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TQoS: Transactional and QoS-aware selection
algorithm for automatic Web service composition

Joyce El Haddad, Maude Manouvrier, and Marta Rukoz

Abstract—Web Services are the most famous implementation of service oriented architectures that has brought some challenging
research issues. One of these is the composition, i.e. the capability to recursively construct a composite Web service as a workflow
of other existing Web services, which are developed by different organizations and offer diverse functionalities (e.g. ticket purchase,
payment), transactional properties (e.g. compensatable or not) and Quality of Service (QoS) values (e.g. execution price, success
rate). The selection of a Web service, for each activity of the workflow, meeting the user’s requirements, is still an important
challenge. Indeed, the selection of one Web service among a set of them that fulfill some functionalities is a critical task, generally
depending on a combined evaluation of QoS. However, the conventional QoS-aware composition approaches do not consider the
transactional constraints during the composition process. This paper addresses the issue of selecting and composing Web services
not only according to their functional requirements but also to their transactional properties and QoS characteristics. We propose a
selection algorithm that satisfies user’s preferences, expressed as weights over QoS criteria and as risk levels defining semantically
the transactional requirements. Proofs and experimental results are presented.

Index Terms—Web Service Selection, Automatic Composition, Transactional Web Service, Local Optimization of Quality of Service,
Workflow Patterns.
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1 INTRODUCTION

WEB Services (WSs) are the most famous implemen-
tation of service oriented architectures allowing

the construction and the sharing of independent and
autonomous softwares. Web service composition consists
in combining Web services, developed by different or-
ganizations and offering diverse functional (e.g. ticket
purchase, payment), behavioral (e.g. compensatable or
not) and non-functional properties (i.e. Quality of Service
values – e.g. execution price, success rate), to offer more
complex services.

The Web service composition can be view as a three-
steps process: (1) composite Web service specification,
(2) selection of the component Web services and (3)
execution of the composite Web services. At the first
step, the user submits the goal he/she wants the com-
posite service achieves, along with some constraints and
preferences that need to be satisfied [1]. Workflows can
be used to model the composite Web service specifica-
tion. During the second step, component Web services
fulfilling the user’s goal are selected among a set of
available services. This WS selection could be done by
hand (in this case, steps specification and selection are
integrated) or could be automatically decided by the
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Tassigny 75775 Paris Cedex 16 - France.
E-mail: elhaddad@lamsade.dauphine.fr,manouvrier@lamsade.dauphine.fr,
Marta.Rukoz@dauphine.fr

• Maude Manouvrier and Marta Rukoz are with WISDOM, Federation of
the three database research teams, LIP6 (Paris 6 University), LAMSADE
and CEDRIC (CNAM). http://wisdom.lip6.fr/

• Marta Rukoz is with Paris Ouest Nanterre La Défense University,
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system. When component WS are selected at design
time, the third step of the composition process consists
in executing the selected component WS. At run-time,
selection and execution of component WS are integrated
and the selection is described as dynamic. In this paper,
we focus on design-time WS selection and particularly
on automatic selection where the user is relieved as
much as possible from the composition process. We do
not focus on the execution step neither on the recovery
or re-planning problems.

While many works have been done for Web service
selection, designing a composite Web service to ensure
not only correct and reliable execution but also optimal
Quality of Service (QoS) remains an important challenge
[2]. Indeed, WSs composition based on transactional
properties ensures a reliable execution however an opti-
mal QoS composite Web service is not guaranteed. More-
over, composing optimal QoS Web services does not
guarantee a reliable execution of the resulting composite
Web service. Thus, QoS-aware and transactional-aware
should be integrated. However, the problem is generally
addressed from the QoS side or from the transactional
side separately. The conventional QoS-aware composi-
tion approaches [3], [4], [5], [6], [7] do not consider the
transactional constraints during the composition process,
likewise transactional-aware ones [8], [9], [10], [11], [12]
do not consider QoS. As far as we know, only [2]
proposes a composition model in design-time which
captures both aspects in order to evaluate the QoS of a
composite WS with various transactional requirements.
However, the authors do not consider the automatic
selection step and only analyze the impact of the trans-
actional requirements on the QoS of the composite WS.

Our research objective is to propose a design-time
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selection algorithm for automatic WS composition where
transactional and QoS requirements are both integrated
in the selection process. It is evident that such integration
could only be done by considering first the transactional
requirements. In fact, as we mentioned above, a local or
global optimized QoS composition may not guarantee
transactional execution. If the selection is done in two
separate steps (transactional selection followed by a
QoS one), it is necessary to consider all the transac-
tional combinations satisfying the global transactional
requirements, which is a combinatorial problem. For
all these reasons, we embedded the QoS-aware service
selection with the transactional-aware service selection,
using local QoS optimization in order to reduce the set
of possible transactional solutions.

Our contribution is a Web service selection algorithm
which guarantees that each selected component WS of
a composite one is locally the best QoS WS among
all the WS fulfilling the global transaction requirement.
Moreover, our algorithm is scalable because the user has
only to define a global transaction requirement and does
not have to define the possible termination states of all
component WS, as done for example in [8], [11], [13],
because the complexity of such a process increases with
the number of component WS.

This paper extends our previous work presented in
[14], where the composition was limited to elementary
(non composite) WS. In this paper, we extend our design-
time selection algorithm to any component WS (ele-
mentary or composite). Moreover, it contains a formal
analysis of our algorithm and a more extended state of
the art study.

The paper is organized as follows. Section 2 presents
our system architecture. Section 3 describes the behav-
ioral and non-functional properties of elementary WS.
Section 4 defines the properties of composite Web ser-
vices. Our approach is presented in Section 5. Exper-
imental results are shown in Section 6. A discussion
about related work is done in Section 7. Finally, Section
8 concludes and gives perspectives.

2 SYSTEM ARCHITECTURE

Fig. 1. Architecture of our system

Our system, represented in Figure 1, takes two inputs:
a workflow and the user’s preferences. The workflow de-
fines the execution order of a set of n activities, each

one being performed by a WS. It represents the skeleton
of an application in terms of activities and temporal
dependencies between them. The user’s preferences are
expressed as weights over QoS criteria and as risk levels.
They define semantically the transactional requirements
of the resulting Composite Web service (CWS), which
corresponds to the assignation of one component WS to
each activity of the workflow. In this paper, for the sake
of simplicity, we consider that one WS executes only one
activity.

Based on the input workflow, the Composition Manager
contacts the Web services registry to search for candidate
component WS for each activity of the workflow, accord-
ing to the user’s preferences. The Web Service Registry
provides the means for registering and discovering WS,
and managing associated metadata and artifacts securely
and reliably. The metadata describe the functional, be-
havioral and non-functional properties of a WS. Based on
the candidate WS retrieved, the Planner Engine generates
an execution plan, i.e. an assignment of a component WS
to each activities of the input workflow. Based on the
execution plan, the Execution Engine then orchestrates the
component WS to execute the instance of the composite
WS, which enforces the transactional requirements and
the QoS criteria defined by the user.

