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8 Abstract

9 Objectives: Humans display an 85–95% cross-cultural right-hand bias in skilled tasks, which is

10 considered a derived behavior because such a high frequency is not reported in wild non-human

11 primates. Handedness is generally considered to be an evolutionary byproduct of selection for

12 manual dexterity and augmented visuo-cognitive capabilities within the context of complex stone

13 tool manufacture/use. Testing this hypothesis requires an understanding of when appreciable lev-

14 els of right dominant behavior entered the fossil record. Because bone remodels in vivo, skeletal

15 asymmetries are thought to reflect greater mechanical loading on the dominant side, but incom-

16 plete preservation of external morphology and ambiguities about past loading environments

17 complicate interpretations. We test if internal trabecular bone is capable of providing additional

18 information by analyzing the thumb of Homo sapiens and Pan.

19 Materials and methods: We assess trabecular structure at the distal head and proximal base of

20 paired (left/right) first metacarpals using micro-CT scans of Homo sapiens (n514) and Pan (n59).

21 Throughout each epiphysis we quantify average and local bone volume fraction (BV/TV), degree

22 of anisotropy (DA), and elastic modulus (E) to address bone volume patterning and directional

23 asymmetry.

24 Results: We find a right directional asymmetry in H. sapiens consistent with population-level

25 handedness, but also report a left directional asymmetry in Pan that may be the result of postural

26 and/or locomotor loading.

27 Conclusion: We conclude that trabecular bone is capable of detecting right/left directional asym-

28 metry, but suggest coupling studies of internal structure with analyses of other skeletal elements

29 and cortical bone prior to applications in the fossil record.

30

3 1 K E YWORD S

32 biomechanics, hand evolution, hominin behavior, microstructure, skeletal asymmetry

33

34

35 1 | THE EVOLUTION OF HAND
36 PREFERENCE AND HANDEDNESSAQ1

37 Handedness is a lateralized behavior that refers to the consistent, pref-

38 erential use of either the right- or left-hand across skilled manipulative

39 tasks (Marchant & McGrew, 2013; McGrew & Marchant, 1997).

40A right-hand bias is frequently reported in humans to be between

41�85% and 95% cross-culturally, and thus is considered a population-

42level behavior (Faurie, Schiefenhovel, Le Bomin, Billiard, & Raymond,

432005). Being that many functional asymmetries are now recognized

44across vertebrates, (Cowell, Waters, & Denenberg, 1997; Fr€uhholz et al.,

452015; Indersmitten & Gur, 2003; Lewis, Phinney, Brefczynski-Lewis, &
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46 DeYoe, 2006; Roth, Lora, & Heilman, 2002; Tate, Fischer, Leigh, & Ken-

47 drick, 2006; Weiss, Ghazanfar, Miller, & Hauser, 2002), we understand

48 such biases to be widespread and ancient (Andrew & Rogers, 2002).

49 While the genetic determinants of handedness remain elusive, genome-

50 wide association studies support heritability for hand preference in

51 humans (Armour, Davison, & McManus, 2014; McManus, Davison, &

52 Armour, 2013) and chimpanzees (Pan troglodytes) (Hopkins, Reamer,

53 Mareno, & Schapiro, 2015).

54 In contrast to humans, observational studies of individual hand

55 preference in other primates have determined that variation in posture

56 (Braccini, Lambeth, Schapiro, & Fitch, 2010; Dodson, Stafford, For-

57 sythe, Seltzer, & Ward, 1992; Olson, Ellis, & Nadler, 1990), task com-

58 plexity (Bardo, Pouydebat, & Meunier, 2015; Byrne & Byrne, 1991;

59 Hopkins, 1995), and terrestriality (Marchant & McGrew, 2007; Miller &

60 Paciulli, 2002) all have an impact on the strength of hand preference.

61 While chimpanzees do demonstrate a consistent preference across

62 tasks at an individual level (Marchant & McGrew, 2013), a group/spe-

63 cies level side-bias remains unobserved in the wild (e.g., Boesch, 1991;

64 McGrew & Marchant, 1992) and only weakly present in captive popu-

65 lations (�65% right directional asymmetry) (e.g., Hopkins et al., 2011;

66 Tabiowo & Forrester, 2013). Although the latter point speaks to a

67 potential capacity (Hopkins, 2013), confounding factors in captive pop-

68 ulations—such as task transmission through human observation

69 (Marchant & McGrew, 2013)—suggest that species level right-hand

70 preference evolved following the panin-hominin split (Corballis, 2003),

71 and potentially only within Homo (Lozano, Mosquera, Berm�udez de

72 Castro, Arsuaga, & Carbonell, 2009; Uomini, 2011).

73 In response to these observations, many have proposed that the

74 species-level right directional asymmetry in humans coevolved with (1)

75 an intensified reliance upon increasingly complex stone tool manufac-

76 ture/use from at least �2.6 Ma (Semaw et al., 2003; Steele, 2004;

77 Steele & Uomini, 2005) to possibly �3.3 Ma (Harmand et al., 2015),

78 and with (2) selection for a highly dexterous hand working in conjunc-

79 tion with an augmented suite of visuo-cognitive functional asymme-

80 tries (Cantalupo, Freeman, Rodes, & Hopkins, 2008; Fitch & Braccini,

81 2013; Hopkins, 2013; Meguerditchian, Vauclair, & Hopkins, 2010;

82 Steele & Uomini, 2005; Stout & Chaminade, 2012; Stout, Toth, Schick,

83 & Chaminade, 2008). Testing these proposed cause and effect relation-

84 ships in this coevolution model hinges largely on the timing of when

85 hand preference became fixed in past populations (Steele, 2004; Ube-

86 laker & Zarenko, 2012; Uomini, 2009). Archaeological techniques for

87 addressing this question rely on right/left directional asymmetries in

88 the production of rock-art stencils of the hand (Faurie & Raymond,

89 2004), or signs of striking preference during stone flake tool production

90 (Rugg & Mullane, 2001; Toth, 1985; but see Ruck, Broadfield, & Brown,

91 2015) and use (Phillipson, 1997). The value of such analyses is appa-

92 rent, but their interpretive power is limited by time-averaging, the

93 sparse availability of examples at the onset of the archaeological

94 record, and their disassociation from a specific individual/group/species

95 (Cashmore, Uomini, & Chapelain, 2008). Other techniques, such as

96 skeletal analysis, suffer from missing and incomplete remains, but pro-

97 vide information on individual and group-level preference by detecting

98consistent morphological departures from normal right/left symmetry

99(Auerbach & Ruff, 2006; Van Valen, 1962) that are beyond the random

100fluctuating asymmetries resulting from environmental stress (Palmer,

1011994). Such directional bias has been observed in striations accruing

102from meat cut between clenched incisors (Berm�udez de Castro, Brom-

103age, & Jalvo, 1988; Frayer et al., 2012; Lozano et al., 2009) and asym-

104metrical bone remodeling in response to frequent loading of the

105humeri on the dominant side (Volpato et al., 2012).

