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TRACE 3-D DOCUMENTATION

by

K. R. Crandali

ABSTRACT

TRACE 3-D is an interactive beam-dynamics program that
calculates the envelopes of a bunched beam, including linear
space-charge forces, through a user-defined transport system.
TRACE 3-D provides an immediate graphics display of the enve-
lopes and the phase-space ellipses and allows nine types of
beam-match;.ng options. This report describes the beam-
dynamics calculations and gives detailed instruction for
using the code. Several examples are described in detail.

I. INTRODUCTION

TRACE 3-D is an interactive program that calculates the envelopes of a

bunched beam, including linear space-charge forces, through a user-defined

transport system. The transport system may consist of the following

elements: (1) drift, (2) thin lens, (3) quadrupole, (4) permanent-magnet

quadrupole (PMQ), (5) solenoid, (6) doublet, (7) triplet, (8) bending magnet,

(9) edge angle (for b e n d ) , (10) rf gap, (11) radio-frequency-quadrupolc (RFQ)

cell, (12) rf cavity, (13) coupled-cavity tank, (14) user-defined element,

(15) coordinate rotation, and (16) identical element.

The beam is represented by a 6 x 6 a-matrix (introduced by the

TRANSPORT program 1) defining a hyperel1ipsoid in six-dimensional phase

space (see App. A ) . The projection of this hyperel1ipsoid on any

two-dimensional plane is an ellipse that defines the boundary of the beam in

that plane. The most useful projection planes are the transverse and

longitudinal phase planes in which the ellipses are characterized by the

Courant-Snyder, or Twiss, parameters and emittances (see App. B ) . Using a

sequence of matrix transformations, the beam can be "followed" between any two

elements. The user can change any parameter and observe the effect on the

beam envelopes and on the output-beam ellipses. Also, several matching

options are available that determine values for the ellipse parameters or for



s p e c i f i e d t r a n s p o r t - s y s t e m p a r a m e t e r s ( s u c h as q u a d r u p o l e g r a d i e n ^ i t o m e e t

s p e c i f i e d o b j e c t i v e s .

A s an e x a m p l e in w h i c h T R A C E 3 D is e < t r e m e i v u s e f u l , c o n s i d e r t h e

p r o b l e m o f m a t c h i n g t h e b e a m f r o m the e < i t o f an R F Q i n t o the e n t r a n c e o f a

d r i f t - t u b e l i n a c ( D T D . T h i s m a t c h i n g is a t h r e e - s t a g e p r o c e s s a c c o m p l i s h e d

e a s i l y a n d q u i c k l y by T R A C E 3 - 0 .

T h e f i r s t s t a g e in the p r o c e s s ' s to de te^ni n,? t h e m a t c h e d - b e a m

c h a r a c t e r i s t i c s at t h e o u t p u t o f t h e 9JQ by t r e a t i n g t h e l a s t t w o R F Q c e l l s as

o n e p e r i o d in a p e r i o d i c f o c u s i n g s y s t e m . B e c a u s e or s o a c e - c h a r q e f o r c e s t h a t

c o u p l e t h e d y n a m i c s in the t h r e e p h a s e o ' a n e s . -)-•'; i t.3s(• i n v o l v e s s o l v i n g six

s i m u l t a n e o u s , n o n l i n e a r e q u a t i o n s .

T h e s e c o n d s t a g e is to r i n d the :o'"'"ect ;npi,r t e a m f o r the D T L by

t r e a t i n g the f i r s t t w o D T L c e l l s as o n e oe r i ;• 1 :-• i o e r i o a i c f o c u s i n g s y s t e m .

( O n e D T L cell c o n s i s t s o f the f o l l o w i n g s e q u e n c e o f e l e m e n t s : q u a d r u p o l e ,

d r i f t , rf g a p , d r i f t , a n d q u a d r u p o l e . )

T h e f i n a l s t a g e is t o d e s i g n a t r a n s p o r t s y s t e m b e t w e e n the R F Q a n d D T L

t h a t w i l l t r a n s f o r m t h e m a t c h e d b e a m e x i t i n g f r o m t h e R F Q i n t o the m a t c h e d

b e a m w a n t e d by the D T L . Q u a d r u p o l e s t r e n g t h s and d r i f t l e n g t h s in t h e

t r a n s p o r t s y s t e m c a n b e a u t o m a t i c a l l y v a r i e d by T R A C E 3-D in an e f f o r t t o f i n d

a s o l u t i o n to the m a t c h i n g p r o b l e m . A s a t i s f a c t o r y s o l u t i o n is f o u n d w h e n a

c a l c u l a t e d m i s m a t c h f a c t o r ' s e e A p p . O is less t h a n 0 . 0 0 0 1 .