3 WEB SERVICE DESCRIPTION
Since WS are intended to be discovered and used by
other applications, they need to be described and un-
derstood in terms of functional capabilities as well as
behavioral properties and non-functional properties. In
this paper, we only discuss the last two types of prop-
erties. Section 3.1 defines the behavioral properties of a
WS. Section 3.2 presents the QoS properties we consider
for a WS in the paper.

3.1 Web Service behavioral properties
The behavioral description of a WS is regarding how
the functionality of a WS can be achieved in terms of
interaction with the other WS. In a composition where
several component WS interact, unexpected behavior
from a component WS might, not only lead to its failure,
but also may bring negative impact on all the partic-
ipants of the composition. Therefore, as for all cross-
organizational collaborative systems, the execution of
a CWS requires Transactional Properties (TP) so that
the overall consistency is ensured. We consider three
behavioral properties of WS, pivot (p), compensatable (c)
and retriable (r). Inspired by [15], we have the following
definitions:

Definition 1 (Pivot WS): A WS is said to be pivot (p) if
once it successfully completes, its effects remains forever
and cannot be semantically undone. If it fails it has no
effect at all. A completed pivot WS cannot be rolled back.

Definition 2 (Compensatable WS): A WS s is compensa-
table (c) if it exists another WS s′ which can semantically
undo the execution of s.
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Definition 3 (Retriable WS): A WS is retriable (r) if it
guarantees a successfully termination after a finite num-
ber of invocations.

A WS can combine behavioral properties, then the set
of all possible combinations for a WS is {p, c, pr, cr}.

3.2 Web service non-functional properties
When several functionally and transactionally equivalent
WS are available to perform the same activity, their
QoS properties such as price, availability, reliability and
reputation become important in the selection process. In
order to reason about QoS properties in WS, a model is
needed to capture the descriptions of these properties
from a user perspective. Such model must take into
account the fact that QoS involves multiple dimensions.
In this paper, we consider the following five generic
quality criteria for a WS s:

1) Execution price (qep(s)): which is the fee that a
requester has to pay for invoking s.

2) Execution duration (qed(s)): that measures the ex-
pected delay time between the moment when s is
invoked and when the results are received.

3) Reputation (qr(s)): which is a measure of trustwor-
thiness of s. Generally this measure is defined as
the average ranking given to the service by end
users.

4) Successful execution rate (qsr(s)): which is the
probability that s responds correctly to the user
request.

5) Availability (qa(s)): which is the probability that s
is accessible.

Properties 1, 2, 4 and 5 can be dynamically updated
by the system.

The following section defines a CWS whose compo-
nents have the five properties defined above.

4 COMPOSITE WEB SERVICE DESCRIPTION
A CWS is a conglomeration of existing WS interacting
together to offer a new value-added service. It coordi-
nates a set of WS as a cohesive unit of work to achieve
common goals. Section 4.1 presents how to specify a
CWS. Sections 4.2 and 4.3 present the CWS behavioral
and non-functional properties.

4.1 Composite Web Service specification
Currently, several process modeling languages including
YAWL [16] and BPEL [17] have been proposed to capture
the logic of a CWS. In this paper, we choose YAWL
to represent the workflows model and to describe the
composition. However, any other language could have
been used. In a WS environment, a workflow represents
a composition of WS. When each activity of a work-
flow is implemented by a component WS, we obtain
a CWS. Several CWSs can be associated to the same
workflow, depending on the assigned component WSs.
The orchestration of the component WSs is defined by

specifying dependencies between them. These depen-
dencies are defined by the associated workflow patterns
and by the transactional properties. The first ones specify
how WSs are coupled and how the behavior of certain
WSs influence the behavior of other one(s). While the
transactional properties specify the behavior of certain
WSs in case of failure.

Fig. 2. Symbols used in YAWL

Fig. 3. Workflow patterns

In this paper, for the sake of simplicity, we restrain
the temporal dependencies between activities to the
following workflow patterns: sequence, parallel split
(AND-split), exclusive choice (XOR-split), synchroniza-
tion (AND-join) and simple merge (XOR-join), presented
in Figure 2. Figure 3.(a) represents a sequential pattern
between two activities A1 and A2. Using this pattern,
when a service WS1 is assigned to activity A1 and a
service WS2 is assigned to activity A2, the obtained
composite Web service CWS1 is represented in text
by (WS1; WS2) where symbol ; represents a sequential
execution: WS1 is executed before WS2. Figure 3.(b)
represents the AND-split and AND-join patterns. In
this case, when a service WS1 is assigned to activity
A1 and a service WS2 is assigned to activity A2, the
resulting composite Web service CWS2 is represented
in text by (WS1//WS2), meaning that both services are
executed in parallel. For a XOR-pattern (see Figure3.(c)),
the obtained CWS3 corresponds to one of its component.
Then, when a service WS1 is assigned to activity A1 and
a service WS2 is assigned to activity A2, the obtained
CWS is represented in text by (WS1 | WS2), meaning
that either service WS1 either service WS2 is executed.
For more details, not needed to understand the rest of
this paper, readers are referred to [18] for a uniform
approach to describe workflow characteristics and to
[3] for a description of relevant patterns for the WS
composition.

A workflow pattern can be composed by other work-
flows patterns. In this way, we can represent a CWS by
the composition of other CWS, or by the composition
of CWS with elementary WS. In the following sections,
when it is not specified, WS represents an elementary
WS or a CWS.

The next section describes the CWS behavioral (i.e.
transactional) and QoS (i.e. non-functional) properties.
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TABLE 1
Aggregation functions for QoS criteria

Criteria Aggregation function

Price qep(CWS) =
∑n

i=1
qep(si)

Duration qed(CWS) =
∑n

i=1
qed(si)

Reputation qr(CWS) = 1

n

∑n
i=1

qr(si)

Success rate qsr(CWS) =
∏n

i=1
qsr(si)

Availability qa(CWS) =
∏n

i=1
qa(si)

4.2 Composite Web Service behavioral properties
CWS are often long-running, loosely coupled and cross-
organizational applications. In this context, we are inter-
ested in transactional behavior of the resulting WS com-
position. The transactional properties of a CWS highly
depend on the transactional properties of its component
WSs and on the structure of the workflow. We have the
following definitions:

Definition 4 (Atomic CWS): A CWS is atomic if once
all its component WSs complete successfully, their effect
remains forever and cannot be semantically undone. On
the other hand, if one component WS does not complete
successfully, then all previously successful component
WSs have to be compensated. In the following, !a is used
to indicate an atomic CWS while ã is used to indicate a
non-atomic one.

Definition 5 (Compensatable CWS): A CWS is compen-
satable (c) if all its component WSs are compensatable.

Definition 6 (Retriable CWS): An atomic or a compen-
satable CWS is retriable (r) if all its components are
retriable.

Definition 7 (Transactional CWS): A Transactional
Composite Web Service (TCWS) is a CWS whose
transactional behavioral property is in {!a,!ar, c, cr}.

A TCWS takes advantage of component service be-
havioral properties to specify mechanisms for failure
handling and recovery. It can be composed of elementary
WSs, whose properties are in {p, pr, c, cr}, and/or can be
composed of CWSs, whose properties are in {!a,!ar, c, cr}.