1061.1 | Bone functional adaptation, loading, and

107handedness

108Bone’s tendency to remodel in response to the mechanical environ-

109ment—broadly referred to as bone functional adaptation (Currey, 2003)

110—is best explained by the mechanostat model (Frost, 1987), which

111holds that bone mass is regulated by the continual removal and

112renewal of strain-damaged bone. Biomechanically, morphological varia-

113tion in both cortical (Bass et al., 2002; Shaw, 2011; Stock, 2006) and

114trabecular bone (Lambers et al., 2013; Morgan et al., 2015; Schulte

115et al., 2013) strongly correlates with the loading environment (Christen

116et al., 2014). Within tubular bones, the most frequently observed corre-

117lation is found in variation of cross-sectional geometry at the mid-shaft

118(Marchi, 2005; Ruff, Holt, & Trinkaus, 2006; Ruff & Jones, 1981), which

119is thought to remodel in a way that confers greater resistance to bend-

120ing and torsion (but see Demes et al., 1998; Wallace, Judex, & Demes,

1212015; and below). Similarly, in vivo studies analyzing homologous vol-

122umes of interest (VOI) of trabeculae at the epiphysis (e.g., Barak, Lie-

123berman, & Hublin, 2011; Mittra, Rubin, & Qin, 2005; Pontzer et al.,

1242006) demonstrate that differences in loading regimes results in

125changes to the orientation, thickness, connectivity, spacing, and overall

126distribution of this structure (e.g., Lambers et al., 2013; Reznikov,

127Chase, Brumfeld, Shahar, & Weiner, 2015). This variation in trabecular

128structure allows joint reaction forces to be efficiently transferred away

129from the articular surface and into the cortices (Currey, 2003; Keaveny,

130Morgan, Niebur, & Yeh, 2001; Lieberman, Devlin, & Pearson, 2001;

131Rafferty & Ruff, 1994).

132Following this model, biomechanical studies focusing on variation

133in osseous tissue have advanced our understanding of the interrela-

134tionships among habitual behavior, locomotion, and loading environ-

135ments for extant (Fajardo & M€uller, 2001; Marchi, 2005; Ryan &

136Ketcham, 2002b; Ryan & Krovitz, 2006; Ryan & van Rietbergen, 2005;

137Ryan & Walker, 2010; Stock & Pfeiffer, 2001) and extinct primates

138(Barak et al., 2013; Ryan & Ketcham, 2002a; Trinkaus, Churchill, &

139Ruff, 1994). Studies applying this perspective to questions of hand

140preference frequently report a right directional asymmetry in mechani-

141cal resistance of the upper limbs (Barros & Soligo, 2013; Churchill &

142Formicola, 1997; Macintosh, Pinhasi, & Stock, 2014; Shaw, Hofmann,

143Petraglia, Stock, & Gottschall, 2012; Trinkaus et al., 1994;) and manual

144remains (Lazenby, 1998; Lazenby, Cooper, Angus, & Hallgrimsson,

1452008; Mays, 2002; Roy, Ruff, & Plato, 1994; Singh, 1979) of past

146human populations that are commensurate with group/species-level

147right handedness. Such departures from right/left symmetry are

148thought to be the byproduct of frequent lateralized loading on the
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149 dominant side (Auerbach & Ruff, 2006; Kanchan, Mohan Kumar, Pra-

150 deep Kumar, & Yoganarasimha, 2008), which is supported by studies of

151 uni-manual loading and self-reported hand preference in living athletes

152 (Bass et al., 2002; Shaw, 2011).

153 Despite such results, the relationship between behavior and bone

154 functional adaptation is not always straightforward. For example, varia-

155 tion in primate trabecular structure of different skeletal elements does

156 not always correlate well with predicted loading based on locomotor

157 behavior because of high intragroup variation or substantial overlap

158 across different locomotor groups (e.g., Fajardo, M€uller, Ketcham, &

159 Colbert, 2007; Maga, Kappelman, Ryan, & Ketcham, 2006; Ryan &

160 Shaw, 2012; Schilling et al., 2013). Furthermore, Shaw and Ryan (2012)

161 found a consistent biomechanical signal in the cross-sectional geometry

162 and trabecular architecture of the primate humerus but not in the

163 femur. Such disagreement is consistent with Stock, Shirley, Sarringhaus,

164 Davies, and Shaw (2013) who found that levels of right directional

165 asymmetry in the paired humeri and second metacarpals differed

166 across medieval, industrial, and hunter-gatherer populations. Of these

167 groups, the hunter-gatherer group showed a much stronger right direc-

168 tional asymmetry in the humerus (83.6%) compared with second meta-

169 carpal (62.5%) (Stock et al., 2013). Although many of these studies do

170 uphold an interpretation of some response to loading, it is clear that

171 the mechanisms underlying bone functional adaptation are not fully

172 understood (Currey, 2012) and that many other factors may contribute

173 to changes in bone morphology.

