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As we head towards the IoT (Internet of �ings) era, protecting network infrastructures and information security has become
increasingly crucial. In recent years, Anomaly-Based Network Intrusion Detection Systems (ANIDSs) have gained extensive
attention for their capability of detecting novel attacks. However, most ANIDSs focus on packet header information and omit
the valuable information in payloads, despite the fact that payload-based attacks have become ubiquitous. In this paper, we propose
a novel intrusion detection system named TR-IDS, which takes advantage of both statistical features and payload features. Word
embedding and text-convolutional neural network (Text-CNN) are applied to extract e	ective information from payloads. A
er
that, the sophisticated random forest algorithm is performed on the combination of statistical features and payload features.
Extensive experimental evaluations demonstrate the e	ectiveness of the proposed methods.

1. Introduction

Due to the advancements in Internet, cyberspace security
has gained increasing attention [1, 2], which has encour-
aged many researchers to design e	ective defense systems
called Network Intrusion Detection Systems (NIDSs). Cur-
rently, existing intrusion detection techniques fall into two
main categories: misuse-based detection (also known as
signature-based detection or knowledge-based detection)
and anomaly-based detection (also known as behavior-
based detection). Misuse-based detection systems extract the
discriminative features and patterns from known attacks and
hand-code them into the system. �ese rules are compared
with the tra�c to detect attacks. �ey are e	ective and
e�cient for detecting known type of attacks and have a
very low False Alarm. �erefore, Misuse-based detection
systems are currently the mainstream NIDSs and some
sophisticated ones have been deposited in real scenarios,
e.g., snort [3]. However, misuse detection systems require
updating the rules and signatures frequently and they are
incapable to identify any novel or unknown attacks. In recent
years, anomaly-based network intrusion detection systems

(ANIDSs) have attracted much attention for their capability
of detecting zero-day attacks. �ey adopt statistical methods,
machine learning algorithms, or data mining algorithms to
model the pattern of normal network behavior and detect
anomalies as deviations from normal behavior.

Various algorithmshave beenproposed tomodel network
behavior and detect anomaly �ows, including articial neural
networks [4], fuzzy association rules [5], Bayesian network
[6], clustering [7], decision trees [8], ensemble learning [9],
support vector machine [10], and so on [11, 12]. However,
these methods mostly exploit the information in packet
headers or the statistical information of entire �ows and fail
to detect the malicious content (e.g., SQL injection, cross-
site scripting, and shellcode) in packet payloads. Classic
processing methods for payloads can be divided into two
categories. �e rst category requires prior knowledge of
protocol formats, which cannot be applied to unknown pro-
tocols. �e second category does not require expert domain
knowledge; instead, they calculate some statistical features or
conduct N-gram analysis, but they usually su	er from a high
false positive rate. In recent years, deep learning algorithms
[13, 14] have achieved remarkable results in many elds, e.g.,
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Computer Vision (CV) [15], Natural Language Processing
(NLP) [16], and Automatic Speech Recognition (ASR) [17].
�ey are proven to be capable to extract salient features from
unstructured data. Considering the fact that the payloads of
network tra�c are sequence data similar to texts, we can
apply modern deep learning techniques in NLP to the feature
extraction of network payloads.

In this paper, we adopt word embedding [18] and text-
convolutional neural network (Text-CNN) [19] to extract
features from the payloads in network tra�c. We combine
the statistical features with payload features and then run
random forest [20] for the nal classication. �e rest of
this paper is organized as follows. In Section 2, we describe
the related work. In Section 3, we describe the design and
implementation of our methods. In Section 4, we show
extensive experimental results to show the e	ectiveness of our
methods. Finally, in Section 5, we conclude this paper.