In this paper, we are interested in properly assigning
component WSs (elementary or composite) in order to
obtain a TCWS. Section 5 presents the assignation pro-
cess.

4.3 Composite Web Service non-functional proper-
ties
A CWS has the same quality properties as an elementary
WS, i.e. execution price, execution duration, reputation,
successful execution rate, and availability. When a user
wants to execute a CWS, it indicates, among other things,
the quality of the wished result. This one is expressed
as weight in each of the quality criterion. In this paper,
the QoS of a CWS is evaluated by using the aggregation
functions defined in Table 1. It is obvious, that activities
in all execution paths between AND-split and AND-
join are considered in the aggregation functions. While,

activities in only one execution path between XOR-split
and XOR-join constructs are considered. However, any
other QoS evaluation could be used.

5 TRANSACTIONAL QOS-DRIVEN SELECTION
FOR WS COMPOSITION
In this paper, we are interested in properly selecting
component WSs in order to obtain a TCWS which maxi-
mizes the user satisfaction in terms of QoS criterion and
satisfies the transactional requirements set by the user
and by the input workflow.

As explained in Section 2, the input of the assigna-
tion process is a workflow, a transactional requirement,
expressed in term of risk (see Section 5.1), and a set of
weights over QoS criteria. The output of the process is
a TCWS which assigned WS components maximize the
QoS criteria.

The process is sequential: WSs are assigned to each
activity by analyzing the workflow from the left to the
right. In a split pattern, services are assigned from top
to down. The transactional driven service selection is
presented in Section 5.2. The QoS-driven service selec-
tion is presented in Section 5.3. Finally, the algorithm of
our Transactional QoS-driven (TQoS) selection for WS
Composition is given in 5.4.

5.1 Definition of risk
In order to explain the transactional WS selection pro-
cess, it is necessary to establish how the user can express
their transactional criteria. Although, expressing the QoS
criteria is significant for the user, the risk or the possi-
bility that an application will be unsuccessfully executed
has a more significant effect on the user’s decisions. The
importance of the uncertainty of application completion
and recovery is semantically expressed under a criterion
called risk. For example, the set {!a,!ar, c, cr} of the behav-
ioral properties of CWS can be divided into two subsets
{!a,!ar} and {c, cr}, each one can be associated with a
level of risk. For instance, in terms of the transactional
properties, we believe that properties !a and !ar are riskier
than c and cr. Indeed, properties !a and !ar mean that
once a service has been executed, it can not be rolled
back. Therefore, we define two notions of execution risk
in a transactional system like:

• Risk 0: the system guarantees that if the execution is
successful, the obtained results can be compensated by
the user.

• Risk 1: the system does not guarantee the successful
execution and even if the execution is successful, the
system does not guarantee the result can be compensated
by the user.

In this paper, we only study the risk level 0 and 1
as defined above. However, other levels of risk could
be defined in terms of compensation of the different
components of the CWS. For example, the system can
guarantee that if the execution is successful, some results
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can be compensated by the user or some results cannot
be compensated by the user. In this case, the transac-
tional properties must be relaxed.

In the following section, we present the WS selection
algorithm used by the composition manager for WS
composition with risk and QoS preferences.

5.2 Transactional driven service selection
This section shows the process of assigning an WS to
each activity in a workflow, in order to obtain a TCWS.
For simplicity, we suppose a workflow containing only
two activities. We first consider the assignation of two
WSs to the activities of a sequential pattern (see Section
5.2.1). Then, we consider the assignation of two WSs to
the activities of a parallel pattern (AND-split, see Section
5.2.2). We do not consider the XOR-pattern due to if the
workflow contains only two activities in a XOR-pattern,
then the resulting ”Composite” WS contains only one
Web service WSi hence the WS transactional property
corresponds to the transactional property of WSi. Then,
we present a generalization of the transactional driven
service selection to a worklfow of n activities (see Section
5.2.3). A summary is presented in Section 5.2.4 and an
example is given in Section 5.2.5.

5.2.1 Sequential pattern assignation
Prop. 1: In a sequential pattern, if the WS assigned

to the first activity of the pattern is pivot (p), pivot
retriable (pr), atomic (!a), or atomic retriable (!ar) then, to
obtain a TCWS, the WS assigned to the second activity
should be pivot retriable (pr), atomic retriable (!ar), or
compensatable retriable (cr). The Transactional Property
(TP) of the resulting TCWS is atomic (!a) and is moreover
atomic retriable (!ar) if all its components are retriable.

Proof: If the WS assigned to the first activity of the
pattern is p, pr, !a, or !ar then by definition (see def. 1
and 4), its effects cannot be semantically undone, thus
the execution of the second WS should guarantee a suc-
cessfully termination. The only condition to guarantee
a successfully termination is the retriable property (see
def. 3 and 6). Therefore, the WS assigned to the second
activity should be pr, !ar, or cr.

Prop. 2: In a sequential pattern, if the WS assigned to
the first activity of the pattern is compensatable (c) or
compensatable retriable (cr), then the resulting CWS is
always transactional (TCWS) whatever the TP of the
WS assigned to the second activity is. The TP of the
resulting TCWS is atomic (!a) if the WS assigned to the
second activity is either pivot (p), pivot retriable (pr),
atomic (!a), or atomic retriable (!ar). The TCWS TP is
compensatable (c) if the WS assigned to the second
activity is either compensatable (c) or compensatable
retriable (cr). Moreover, when both component WSs are
retriable, the resulting TCWS is retriable.

Proof: When service WS1 assigned to the first ac-
tivity of the pattern is c or cr, the resulting CWS is
at least !a (see def. 4) because if the WS assigned to

the second activity fails, then WS1 can be compensated.
Moreover, the resulting CWS is c (see def. 5) when the
WS assigned to the second activity is c or cr, because all
the components of the resulting CWS are c.

5.2.2 Parallel pattern assignation
Prop. 3: If a pivot (p) or an atomic (!a) WS is assigned

to one activity of a parallel pattern, then the WS assigned
to the other activity should be compensatable retriable
(cr) to obtain a TCWS. The transactional property of the
resulting TCWS is atomic (!a).

Proof: If a p or !a Web service WS1 is assigned to
one activity of a parallel pattern and if it successfully
completes, then by definition (see def. 1 and 4) its effects
cannot be semantically undone. Therefore, the execution
of the other WS should guarantee a successfully termina-
tion in case of WS1 successfully termination and should
be able to be compensated in case of WS1 failure. By def-
inition (see def. 3 and 6), the only condition to guarantee
a successfully termination which can be compensated is
property cr. Consequently, the WS assigned to the other
activity of the pattern should be cr.

Prop. 4: If a pivot retriable (pr) or an atomic retriable
(!ar) WS is assigned to one activity of a parallel pattern,
then the WS assigned to the other activity should be
pivot retriable (pr), atomic retriable (!ar), or compen-
satable retriable (cr) in order to obtain a TCWS. The
transactional property of the resulting TCWS is atomic
retriable (!ar).

