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Rift Valley fever virus (RVFV) is an emerging pathogen that has potential to cause severe
disease in humans and domestic livestock. Propagation of RVFV strain MP-12 is
negatively impacted by the actions of RIOK3, a protein involved in the cellular immune
response to viral infection. During RVFV infection, RIOK3 mRNA is alternatively spliced to
produce an isoform that correlates with the inhibition of interferon b signaling. Here, we
identify splicing factor TRA2-b (also known as TRA2beta and hTRA2-b) as a key regulator
governing the relative abundance of RIOK3 splicing isoforms. Using RT-PCR and
minigenes, we determined that TRA2-b interaction with RIOK3 pre-mRNA was
necessary for constitutive splicing of RIOK3 mRNA, and conversely, lack of TRA2-b
engagement led to increased alternative splicing. Expression of TRA2-b was found to be
necessary for RIOK3’s antiviral effect against RVFV. Intriguingly, TRA2-b mRNA is also
alternatively spliced during RVFV infection, leading to a decrease in cellular TRA2-b protein
levels. These results suggest that splicing modulation serves as an immune evasion
strategy by RVFV and/or is a cellular mechanism to prevent excessive immune response.
Furthermore, the results suggest that TRA2-b can act as a key regulator of additional
steps of the innate immune response to viral infection.

Keywords: Rift Valley fever virus, alternative splicing, innate immunity, RNA viruses, viral infection, splicing factors
1 INTRODUCTION

Rift Valley fever virus (RVFV) is a mosquito-borne bunyavirus (Order Bunyavirales; Family
Phenuiviridae) (Adams et al., 2017) that is endemic to Africa and the Arabian Peninsula and
causes disease in livestock and humans. In livestock, RVFV causes abortive pregnancies and severe
illness in young animals, while in humans it can cause a variety of symptoms, from mild flu-like
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symptoms to liver damage, blindness, hemorrhagic fever, and
death (Daubney et al., 1931; Bird et al., 2009; Ikegami and
Makino, 2011; Grossi-Soyster and LaBeaud, 2020). There is
also evidence that RVFV increases the probability of
miscarriage in infected women (Baudin et al., 2016). Its
mosquito vectors, species in the Aedes and Culex genera, are
predicted to expand their range in response to climate change
(Samy et al., 2016; Ryan et al., 2019; Iwamura et al., 2020),
making RVFV a potential threat beyond Africa and the Arabian
Peninsula. Because of its potential for severe illness and spread,
RVFV is listed as a Category A overlap select agent by the CDC/
USDA. There is currently no licensed human vaccine or proven
drug treatment for RVFV, and a deeper understanding of its
replication and interaction with the host will be important for
developing strategies to combat RVFV disease.

The innate immune response against RNA virus infections,
including RVFV, is activated through RNA-detecting pattern-
recognition receptors in mammalian cells such as RIG-I and
MDA5 and culminates in the activation of type-I interferon
(IFN) and other cytokine production (Kato et al., 2006; Kuri
et al., 2010; Ermler et al., 2013; Weber et al., 2013). In reports
from other laboratories as well as recent work in our group, the
relatively understudied Rio kinase 3 (RIOK3) has been described
as a key, yet enigmatic, member of the antiviral response pathway
(s). In our system (Havranek et al., 2021) and in the reports of
Feng, et al. (Feng et al., 2014) and Willemsen, et al. (Willemsen
et al., 2017), RIOK3 was shown to be involved in activation of the
innate immune response somewhere downstream of RIG-I.
Curiously, in other systems RIOK3 has also been implicated in
deactivation of MDA5 and RIG-I (Takashima et al., 2015; Shen
et al., 2021), ascribing RIOK3 a role in muting the innate
immune response. Additionally, different viruses have different
responses to RIOK3 depletion, with Rift Valley fever virus,
hepatitis C virus, and influenza A virus replicating faster in the
absence of RIOK3 (Willemsen et al., 2017; Gokhale et al., 2020;
Havranek et al., 2021), and Zika virus, Dengue virus, and measles
virus replicating slower (Takashima et al., 2015; Gokhale and
Horner, 2017). Thus, RIOK3 may act in dual roles, both as an
effector and an inhibitor of innate immune responses to viral
infection, depending on the cell type, virus type, and the immune
pathway that has been activated.

Transcriptomics studies have identified widespread changes
in the gene expression and alternative splicing of host genes
during RNA virus infection (Boudreault et al., 2016; De Maio
et al., 2016; Hu et al., 2017; Gokhale et al., 2021). Recently we
observed that many mRNAs were alternatively spliced upon
infection with RVFV, among them RIOK3 (Havranek et al.,
2019). Alternative splicing, which has been observed for virtually
every gene in vertebrates, allows for expression of a diverse range
of proteins from a given gene (Leff et al., 1986; Black, 2003;
Manning and Cooper, 2017). Because potential splice sites are
abundant in mRNA, splice site selection is largely controlled
by the carefully regulated expression of splicing factors,
which bind to specific regions of pre-mRNA and enhance or
suppress potential splice donor or acceptor sites en route
to production of the mature mRNA (Long and Caceres, 2008;
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Jangi and Sharp, 2014; Leclair et al., 2020). Identifying splicing
factors and the RNAmotifs to which they bind can be an essential
step in understanding how gene expression is controlled in
different conditions, including in response to viral infection.