2. Related Work

2.1. Payload-Based Intrusion Detection. In these days,
payload-based attacks have become more prevalent, while
older attacks such as network Probe, DoS, DDoS, and
network worm attacks have become less popular. Many
attacks place the exploit codes inside the payload of network
packets; thus, header-based approaches cannot detect them.
In this case, many payload-based detection techniques
have been proposed. �e rst class of these methods is
creating protocol parsers or decoders for di	erent kinds
of application. Snort [3] includes a number of protocol
parsers for protocol anomaly detection. For example, the
http inspect preprocessor parses and normalizes HTTP
elds, making them available to detect oversized header
elds, non-RFC characters, or Unicode encoding. ALAD [21]
builds models of allowed keywords in text-based application
protocols such as FTP, HTTP, and SMTP. �e anomaly score
is increased when a rare keyword is used for a particular
service. �ese parser-based methods have a high detection
rate for known protocols. However, these methods require
manually specied by experts and cannot deal with unknown
protocols. �e second class applies NLP techniques, e.g.,
N-gram analysis [22] to network tra�c payloads. PAYL
[23] uses 1-grams and unsupervised learning to build a byte
frequency distribution model of payloads. McPAD [24]
creates 2]-grams and applies a sliding window to cover
all sets of 2 bytes, ] positions apart in each network tra�c
payload. �ey require no expert domain knowledge and
can detect zero-day worms, because payloads with exploit
codes generally have an unusual byte frequency distribution.
�e drawbacks of them are unsatisfactory detection rate
and relatively high computational overhead compared with
parser-based methods.

2.2. Deep Learning for Intrusion Detection. Many deep learn-
ing techniques have been used for developing ANIDS. Ma et
al. [25] evaluated deep neural network on the KDDCUP99
dataset, and Niyaz et al. [26] applied deep belief networks to
intrusion detection on the NSL-KDD dataset. However, they
only tested deep learning techniques on manually designed

features, while their powerful ability to learn features from
raw data has not been exploited. Recently, several attempts
to learn e	ective features from raw packets have emerged.
Yu et al. [27, 28] and Mahmood et al. [29] used autoencoder
to detect anomaly tra�c. Wang et al. [30] applied CNN
to learn the spatial features of network tra�c and used
the image classication method to classify malware tra�c,
despite the fact that network payloads are more similar to
documents. Torres et al. [31] transformed network tra�c
features into character sequence and used RNN to learn
the temporal features, while Wang et al. [32] combined
CNN and LSTM together to learn both spatial and temporal
features. �ese methods are of great insights yet have evident
weaknesses. Firstly, some time-based tra�c features such as
�ow duration, packet frequency, and average packet length
cannot be learned automatically by both CNN and LSTM.
Besides, they ignore the semantic relation between each byte,
which is a critical factor in NLP. In this paper, we remedy
both problems by taking advantage of both expert domain
knowledge and deep neural networks. �e statistical features
are manually designed and the payload features are extracted
by deep learning techniques in NLP. To the best of our
knowledge, no studies have made use of the advantages of
both.

3. TR-IDS

TR-IDS aims at automatically extracting features from pay-
loads of raw network packets to improve the accuracy of
IDS. Since random forest has superior performance on
structured data while convolutional network is suitable to
handle unstructured data [33], we combine the advantages
of both. It performs classication on bidirectional network
�ows (Bi�ow), which contains more temporal information
than packet level datasets. �e implementation schemes are
illustrated in Figure 1, and the di	erent stages of TR-IDS are
described as follows:

(i) Statistical features extraction: we extract some crit-
ical statistical features from each network �ow. �ese
features include elds in packet headers and statistical
attributes of the entire �ow.

(ii) Payload features extraction: we map each byte in
payloads into a word vector using word embedding
and then extract salient features of payloads using
text-convolutional neural network.

(iii) Classi�cation through random forest: the statisti-
cal features and payload features are concatenated
together, and then, the random forest algorithm is
applied to classify the generated new dataset.