Proof: If a pr or an !ar service WS1 is assigned to
one activity of a parallel pattern, then, by definition (see
def. 3 and 6), it guarantees a successfully termination,
but it cannot be compensated. Thus, the WS assigned
to other activity cannot fail. So to obtain a TCWS, the
only solution is to assign a pr, cr, or !ar WS to the other
activity of the pattern.

Prop. 5: If a compensatable (c) WS is assigned to one
activity of a parallel pattern, then the WS assigned
to the other activity should be compensatable (c) or
compensatable retriable (cr) in order to obtain a TCWS.
The transactional property of the resulting TCWS is
compensatable (c).

Proof: If a c service WS1 is assigned to one activity
of a parallel pattern and if it successfully complete,
then, by definition (see def. 2 and 5), its effects can be
semantically undone. But it can fail. Therefore, to obtain
a TCWS the WS assigned to the other activity of the
pattern should be at least c (and possibly cr) in order to
be able to be compensated.

Prop. 6: If a compensatable retriable (cr) WS is as-
signed to one activity of a parallel pattern, then the
resulting CWS is transactional (TCWS) independently
of the WS transactional property assigned to the other ac-
tivity. The transactional property of the resulting TCWS
is respectively atomic (!a), compensatable (c), atomic re-
triable (!ar), or compensatable retriable (cr), if the WS as-
signed to the other activity is respectively pivot/atomic
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(p/!a), compensatable (c), pivot/atomic retriable (pr/!ar),
or compensatable retriable (cr).

Proof: If a cr WS is assigned to one activity of a
parallel pattern, then, by definition (see def. 2, 3, 5 and
6) it guarantees a successfully termination and it can be
compensated. Hence, whatever is the property of the WS
assigned to the other activity, the resulting TCWS is at
least !a (see def. 4). Moreover, the resulting TCWS is c
when the service assigned to the second activity is c or
cr, because all the components of the resulting TCWS
are c. It is retriable when the WS assigned to the second
activity is pr, !ar, or cr, because all its components are r.

Tables 2,3,4, and 5 summarize the sequential and the
parallel pattern assignation.

5.2.3 Generalization to a workflow of n activities

Fig. 4. Step (n + 1) of the selection process

WSs are assigned to the activities of the workflow from
the left to the right in sequential patterns and from the
top to the bottom for split patterns. In this way, the plan-
ner engine guarantees that each time a WS is assigned to
one activity, the composite WS obtained is transactional.
Let first consider elementary WS. After the assignation
of the n elementary WS to the n first activities of the
workflow, the assignation process consists on composing
a TCWS (resulting from the composition of the first n
WSs assigned) with an elementary WS (assigned to the
activity n + 1 of the workflow). Figures 4.(a) and 4.(b)
show the different possible configurations of the process,
after the assignation of the first n WSs to the first n
activities of the workflow (when n = 2 see Table 2 and
when n > 2 see Table 3).

Fig. 5. Examples of workflow resulting in an elementary
WS composed with a TCWS

All the WSs assigned to the activities of an AND-split
pattern constitute a TCWS which can be sequentially
composed or composed in parallel with an elementary
WS. By convention, consider that a Web Service WSi is
assigned to a workflow activity Ai. For example, using
the workflow of Figure 5.(a), the resulting TCWS is
(WS1; (WS2//WS3)) and using the workflow of Figure

TABLE 2
Transaction property of a sequential and a concurrent

execution of two elementary WSs

WS1 WS2 WS1;WS2 WS1//WS2

(1) p p ã ã
(2) p c ã ã
(3) p pr !a ã
(4) p cr !a !a

(5) pr p ã ã
(6) pr c ã ã
(7) pr pr !ar !ar
(8) pr cr !ar !ar

(9) c p !a ã
(10) c c c c
(11) c pr !a ã
(12) c cr c c

(13) cr p !a !a
(14) cr c c c
(15) cr pr !ar !ar
(16) cr cr cr cr

5.(b) the resulting TCWS is (WS1//(WS2//WS3)). Both
resulting TCWSs can be viewed as the composition of an
elementary Web service WS1 with a TCWS composed
by WS2 and WS3. Then, it is possible to compose an
elementary WS with a TCWS (see Table 4).

Fig. 6. Examples of workflow resulting in the composition
of two TCWS

Several workflows can also result in the composition
of two TCWSs, as shown in Figures 6.(a) and 6.(b).
Table 5 presents the transactional behavioral property of
sequential and concurrent execution of two TCWSs.

5.2.4 Summary
To summarize:

• A p or !a WS can only be sequentially composed
with a pr, !ar, or cr WS and can only be executed in
parallel with a cr WS.

• A pr or !ar WS can only be executed in sequential
or in parallel with a pr, !ar, or cr WS.

• A c WS can be sequentially composed with any
transactional WS but can only be executed in paral-
lel with a c or cr WS.

• A cr WS can be executed in sequential or in parallel
with any transactional WS.



7

TABLE 3
Transaction property of a sequential and a concurrent

execution of a CWS with an elementary WS

CWS WS CWS;WS CWS//WS

(1) !a p ã ã
(2) !a c ã ã
(3) !a pr !a ã
(4) !a cr !a !a

(5) !ar p ã ã
(6) !ar c ã ã
(7) !ar pr !ar !ar
(8) !ar cr !ar !ar

(9) c p !a ã
(10) c c c c
(11) c pr !a ã
(12) c cr c c

(13) cr p !a !a
(14) cr c c c
(15) cr pr !ar !ar
(16) cr cr cr cr

TABLE 4
Transaction property of a sequential and a concurrent

execution of an elementary WS with a CWS

WS CWS WS;CWS WS//CWS

(1) p !a ã ã
(2) p c ã ã
(3) p !ar !a ã
(4) p cr !a !a

(5) pr !a ã ã
(6) pr c ã ã
(7) pr !ar !ar !ar
(8) pr cr !ar !ar

(9) c !a !a ã
(10) c c c c
(11) c !ar !a ã
(12) c cr c c

(13) cr !a !a !a
(14) cr c c c
(15) cr !ar !ar !ar
(16) cr cr cr cr

TABLE 5
Transaction property of sequential and concurrent

execution of two CWSs

CWS1 CWS2 CWS1;CWS2 CWS1//CWS2

(1) !a !a ã ã
(2) !a c ã ã
(3) !a !ar !a ã
(4) !a cr !a !a

(5) !ar !a ã ã
(6) !ar c ã ã
(7) !ar !ar !ar !ar
(8) !ar cr !ar !ar

(9) c !a !a ã
(10) c c c c
(11) c !ar !a ã
(12) c cr c c

(13) cr !a !a !a
(14) cr c c c
(15) cr !ar !ar !ar
(16) cr cr cr cr

I

ac cr ar //ar
;ar

;a
;ar

;ar //ar;ar

ara crp prc

;a //a//c
;c

;cr
//cr

;c
//c

;cr
;pr //cr ;cr

//cr

;pr
//pr;cr

//cr

;pr;pr ;p ;p //p //pr

Fig. 7. Automaton modeling all possible TCWSs obtained
by the selection process

Figure 7 represents the automaton modeling all pos-
sible TCWSs which could be obtained by the selection
process detailed above. It contains five states. State I is
the initial one. The final states c, cr,!a, and !ar correspond
to the transactional properties of a TCWS. When one
of the final states is reached, a TCWS is obtained. The
alphabet of the language accepted by the automaton is {
′p′ , ′c′ , ′cr′ , ′pr′ , ′; p′ , ′//p′ , ′; pr′ , ′//pr′ , ′; c′ , ′//c′ ,
′; cr′ , ′//cr′, ′;!a′, ′;!ar′, ′//!ar′ }. This alphabet represents
the transactional properties of components (elementary
WSs or CWSs) executed in sequence (;) or in parallel (//).
For example, using a transition p or a transition !a from
the initial state (i.e. selecting a pivot WS or an atomic
CWS for the first activity of the workflow), the following
state is !a. Indeed, any sequential execution beginning
by a pivot WS or an atomic TCWS can be atomic, but
will never be able to be compensated. The next state
could be again !a using a transition ′//cr′,′; cr′,′; pr′ or
′;!ar′, meaning that an atomic CWS can be sequentially
composed with a retriable component but can only
be executed in parallel with a compensatable retriable
component.