RIOK3 mRNA is expressed as four major splice isoforms
evidenced by RNAseq (Havranek et al., 2019), which we call full-
length (FL), X2, X1, and X1/X2 hybrid (Figure 1A). FL contains
the entire open reading frame including 13 complete exons for
the full-length protein, while X2 utilizes an alternative splice site
in exon 8, resulting in a premature termination codon (PTC) in
exon 9. X1 excludes exon 7, resulting in a PTC in exon 8. The X1/
X2 hybrid has the X2 alternative splice site and a skipped exon 7.
The most abundant RIOK3 splice isoform in unstimulated
HEK293 cells in culture is FL, while in infected cells X2
predominates. If translated, X2 would lack a large portion of
its putative kinase domain and would thus likely be inactive as a
kinase. Recently, we also found that constitutive RIOK3 splicing
is required for the activation of innate immunity, indicating that
the splicing of RIOK3 may be an essential step for regulation of
its activity (Havranek et al., 2021).

In this work, we demonstrate that constitutive versus
alternative RIOK3 mRNA splicing is controlled by the splicing
A

B

C

FIGURE 1 | RIOK3 mRNA is alternatively spliced during RVFV infection in
multiple cell types. (A) Schematic illustration of RIOK3 splice sites observed.
Single lines are introns, while boxes are exons. (B) RT-PCR visualized by
agarose gel showing alternative splicing of RIOK3 pre-mRNA after infection
with RVFV MP-12 at MOI = 1. (C) RT-PCR showing RIOK3 alternative splicing
in multiple cell lines in response to RVFV MP-12 infection. HEK293 (human
embryonic kidney), Hela (human cervical carcinoma), HEPG2 (human
hepatoma), HC-04 (human hepatoma), Vero (African green monkey kidney),
SH-SY5Y (human neuroblastoma), and HFF (human foreskin fibroblast)
were used.
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factor TRA2-b, and that RIOK3 mRNA is alternatively spliced to
an alternative isoform in response to RVFV infection in multiple
cell types. We also show that RIOK3 alternative splicing occurs
shortly after the innate immune response is mobilized to produce
interferon. Additionally, we describe that TRA2-b itself is
alternatively spliced during RIG-I activation, suggesting that
differential expression and processing of this splicing factor
may be crucially important to innate immune activation and/
or modulation.
2 MATERIALS AND METHODS

2.1 Viruses, Cell Culture, and Infections
The MP-12 vaccine strain of RVFV was kindly provided by Brian
Gowen (Utah State University, Logan, UT, USA). Manipulations
of the viruses used in this study are compliant with both the
Institutional Biosafety Committee at the University of Montana,
Missoula, and NIH requirements in regard to their handling
under BSL2 containment conditions.

All cells were incubated at 37°C and 5% CO2. HEK293 (BEI
Resources), HeLa (ATCC), HFF-1 (provided by Brent Ryckman,
University of Montana, Missoula, MT, USA), and Vero (ATCC)
cells were cultured in Dulbecco’s Modified Eagle Medium
(DMEM) supplemented with 10% fetal bovine serum (FBS)
and penicillin/streptomycin (P/S). HepG2 (provided by Brooke
Martin, University of Montana, Missoula, MT, USA), HC-04
(BEI Resources), and SH-SY5Y (provided by Stefan Stamm,
University of Kentucky, Lexington, KY, USA) cells were
cultured in a 1:1 mixture of DMEM and F12 media,
supplemented with 10% FBS and P/S. For experiments using
RVFV MP-12, cells were grown to 80-90% confluency, washed
with PBS, and overlaid with virus at multiplicity of infection
(MOI) of 1. Cells were incubated with virus for one hour, then
media was replaced with growth media supplemented with 2%
FBS and P/S.

TCID50 experiments were carried out as previously described
(Smith et al., 2019).

2.2 Plasmids and Cloning
The TRA2-b overexpression vector and pSpliceExpress minigene
were gifts from Stefan Stamm (University of Kentucky,
Lexington, KY, USA). The RIOK3 minigene was constructed
by amplifying the RIOK3 ORF from whole genomes extracted
from HEK293 cells and inserting it into pSpliceExpress. Mutant
minigenes were generated by overlap extension PCR. All clones
were verified by sequencing.

