}] ⊆ {I | ρ∈B(I, µξ.C)ε,γ}

Let γ′C,γ = γ[ξ 7→ λY.B(Y, µξ.C)ε,γ ].
Since d(γ′C,γ , ρ) = d(γ, ρ)[ξ 7→ {I | ρ∈B(I, µξ.C)ε,γ}], then, the statement above can be
rewritten as:

∀γ, ρ∈1S(µξ.C,∅,γ̂). JCKρ, d(γ′C,γ ,ρ) ⊆ {I | ρ∈B(I, µξ.C)ε,γ}

and this, by induction, is equivalent to:

∀γ, ρ∈1S(µξ.C,∅,γ̂). {I | ρ∈B(I, C)ε,γ′C,γ
} ⊆ {I | ρ∈B(I, µξ.C)ε,γ}

This can be deduced from:

∀γ, I. B(I, C)ε,γ′C,γ
⊆ B(I, µξ.C)ε,γ

We expand B(I, µξ.C)ε,γ :

∀γ, I. B(I, C)ε,γ′C,γ
⊆ Fix (λM : IT → P(1S(µξ.C,∅,γ̂)).λY.B(Y, C)ε,γ[ξ 7→M ])(I)

We unfold the fix point and apply it to I; we also expand γ′C,γ :

∀γ, I. B(I, C)ε,γ[ξ 7→λY.B(Y,µξ.C)ε,γ ] ⊆ B(I, C)ε,γ[ξ 7→Fix(λM.λY.B(Y,C)ε,γ[ξ 7→M])]

We now replace B(I, µξ.C)ε,γ at the left hand side with its definition.

∀γ, I. B(I, C)ε,γ[ξ 7→λY.Fix(λM. λY′.B(Y′,C)ε,γ[ξ 7→M])(Y)]

⊆ B(I, C)ε,γ[ξ 7→Fix(λM.λY.B(Y,C)ε,γ[ξ 7→M])]
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The two sides are equal.

Appendix B. Table of equivalences

Many logical equivalences have been derived for the ambient logic, and are inherited by
the tree logic. We list some of them here. These equivalences can be exploited by a logical
optimizer for queries.

Table B.1. Some equations

η[A] ∧ 0 ⇔ F η[⇒ A] ∨ ¬0 ⇔ T
η[A] ∧ η′[A′] ⇔ η[A ∧A′] ∧ η = η′ η[⇒ A] ∨ η′[⇒ A′] ⇔ η[⇒ A∨A′] ∨ η 6= η′

η[A] ∧ (η′[A′] | η′′[A′′] | A′′′) ⇔ F η[⇒ A] ∨ (η′[⇒ A′] || η′[⇒ A′] || A′′′) ⇔ T
η[A] ⇔ η[T] ∧ η[⇒ A] η[⇒ A] ⇔ η[T] ⇒ η[A]
η[F] ⇔ F η[⇒ T] ⇔ T
η[A ∧A′] ⇔ η[A] ∧ η[A′] η[⇒ A∨A′] ⇔ η[⇒ A] ∨ η[⇒ A′]
η[A ∨A′] ⇔ η[A] ∨ η[A′] η[⇒ A∧A′] ⇔ η[⇒ A] ∧ η[⇒ A′]
η[∃x.A] ⇔ ∃x.η[A] (x 6= η) η[⇒ ∀x.A] ⇔ ∀x.η[⇒ A] (x 6= η)
η[∀x.A] ⇔ ∀x.η[A] (x 6= η) η[⇒ ∃x.A] ⇔ ∃x.η[⇒ A] (x 6= η)
η[∃X .A] ⇔ ∃X .η[A] η[⇒ ∀X .A] ⇔ ∀X .η[⇒ A]
η[∀X .A] ⇔ ∀X .η[A] η[⇒ ∃X .A] ⇔ ∃X .η[⇒ A]
A | 0 ⇔ A A || ¬0 ⇔ A
A | A′ ⇔ A′ | A A || A′ ⇔ A′ || A
(A | A′) | A′′ ⇔ A | (A′ | A′′) (A || A′) || A′′ ⇔ A || (A′ || A′′)
T | T ⇔ T F || F ⇔ F
A | F ⇔ F A || T ⇔ T
A | (A′ ∨ A′′)⇔ (A | A′) ∨ (A | A′′) A || (A′ ∧ A′′) ⇔ (A || A′) ∧ (A || A′′)
A | ∃x.A′ ⇔ ∃x.A | A′ (x /∈FV(A)) A || ∀x.A′ ⇔ ∀x.A || A′ (x /∈FV(A))
A | ∃X .A′ ⇔ ∃X .A | A′ (X /∈FV(A)) A || ∀X .A′ ⇔ ∀X .A || A′ (X /∈FV(A))