5.2.5 Example

Fig. 8. An example of workflow

Figure 8 represents an example of an input workflow,
where, for simplicity, each activity is performed by an
elementary WS. If a pivot (p) WS1, is assigned to the
first activity A1, then in the automaton of Figure 7,
we go from initial state I to the state !a. Since the
pattern following A1 is an AND-split, then WS1 will be
executed in sequential with a composite service CWS2

corresponding to a parallel execution of two elementary
WSs (respectively assigned to activities A2 and A3). Ac-
cording to the automaton, to obtain a TCWS correspond-
ing to WS1; CWS2, CWS2 should be atomic retriable
or compensatable retriable (using either transition ;!ar
or ; cr ). Thus, as shown in Table 2, CWS2 has to be
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composed by either (pr//pr) or (pr//cr) to be atomic
retriable. Similarly, to be compensatable retriable it has
to be composed by (cr//cr).

In both cases, the TCWS resulting from the composi-
tion of WS1 with CWS2 is atomic (!a). Continuing in the
same way, using the automaton and the tables presented
above, we can deduce that the elementary WSs assigned
to activities A4 to A7 could only be pivot retriable (pr)
or compensatable retriable (cr)

5.3 QoS-driven service selection
In our approach, the QoS service selection is embedded
within the transactional service selection. The set of
potential WSs for each workflow activity is restricted by
the transactional requirement. Indeed, the selection of a
WS for an activity depends on the transactional property
of the WSs already assigned to the previous activities of
the workflow. As a consequence, we can not use a global
QoS selection process, such as the approach of [19], but
we can use a local QoS optimization selection algorithm.
In this paper, we use a local optimization selection
algorithm as follows: according to the transactional re-
quirements for each activity, a set of transactional WSs is
selected, then a QoS-driven service selection, as defined
in [6], is executed. For the selection of a WS for each
activity, the system uses the classical Multiple Criteria
Decision Making (MCDM) approach [20]. This selection
is based on the weights assigned by the user to each
quality criterion. A simple additive weighting technique
is used to assign a quality score to each WS as follows:
Score(si) =

∑
j wjqij , where wj ∈ [0, 1] is the weight

assigned by the user to the quality criterion j such that∑
j wj = 1 and qij is the value of criterion j for service

si. The WS with the maximal score is selected to execute
activity ai. If there are several services with maximal
score, one of them is selected randomly.

In order to evaluate the QoS of a CWS, it is necessary
to look into workflow composition patterns. A split
pattern produces several execution paths composed of
one or more activities. Similarly, a join pattern aggregates
several execution paths in one path. In [21], the most
frequently used path is considered in the aggregation
functions for the XOR-split. In our approach, we select
the path obtaining a CWS with the maximal score,
according to the previous selection algorithm. If there
are several paths with the maximal score, one of them is
selected randomly.

5.4 Algorithm
The input of the TQoS-driven selection algorithm is a

workflow WF composed of n activities and the output
is a TCWS corresponding to a list of elementary WSs or
CWSs (WSs for short) assigned to each activity of the
input workflow. When a WS is assigned to an activity
of the workflow, its transactional property influences the
selection of the WS for the next activities – see Section
5.2.4. Thus, after each WS assignation in the algorithm,

Algorithm 1 TQoS-driven Selection Algorithm

Input: WF /* A workflow of n activities */

Output: TCWS /* List of m assigned WS (m < n in case of

XOR-SPLIT) */,
QoS /* QoS property of TCWS */,
State /* Transactional property of TCWS */

BEGIN
1: State ← I /* Current state of the resulting TCWS */

2: i ← 1 /* Counter used for WF */

3: j ← 1 /* Counter used for TCWS */

4: TCWS ← EmptyList
5: WS Set ← (Sp ∪ Spr ∪ S!a ∪ S!ar ∪ Sc ∪ Scr)
6: NTP ← Null
7: while IsOutput(WF, i) = false do
8: if State ∈ {!a,!ar} then
9: WS Set ← WS Set ∩ (Spr ∪ S!ar ∪ Scr)

10: end if
11: ASSIGN-NEXT(WF ,i,State,TCWS,j,NTP ,WS Set)

/* See Algorithm 2 */

12: i ← i + 1
13: end while
14: QoS=ComputeQoS(TCWS)
15: return TCWS, State, QoS

END

the state of the resulting TCWS is evaluated and stored in
a variable State ∈ {I,!a,!ar, c, cr}. A variable NTP stores
the transactional property of the WS newly assigned:
NTP ∈ {p, pr, c, cr,!a,!ar}.

Let us consider Sx a class of WS which is a collection
of component WSs with common transactional property
x but different non-functional (i.e. QoS) properties. For
instance, Sp is the class of all the pivot WSs. Spr, S!a,
S!ar, Sc, and Scr are the classes of all WSs that have
respectively transactional property pr, !a, !ar, c, and cr.
A variable WS Set contains the set of the permitted
WSs which can be assigned to the next non-assigned
activity of the workflow. Its value depends on the value
of the state (State) or of the TP of the WS newly
assigned (NTP ). For example, in a sequential pattern, if
the current state is !a or !ar, then only retriable WSs can
then be assigned to the next non-assigned activities of
the workflow: WS Set = (Spr ∪ S!ar ∪ Scr). In an AND-
split pattern, when a pivot or an atomic WS has been
assigned to an activity, then only compensatable retriable
WSs can be assigned to the following activities of the
pattern: WS Set = Scr.

The element (activities and patterns) of the workflow
are numbered1 from the left to the right and from the
top to the bottom. To be analyzed in the TQoS-driven
selection algorithm, each workflow is translated into
an XML file. Then, we have defined several functions
(e.g. IsActivity, IsAndSplit, IsOutput) which re-
turn the type (e.g. activity, AND-split pattern, output)
of an element of the workflow. For example, function

1. The input activity is numbered by zero.
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IsActivity(WF,i) returns true if the ith element of
the workflow WF is an activity.

When the risk chosen by the user is 0 (see Section 5.1),
then the TQoS-driven selection algorithm only assigns a
compensatable or a compensatable retriable WS to each
activity of the workflow. In this case, the algorithm only
consists in choosing the compensatable or compensat-
able retriable WS having the best QoS for each activity
(by calling function GetBestofQoS(Sc ∪ Scr, i) for
each activity i of the workflow).