2.3 Reverse Transcription, PCR, and qPCR
Total RNA was extracted using TRIzol (Thermo Fisher
Scientific) and RNA was reverse transcribed using Maxima H
Minus Reverse Transcriptase (Thermo Fisher Scientific) with
random hexamers according to the manufacturer’s instructions.
Standard PCR was carried out using Phusion Flash Hi-Fidelity
PCR Master Mix (Thermo Fisher Scientific). Products were run
on a 1% agarose gel and visualized using a Molecular Imager Gel
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
Doc XR+ instrument (Bio-Rad). qPCR was performed using the
CFX Connect Real-Time PCR Detection System (Bio-Rad). RNA
levels were normalized to GAPDH. Relative fold change in
expression was calculated using the DDCT method (Livak and
Schmittgen, 2001).

See Table 1 for primers and oligos used in this study.

2.4 Western Blotting
Cells were collected and lysed in radioimmunoprecipitation
assay (RIPA) buffer with protease inhibitors (10mM Tris-HCl
pH 8.0, 140mMNaCl, 1mM EDTA, 0.5mM EGTA, 1% Triton X-
100, 0.1% sodium deoxycholate, 0.1% SDS). Lysates were
clarified and subsequently separated by SDS-PAGE on 10%
polyacrylamide and wet transferred to PVDF. The membrane
was blocked with 5% milk solution in Tris-buffered saline Tween
20 (TBST) at room temperature, and primary antibody was
added at a dilution of 1:1000 in milk buffer. Secondary
antibody was added at a dilution of 1:10,000 in milk buffer.
Following each antibody incubation, the membrane was triple
rinsed with TBST. Chemiluminescent visualization of blots was
carried out using visualization solution made up of two buffers
(buffer 1: 2.5 mM luminol, 0.396 mM coumaric acid, and 100
mM Tris-HCl pH 8.5; buffer 2: 0.0192% hydrogen peroxide, 100
mM Tris-HCl pH 8.5) mixed immediately before visualization.

The following primary antibodies were used: GAPDH loading
control antibody MA5-15738 (Thermo Fisher Scientific), anti-
RIOK3 SAB1406721 (Sigma), and anti-TRA2-b antibody
ab31353 (Abcam). HRP-conjugated secondary antibodies used
were anti-Mouse IgG peroxidase antibody produced in goat
A2554 (Sigma) and anti-Rabbit IgG peroxidase antibody
produced in goat A0545 (Sigma).

2.5 Transfection
Plasmid transfections were performed on HEK293 cells using
Lipofectamine 2000 as per the manufacturer’s instructions
(Thermo Fisher Scientific, Waltham, USA). Morpholino
oligos were synthesized by Gene Tools and transfected using
TABLE 1 | List of all primers and morpholino oligonucleotides used in this study.

Name Sequence (5’ to 3’)

F_RIOK3_Endogenous CCGGTTCCCACTCCTAAAAAGGGC
R_RIOK3_Endogenous CCAGCATGCCACAGCATGTTATACTCAC
F_TRA2B AGGAAGGTGCAAGAGGTTGG
R_TRA2B TCCGTGAGCACTTCCACTTC
F_RIOK3_Minigene GACCCACAAGCATGGAGGATGA
R_RIOK3_Minigene CCAGTTGTGCCAATGAAGAGTTTGA
F_IFNB AAACTCATGAGCAGTCTGCA
R_IFNB AGGAGATCTTCAGTTTCGGAGG
F_GAPDH GTCTCCTCTGACTTCAACAGCG
R_GAPDH ACCACCCTGTTGCTGTAGCCAA
RIOK3_FL_qPCR_F GTCTGTTGTCTTTCATGCATATGGAGG
RIOK3_FL_qPCR_R TGCCCACATGCGGATCTT
RIOK3_Exon1_F GCCTTCATTCCCGAATGGATCTGGTAG
RIOK3_Exon2_R GCCAGCTGTTCACTCATTACATCAGCC
RIOK3_X2_qPCR_F TGCCATCAAGAATGCAGAGA
RIOK3_X2_qPCR_R TAACTGCCGCATCAAATGAA
TRA2B_Morpholino ACTTCTTTACCCTGTATATATTTTCCTCTA
J
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Endo-Porter according to the manufacturer’s instructions
(Gene Tools).
3 RESULTS

3.1 RIOK3 mRNA Is Alternatively Spliced
During Infection and in Multiple Cell Types
In cell culture, RIOK3 mRNA is expressed as four major splice
isoforms termed full-length (FL), X2, X1, and X1/X2 hybrid
whose abundances depend on cell treatment and/or cell type
(Figure 1A). FL represents the constitutively spliced mRNA that
is abundant in non-immune-activated cells and contains the
entire coding sequence for the full length RIOK3 protein. The X2
isoform is produced due to an alternative 5’ splice site selection
event in exon 8, which leads to a PTC in exon 9. X1, the least
abundant isoform that is not readily identified via agarose gel,
contains a skipped exon 7. Additionally, we observe a hybrid X1/
X2 splicing event where both exon 7 is omitted and the
alternative splice site in exon 8 is observed.