174 Indeed, debate exists about the potential systemic impact on other

175 areas of the skeleton when one bone/region is loaded (Cresswell, Goff,

176 Nguyen, Lee, & Hernandez, 2016; Lieberman, 1996; Sample et al.,

177 2008; Sugiyama, Price, & Lanyon, 2010; Wallace et al., 2010), and how

178 bone remodeling changes in response to differences in age (Nikander

179 et al., 2010; Pearson & Lieberman, 2004; Ruff et al., 2006), muscle

180 (Robling, 2009) versus joint reaction loading (Judex & Carlson, 2009;

181 Schipilow, Macdonald, Liphardt, Kan, & Boyd, 2013), force (Christen

182 et al., 2014; Schulte et al., 2013), and even how these factors are bal-

183 anced against the role of the bone in maintaining homeostasis (Currey,

184 2003). Beyond this, large scale genetic studies have identified inde-

185 pendent loci for cortical and trabecular bone that are associated with

186 higher risk of fracture (Paternoster et al., 2013; Yerges et al., 2010),

187 which suggests certain fixed aspects to bone morphology that may be

188 insensitive to loading. Similarly, investigations into the question of

189 changes to bone density during hormonal osteoporotic intervention

190 make it clear that the cellular response of the boney matrix is sensitive

191 to physiological agents that might act to augment, nullify, or buffer the

192 reaction to loading (Bahtiri et al., 2015; Xhae et al., 2015). Such com-

193 plexities are highlighted in a recent study by Wallace et al. (2015) who

194 used three cohorts of treadmill-exercised mice to clarify the relation-

195 ship of peak-load and bone functional adaptation. In this study it was

196 shown that although peak forces were greater in the forelimbs, only

197 the hindlimbs of the exercised mice reflected meaningful cortical and

198 trabecular skeletal adaptation, which, the authors suggested, could be

199 explained by a non-uniform response of the cells responsible for bone

200 growth and repair. In light of this, it is clear that new methods for

201detecting variances in bone morphology must be added to pre-existing

202ones to refine our understanding of the relationship between behavior,

203loading environment, function, and skeletal response (Cashmore et al.,

2042008; Lazenby, 2002; Steele, 2004).

205With recent advances in computational power it is now feasible to

206analyze multiple VOIs (Su, Wallace, & Nakatsukasa, 2013) or the entire

207internal trabecular structure (Gross, Kivell, Skinner, Nguyen, & Pahr,

2082014) to gain a greater understanding of how trabecular bone varies

209throughout an epiphysis or bone. The latter method allows the map-

210ping of site-specific bone volume to total volume (BV/TV) and degree

211of anisotropy (DA) values onto a 3D tetrahedral mesh, thus facilitating

212the visual comparison of quantitative data. This is valuable because

213BV/TV is consistently shown to be the strongest predictor of fracture

214resistance (Keaveny et al., 2001; Maquer, Musy, Wandel, Gross, &

215Zysset, 2015; Stauber, Rapillard, van Lenthe, Zysset, & M€uller, 2006),

216and understanding this site-specific distribution has already proven val-

217uable in interpreting joint loading position related to locomotion and

218manual behavior in extant (Tsegai et al., 2013) and extinct (Skinner

219et al., 2015) primate hand bones. Furthermore, recent studies inspect-

220ing the localized nature of trabecular repair support the view that for-

221mation and remodeling sites correspond to areas of load (Christen

222et al., 2014; Cresswell et al., 2016; Schulte et al., 2013), which supports

223the idea of visualizing and describing this site-specific variation. If

224applied to bones of the hand, this method has strong potential rele-

225vance for reconstructing hominin manipulatory repertoires and the

226evolution of hand preference in the fossil record.

2271.2 | Thumb loading and predictions

228In humans many complex manual tasks utilize pinch, key, or power

229grips that are facilitated by a long thumb relative to the fingers (Ladd,

230Crisco, Hagert, Rose, & Weiss, 2014; Marzke, 1997; Napier, 1960; Sus-

231man, 1979). Such grips are important during stone tool manufacture

232and use (Marzke et al., 1998) and often involve forceful opposition pro-

233vided by a derived set of thenar and pollical muscles that allows the tip

234of the thumb to flex while the base remains extended (e.g., when hold-

235ing a needle) (Diogo, Richmond, & Wood, 2012; Marzke et al., 1999).

236Experimental studies have shown that during tool-related activities,

237loading of the thumb of the dominant hand is high (Rolian, Lieberman,

238& Zermeno, 2011; Williams, Gordon, & Richmond, 2012) compared

239with non-dominant thumb (Key & Dunmore, 2015). This differs from

240other great apes, such as Pan, that possess a short and comparatively

241weaker thumb (Marzke et al., 1999), and most often use less forceful

242pad-to-side precisions grips (Marzke & Wullstein, 1996; but see

243Marzke, Marchant, McGrew, & Reece, 2015) that are employed during,

244for example, nut-cracking (Boesch & Boesch, 1993) and ant-fishing

245(Marchant & McGrew, 2007). Because of such differences in anatomy

246and use between humans and other apes, the thumb remains the focus

247of multidisciplinary attempts to ascertain its biomechanical role (Cheema,

248Cheema, Tayyab, & Firoozbakhsh, 2006; Key & Lycett, 2011; Marzke

249et al., 1998) and evolutionary change over time (Diogo et al., 2012;

250Niewoehner, 2001, 2006; Niewoehner, Weaver, & Trinkaus, 1997;

251Shrewsbury, Marzke, Linscheid, & Reece, 2003; Smith, 2000; Tocheri
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252 et al., 2003; Tocheri, Orr, Jacofsky, & Marzke, 2008; Trinkaus & Villemeur,

253 1991; Villemeur, 1994; Vlček, 1975; see Alm�ecija, Alba, & Moya-Sola,

254 2012; Alm�ecija, Wallace, Judex, Alba, & Moya-Sola, 2015 for a view that

255 certain features of the thumb are retained from Miocene apes).