When the risk chosen by the user is 1, the algorithm
is more complex (see Algo. 1). At the beginning, the
State of the resulting TCWS is I (initial state) and the
set WS Set is initialized with all the possible WSs, with
transactional properties in {p, pr,!a,!ar, c, cr} (see lines 1
and 5 of Algo. 1). Then, while the output pattern of the
workflow is not reached (see line 7), a WS is assigned to
the next non-assigned activity of the workflow (calling
function ASSIGN_NEXT – see line 11) according to the
current state of the current resulting TCWS. Therefore, if
the current resulting TCWS is atomic or atomic retriable,
then set WS Set is restrained to retriable WS before
calling function ASSIGN_NEXT (see lines 8 to 10).

Function ASSIGN_NEXT (see Algo. 2) analyzes the
input workflow, WF , from the current position i. If the
ith element of WF is an AND-split (resp. XOR-split)
pattern (see lines 1 resp. 4 of Algo. 2), it calls function
ASSIGN_AND (resp. ASSIGN_XOR). If the ith element of
WF is a sequence pattern (see line 7) which is inside an
AND-split or a XOR-split pattern, the function is recur-
sively called after the update of set WS Set, depending
on the state of the current resulting TCWS (see lines 11
to 13). Otherwise, the ith element of WF is an activity
(see line 17), then function ASSIGN_NEXT assigns a WS
to the jth activity of the workflow having the best QoS
and variables State and NTP are updated (see lines 20
to 35). Note that function GetBestofQoS(WS_Set, j)
returns the WS having the best QoS among the set of
WSs which can execute the jth activity of WF (subset
of WS Set), and function GetTPOf(WS) returns the
transactional property of the Web service WS.

Function ASSIGN_AND (see Algo. 3) assigns one WS
to each activity of an AND-split pattern from top to
down, managing a local set of permitted WSs for the
activities of the pattern (see line 1). The activities of the
first branch of the pattern are first assigned (by calling
function ASSIGN_NEXT – see lines 3 and 4). Then, the
activities of the other branches are assigned (see lines
7 to 16) after updating the local AND WS Set and
depending on the state of the current resulting TCWS.

Function ASSIGN_XOR (see Algo. 4) assigns WS to
the workflow activities of only one branch of the XOR-
SPLIT pattern. To do this, all branches of the pattern are
evaluated (see lines 7 to 24) and the WS corresponding
to the best branch are assigned to the workflow (see lines
26 to 34).

A function, ComputeQoS(TCWS), is implemented to
evaluate the QoS of the resulting TCWS from the QoS

Algorithm 2 ASSIGN-NEXT Algorithm

Input: WF , i, State, TCWS, j, NTP , WS Set
Output: /* Updated variables */

TCWS, State, NTP , WS Set
BEGIN

1: if IsAndSplit(WF, i) = true then
2: i ← i + 1
3: ASSIGN-AND(WF ,i,State,TCWS,j,NTP ,WS Set)

/* See Algorithm 3 */

4: else if IsXorSplit(WF, i) = true then
5: i ← i + 1
6: ASSIGN-XOR(WF ,i,State,TCWS,j,NTP ,WS Set)

/* See Algorithm 4 */

7: else /* Sequential pattern */

8: if IsSequence(WF, i) = true /* A sequence inside an

AND-SPLIT or a XOR-SPLIT */ then
9: i ← i + 1

10: while IsEndOfSequence(WF, i) == false do
11: if State ∈ {!a,!ar} then
12: WS Set ← WS Set ∩ (Spr ∪ S!ar ∪ Scr)
13: end if
14: ASSIGN-NEXT(WF , i, State, TCWS, j,

NTP , WS Set)
15: i ← i + 1
16: end while
17: else /* WF [i] is an activity */

18: /* Assign a WS to the jth activity */

19: /* The assigned WS is added in list TCWS */

20: TCWS.Add( GetBestofQoS(WS Set, j) )
21: j ← j + 1
22: /* Recall transactional property of the last assigned WS */

23: NTP = GetTPOf(TCWS.LastAssignedWS())
24: /* Compute the new state after assigning the jth WS */

25: if State ∈ {I, cr} then
26: if NTP ∈ {p,!a} then
27: State ← !a
28: else if NTP ∈ {pr,!ar} then
29: State ← !ar
30: else if NTP = c then
31: State ← c
32: else
33: State ← cr
34: end if
35: else if State = c and NTP ∈ {p, pr,!a,!ar} then
36: State ← !a
37: /* else State does not change */

38: end if
39: end if
40: end if

END

of its component WSs (see line 14 of Algo. 1).

6 EXPERIMENTATION
In order to evaluate the behavior of our WS selection
approach, experiments were conducted by implementing
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Fig. 9. Experimental results for risk 0 and risk 1 by varying price and duration weights

Algorithm 3 ASSIGN-AND Algorithm

Input: WF , i, State, TCWS, j, NTP , WS Set
Output: /* Updated variables */

TCWS, State, NTP , WS Set
BEGIN

1: AND WS Set ← WS Set /* Local sets of permitted WS

for the activities of the AND-split pattern */

2: /* Assigned WSs to the activities of the first branch of the AND-

split pattern */

3: ASSIGN-NEXT(WF , i, State, TCWS, j, NTP ,
AND WS Set) /* See Algorithm 2 */

4: if IsEndOfSequence(WF, i) == false then
5: i ← i + 1 /* Go to the next branch */

6: end if
7: /* Assigned services to the activities of the other branches of the

AND-split pattern */

8: while IsAndJoin(WF, i) = false do
9: /* Update of AND WS Set depending on the property of the

previous activity in the parallel pattern */

10: if State = !a then
11: /* A pivot or an atomic WS could only be executed in

parallel with a cr one */

12: AND WS Set ← Scr

13: else if State = c then
14: /* A compensatable WS could only be executed in parallel

with a c or cr one */

15: AND WS Set ← Sc ∪ Scr

16: else if State = !ar then
17: /* A pivot or an atomic retriable WS could only be executed

in parallel with a retriable one */

18: AND WS Set ← Spr ∪ S !ar ∪ Scr

19: end if
20: ASSIGN-NEXT(WF , i, State, TCWS, j, NTP ,

AND WS Set) /* See Algorithm 2 */

21: i ← i + 1
22: end while

END

the proposed TQoS algorithm on a PC Core II 1.07GHz
with 1014Mo RAM, Windows Vista, Java 2 Enterprise
Edition V1.5.0. The experiments involved composite ser-
vices varying the number of activities and varying the
number of Web services. Experimentations were done

over the following four scenarios. In the first one, we
assume that the execution price of a compensatable WS
is more expensive than a pivot or atomic one. Indeed,
the former provide additional functionality in order to
guarantee that the result can be undone. Similarly, we
believe that a retriable WS has an execution duration
higher than a non-retriable one. Indeed, the former pro-
vides additional operation in order to guarantee that it
successfully finishes after a finite number of invocations.
The second scenario is a variant of the first one in which
the intervals of values for the criteria price and duration
overlap of 20%. A random generation of different WSs
that can implement the activities of workflow WF of Fig-
ure 8 was accomplished as follows: for each scenario and
for each activity, we randomly generate from 1 to 10 WSs
for each of the transactional property {p, pr, c, cr,!a,!ar}.
For each WS, we randomly generate QoS criteria values
according to the scenario. For example, Table 6 shows the
different set of values considered for each QoS criterion
depending on transactional service property for the first
scenario. In the third scenario, the number of activities
varies from 1 to 62. Also, in the last scenario, the number
of candidate component services varies per activity and
per transactional property from 1 to 8 with steps of 2.
For these two last scenarios, we randomly generate QoS
criteria values of services according to the following:
qep(s) and qed(s) between 1 and 100, qr(s) between 1
and 6, qsr(s) and qa(s) between 0 and 1.