RIOK3 was alternatively spliced in HEK293 cells during the
course of RVFV strain MP-12 infection. As early as 18 hours post
infection, abundance shifts from primarily FL to X2, with some
increase in X1/X2 hybrid (Figure 1B). RIOK3 protein level,
visualized via western analysis (Supplementary Figure 1), was
slightly increased immediately following RVFV infection,
followed by a slow decrease out to 48 hours post infection
(hpi). The lack of dramatic changes in full length RIOK3
protein level was not unexpected because we previously
demonstrated that alternative splicing of RIOK3 mRNA itself
correlated with rapid mitigation of innate immune responses
(Havranek et al., 2021). The RIOK3 constitutive-to-alternative
splicing pattern was also consistently observed during RVFV
infection of multiple cell lines, including HEK293 (human
embryonic kidney), HeLa (human cervical carcinoma), SH-
SY5Y (human neuroblastoma), HepG2 and HC-04 (human
hepatoma), HFF-1 (transformed human foreskin fibroblasts),
and Vero (African green monkey kidney) (Figure 1C).
3.2 Alternative Splicing of RIOK3 mRNA
Occurs After IFNB Activation
We previously showed that altering the balance of FL to
alternatively spliced RIOK3 mRNA causes ineffective activation of
innate immune responses (Havranek et al., 2021). Because
overstimulation of innate immunity can lead to cell death and
tissue damage (reviewed in Rock and Kono, 2008) and can lead to
autoimmune disease (Rodero and Crow, 2016), we hypothesized
that RIOK3 splicing may modulate the immune/inflammatory
response after an initial robust reaction to pathogen incursion. In
particular, if proteins synthesized from the different mRNA
isoforms performed distinct functions, the relative abundances of
FL, X2 and X1 could provide a mechanism for rapid tuning of the
innate immune response and could prevent unwarranted collateral
cell damage and apoptosis.

RIOK3 protein has a role downstream of RIG-I stimulation,
which culminates in homo- and heterodimerization of IRF3/
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
IRF7 and activation of interferon-stimulated genes including the
cytokine interferon beta (IFNB) (Ning et al., 2011; Tsoi et al.,
2019). Therefore, we measured IFNB production as a proxy
for innate immune activation. Cells were infected with RVFV
and harvested as the innate immune response was being
activated. We measured IFNB production via RT-qPCR, and
simultaneously assayed RIOK3 splicing patterns by visualizing
RT-PCR products by agarose gel electrophoresis. We found that
RIOK3 alternative splicing isoforms were not abundant in the
first 7 hours of infection, but significant IFNB expression
was detected beginning at 6 hpi (Figures 2A, B). These data
indicated that innate immune activation preceded RIOK3
alternative splicing.

To determine whether IFNB itself could trigger RIOK3
alternative splicing, we also treated cells with IFNB protein.
While IFNB is readily expressed after innate immune
activation via RIG-I activation (Kato et al., 2006), the protein
is secreted and subsequently interacts with interferon receptor
complexes, initiating JAK/STAT signaling (Velazquez et al.,
1992; Müller et al., 1993) and activating a separate set of genes
from those expressed as a result of RIG-I activation (Qureshi
et al., 1996; Mesev et al., 2019). We observed no increase in
alternative splicing of RIOK3 when cells were treated with IFNB
protein, indicating that the splicing event is likely unique to the
initial activation of innate immunity and IFNB induction via
A

B

C

FIGURE 2 | RIOK3 splicing occurs after IFNB activation, and is not affected
by IFNB protein. (A) RIOK3 alternative splicing over the first 7 hours of RVFV
MP-12 infection in HEK293 cells at MOI = 1, as measured by RT-PCR.
(B) IFNB expression measured by qPCR at each timepoint corresponding to
RIOK3 alternative splicing in response to RVFV MP-12 infection in the same
HEK293 cells as in (A). Asterisks indicate p < 0.05 compared to mock-
infected cells (one-way ANOVA followed by Tukey’s HSD). (C) HEK293 cells
in a 24-well plate were treated with 0, 0.125, 0.25, or 0.5 mg/ml of IFNB
protein for 24h, and RNA was extracted. RT-PCR was performed to amplify
RIOK3 mRNA.
January 2022 | Volume 11 | Article 799024
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RIG-I and not via paracrine or endocrine signaling by IFNB
protein (Figure 2C).
3.3 RIOK3 Transcript Isoform Abundance
Is Regulated by Splicing Factor TRA2-b
Serine-arginine-rich (SR) splicing factors are a family of splicing
factors that control both constitutive and alternative splicing and
can promote exon skipping or inclusion. Constitutively spliced
isoforms are those that are most abundant at a cell’s basal level.
All SR splicing factors have an RNA-recognition domain and a
serine-arginine-rich region that interacts with spliceosomal
proteins. SR splicing factors have several roles in splicing, but
generally work by binding RNA and recruiting spliceosomal
proteins, thereby enhancing the usage of specific splice sites
(Zahler et al., 1992; Zhang and Wu, 1996). TRA2-b is an SR
splicing factor that usually acts as an exonic splicing enhancer by
binding to clustered (A)GAA motifs in pre-mRNA (Tacke et al.,
1998; Glatz et al., 2006; Best et al., 2014).