256 To this end, we investigate trabecular architecture and directional

257 asymmetry in the thumb of recent Homo sapiens and Pan to assess if

258 such an analysis might be applied to questions of loading history and

259 hand preference within the fossil record. Given the predictions of the

260 mechanostat model (Currey, 2003; Frost, 1987), variation in loading of

261 the thumb should be reflected in the first metacarpal (Mc1) because

262 the pollical musculature passes along the base and head to attach at

263 the phalanges (Brand & Hollister, 1993; Maki & Trinkaus, 2011; Marzke

264 et al., 1998; Trinkaus & Villemeur, 1991), meaning this bone will be

265 loaded both by joint reaction forces and muscular tension during flex-

266 ion and opposition (Hu, Ren, Howard, & Zong, 2014; Kargov, Pylatiuk,

267 Martin, Schulz, & Doderlein, 2004; Pataky, Slota, Latash, & Zatsiorsky,

2682012). We predict that the H. sapiens first metacarpals will experience

269asymmetric loading reflecting group-level hand preference, while Pan

270should reflect no group bias. Although highly lateralized terrestrial gal-

271loping has been reported (Arcadi & Wallauer, 2011), the thumb is not

272loaded during terrestrial knuckle-walking (Matarazzo, 2013; Sarring-

273haus, MacLatchy, & Mitani, 2014; Wunderlich & Jungers, 2009). Poten-

274tially high and variable loading of the thumb is thought to occur during

275arboreal climbing, suspensory locomotion (Hunt, 1991, 1994; Marzke

276& Wullstein, 1996), and grips observed during feeding (Marzke et al.,

2772015), behaviors for which individuals can show a hand preference.

278However, the lack of directional asymmetry in a previous study of tra-

279becular architecture of paired first, second, and fifth metacarpals of

280Pan troglodytes (Lazenby, Skinner, Hublin, & Boesch, 2011) suggest

281the same will be true for the first metacarpal in the present study.

282Accordingly, we predict that (1) the BV/TV distribution and overall

283architectural trabecular pattern of the Mc1 will reflect variation in the

TABLE 1 Average BV/TV, DA, and elastic modulus in the study sample

Pan pairs (n5 9) Homo pairs (n514) Pan (mean L&R) Homo (mean L&R) Between groups

Variable L SD R SD L SD R SD Mean SD Mean SD U p Value

BV/TV head, % 34.74 (6.10) 32.65 (5.19) 20.18 (4.44) 22.44 (2.80) 33.69 (5.60) 21.31 (3.34) 716 <0.01

BV/TV base, % 27.12 (3.84) 26.83 (4.53) 16.86 (3.33) 18.96 (2.66) 26.74 (4.06) 17.91 (2.78) 714 <0.01

DA head 1.04 (0.11) 1.00 (0.01) 1.28 (0.17) 1.29 (0.17) 1.02 (0.06) 1.29 (0.11) 88 <0.01

DA base 1.22 (0.25) 1.14 (0.17) 1.30 (0.15) 1.34 (0.18) 1.18 (0.20) 1.32 (0.15) 76 <0.01

E head 3.36 (1.13) 3.01 (1.00) 1.50 (0.52) 1.82 (0.32) 3.19 (1.06) 1.66 (0.37) 708 <0.01

E base 2.40 (0.72) 2.28 (0.819) 1.17 (0.37) 1.43 (0.31) 2.34 (0.75) 1.30 (0.31) 708 <0.01

Abbreviations (BV/TV5bone volume; DA5 degree of anisotropy; E5 elastic modulus in gigapascals; L&R5mean value of the mean (right and left

sides) values; L5mean value of all left metacarpals; R5mean value of all right metacarpals; SD5 standard deviation; U5Mann–Whitney U score;

p5 exact p value for Mann–Whitney U test).

Shaded boxes indicate left directional asymmetry.
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FIGURE 1 Bone volume of the first metacarpal base (left) and head (right) for both sides of each individual. Shaded area contains

individuals demonstrating left directional asymmetry. H. sapiens (green dot) demonstrates a clear right directional asymmetry with relatively

low BV/TV, while Pan (purple square) demonstrates a left directional asymmetry trend with relatively high BV/TV
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284 biomechanical environment and, because of this; (2) the directional

285 asymmetry of trabecular architectural variables (i.e., greater BV/TV,

286 DA, and elastic modulus) in H. sapiens will be significantly greater on

287 the right; (3) while Pan will exhibit no significant departure from a neu-

288 tral (50%) distribution.

289 2 | MATERIALS AND METHODS

290 2.1 | Study sample

291 The H. sapiens Mc1 sample (n514 pairs) is composed of ten 1st23rd

292 century CE individuals from the Roman necropolis of Isola Sacra (Italy)

293 (Prowse et al., 2008), two 19th century individuals from Tiera del

294 Fuego (Chile/Argentina) (Marangoni et al., 2011), and two 20th century

295individuals from Syracuse (Sicily). The Pan cohort (n59 pairs) is com-

296posed of four wild-shot individuals from southern Cameroon (Pan trog-

297lodytes spp.), three wild individuals from Côte d’Ivoire (Pan troglodytes

298verus) and two wild-shot individuals from the Congo Basin (DRC) (Pan

299paniscus).

3002.2 | Micro-CT scanning and tissue segmentation

301The heads and bases of the paired Mc1 remains from Isola Sacra and

302Côte d’Ivoire were scanned without the metaphyses (as part of a previ-

303ous study) with a Skyscan (Aartselaar, Belgium) 1172 desktop Micro-

304CT scanner at an isotropic voxel resolution of 13.56 lm (parameters:

305100 kV, 0.094 mA, 0.5-mm aluminum filter, 0.25 rotation step, 360

306degrees of rotation, with two frame averaging). The remaining Mc1s
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FIGURE 2 Degree of anisotropy of the first metacarpal base (left) and head (right) for both sides of each individual. The shaded area

indicates individuals demonstrating a left directional asymmetry while the red line indicates isotropy. H. sapiens (green dot) variation in

anisotropy for both regions, while Pan (purple square) is very constrained. The blue box is a magnified view of clustered individuals that

approach total isotropy for both sides. This is particularly marked in the head of Pan, with six individuals contained between 1.0 and 1.002

on both sides

TABLE 2 Right/left count comparisons within and between groupsAQ6

Pan (n59) Homo (n5 14) Between groups

Variable R>L DIRA, % B R>L DIRA, % B v
2 p Value

BV/TV head 1/9 25.94 0.039 10/14 11.95 0.179 7.987 .005

BV/TV base 3/9 21.38 0.508 12/14 12.64 0.013 6.626 .010

DA head 7/9 22.93 0.180 9/14 1.01 0.424 0.471 .493

DA base 4/9 25.80 1 10/14 2.57 0.180 1.675 .196

E head 2/9 210.94 0.180 11/14 23.15 0.057 7.078 .008

E base 4/9 22.54 1 12/14 22.32 0.013 4.407 .036

Abbreviations (BV/TV5bone volume; DA5 degree of anisotropy; E5 elastic modulus in gigapascals; R> L5 # of individuals displaying right directional

asymmetry; DIRA5 average direction of asymmetry with negative numbers indicating a left directional asymmetry; B5 p values for binomial exact test

for deviations from an expected 50/50 distribution; v25 p values for Pearson’s v
2 test to determine if directional asymmetry counts between groups

are significantly different).
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307 were scanned in their entirety with a BIR ACTIS 225/300 high-