3.1. Statistical Features Extraction. In this section, we man-
ually extract some discriminative features from the bidirec-
tional network �ows, where the rst packet in each �ow
determines the forward (source to destination) and backward
(destination to source) direction. We extract 44 statistical
features from each �ow, and most of them are calculated
separately in both forward and backward direction. To be
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Figure 1: �e general architecture of TR-IDS.

more specic, we rst extract some basic features such as
protocol, source port, and destination port, while ip addresses
are not included because they vary in di	erent networks
and thus cannot generalize the characteristic of attacks.
�en, some statistical attributes such as packet number, bytes
number, and tcp �ag number are calculated. A
er that, some
time-based statistical measures are also extracted, such as the
speed of transmission and time interval between two packets.
�ese features are vital signatures for detecting attacks such
as Probe, DoS, DDoS, Scan, U2R, and U2L, which have
distinctive tra�c patterns. We list all these features in Table 1

3.2. Payload Features Extraction. In this section, we intro-
duce our deep-learning-based method of extracting features
from network payloads. Word embedding technique is used
to transfer one-hot representation of each byte to continuous
vector representation. �en, text-convolutional network is
utilized to extract themost salient features fromeach payload.

Byte-Level Word Embedding. �e e	ective representation of
each byte in payloads is a critical step. Yu et al. [27] took
the decimal value of each byte as a feature. �is method
is not suitable as it introduces order relation to each byte.
Wang et al. [32] adopted one-hot encoding to each byte
and consider each sample as a picture; then a conventional
CNN is applied to extract features. However, this method
neglects the similarity in semantics and syntax of di	erent
bytes, and the worse is that it signicantly increases the
computation complexity. To remedy this problem, we utilize
word embedding to map each byte into a low dimensional
vector, preserving the semantic information and consuming
much less computational cost. By now, the most well-known

method of word embedding is word2vec [34], which is
convenient to implement and has superior performance. Two
popular kinds of implementation of word2vec are CBoW
and Skip-Gram [35]. Since Skip-Gram generally has a better
performance [35], in this paper, we apply Skip-Gram to our
byte-embedding task.

�e task of Skip-Gram is, given one word, predicting the
surrounding words.�e trained model does not perform any
new task; instead, we just need the projection matrix, which
contains the vector representation of each word. We dene

two parameter matrices,� ∈ R
�×|�| and�� ∈ R

|�|×�, where
� is the embedding dimensionwhich can be set as an arbitrary
size. Note that� is the vocabulary set and |�| is the size of�.
Each word in � is represented as a |�| × 1 one-hot vector.
�e architecture of Skip-Gram is illustrated in Figure 2, and
Skip-Gram works in the following 4 steps.

Step 1. Generate the one-hot input vector �� ∈ R
|�| of the

center word.

Step 2. Get the embedded vector of the center word V� =
��� ∈ R

�.

Step 3. For each surrounding word, generate a score vec-
tor � = ��V� and then turn it into probabilities,
	̂ = 
�����(�). �us, we obtain 2� so
max outputs,
	̂�−�, . . . , 	̂�−1, 	̂�+1, . . . , 	̂�+�, where � denotes the window

size.

Step 4. Match the generated probability vectors with the
true probabilities, which are the one-hot vectors of the
actual output, 	�−�, . . . , 	�−1, 	�+1, . . . , 	�+�. �e divergence
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Table 1: Statistical features of the network �ow.

Feature Description

protocol Protocol of the �ow

src port Source port

dst port Destination port

f(b) urg num Number URG �ags in the forward(backward) direction (0 for UDP)

f(b) ack num Number ACK �ags in the forward(backward) direction (0 for UDP)

f(b) psh num Number PSH �ags in the forward(backward) direction (0 for UDP)

f(b) rst num Number RST �ags in the forward(backward) direction (0 for UDP)

f(b) syn num Number SYN �ags in the forward(backward) direction (0 for UDP)

f(b) n num Number FIN �ags in the forward(backward) direction (0 for UDP)

pkts num Total packets in the �ow

bytes num Total bytes in the �ow

f(b) pkts num Total packets in the forward(backward) direction

f(b) bytes num Total bytes in the forward(backward) direction

f(b) len min Minimum length of packet in the forward(backward) direction

f(b) len max Maximum length of packet in the forward(backward) direction

f(b) len mean Mean length of packet in the forward(backward) direction

f(b) len std Standard deviation length of packet in the forward(backward) direction

duration Duration of the �ow

pkts psec Number of packets per second

bytes psec Number of packets per second

f(b) pkts psec Number of forward(backward) packets per second

f(b) bytes psec Number of forward(backward) bytes per second

f(b) intv min Minimum time interval between two packets sent in the forward(backward) direction

f(b) intv max Maximum time interval between two packets sent in the forward(backward) direction

f(b) intv mean Mean time interval between two packets sent in the forward(backward) direction

f(b) intv std Standard deviation time interval between two packets sent in the forward(backward) direction