We used SFmap, a web-based splicing factor motif prediction
tool, to query the RIOK3 exon 8 mRNA sequence for putative
splicing factors (Akerman et al., 2009; Paz et al., 2010). The
SFmap algorithm uses two characteristics of splicing motifs to
predict splice sites: 1) the propensity for splicing factor motifs to
be in repeated clusters (Ule et al., 2006) and 2) the tendency for
splice site motifs to be evolutionarily conserved (Goren et al.,
2006). According to the SFmap results, RIOK3 pre-mRNA has
two potential TRA2-b binding clusters. To assess whether these
TRA2-b binding motifs were actively used in RIOK3 pre-mRNA
splicing, we first overexpressed TRA2-b in HEK293 cells and
performed RT-PCR on endogenous RIOK3 mRNA. TRA2-b
overexpression paralleled an increased abundance of RIOK3 FL
in mock and infected cells, indicating that exon 8 has at least one
binding site that is responsive to TRA2-b protein levels
(Figure 3A). TRA2-b protein overexpression was confirmed
via western blot (Figure 3B).

Next, we wanted to assess whether knockdown of TRA2-b
had the opposite effect as overexpression. However, siRNA is a
known activator of innate immunity by activation of the RIG-I
pathway (Meng and Lu, 2017; Takahashi et al., 2018).
Furthermore, RIOK3 has been shown to be alternatively
spliced due to RIG-I activation alone (Havranek et al., 2021).
Therefore, we could not use siRNAs to decouple RIG-I-caused
RIOK3 splicing from siRNA-caused RIOK3 splicing. Instead, we
administered a morpholino oligo (MO; GeneTools LLC)
designed to obscure an hnRNPA1 binding site on TRA2-b pre-
mRNA. Binding of hnRNPA1, a splicing silencer, normally
promotes exclusion of a poison exon and results in normal
expression of TRA2-b (Leclair et al., 2020). Occlusion of the
binding site results in inclusion of the poison exon and rapid
degradation of the mRNA by nonsense-mediated decay (Stoilov
et al., 2004; Leclair et al., 2020). MOs are highly stable
oligonucleotide mimics that are not degraded by cellular
machinery, do not elicit antiviral responses, and can be used to
occlude splice sites or protein-binding motifs (Summerton, 2007;
Regis et al., 2013). Upon treating cells with the TRA2-b
knockdown MO, we observed a modest increase in TRA2-b
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
poison exon expression (Figure 3C), a decrease in TRA2-b
protein (Figure 3D), and a resulting increase in RIOK3 X2
(Figure 3E). We confirmed the latter results through RT-qPCR
targeting RIOK3; while RIOK3 overall expression (measured by
A B

D

E
F

G

H

C

FIGURE 3 | RIOK3 mRNA alternative splicing bias is controlled by TRA2-b.
(A) HEK293 cells were transfected with TRA2-b overexpression plasmid or
GFP control for 24h, then infected with RVFV MP-12 (MOI = 1) or mock for 24h
before harvesting. RT-PCR shows RIOK3 splice isoforms. (B) HEK293 cells
were transfected with TRA2-b overexpression plasmid. 24h post-transfection,
cells were lysed and a western blot was performed to estimate overexpression.
(C) HEK293 cells were treated with TRA2-b poison exon-inducing morpholino
oligonucleotides (MO) at 10 mM for 24h, and RT-PCR was performed using
TRA2-b primers. (D) HEK293 cells were treated with 5 mM MO for 24h, and
lysate was used for a western blot to estimate knockdown of TRA2-b.
(E) HEK293 cells were treated with MO as in panel C, and RT-PCR was
performed using primers against RIOK3. (F) HEK293 cells were treated with
MO as in panel C and RNA was used to perform RT-qPCR. RIOK3 exons 1-2
were used to measure overall expression of the mRNA. Each lane indicates
data from biological triplicates and technical duplicates. Asterisk indicates
p < 0.05 compared to mock transfection (Student’s t-test). (G) Schematic
illustration of RIOK3 splicing minigene. RIOK3 exons 8 and 9 were cloned into
pSpliceExpress vector, and primers spanning the splice junction between the
rat insulin exon and the RIOK3 exon were used to amplify cDNA for RT-PCR.
Lower panel shows mutations in putative TRA2-b binding sites. (E) RT-PCR
using splice junction-spanning primers to amplify minigene cDNA.
January 2022 | Volume 11 | Article 799024
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constitutively spliced exons 1-2) did not change, we saw a small
but insignificant decrease in FL and a statistically significant 2-
fold increase in X2 after treating with MO (Figure 3F). It is
worth noting that because both the TRA2-b poison exon
transcript and the RIOK3 X2 transcript are expected to be
rapidly degraded by nonsense mediated decay, their actual
(transient) abundance was likely higher than measured by
RT-qPCR.