308 resolution Micro-CT scanner at an isotropic voxel resolution �30 lm

309 (parameters: 130 kV and 100 lA using a 0.25 aluminum filter). The

310 heads and bases of the complete Mc1 sample were isolated and

311 cropped using Avizo 6.3 to allow for uniform comparison with those

312 scanned without the metaphysis. Segmentation of bone tissue in each

313 scan was accomplished using the Ray Casting Algorithm of Scher and

314 Tilgner (2009).

315 2.3 | Trabecular bone analysis and visualization

316 Unless noted otherwise, all procedures were performed with medtool

317 (Dr. Pahr Ingenieurs e.U.). After segmentation, trabecular and cortical

318 bone were isolated using protocols outlined in Gross et al. (2014). In

319 brief, opening-and-closing filters (kernel size53) were employed to

320 remove natural cortical porosities, which permits creation of a smooth

321shell that is then filled to create an inner- and outer-mask of the whole

322bone. The resultant cortical mask is then used to create an independent

323image of each tissue. This process is repeated, to replace the initial ker-

324nel size with one taking into account the average trabecular thickness

325measured by the BoneJ plugin (Doube et al., 2010) in ImageJ (Rasband,

3261997; see also Gross et al., 2014).

327We focus our analysis of asymmetry in trabecular structure on

328three variables: average bone volume to total volume fraction (BV/TV),

329degree of anisotropy (DA), and the elastic modulus (E), which is meas-

330ured in gigapascals (GPa) (Pahr and Zysset, 2009). These variables were

331chosen because it has been demonstrated that body mass does not

332strongly correlate with BV/TV or DA (Barak, Lieberman, & Hublin,

3332013; Doube, Klosowski, Wiktorowicz-Conroy, Hutchinson, & Shefel-

334bine, 2011; Ryan & Shaw, 2013), and that they have a well-established

335correlation with mechanical loading and functional bone adaptation

336(Barak et al., 2011; Lambers, Bouman, Rimnac, & Hernandez, 2013;

337Odgaard, 1997; Pontzer et al., 2006; Uchiyama et al., 1999). Although

338the relationship between trabecular structure and E depends on the

339anatomical location and direction of loading (Morgan, Bayraktar, & Kea-

340veny, 2003), it is an accepted proxy for bone strength (Helgason et al.,

3412008; Stauber et al., 2006). Herein we calculate E following the Zysset-

342Curnier model (Zysset, 2003) using a reference tissue value of E0510

343GPa; m050.3; l053 GPa, because it takes into account BV/TV and

344mean intercept length derived fabric, which has been demonstrated in

345several anatomical locations to be a better predictor of the mechanical

346properties of trabecular bone (�97%) than other models (Haïat et al.,

3472009; Maquer et al., 2015).

348To analyze each variable throughout the epiphyseal head and base

349of each Mc1, a 5 mm spherical VOI was passed over a rectangular

3502.5 mm 3D grid placed over the trabecular mask. From these VOIs,

TABLE 3 Average absolute asymmetry within and between groups

Pan (n59) Homo (n 5 14) Between groups

Variable AA, % AA, % U p Value

BV/TV head 5.99 16.21 20.00 .005

BV/TV base 6.44 14.74 34.00 .072

DA head 3.52 14.11 16.00 .002

DA base 8.95 9.95 50.00 .439

E head 11.84 29.82 27.00 .023

E base 11.14 26.24 34.00 .068

Abbreviations (BV/TV5bone volume; DA5 degree of anisotropy;

E5 elastic modulus; AA5mean absolute asymmetry; U5Mann–Whitney

U score; p5 exact p value for Mann–Whitney U test).
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FIGURE 3 Mid-sagittal cross section of right and left first metacarpals exemplifying the site specific internal distribution and average bone

volume for H. sapiens (top) and Pan (bottom). Average quantitative BV/TV (%) for the head and base are indicated in the shaded boxes
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351 average values for each trabecular variable (BV/TV, DA, and E) within

352 each epiphyseal segment were computed. To visualize and qualitatively

353 compare the site-specific distribution of BV/TV, we first created a 3D tet-

354 rahedron mesh of the trabecular mask using HyperMesh® (Altair Engineer-

355 ing, Inc., USA), onto which we then mapped the BV/TV results from each

356 VOI of the background grid analysis. These results were uniformly scaled

357 between 1% and 45% and visualized using Paraview (v. 3.14.1, paraview.

358 org), which allows the color-coded models of BV/TV to be viewed as com-

359 plete trabecular mesh or by a user-defined 2D cross section.

360 2.4 | Calculation of asymmetry

361 Calculation of asymmetry follows the handedness index of Mays

362 (2002) for directional asymmetry (DIRA): DIRA5 (r2 l)/((r1 l)/2) 3

363100, where a positive number indicates right directional asymmetry (r)

364and a negative number left directional asymmetry (l). Similarly, absolute

365asymmetry (AA) is calculated by: AA5 |r2 l|/((r1 l)/2) 3 100, with the

366difference being a standardized measure of the magnitude of asymme-

367try for comparison between groups (Palmer, 1994). Statistical analysis

368of the resulting variables was performed using SPSS 20 (IBM), R ver-

369sion 3.1.0, and PAST 3.04 (Hammer, Harper, & Ryan, 2001). Mann–

370Whitney U tests were used to determine if the values for the left/right

371variables differed significantly between Pan and Homo. Within-group

372exact binomial tests were performed on DIRA counts to determine if

373Pan and Homo departed from an expected 50/50 right- versus left-

374distribution, while Pearson’s v
2 tests were performed to determine if

375these counts differed significantly between the two groups. Mann–

376Whitney U tests were performed to determine if absolute asymmetry

377values differed significantly between the two groups.