T R A C E 3-D p r o v i d e s an i m m e d i a t e g r a p h i c s d i s p l a y , i n c l u d i n g the b e a m

e n v e l o p e s and the p h a s e - s p a c e e l l i p s e s in the t r a n s v e r s e a n d l o n g i t u d i n a l

d i m e n s i o n s . T h i s f e a t u r e , a l o n g w i t h t h e i n t e r a c t i v e c a p a b i l i t y , m a k e s t h e

p r o g r a m a l e a r n i n g a i a as well as a u s e f u l d e s i g n t o o l .

T R A C E 3-D is an e v o l u t i o n o f e a r l i e r t w o - d i m e n s i o n a l v e r s i o n s . T h e

o r i g i n a l T R A C E w a s w r i t t e n in 1 9 7 3 a n d w a s d e v e l o p e d f o r u s e o n t h e

c o n t r o l s c o m p u t e r of L,\MPF. A m o d i f i e d v e r s i o n 3 w a s w r i t t e n f o r t h e

c o n t r o l s c o m p u t e r o f t h e C E R N l i n a c in 1 9 7 7 ; in 1 9 7 9 , t h e C E R N v e r s i o n w a s

a d a p t e d t o the Pi or. G e n e r a t o r for M e d i c a l I r r a d i a t i o n s ( P I G M I ) c o n t r o l s s y s t e m

at L o s A l a m o s . T h i s v e r s i o n w a s e x p a n d e d e x t e n s i v e l y a n d w a s a d a p t e d f o r u s e

o n t h e C D C - 7 6 O O c o m p u t e r at the c e n t r a l c o m p u t e r f a c i l i t y a t Los A l a m o s a n d o n

the A T - D i v i s i o n V A X - l 1 / 7 5 0 , and is d o c u m e n t e d in a L o s A l a m o s r e p o r t . 4

T h e s t r u c t u r e o f T R A C E 3-D a l l o w s t h e c o d e t o be e a s i l y m o d i f i e d a n d

e x p a n d e d . I n t e r a c t i o n w i t h the p r o g r a m , w h i c h r u n s o n t h e C D C - 7 6 O O a n d t h e

C R A Y u n d e r the L T S S a n d C T S S o p e r a t i n g s y s t e m s , is t h r o u g h a T e k t r o n i x



4000-series terminal using the Tektronix Plot-10 Terminal Control System. The

program can be adapted for any other graphics terminal by replacing the

Plot-10 subroutine calls by calls to any graphics package that draws lines,

plots dots, writes character strings, and allows a mechanism for interaction.

II. GENERAL DESCRIPTION

The basic assumption of TRACE 3-D is that all forces are linear or can be

linearized. If the six coordinates of a particle are known at some location

s, along a transport system, then at s ? the coordinates can be calculated

by a single matrix multiplication. That is,

x(s ) = R x(s )

where x(s) is the 6 x 1 column vector of the coordinates at location s, and R

is a 6 x 6 matrix whose elements depend on the transport elements between s,

and s ? and on the size of the beam (for computing space-charge forces) in

this interval. The R-matrix is referred to as the transfer matrix between

locations s, and s~. Usually, a transfer matrix representing particle

transport over a long distance is determined by a sequence of matrix

multiplications of transfer matrices representing particle transport over

smaller intervals that comprise the total transport distance.

For the space-charge forces to be linear, one must postulate a beam

having a uniform charge distribution in real space. (The electric-field

components inside a uniformly charged ellipsoid are given in Sec. VII.)

Although real life is rarely so accommodating, it has been shown that for

distributions having ellipsoidal symmetry, the evolution of the rms beam

envelope depends almost exclusively on the linearized part of the

self-forces. 5 Consequently, for calculational purposes the "real beam"

may be replaced by an "equivalent uniform beam" having identical rms

properties (seo App. D ) . The total emittance of the equivalent uniform beam

(the beam followed by TRACE 3-D) in each phase plane is five times the rms

emittance in that plane, and the displayed beam envelopes are /5 times their

respective rms values. (Real beams have ill-defined boundaries. In general,

one can expect a few percent (<10%) of the particles in a real beam to be

outside the boundaries displayed by TRACE 3-D.)