Parameters
to learn

So�max
Output

Embedding
layer

Input
layer

D-dim



D×|V|



D×|V|



D×|V|

2m×|V|-dim

|V|×D

|V|-dim

Figure 2: �is gure illustrates how Skip-Gram works.
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Figure 3: �is gure illustrates how Text-CNN works.

between generated probabilities and true probabilities is the
loss function for optimizing the parameters.

When it comes to the byte-level word embedding in our
algorithms, each byte is considered as a word and represented
as a one-hot vector.We rst extract the payloads of all packets
in each �ow and concatenate them together as a �ow payload.
Each �ow payload can be analogized as a sentence and they
are composed of a text corpus, i.e., a training dataset. �e
embedding size can be set as a relatively small value (e.g.,
10). A
er the training of Skip-Gram, we obtain the embedded
representation of each byte.

Extract Payload Features through Text-CNN. We apply Text-
CNN to extract features from the embedded payloads. Text-
CNN is a slight variant of the CNN architecture and achieves
excellent results on many benchmarks of sentence classica-
tion (or document classication) [19]. Text-CNN adopts the
one-dimensional convolution operation to extract features
from the embedded sentences. In Text-CNN, lters have a
xedwidth of embedding size, but have varying heights in the
one layer, while in conventional CNNs, the sizes of lters in
one layer are usually the same.�e architecture of Text-CNN
is illustrated in Figure 3.

Let x� ∈ R
� be a �-dimensional word vector correspond-

ing to the embedded representation of �th word in a sentence
(in our task, each byte corresponds to a word; thus, each
payload is considered as a sentence). A sentence of length �
(padded if the length is smaller than �) is denoted as

x1:� = x1 ⊕ x2 ⊕ ⋅ ⋅ ⋅ ⊕ x� (1)

Note that ⊕ is the concatenation operator. When executing

a convolution operation, a convolution lter w ∈ R
ℎ×� is

applied to a window of ℎ words in the sentence to generate a
new feature. To be specic, a feature �� is calculated as follows:

�� = � (w ⋅ x�:�+ℎ−1 + �) (2)

where x�:�+ℎ−1 is a window of words, � is a bias, and � is
a nonlinear function. �is lter is applied to each possible
window [x1:ℎ, x2:ℎ+1, . . . , x�−ℎ+1:�] to generate a new feature

map c = [�1, �2, . . . , ��−ℎ−1] and c ∈ R
�−ℎ+1. �en, a max-

pooling operation is applied to the feature map to obtain the
maximum value �max = max(c), which is the most important
feature of each feature map.

�e process of extracting one feature by one lter is
described above, and we have multiple lters with varying
window size to extract multiple features. Note that, in the
original Text-CNN, the features are concatenated and directly
passed to a fully-connected 
����� layer to output the
probabilities of di	erent classes. But in our implementation,
we insert a feature layer between the concatenated layer and
output layer. A
er the supervised training of the model, we
extract features of each payload from this layer.

Classi	cation through Random Forest. �e Random Forest
(RF) [20] is an ensemble algorithm consisting of a collection
of tree-structured classiers. Each tree is constructed by a
di	erent bootstrap sample from the original data using a
decision tree algorithm, and each node of trees only selects
a small subset of features for the split. �e learning samples
not selected with bootstrap are used for evaluation of the tree,
called out-of-bag (OOB) evaluation, which is an unbiased
estimator of generalization error. A
er the construction of
the forest, once a new sample needs to be classied, it is fed
into each tree in the forest and each tree casts a unit vote
to certain class which indicates the decision of the tree. �e
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forest chooses the class with the most votes for the input
sample.

RF has the following advantages:

(i) It has excellent performance in accuracy on struc-
tured data.