3783 | RESULTS

3793.1 | Quantitative results

380Averages and standard deviations for the mean (sides combined) and

381side-specific (i.e., right and left) trabecular variables (BV/TV, DA, and E)

382for the Pan and H. sapiens groups are shown in Table T11. On average,

383Pan exhibits left directional asymmetry and H. sapiens exhibit a right-

384directional asymmetry for each variable at the head and base. Mann–

385Whitney U tests are significant between Pan and H. sapiens for all vari-

386ables, with Pan being considerably more isotropic and having greater

387overall BV/TV and E for both regions. It is also evident that Pan and H.

388sapiens share a distinct difference in the pattern of trabecular variables

389at the head and base, with the Mc1 head having greater BV/TV and E

390but lower DA when compared with the base. Figures F11 and F22 present

391bi-variate plots of BV/TV and DA distribution in each epiphysis. As

392noted above, Pan has greater BV/TV in both the head and base and a

393greater number of individuals that exhibit a left directional asymmetry

394(see below). Although there is overlap between the two groups in DA

395values at the Mc1 base, the majority of Pan individuals approach iso-

396tropy (DA close to 1) on both sides at the head.

397Table T22 presents the results of DIRA and right directional asymme-

398try individual counts, along with results from the within-group binomial

399exact and between-group v
2 tests. The binomial exact tests found that

400the right directional asymmetry for H. sapiens is significant at the Mc1

401base for BV/TV and E, while the left directional asymmetry for Pan is

402significant at the head for BV/TV. The between groups v2 tests found

403that the right directional asymmetry count distribution was significantly

404different from the expected 50/50 right versus left distribution for

405BV/TV and E for both the Mc1 head and base. These differences in

406frequency can also be seen in Figures 1 and 2 for BV/TV and DA,

407respectively.

408Table T33 presents the results of Mann–Whitney U tests for signifi-

409cant differences in absolute asymmetry between H. sapiens and Pan.

410BV/TV, DA, and E all exhibit significantly greater absolute asymmetry

411at the Mc1 head, but not at the base.
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FIGURE 4 3D models showing the site specific BV/TV (%)

distribution in the left and right first metacarpals in palmar, dorsal,

radial, and ulnar views of a modern human (left) and a bonobo (right).

Average quantitative BV/TV (%) for the head and base are indicated

in palmar view with the greatest value from each side in bold

J_ID: Customer A_ID: AJPA23061 Cadmus Art: AJPA23061 Ed. Ref. No.: AJPA-2015-00402.R2 Date: 2-August-16 Stage: Page: 7

ID: parasuramank Time: 14:19 I Path: //chenas03/Cenpro/ApplicationFiles/Journals/Wiley/AJPA/Vol00000/160104/Comp/APPFile/JW-AJPA160104

STEPHENS ET AL. | 7



412 3.2 | Qualitative results

413 FigureF3 3 is a mid-sagittal cross section exemplifying the site-specific

414 internal bone volume distribution and individual quantitative averages

415at the Mc1 head and base for a selection of H. sapiens and Pan while

416Figure F44 is an external view (i.e., complete trabecular mesh). The differ-

417ences in site-specific bone volume concentration and distribution are

418reflected in the color maps, and illustrate that the Pan sample is more
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FIGURE 5 Representative 3D models of right and left first metacarpals BV/TV (%) and levels of directional asymmetry (DIRA). The greater

average BV/TV for the region indicated by the shaded boxes are in bold. Individuals with a left directional asymmetry are indicated by a

negative number, while those with right directional asymmetry are indicated by a positive number
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419 uniform internally in both Mc1 regions, while concentrations in the H.

420 sapiens are found towards the articular surface areas. Also of note are

421 the variations in distribution between left and right sides, with a greater

422 radial concentration at the right base and head in the individual from

423 Tierra del Fuego (UNI FI 3240e, Figures 3 and 4).

424 FigureF5 5 shows examples of low and marked directional asymme-

425 try for representative H. sapiens and Pan. Herein the complexity of

426 determining asymmetry is made clear because although the bone vol-

427 ume quantitative averages provide evidence for a right or left direc-

428 tional asymmetry, the concentrations and uniformity do vary between

429 the head and base regions (e.g., MRAC 15293 compared with ZMB

430 72844). Furthermore, site-specific distribution and concentration of

431 bone volume also varies between individuals (UNI FI 3240d base, see

432 also cross section in Figure 3). For example, in certain Pan (MRAC

433 29045) individuals the right/left directional asymmetry is unclear, with

434 the head being greater on the right directional but greater on the left

435 at the base or vice versa.

436 FigureF6 6 shows the right Mc1 head and base for two H. sapiens

437 individuals (UNI FI 3240e and SCR 180) in standard anatomical views.

438 Even with different average values for each individual, the site-specific

439 BV/TV pattern in H. sapiens shows that the trabecular distribution at

440 the head is fairly concentrated at the articular surface, with the great-

441 est volumes found at the contact areas for the first proximal phalanx.

442 This is also the case at the base, but the highest concentrations are

443found at the palmar aspect of the articular surface and extend distally

444along the radial side.

445Figure F77 shows the site-specific bone volume distribution for the

446right Mc1 head and base for two Pan individuals (MRAC 29045 and

447ZMB 72844) from standard anatomical views. The cause for the much

448higher average quantitative BV/TV is evident here, as the trabeculae

449are much more evenly distributed and palmarly concentrated through-

450out the head. This is not as marked at the base where the greatest con-

451centrations are not actually at the articular surface, but are instead

452slightly distal to the surface on the dorsal, ulnar, and radial sides, which

453contrasts with the pattern found at the H. sapiens Mc1 head and base

454(Figure 6).