If the transfer matrix between s, and s- is known, and if the beam

matrix at s, is known, then the beam matrix at s 2 is calculated by

a(S2> = R a(S]) RT ,

where R denotes the transpose of R. The dynamics calculations in TRACE 3-D

are done by a sequence of transformations as specified above. Starting with

an initial a-matrix, a transfer matrix is constructed from the external

forces for a small transport interval and a new a-matrix is calculated. The

size of the beam is obtained from elements of the a-matrix, and linear

space-charge forces are calculated using the beam size. An R-matrix is

constructed for the space-charge impulse, and a new a-matrix is calculated.

This process is repeated until the beam has been followed through the

specified elements.

At the beginning of a calculation, initial phase-space ellipses are

displayed at the graphics terminal. At each step, the beam boundaries in real

space are displayed, allowing the user to visualize how the beam is behaving.

At the end, the final phase-space ellipses are displayed.

III. COORDINATE SYSTEM AND UNITS

The internal coordinates and their units are

-x (mm) ,
i

1 x' (mrad)j

| y (mm) j

y' (mrad)f

z (mm)

[^ (mrad)

where x, y, and z are horizontal, vertical, and longitudinal displacements

from the center of the beam bunch (assumed to be on the equilibrium orbit), x'

and y' are the relative rates at which the particle is moving away from the

horizontal and vertical axes, and Ap/p is the relative difference in the

particle's longitudinal momentum from the longitudinal momentum of the center

of the beam bunch. For input and output, however, z and Ap/p are replaced

• *

x =



by A<}> and AW, the phase and energy displacements in degrees and keV. The

relationships between these longitudinal coordinates are

z = -

and

I3A
360

where 6 and y are the usual relativistic parameters, X is the free-space

wavelength of the rf, and W is the kinetic energy in MeV at the beam center.

Phase and energy coordinates are more normal coordinates for discussion of

input/ouput parameters of accelerator-related transport systems than are z and

Ap/p; however, internal calculations are simplified by using the z and Ap/p

coordinates.

The units of the coordinate system define the units of the transfer-

matrix elements, which are either dimensionless, m, or in :

n-1

n-1

. m,-1

m
1

m
1

-1

-1

m
1

m
1

n-1

n-1

n-1

m
1

m
1

m
1

IV. TRANSPORT-SYSTEM ELEMENTS

Each transport element is defined by a "type code" and by five or fewer

parameters, summarized in Table I (parameter definitions fj:low the table).

Unless otherwise specified, all conventions assume a posit w e beam, all lengths

are in millimeters (mm), all magnetic-field gradients are in teslas/meter

(T/m), and all angles are in degrees (°). Positive magnetic gradients are

focusing in the horizontal plane and defocusing in the vertical plane for

positive beams.



TABLE I

DEFINITION OF TRANSPORT ELEMENTS

Element
Drift

Thin lens

Quadrupole

PMQ

Solenoid

Doublet

Triplet

Bendi ng magnet

Edge angle

Radio-frequency gap

RFQ cell

Radio-frequency cavity

Coupled-cavity tank

Speci al

Rotation

Identical

Type Code
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Parameter
!i

f , f , f
x y z

B1 , ft

B' , ft, r. , r
1 0

B , (i

B' , ft, d

B O \ i0. d. iy, a.

a, p, n

S, P, g, <v K2

EQTL, <j)s, egf, dWf, h

V/r^, AV, L, *o, type

Eo> L' *o

EJ, L, *s, nc
Length, (user defined)

e

n



DEFINITION OF PARAMETERS USED IN TABLE I

1.

2.

3.

4.

5.

6.

7.

Element

Drift

Thin lens

Quadrupole

PMQ

Solenoid

Doublet

Tri plet

Parameter

ft

X

y
f

B'
a
B1

a
ri
ro
B
fi.