(ii) It is robust against noise and does not over-t in most
cases.

(iii) It is computational e�cient and can run on large-scale
datasets with high dimensions.

(iv) It can handle unbalanced datasets.

(v) It can output the importance weight of each feature.

�ese merits of RF encourage us to choose it as our nal clas-
sication. In this step, we concatenate the statistical features
and payload features to generate the nal representation of
the network �ows. �en, this new dataset is fed into the RF
algorithm for training and validation.

4. Performance Evaluation

4.1. Datasets and Preprocessing. We evaluate the performance
of our method on ISCX2012 dataset [36]. It is an intrusion
detection dataset generated by the Information Security
Center of Excellence (ISCX) of the University of New
Brunswick (UNB) in Canada in 2012. �is dataset consists of
7 days of network activity, including normal tra�c and four
types of attack tra�c, i.e., Inltrating, HttpDoS, DDoS, and
BruteForce SSH. AlthoughKDDCUP99 dataset [37] is widely
used to evaluate IDS techniques, it is really old-fashioned
and cannot actually re�ect the behavior of modern attacks.
In contrast, ISCX2012 is much more updated and closer to
reality. �is dataset consists of seven raw pcap les and a list
of label les. �e label les record the basic information of
each network �ow, e.g., label, ip address, port, start time, and
stop time. We have to split the network �ows in the pcap les
and label them using records in the label les. Note that the
labeled les contain a few problems. For example, the packet
numbers recorded in them are not identical to the actual
packet number in pcap les. Besides, the time records in
themdo not exactly correspond to the timestamps in the pcap
les.�erefore, we have to remove all incorrect and confused
records. We chose most attack samples and randomly chose
a small subset of legitimate ones to generate a relatively
balanced dataset. �en, we divided the preprocessed dataset
into training and testing set using a ratio of 70% and 30%,
respectively. Our preprocessing results are shown in Table 2.

4.2. Evaluation Metrics. �ree metrics are used to evaluate
the performance of TR-IDS: Accuracy (ACC), DetectionRate
(DR), and False Alarm Rate (FAR), which are frequently
used in the evaluation of intrusion detection. ACC is a good
metric to evaluate the overall performance of a system. DR
is used to evaluate the attack detection rate. FAR is used to

evaluate misclassication of normal tra�c.�e three metrics
are formulated as follows:

�������	 (���) = �� + ��
�� +  � +  � + ��

!""����#�" (!#) = ��
�� +  �

 �$
"�$���#�" ( �#) =  �
 � + ��,

(3)

where TP is the number of instances correctly classied as A,
TN is the number of instances correctly classied as Not-A,
FP is the number of instances incorrectly classied as A, and
FN is the number of instances incorrectly classied as Not-A.

4.3. Experimental Setup. Scapy, Pytorch, and Scikit-learn
are the so
ware frameworks for our implementation.
�e operating system is CentOS 7.2 64bit OS. Server is
PR4712GW/X10DRFF-iG with 2 Xeon e5 CPUs with 10 cores
and 64GB memory. Four Nvidia Tesla K80 GPUs are used to
accelerate the training of CNN. In our all experiments, the
Text-CNN contains convolution lters with three di	erent
size, i.e., 3, 4, and 5, and there are 100 channels for each.
�e stride is 1 and no padding is used. �e mini-batch size
is 100 and optimizer is Adam with default parameters. �e
parameters of RF are set by default, except the number of
trees, which is set as 200.

4.4. Experimental Results. In this section, we show the
experimental results of our methods. We set the number of
extracted payload features as 50 and the truncated length
of bytes in each payload as 1000. Table 3 shows the result
of 5-class classication on ISCX2012 and Table 4 shows the
confusion matrix of the classication. It is obvious that our
method can nearly identify all attacks of Inltration, BFSSH,
and HttpDoS but confuses a few DDoS attacks with the
normal tra�c.�e reason is that somenetwork �ows ofDDoS
are really similar to normal tra�c; thus, it is unrealistic to
identify each �ow in a DDoS attack.