4554 | DISCUSSION

456We sought to test whether skeletal asymmetries in trabecular bone

457were consistent with the assumption of increased mechanical loading

458on the dominant limb, following the mechanostat model of bone func-

459tional adaptation (Frost, 1987). Overall we found that the right direc-

460tional asymmetry in measured epiphyseal trabecular variables of the

461paired first metacarpals (Mc1) from H. sapiens matched expectations,

462while the left directional asymmetry of Pan countered our expecta-

463tions. We also report that, compared with Pan, H. sapiens have signifi-

464cantly lower bone volume (BV/TV) and elastic modulus (E), but higher
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FIGURE 6 Example of site specific bone volume distribution in the first metacarpal head (top two rows) and base (bottom two rows) for

two H. sapiens individuals (SCR 180 and UNI FI 3240e)
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465 degree of anisotropy (DA) in both regions. There is also a consistent

466 head/base pattern evident in H. sapiens and Pan, with higher DA but

467 lower BV/TV and E at the Mc1 base compared with the head. The indi-

468 vidual site-specific BV/TV distribution models make it clear that many

469 of the quantitative results are explained by the individual variation in

470 the distribution of trabeculae, and suggest that the relationship

471 between hand preference and directional asymmetry in the Mc1 epi-

472 physeal trabecular architecture is not as straightforward as initially

473 hypothesized.

474 4.1 | Directional asymmetry in Homo sapiens

475 In counts of right or left directional asymmetry we found a significant

476 right directional asymmetry in BV/TV and E in the H. sapiens Mc1

477 base, while the Pan Mc1 reached a significant left directional asymme-

478 try for BV/TV at the head. Comparisons between the two groups

479 revealed that the counts reached significance for bone volume in both

480 regions and elastic modulus at the base. Finally, H. sapiens displayed

481 greater levels of absolute asymmetry for all trabecular variables in both

482 regions with significant differences between the two groups existing at

483 the Mc1 head.

484 We consider statistically significant greater trabecular variables

485 (BV/TV and E) in the Mc1 base as the best indicator of loading related

486 to hand preference. This appears to be supported by the palmar and

487radial bone volume concentrations at the articular surface, which con-

488form with areas of localized remodeling in response to mechanical

489stimuli (Christen et al., 2014; Cresswell et al., 2016; Schulte et al.,

4902013) and speak to loading during flexion and forceful opposition

491(Ladd et al., 2014). These results join those of Lazenby, Angus, Cooper,

492and Hallgrimsson (2008) AQ2and Lazenby, Cooper, et al. (2008), who exam-

493ined the directional asymmetry in paired second metacarpals and found

494a significant right directional asymmetry for trabecular bone volume at

495the head, mid-shaft cross-sectional geometry of the cortex, and medio-

496lateral articular dimensions.

4974.2 | Directional asymmetry in Pan

498We predicted that there would be no directional asymmetry detected

499in the Pan Mc1s because the thumb is removed from loading during

500lateralized terrestrial locomotion (Arcadi & Wallauer, 2011) and that

501other potential behaviors that produce asymmetrical loading of the

502thumb (e.g., arboreal locomotion, tool use) would not be detected at a

503group level. Our results did not support this prediction and instead we

504found a left directional asymmetry trend in the Pan Mc1. This result is

505not consistent with previous studies of Pan trabecular bone (Lazenby

506et al., 2011) that did not find any directional asymmetry. If the left

507directional asymmetry found in this study is a byproduct of manipula-

508tion, it is inconsistent with wild observational data that indicate only

C
O
L
O
R

FIGURE 7 Example of site specific bone volume distribution in the first metacarpal head (top two rows) and base (bottom two rows) for

two Pan Individuals (MRAC 29045 and ZMB 72844)
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509 individual-level, but not group-level, hand preference (Boesch, 1991;

510 Marchant & McGrew, 2007; McGrew & Marchant, 1992, 1997).

511 Although the mechanostat model is admittedly oversimplified, it seems

512 unlikely that variation in hormonal, genetic, and cellular responses

513 across different anatomical regions could explain differences in right/

514 left directional asymmetry within a single skeletal element. However,

515 future studies could address this question, such as in a mouse model

516 after Wallace et al. (2015), where right/left loading is controlled for as

517 opposed to fore/hind limb.

518 We do, however, find a similar pattern to that reported here des-

519 cried in a cortical bone assessment of Sarringhaus, Stock, Marchant,

520 and McGrew (2005) who found a left directional asymmetry in the

521 humerii and right directional asymmetry in the second metacarpals of

522 P. troglodytes. They discussed a tradeoff in loading environments

523 based on observations of wild chimpanzees (Hunt, 1991), where pref-

524 erence for manual support of the left-hand leaves the right free to col-

525 lect food (Sarringhaus et al., 2005). Such a preference is noted in

526 captive groups, with a left-hand preference existing for hanging (Mor-

527 cillo, Fernandez-Carriba, & Loeches, 2006) and during front-forward

528 descent, where the palm makes direct contact with the substrate (Hop-

529 kins, 2008). These observations are paired with studies of chimpanzee

530 soft tissue anatomy that have found greater muscle mass on the left

531 upper limb and greater muscle moment arms on the right (Carlson,

532 2006). These studies suggest that there may be greater asymmetry in

533 Pan upper limb use and loading than previously thought, which could

534 override signals of hand preference during manipulation and complicate

535 direct comparisons between Pan and H. sapiens. Clarification of this

536 issue requires the incorporation of more than a single skeletal element

537 or osseous tissue. In the absence of such a comparison in the current

538 study, we suggest that the homogenous distribution of bone volume,

539 high elastic modulus, and near total isotropy in the Pan Mc1 is better

540 explained by lateralized loading during locomotion and postural sup-

541 port. Given our finding of overall less absolute asymmetry in the Pan

542 Mc1 in relation to that of H. sapiens, this type of lateralized loading

543 appears more balanced, but implies that questions pertaining to skilled

544 tool use and hand preference may only be appropriate for committed

545 terrestrial bipeds.