B'

a
d

Defi ni tion

8. Bend

9. Edge

a

P

n

B
P
g

length (mm)

focal length in x-direction (mm)

focai length in y-direction (mm)

focal length in z-direction (mm)

magnetic-field gradient (T/m)

effective length (mm)

maximum magnetic-field gradient (T/m)

physical length of PMQ (mm)

inner radius (mm)

outer radius (mm)

magnetic field (G)

effective length (mm)

magnetic-field gradient (T/m) in upstream
quadrupole

effective length of each quadrupole (mm)
distance between quadrupoles (mm)

magnetic-field gradient (T/m) in both outer
quadrupoles

effective length of outer quadrupole (mm)

distance between inner and each outer quadrupole
(mm)

magnetic-field gradient (T/m) in inner
quadrupole

effective length of inner quadrupole (mm)

angle of bend in horizontal plane (deg)

radius of curvature of central trajectory (mm)

field-gradient index

pole-face rotation angle (deg)

radius of curvature of bend (mm)

total gap of magnet (mm)

fringe-field factor (default = 0.45)

fringe-field factor (default = 2.8)



Element

10. RF gap

11. RFQ cell

Parameter

E0TL
4>s
egf
dWf
h

V/r2

0

AV

L

type

Definition

12. RF cavity E o
L
4>0

effective gap voltage (MV)
phase of rf (deg)
emittance growth flag
energy gain flag
harmonic (default = 1)

maximum intervane potential difference
divided by square of average vane
displacement (kV/mm2)

product of acceleration efficiency and
intb;'vd,;= '/cl td.30 (.:.v'/

cell length (mm)
phase of rf (degXsee Sec. VI-K)
= 0; standard cell, no acceleration
= 1; standard cell, acceleration
= 2; fringe-field, no acceleration
= 3; fringe-field, acceleration

average accelerating field (MV/m)
length (mm)
phase of rf (deg) (see Sec. VI-L)

13. Tank

14. Rotation 9

15. Identical n

effective acceleration gradient (MV/m)
length (mm)
synchronous phase (deg)
number of identical cavities

angle through which coordinate system is rotated
about longitudinal axis (deg)

sequence number of element with which this
element is identical

V. DYNAMICS CALCULATIONS

The beam matrix is followed through a sequence of transport elements by

creating transfer matrices for small segments and calculating

o = R o0 RT .

This calculation is done in several different ways, depending on the type of

element.



A. Elements Having Zero Length

The R-matrix has only three nonzero off-diagonal elements, the impulses

to be applied in the three orthogonal planes. Elements of this type are thin

lenses, rf gaps, and edge angles on bending magnets.

B. Elements Having Constant Melds and No Energy Gain

Each element is divided into an integral number of segments. An R-matrix

is constructed for a half-segment. For each segment, the beam is transformed

to the center of the segment u.ing i ? R-matrix, a space-charge impulse is

applied, and the beam is transformed to the end of the segment using the

R-matrix. Elements of this type are field-free drifts, quadrupoles, bending

magnets, and solenoids. Doublets and triplets are composite elements of

drifts and quadrupoles.

C. Elements Causing Energy Change or Having Varying Fields

Each element is divided into an integral number of segments. For each

segment, the beam is transformed by a drift-impulse-drift, w a n i n g that the

beam is given a drift transformation to the center of the segment, an impulse

that is due to the element and space-charge, and a drift transformation to the

end of the segment. Energy charges and phase shifts, if any, are also

calculated. Elements of this type are permanent-magnet quadrupoles, RFQ

cells, rf cavities, and tanks. In some elements, it is possible to calculate

an emittance growth. For example, an rf gap will cause transverse emittance

growth because of the phase spread in the beam. Energy spread can cause

emittance growth in quadrupoles (chromatic aberrations).

VI. TRANSFER MATRICES

In this report, the 6 x 6 transfer matrices will be partitioned into nine

2 x 2 matri ces:

r R R ' R
i _ x x _ i x y i_ _ x z

R = R ' R ' R
; y* yy iz

Rzx ; Rzy i Rzz



M o s t o f t h e e l e m e n t c a r e u s u a l l y z e r o , a n d o n l y the n o n z e r o e l e m e n t s w i l l be

defined. .•

The transfer matrices generated for each element, or for each segment of

length As, are defined below. In this section, 3 <\nd y are the usual rela-

tivistic parameters. For elements that involve a change in energy, the sub-

scripts i and f will denote values before and after the energy change, and a

bar over a quantity will denote an average value.

For a drift length As in mm, the nonzero elements of the R-matrix are
A.

Rxx

and

Rzz

Drift

For a

= R
yy

=
1

_ 0

(Q.)

dri

n
= i
L°

ft le

AS/Y

1

ngt

AS

1

The y in the denominator of the 1,2 element of R is present because

Av/v = (Ap/p)/ Y
2 .

B. Thin Lens (fx, f y, fz)

The focal lengths specified by the thin-lens element are in mm;

therefore, the submatrices are

0 1

-1000

Ryy

and

Rzz

1 0

-1000 .