Since ISCX2012 dataset was published much later than
DARPA1998, there are much fewer available corresponding
experimental results. Although some existing methods are
evaluated on it, they have di	erent preprocessing procedures
and even use di	erent proportions of the dataset. �us, it
is unfair to compare our methods with these methods. In
this case, in order to demonstrate the e	ectiveness of our
method, we implemented ve other methods. �e rst four
ones are support vector machine (SVM), fully-connected
network (NN), convolutional neural network (CNN), and
random forest (RF-1), and their inputs are statistical features
combined with 1000 raw bytes. �e 
h one is running
random forest on just statistical features (RF-2). Table 5
compares TR-IDS with the ve methods. Note that the per-
formance of RF-1 is inferior to that of RF-2, which means the
features of raw bytes may even deteriorate the performance
of intrusion detection. �e superior performance of TF-
IDS demonstrates the e	ectiveness of the proposed feature
extraction techniques.
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Table 2: Preprocessing results of the ISCX2012 dataset.

Category Count Percentage Training count Testing count

Normal 10000 28.28% 6971 3029

Inltration 9925 28.07% 6930 2995

BFSSH 7042 19.92% 4911 2131

DDoS 4963 14.04% 3513 1450

HttpDoS 3427 9.69% 2424 1003

Total 35357 100% 24749 10608

Table 3: Performance of TR-IDS on ISCX2012 (%).

Type ACC DR FAR

Inltration 99.87 99.77 0.06

BFSSH 99.99 99.95 0.00

DDoS 98.09 95.93 0.40

HttpDoS 99.90 99.70 0.07

Total 99.13 99.26 1.18

Table 4: Confusion matrix of the 5-class classication task.

Normal Inltration BFSSH DDoS HttpDoS

Normal 2993 1 0 33 2

Inltration 0 2988 0 4 3

BFSSH 0 1 2130 0 0

DDoS 56 1 0 1391 2

HttpDoS 0 2 0 1 1000

Table 5: Comparison with other algorithms (%).

Type ACC DR FAR

SVM 86.16 81.48 1.95

NN 90.99 91.17 9.45

CNN 95.75 96.61 6.41

RF-1 97.21 96.81 1.74

RF-2 98.59 98.24 2.67

TR-IDS 99.13 99.26 1.18

4.5. Sensitivity Analysis. In this section, we show the results
of sensitivity tests on the two important hyperparameters,
i.e., the truncated length of payloads for feature extraction
and the number of features extracted from payloads. We
rst xed the truncated length of payloads as 1000 and then
varied the extracted feature number from 5 to 100. A
er
that, we xed the extracted feature number and varied the
truncated length from 500 to 3000. As we can see in Table 6,
our methods are not sensitive to the two hype-parameters.
�e best value of feature number locates at the middle of 5
and 100, i.e., 50. �e reason is that too few features cannot
contain enough information of the entire payload, and too
many features bring noise to the nal classication algorithm.
For the truncated length of payloads, we nd that large length
contributes to a better performance; it is because a small
length may result in the loss of information of payloads.
Nevertheless, a large length also leads to a high computational
cost.

Table 6: In�uence of the payload length and feature number (%).

Payload length feature number ACC DR FAR

1000 5 98.68 98.92 1.91

1000 10 98.71 98.94 1.88

1000 20 98.84 99.20 2.01

1000 50 99.13 99.26 1.18

1000 100 99.09 99.24 1.48

500 50 99.02 99.35 1.81

1000 50 99.13 99.26 1.18

1500 50 99.14 98.25 1.17

2000 50 99.18 98.36 1.25

3000 50 99.21 99.40 1.12

5. Conclusion

In this paper, we propose a novel intrusion detection frame-
work, i.e., TR-IDS, which utilizes both manually designed
features and payload features to improve the performance.
It adopts two modern NLP techniques, i.e., word embedding
and Text-CNN, to extract salient features from payloads.�e
word embedding technique retains the semantic relations
between each byte and reduces the feature dimension, and
then Text-CNN is used to extract features from each payload.
We also apply the sophisticated random forest algorithm for
the nal classication. Finally, extensive experiments show
the superior performance of our method.
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