We next constructed RIOK3 splicing minigenes to assess the
importance of the putative TRA2-b binding sites (highlighted in
Figure 3G) that could impact RIOK3 splicing. The minigene was
constructed using pSpliceExpress, a previously described
backbone, which contains rat insulin exons (Kishore et al.,
2008), between which we inserted RIOK3 exons 8 and 9,
intron 8, and 448 bp (upstream) and 250 bp (downstream) of
the surrounding intronic region. We used primers that
overlapped the rat insulin exons and RIOK3 exons to isolate
spliced mRNA derived solely from the minigene. We constructed
a wildtype-like minigene, two mutant minigenes with
nucleotides in the putative TRA2-b binding clusters C1 or C2
mutated, and a fourth minigene mutated in both C1 and C2
(Figure 3G). An increase in FL RIOK3 was observed when we
transfected cells with the TRA2-b expression construct, and
mutation of putative TRA2-b sites caused complete (C1) to
partial (C2) loss of FL RIOK3 mRNA (Figure 3H). We also
observed FL’, an isoform derived from a cryptic splice site only
observed in the minigene, indicating that some of the normal
splice-specific context may be missing from the minigene.
Indeed, a weak splice site downstream of the FL splice site is
predicted bioinformatically [NetGene2; (Brunak et al., 1991;
Hebsgaard et al., 1996)]. The fact that this longer species does
not appear during endogenous RIOK3 splicing suggests that a
strong splicing factor binding site outside the region cloned into
the minigene is responsible for avoiding FL’ in normal cells. The
fact that the FL’ abundance mirrors that of FL demonstrates that
it is subject to the same upstream splicing regulation as FL. These
data demonstrate that splicing patterns of the RIOK3 minigenes
are exquisitely sensitive to the presence of TRA2-b as well as the
TRA2-b recognition sequences found in the cellular RIOK3
pre-mRNA.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
Lastly, we wanted to ask whether TRA2-b protein was present
at the splice site. We investigated previously published iCLIP
data by Best, et al. (GEO dataset GSE59335) in which the authors
sequenced and analyzed RNA bound to TRA2-b protein (Best
et al., 2014). Using Integrated Genomics Viewer (Robinson et al.,
2011) to visualize alignments from our previously published
RNAseq data (Havranek et al., 2019), we found TRA2-b clusters
in RIOK3 exon 8 in the iCLIP data, supporting our hypothesis
that RIOK3 constitutive splicing is controlled by TRA2-
b (Figure 4).

3.4 SR Splicing Factor TRA2-bmRNA Is
Alternatively Spliced During RVFV Infection
TRA2-b protein regulates its own expression by binding to
TRA2-b pre-mRNA in an auto-regulatory feedback loop
(Stoilov et al., 2004). When TRA2-b protein is (over-)
abundant, it binds to its pre-mRNA and forces the inclusion of
an alternatively spliced non-coding “poison” exon in the mature
mRNA, which leads to rapid degradation of the mRNA through
nonsense-mediated decay. Dysregulation of this system can
disrupt constitutive splicing in cells; some mutations that
disrupt poison exons can cause disease such as cancer
(Yoshida et al., 2011; Liang et al., 2018). Additionally, poison
exons are present and conserved in all members of the SR
splicing factor family (Lareau et al., 2007; Ni et al., 2007;
Leclair et al., 2020). We previously observed that the balance of
TRA2-b splicing isoforms was skewed toward the poison exon-
containing isoform in an RNAseq study on RVFV MP-12-
infected cells (Havranek et al., 2019) (Figure 5A).

We infected HEK293 cells with RVFV MP-12 and observed
TRA2-b mRNA splicing via RT-PCR, and compared the splice
pattern to that caused by sodium arsenite, a treatment that was
previously shown to induce TRA2-b poison exon inclusion in
response to oxidative stress (Akaike et al., 2014). In RVFV-
infected cells, the TRA2-b splicing pattern was altered to favor
the longer isoform which includes the poison exon (Figure 5B).
We observed a time-dependent accumulation of the poison exon
isoform upon longer infection of RVFV MP-12, up to 48 hpi
(Figure 5C). This was supported by our observation of a decrease
in endogenous TRA2-b protein in infected cells (Figure 5D).
FIGURE 4 | TRA2-b interacts with RIOK3 mRNA. RNAseq-derived Integrated Genomics Viewer (IGV) tracks of mRNA expression in mock- vs. RVFV MP-12-
infected HEK293 cells highlighting RIOK3 (data are from Havranek et al., 2019). TRA2-b-bound iCLIP cluster reads from Best, et al. (2014; GEO accession number
GSE59335) are aligned below.
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Next, because we previously reported that RIOK3 overexpression
was detrimental to RVFV replication (Havranek et al., 2021), we
asked whether TRA2-b overexpression, which would increase FL
RIOK3 mRNA in cells, would also reduce RVFV MP-12
infection. In support of this hypothesis, we observed a decrease
in extracellular viral particles measured by TCID50 assay
(Figure 5E). Taken together, these results strongly suggest that
constitutive splicing of RIOK3 by TRA2-b and/or suppression of
alternative splicing of RIOK3 lead to a stronger antiviral
response against RVFV infection in culture.
4 DISCUSSION