We apply our selection algorithm considering both
levels of risk. For the first two scenarios, we consider
weights assigned by the user in such a way that price
and duration constraints have always 60% of the total
weight. With this condition, we execute the selection
process for the weight distribution shown in Table 7. This
experiment was executed 10 times for both scenarios.
Figure 9.(a) shows the score results obtained for the risk
level 0 and for the two scenarios with different weights
over the criteria. Figure 9.(b) shows the score results
obtained for the risk level 1 and for the two scenarios
with different weights over the criteria. As depicted in
Figure 9, for both scenarios, the more important the price
criteria to the user, the better a composition with risk
1 compared to a composition with risk 0. Additionally,
the more important the duration criteria to the user,
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Algorithm 4 ASSIGN-XOR Algorithm

Input: WF , i, State, TCWS, j, NTP , WS Set
Output: /* Updated variables */

TCWS, State, NTP , WS Set
BEGIN
/* Informations of the ”best” branch of the XOR pattern */

1: Best TCWS ← EmptyList
2: Best State ← State
3: Best NTP ← NTP
4: Best WS Set ← WS Set
5: Best QoS ← 0
6: nb ← 0 /* Number of analysed branches in the pattern */

7: while IsXorJoin(WF, i) = false do
8: /* For each branch, recall the State of the branch, the WS

assigned to the activities of the branch and so on. */

9: Branch TCWS ← EmptyList
10: Branch State ← State
11: Branch NTP ← NTP
12: Branch WS Set ← WS Set
13: k ← 1 /* Index for the activities of the branch */

14: /* Assigned WSs to the activities of the current branch */

15: ASSIGN-NEXT(WF ,i,Branch State,
Branch TCWS, k, Branch NTP ,Branch WS Set)
/* See Algorithm 2 */

16: if IsEndOfSequence(WF, i) == false then
17: i ← i + 1 /* Go to the next branch */

18: end if
19: Branch QoS ← ComputeQoS(Branch TCWS)
20: /* If the QoS of the current branch is better of the QoS of the

previous branches, recall the new ”best” branch */

21: if Branch QoS > Best QoS then
22: Best TCWS ← Branch TCWS
23: Best State ← Branch State
24: Best NTP ← Branch NTP
25: Best WS Set ← Branch WS Set
26: Best QoS ← Branch QoS
27: end if
28: nb ← nb + 1
29: end while
30: /* Update TCWS with the WSs of the ”best” branch which

contains length() assigned WSs */

31: for k = 1 to k = Best TCWS.length() do
32: TCWS[j] ← Best TCWS[k]
33: j ← j + 1
34: end for
35: State ← Best State
36: NTP ← Best NTP
37: WS Set ← Best WS Set

END

the better a composition with risk 0 compared to a
composition with risk 1.

For the third and fourth scenarios, weights were gener-
ated randomly. In the third scenario, different workflows
were generated varying the number of activities from 1
to 62. For each workflow and per risk level, we executed

the selection process 10 times and computed the average
computation cost. Figure 10 shows computation cost (in
seconds) of selecting services for composite services. In
this experiment, the number of candidate services per
activity and per transactional property varies between 1
and 2 (in total 712 services were generated). We observe
that the computation cost remains constant and do not
increase with the number of activities. This is normal
since for each activity at the beginning of the workflow,
the set of candidate services is much higher than the
one for an activity at the end of the workflow. For 17
activities and 1 to 2 candidate services per activity and
per transactional property (in total 712 services), the
computation cost for risk 1 (0, 24 second) is almost the
same as for risk 0 (0, 23 second).

TABLE 6
Set of values for each QoS criterion

Criteria p pr c cr !a !ar

qep(s) [0, 60] [0, 60] [60, 100] [60, 100] [0, 60] [0, 60]
qed(s) [10, 60] [60, 100] [10, 60] [60, 100] [10, 60] [60, 100]
qr(s) [1, 6] [1, 6] [1, 6] [1, 6] [1, 6] [1, 6]
qsr(s) [0.0, 1.0] [0.0, 1.0] [0.0, 1.0] [0.0, 1.0] [0.0, 1.0] [0.0, 1.0]
qa(s) [0.0, 1.0] [0.0, 1.0] [0.0, 1.0] [0.0, 1.0] [0.0, 1.0] [0.0, 1.0]

TABLE 7
Weight distribution

Criteria (1) (2) (3) (4) (5) (6) (7)

qep(s) 0 10 20 30 40 50 60
qed(s) 60 50 40 30 20 10 0
qr(s) 10 10 10 10 10 10 10
qsr(s) 15 15 15 15 15 15 15
qa(s) 15 15 15 15 15 15 15

In the fourth scenario, different sets of services were
generated varying the number of services per activity
and per transactional property from 1 and 8 with steps
of 2. For each set and per risk level, we executed the
selection process 10 times and computed the average
computation cost. Figure 11 shows computation cost
(in seconds) of selecting services for composite services.
In this experiment, four sets were generated. The first
one contains 712 candidate services (the number of
services per activity and per transactional property is
between 1 and 2). The second set contains 1692 candidate
services (the number of services per activity and per
transactional property is between 3 and 4). The third set
contains 2651 candidate services (the number of services
per activity and per transactional property is between
5 and 6). Finally, the last set contains 3602 candidate
services (the number of services per activity and per
transactional property is between 7 and 8). For both
levels of risk, the computation cost increases when the
number of candidate services increases. For a workflow
with 40 activities and from 30 to 36 candidate services
per activity (in total 2651 services), the computation cost
of risk 1 is 1, 15 seconds, almost the same as risk 0 (1
second).
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Fig. 10. Computation cost by varying the number of
activities

Fig. 11. Computation cost by varying the number of
services

7 RELATED WORK
Recently, several QoS-aware Web services selection
mechanisms have been developed. Menasce [4] studies
the QoS of component WSs in terms of cost and execu-
tion time. He employs probability techniques to measure
the cost and execution time of component WSs by con-
sidering different execution scenarios. This study helps
in selecting appropriate component WSs for Web service
composition. Jaeger et al. [3] propose a mechanism for
composite WSs with pattern-based QoS aggregation. The
QoS aggregation is used to verify that a set of WSs
satisfies the QoS requirement for the selected composite
WS. Zeng et al. [6] propose two QoS-driven service selec-
tion approaches: local optimization and global planning.
Recently, Kokash [22] modifies the Zeng et al. method
in order to consider the probability of component WS
failures, their response time and the execution cost along
with the structure of composite graph. In [7], the authors
propose a solution for WS selection taking into account
one or more global constraints set by users. In [5], the
authors use an approach allowing service selection with
best results with slow selection time, by using dynamic
programming or good enough results with fast selection
time. However, none of these approaches takes into
account the transactional behavior of the composite WS.
In our proposition, the QoS-driven service selection is
embedded within the transactional service selection. The
transactional-driven service selection determines, in each

step, the set of WSs to be considered for QoS selection
depending on their transactional properties.