546 4.3 | Mc1 loading in Homo sapiens

547 Compared with other primates, the low BV/TV of H. sapiens reported

548 here agrees with reports of less dense trabecular architecture in

549 humans in other skeletal elements (Chirchir et al., 2015; Griffin et al.,

550 2010; Maga et al., 2006; Ryan & Shaw, 2012, 2013, 2015), including

551 the hand (Schilling et al., 2013; Tsegai et al., 2013). The thumb has

552 been described as operating as a single functional unit during flexion

553 (Ladd et al., 2014), such that the three phalanges, trapezium, and sup-

554 porting thenar musculotendon network act in concert to rotate and

555 support the distal pad during the forceful opposition of the other fin-

556 gers and/or manipulated objects (Brand & Hollister, 1993; Diogo et al.,

557 2012; Landsmeer, 1955; Li & Tang, 2007; Marzke et al,. 1999). Our

558 finding of greater BV/TV and E at the head relative to the base sug-

559 gests that the Mc1 head experiences greater loading, but this may also

560be a result of loads being transferred into the broad surface of the tra-

561pezium (Marzke, 2013). Visually, the site-specific BV/TV concentra-

562tions at the articular surface of the head and palmar-radial

563concentration at the base are consistent with loads incurred while

564using a flexed and abducted thumb (e.g., key/pinch/power grips),

565where the base of the first metacarpal translates ulnarly and the radial

566articular surface resists the load (Halilaj et al., 2014). Such an interpre-

567tation also appears consistent with clinical micro-CT trabecular studies,

568which report a mirrored palmar-ulnar concentration in the trapezium

569that is thought to be an indication of remodeling in response to the

570axial displacement of force during thumb loading (Ladd et al., 2014;

571Lee et al., 2013; Nufer et al., 2008). As such, this pattern appears to be

572biomechanically consistent between bones, but would benefit by hav-

573ing a broader comparison of trabecular structure across the remaining

574bones of the hand.

5754.4 | Mc1 loading in Pan

576We find that the high BV/TV, low DA, and head/base pattern reported

577for Pan Mc1s here agrees with results derived from a similar Mc1 sam-

578ple using single VOIs by Lazenby et al. (2011). A strict interpretation of

579the mechanostat model would suggest that the extremely high BV/TV

580and E in the Pan Mc1, when compared with H. sapiens, is a direct result

581of high impact mechanical loading. This pattern would be consistent

582with the scenario described above, where the high BV/TV and E in the

583Pan Mc1 compensate for the reduced thenar musculature (Diogo et al.,

5842012; Marzke et al., 1999) and smaller joint surfaces in the thumb com-

585plex (Marzke, 2013) during locomotion and postural support. However,

586as discussed above, bone functional adaptation is a complex aspect of

587biology and our results are not inconsistent with a view that systemic

588differences in hormones, genes (Paternoster et al., 2013; Wallace et al.,

5892010; Yerges et al., 2010), and cellular response to loading (Wallace

590et al., 2015) may also work to explain the genera-level differences

591reported here. This being the case, a one-to-one correlation between

592loading and bone morphology is not supported by our results and, we

593can only suggest that the greater BV/TV and E in the Pan Mc1 are

594byproducts of systemic hormonal/genetic differences in combination

595with loading.

596Even so, evidence for localized loading and bone remodeling does

597exist in the site-specific areas of high BV/TV concentration in the Pan

598Mc1 base, visible just above the articular surface. These regions appear

599correspondent with the muscle attachment sites responsible for flexion

600of the thumb (Diogo, Potau, & Pastor, 2013; Marzke et al., 1999). This

601is intriguing in light of the report of Marzke et al. (2015), who recog-

602nized previously unobserved hand grips during food processing that

603appear to involve forceful loading of the thumb. These include a thrust-

604ing movement involving large fruits held in the pocket between the

605thumb and index, and a variation of the transverse hook grip that

606depends on leverage provided by the thumb to strip away meat

607clenched between teeth. Although this result suggests that the rela-

608tionship between muscle attachment sites and trabecular response

609requires additional exploration, the uniformity of bone volume,

610extremely low anisotropy, and high elastic modulus speaks to a greater
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611 demand for multi-axial loading than manipulation or feeding alone.

612 Being that these grips are also observed during arboreal locomotion,

613 which is very complex and variable throughout life (Sarringhaus et al.,

614 2014), our results are perhaps best explained by loading during contact

615 with a highly variable substrate. If this interpretation is correct, then it

616 implies that the signal from subtler loading scenarios, such as those

617 during manipulation, may be reduced or lost in favor of loading regimes

618 with higher peak loading.

619 5 | CONCLUSION

620 In summary, we found that the first metacarpal trabecular pattern

621 and distribution were consistent with the biomechanical role of the

622 thumb and found that counts of right directional asymmetry for

623 average bone volume and elastic modulus at the base reached sig-

624 nificance, which appears to be concordant with the 85–95% right-

625 hand preference reported cross-culturally. Contrary to our expecta-

626 tions we also found a significant left directional asymmetry at the

627 Pan Mc1 head for bone volume that, combined with the finding of

628 extremely low DA and high E in both head/base regions, is best

629 explained as a reflection of individual preference for left side later-

630 alized loading during locomotion and postural support. We also

631 report greater BV/TV and E in the Pan Mc1, when compared with

632 H. sapiens, which we stress is likely a reflection of a systemic hor-

633 monal/genetic difference between the two groups and is likely not

634 an indication of greater loading in the Pan thumb. This is an impor-

635 tant consideration that should be kept in mind during the analysis

636 and interpretation of hominin fossil remains (see discussion in Wal-

637 lace et al., 2015). As such, we suggest that behavioral studies con-

638 cerned with the manifestations of bone functional adaptation

639 should adopt a layered analysis that incorporates multiple techni-

640 ques to check the biomechanical agreement of various osseous tis-

641 sues and taxa.

642 To conclude, we found directional asymmetry in the first metacar-

643 pal trabecular architecture, but caution that the cause of this bias is not

644 always a clear indication of individual hand preference during manipula-

645 tive tasks and suggest that additional analyses be applied to multiple

646 skeletal elements and other osteological features (e.g., cortical bone)

647 whenever possible. We also found that our interpretation of the quan-

648 titative results and potential loading histories were greatly aided by

649 referring to the site-specific bone volume distribution models. As such,

650 our analysis builds upon previous studies that have used trabecular

651 architecture to investigate loading history and its relationship to bone

652 functional adaptation. We conclude the characterization and visualiza-

653 tion of trabecular architecture is a method that should be joined with

654 previously established techniques to supplement fossil studies con-

655 cerned with the evolution of handedness. Such an application has great

656 potential to provide missing information prior to the advent of stone

657 tool manufacture, and would thus improve our understanding of the

658 hypothesized cause and effect relationship between knapping, brains,

659 and behavior.
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