We previously demonstrated that RIOK3 plays an important
role in the cellular response to RVFV infection. In this study,
we examined RIOK3 alternative splicing in the context of
RVFV infection and observed that splice site selection in this
gene is at least partially controlled by the exonic splicing
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enhancer TRA2-b. Interestingly, TRA2-b itself is also
alternatively spliced during RVFV infection, which likely
affects its expression.

RIOK3 is a still incompletely understood member of the
atypical protein kinase subfamily whose functions have been
variously associated with ribosome assembly, erythrocyte
maturation, cellular immunity, and the hypoxia response
(LaRonde-LeBlanc and Wlodawer, 2005; Shan et al., 2009;
Zhang et al., 2011; Baumas et al., 2012; Feng et al., 2014;
Singleton et al., 2015; Takashima et al., 2015). In different
cellular and viral contexts, its expression appears to be
important for either activation (Feng et al., 2014; Willemsen
et al., 2017; Havranek et al., 2021) or deactivation (Takashima
et al., 2015; Willemsen et al., 2017; Shen et al., 2021) of the
cellular immune response. RIOK3 mRNA was found to be
alternatively spliced during RVFV infection (Havranek et al.,
2019; Havranek et al., 2021), and in this work we demonstrated
that this alternative splicing event is observed in both human and
monkey cell types, suggesting that alternative splicing at this site
A

B

D

E

C

FIGURE 5 | TRA2-b mRNA is alternatively spliced in response to RVFV infection. (A) IGV tracks of mock- vs. RVFV MP-12-infected HEK293 cells at MOI = 1,
highlighting TRA2-b. TRA2-b poison exon is labeled. (B) HEK293 cells were treated with sodium arsenite in increasing amounts (0, 1, 10, 25, 50, or 100 mM) or
infected with RVFV MP-12 for 24h. RT-PCR with primers targeting TRA2-b mRNA was visualized by agarose gel. (C) HEK293 cells were infected with RVFV MP-12
at MOI = 1 for the times indicated, and RT-PCR against TRA2-b was performed. (D) HEK293 cells were infected with RVFV for 24h at MOI = 1, then cells were lysed
and visualized via western blot. (E) TCID50 results obtained by infecting naïve Vero cells using RVFV MP-12 particles obtained from HEK293 cells transfected with
indicated plasmids and subsequently infected with RVFV MP-12 at MOI = 1. Asterisks indicate p < 0.05 compared to GFP transfection (one-way ANOVA followed by
Tukey’s HSD).
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is evolutionarily conserved. We previously demonstrated that
constitutive RIOK3 splicing is required for productive expression
of IFNB, and we hypothesize that RIOK3 alternative splicing
may be a mechanism to regulate the innate immune response.
We also showed that RIOK3 alternative splicing is only activated
by primary innate immune activation and not activated by
downstream cytokine (IFNB) signaling that may occur via
autocrine or paracrine activation of interferon receptors. These
data, in conjunction with our previously reported data using
RIG-I and MDA5 agonists (Havranek et al., 2021), indicate that
the alternative splicing event is triggered in the early stages of the
activation of the antiviral state via RIG-I or MDA5 and is not a
feedback mechanism triggered by IFNB.

Regulation of cellular immunity at the splicing level
by expression of an alternative splice isoform, either
nonfunctional or inhibitory towards its normal binding
partners, is an established mechanism in other innate immune
proteins, possibly to prevent overstimulation of the innate
immune response and cell death. For example, a short isoform
of RIG-I missing its CARD domain, required for TRIM25
binding, K-63 ubiquitination and activation of RIG-I signaling,
is expressed within 24h after Sendai virus infection (Gack et al.,
2008). Likewise, a truncated version of TBK-1 that binds to
RIG-I, but not the downstream interactor MAVS (also known as
VISA, CARDIF, and IPS-1), is expressed as early as 6h after
infection of Sendai virus, effectively disrupting the innate
immune response (Deng et al., 2008). For MAVS, another
immune signaling protein downstream of RIG-I, alternative
splice isoforms coding for proteins that are unable to interact
with TRAF proteins required for IFNB expression are important
for modulating immune activation (Lad et al., 2008). Another
example of alternative splicing regulating the immune response
is in the OAS1g gene, which codes for the potent innate immune
activator 2’-5’ oligoadenylate synthetase, where an alternative
splice site leading to transcripts degraded by nonsense mediated
decay is used to prevent excess apoptosis (Frankiw et al., 2020).
An opposite mechanism exists for IRF3, where instead of
expressing an inactive alternative isoform, an SR splicing factor
(SRSF1) is responsible for constitutive splicing of mRNA, which
results in immune activation (Guo et al., 2013). In this context,
RIOK3 joins a rich family of proteins associated with the
antiviral state that are regulated via splicing.