Coordinating a set of activities to achieve a common
goal having a transactional behavior has been tackled
by workflow systems, by transactional protocols and by
Advanced Transactional Models (ATM).

In [23], the authors address the support of distributed
transactions in workflow management systems based
on processes by using exception handlers. They do
not consider the coordination of black boxes, such as
WSs, with dissimilar capabilities with respect to their
transaction behavior. [9] extends workflows patterns in
order to consider the transactional behavior in case of
failures and recovery. The transactional patterns can be
used by the designer to construct a TCWS. In [8], Bhiri
et al. present an approach specifying relaxed atomicity
requirements for composite WSs based on Acceptable
Termination States (ATS) model and transactional rules
to validate a given composite WS with respect to defined
Transactional Requirements (TR). In [11], Montagut etal.
propose a selection mechanism enabling the automatic
design of transactional composite WSs by using the ATS
model. This mechanism has been extended to manage
composite WS execution using context-driven policies
in [13] or adaptive transactional protocol in [24]. The
drawback of these approaches is the definition of all the
ATS by the user, which is neither simple nor scalable;
the bigger the workflow the bigger is the number of
ATS to be defined by the user. Moreover, the mechanism
does not take into account any QoS criterion in the
selection process. In [10], the transactional behavior of
CWS in presence of transactional component WSs are
studied but without taking into account the QoS and no
selection algorithm is proposed. Moreover, the authors
do no specify the behavior of retriable WSs in case of
compensation or abortion of a part of the workflow. The
authors of [2] propose several transactional composition
operators for WSs and evaluate the QoS of the composite
WS, considering the abortion cases. They only analyze
the transactional effects on QoS, without ensuring the
optimal QoS requirement. Their approach does not help
to design a composite WS ensuring, not only a correct
execution, but also an optimal QoS. In our approach, we
propose a model for the selection of transactional WSs
with the best QoS. Thus, our approach not only fulfills
the global transactional requirement but also guarantees
locally the best QoS component WS.

Transactional protocols, such as standards like BTP
[25] and WS-TXM [26], propose two-phase centralized
orchestration of composite WS. In [27], the authors use
an extension of the two-phase coordination protocol. In
addition, their approach allows the user to express max-
imality and minimality constraints over the set of WSs
expected to the validation phase. Several approaches use
ATM to implement transactional behavior for WSs. In
[28], the authors present a multi-level model for WS
composition that does not support users’ constraints.
In [29], the authors propose an approach based on
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open nested transaction model in a peer-to-peer context
allowing users to express their constraints over the set of
composite WSs. In [30], the authors propose a framework
based on Sagas nested transactions. In transactional
protocols and ATM approaches, the execution control is
explicitly defined within the application logic which are
difficult to maintain and hardly adaptable to different
application requirements.

Other approaches use workflows and components’
transactional properties to test the transactional property
of the CWS. In [31], the authors propose a mechanism
based on a set of mediators to gather functionally similar
but transactionally different WSs. Their approach allows
resolving the heterogeneity among WSs. The authors of
[12] use contracts to express the transactional behav-
ior of a given CWS. To our knowledge, our approach
is the only one that selects appropriate transactional
component WSs to construct a TCWS that satisfies the
user requirements. In our approach, the designer focuses
on the construction of the desired functionalities of the
applications leaving the complex process of selection of
WSs based on their QoS and transactional behavior to
the composition manager.

8 CONCLUSION
In this paper, we have presented a TQoS-driven ap-
proach. It consists of a Web service selection approach
supporting transactional and quality driven WS com-
position. The selection of the component WSs is done
by matching the WSs properties with the user’s desires.
More precisely, the selection is realized depending on
transactional and QoS user requirements. The former is
established by means of a risk notion that indicates if the
results can be compensated or not. The latter is expressed
as a weight over each QoS criterion.

Our contribution is twofold. On the one hand, the
composition manager selects WSs according to the qual-
ity and transactional behavior of the application, leaving
to the user to focus on the construction of the desired
functionalities. On the other hand, we proposed and
formally analyzed a selection algorithm based on the
workflow patterns and the transactional properties of the
component WSs (elementary or composite).

In this paper, five QoS criteria (execution price, ex-
ecution duration, reputation, successful execution rate
and availability) have been used and a local QoS-driven
service selection related to these criteria has been chosen.
However, other properties could have been taken into
account, such as performance-related ones (e.g. machine
resources), as done for example in [32]. The local QoS-
aware selection is based on MCDM approach, however
any other approach could have been used. The only
constraint is to use a local optimization process in order
to chose the WS having the best QoS among a set
of potential WSs resulting from the transaction-aware
selection process.

In the experimentation, in order to give a semantic
meaning to the risk notion, we have considered two

scenarios where the execution duration and execution
price of a WS depend on additional operations required
to guaranty their transactional properties. We used the
risk notion for these scenarios. Under these conditions
the implementation shows that the QoS of TCWS is in
conformity with the user preferences. If the execution
price criterion is important to the user (i.e. price min-
imum), then the better solutions are the ones with the
lowest level of risk. A contrario, if the execution duration
criterion is more important to the user (i.e. execution
time minimum), then the riskier solutions are the best
ones. The results also show that risk 0 is equivalent to
risk 1 if compensatable services do not cost more than
the others. Moreover, we have evaluated the scalability
of our TQoS algorithm. In fact, the experimental results,
of two other scenarios, show that the number of activities
does not affect the computation cost of the algorithm
since the selection is done incrementally and therefore,
the sets of candidate services for beginning activities is
much bigger than the ones for ending activities. More
experiments are needed to consider different scenarios
and compare the performance of our algorithm with
related ones.

Currently, we are studying by one side other risk levels
by relaxing the transactional properties of a CWS and
considering penalty. By the other side, we are study-
ing the execution step of the Web service composition.
This step can be done using for example a hierarchical
execution model [29]. We are particularly interested on
finding dynamic selection solutions which takes into
account failures or dynamic changes (e.g. a component
WS becomes unavailable or the QoS of one of the com-
ponent WS changes significantly). More particulary, we
are interested in automatic selection where the user is
relieved as much as possible from the composition and
execution processes. Due to, since in our approach after
each WS selection, we compute and record the current
transactional property of the resulting composite WS, a
component WS substitution, in case of failure or dynamic
changes, can be done. This is possible by analyzing the
transactional property of the TCWS obtained before the
failed component. This information can also be used to
complete context-policies. Our future work will focus on
these aspects.
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