Here, we demonstrated that splicing of RIOK3 pre-mRNA is
at least partially controlled by TRA2-b, which implicates this
splicing factor as a regulator of one facet of the innate immune
response. TRA2-b is one of 12 members of the SR splicing
factor family that form a tightly co-regulated web to correctly
splice mRNA (Long and Caceres, 2008; Leclair et al., 2020).
Each SR splicing factor has at least one poison exon, which is in
turn regulated by other SR spicing factors. It is likely that SR
splicing factors are required for the alternative splicing that
occurs during viral infection, but the exact roles of each SR
protein during infection remain unclear. To our knowledge,
TRA2-b has not been implicated in regulation of the immune
response, but has been reported to be a constitutive splicing
factor involved in the splicing of a diversity of mRNAs during
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
normal cellular function and development (Hofmann et al.,
2000; Grellscheid et al., 2011; Elliott et al., 2012). As an
upstream factor of innate immune activation, cellular
alteration of TRA2-b concentration could be an early switch
for alternative splicing in response to infection.

We cannot rule out that other splicing factors might also
contribute to constitutive or alternative RIOK3 pre-mRNA
splicing. However, since the principal mRNA isoforms
detected in all tissue types are of the FL, X1, and X2 types
surrounding exons 7, 8 and 9, and regulation of this splicing is
strongly impacted by levels and binding of TRA2-b, it appears
that this splicing factor is the primary regulator of RIOK3
splicing. Additionally, according to our RNA seq data
(Havranek et al., 2019), only two other SR splicing factors are
alternatively spliced in response to RVFV MP-12 infection:
TRA2-a, and SRSF11. TRA2-a is a partial paralogue to
TRA2-b (Dauwalder et al., 1996), and also has an increased
poison exon inclusion, and therefore likely less protein. SRSF11
encodes the protein p54 that binds to intronic C-rich regions
(Kennedy et al., 1998). RIOK3 pre-mRNA does not contain
intronic C-rich stretches. It is intriguing that the pre-mRNA for
TRA2-b is also alternatively spliced to include a poison exon as
a result of RVFV infection. As inclusion of the poison exon
decreases expression of the TRA2-b protein, it is plausible that
the decrease in TRA2-b concentration results in alternative
splicing of RIOK3 and other mRNAs. The signal(s) that trigger
alternative splicing of TRA2-b pre-mRNA during viral
infection will be an intriguing avenue of investigation. One
intriguing possibility is through the TRAF6-mediated K-63
ubiquitination and nuclear localization of hnRNPA1 during
innate immune activation (Culver-Cochran and Starczynowski,
2018); if the activity of TRAF6 is inhibited during infection
hnRNPA1 activity could drop, leaving TRA2-b pre-mRNA
vulnerable to inclusion of the poison exon. TRAF6 is known
to be targeted for degradation during flavivirus infection (Chan
et al., 2016; Dainichi et al., 2019). Additionally, it is possible
that a general reduction in transcription caused by viral protein
NSs (Billecocq et al., 2004) could be responsible for decreased
expression of RIOK3 and TRA2-b mRNA. However, we noted
an increase in mRNA read abundance of these transcripts in
our RNAseq study (Havranek et al., 2019), indicating either
that RIOK3 and TRA2-b mRNA abundance is not affected by
NSs transcriptional shutdown in the time frame of acute
infection, and/or that the relative abundances of splicing
isoforms of these mRNAs exerts a more powerful effect than
their absolute copy numbers.

It will be of interest to examine how RIOK3 alternative
splicing causes a reduction in virus-induced IFNB production,
either through the expression of a truncated protein encoded by
the X2 isoform, or through reduction of the intracellular levels of
constitutively spliced mRNA, or both. Additionally, the
apparently conflicting results of RIOK3’s reported activity in
different cell types and during infection with different viruses
suggests that RIOK3’s role depends on the antiviral pathways
that are activated and inhibited during infection, which may also
depend on the isoforms of RIOK3 that are expressed in response
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to infections with different viruses. Finally, TRA2-b’s ability to
regulate alternative splicing and the fact that it is prone to
alternative splicing itself emphasize its potential to act as a
central regulator during the cellular antiviral immune response.
We anticipate that documentation of TRA2b’s roles during these
dynamic events in the cell will continue to expand.
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