1 C

-IOOOY 2 .

f '

10



For any focal length that is zero, the corresponding submatrix is the identity

matri x.

C. Quadrupole (B' , a.)

For a quadrupole gradient B', the 2 x 2 transfer matrices in the focusing

and iefocusing planes are

r COS (k As)
F = !

[ -k sin (k As)

and

D =

£ sin (k A S )

cos (k As)

T- sinh (k As)cosh (k As)

k sinh (k As) cosh (k As)

where

k = Bp

"1 1/2

The quantity Bp is called the magnetic rigidity of the particle,

defined by

where q and m are the charge and rest mass of the particle, and c is the

velocity of light. The dimensions of As and k are m and m~ , respective-

ly. When B'/Bp is positive, Rxx = F and R = D; when B'/Bp is nega-

tive, Rxx = D and R = F. In either case, RZ2 is the same as for a

drift:

zz

1

0

D, PMQ (B 1, ft, r,, r 0)

The field of a rare-earth cobalt (REC) PMQ of standard design is known

analytically and has been verified experimentally. 6 A discussion of the

11



field formula is given in App. E. Typically, PMQs are quite short and have

strong pole-tip fields, resulting in "soft-edge" fringe fields that extend

beyond the physical eage of the quadrupole for a distance two to three times

the inner quadrupole radius. When calculating the field gradient within or

near a PMQ, the gradients of all PMQs in the vicinity must be used for

determining the total superimposed gradient. The transfer matrices for the

impulses that are due to a field gradient B1 acting over the distance As are

xx

and

1

-k 2 As

k 2 As

0 1

1 j

o ~\

1

where

k2 - —

is in inverse meters squared and As is in meters.

E. Solenoid (B, g.)

A derivation of the solenoid transformation is discussed in Ref. 7. In

TRACE 3-D, the solenoid is divided into small segments of length As, and a

submatrix is constructed for the entry, central, and exit sections. This

construction' is legitimate because all the internal (and nonexistent) entry

and exit sections cancel each other. The solenoid is divided into small

segments so that space-charge forces can be calculated and applied.

The transfer submatrices are

R = Rxx .yy -kSC

Rxy = ~Ryx
SC

-kS' SC

1 ~



and

zz

where

As/y

1

k = B
2Bp '

C = cos (k As) ,

and

S = sin (k As) .

The dimensions of As and k are m and m~ , respectively.

F. Doublet (B', &, d)

The beam is successively transported with matrices already described for

a quadrupole in Sec. VI-C defined by B 1, fi., a drift length d, and another

quadrupole defined by -B 1, fi..

G. Triplet (Bo' , d0, d, B^ ' , fi-i)

The beam is transported with matrices already described in Section VI-C.

The outer quadrupoles are defined by B and 2. , and the inner

quadrupole is defined by B.' and SL . The two drifts between outer and

inner quadrupoles have length d.

H. Bending Magnet (a, p, n)

By definition, a positive bend (denoted by a > 0) ben .is the particles

to the right in the horizontal plane, regardless of the sign of the charge on

the particle; a negative a bends particles to the left. The bending radius

of the equilibrium orbit is p, and n is the field index, given by

n = -
Bw

y

3B

-u
-

X

y
= 0
= 0

13



w h e r e B is the vertical component o f the magnetic fiel d strength. (The

sign of p should agree with the sign of a. If n o t , the sign of a will

take p r e c e d e n c e . ) The bending radius p is related to B by

m cBy

The transfer matrix for a horizontal sector magnet is

-k S
X X

-k S
. y

Rzz = !

-h2(k As B 2- S )/k3

X XX

xz

h(l-C )/k2 I
X X !

h S /k j
X X j

and

zx

-h sx/kx

where

h = 1 a

k =x

ky = Vnh'



C x = cos <kx As) ,

S x = sin (kx As) ,

C y = cos <ky As) ,

S y = sin <ky As) -,

also,

AS = | p| Act

is the length of the segment in meters along the equilibrium orbit, and k

and k are in m-1

I. Edge Angle on Bending Magnet (6, p, g, K], K?)

An edge angle is treated as a thin lens, wich the transfer matrix

XX

and

yy

1000 tan 6

-1000 tan (13-*)

0

1

where p is the radius of curvature in mm, and the fringe-field correction

angle ¥ is defined by8

3
1 P

1 + sin2 13
cos 6 1 - K,K,(fl> tan (3

I L p

Whether or not an edge angle is focusing or defocusing depends not only

on the angle 13, but also on the sign of p, so caution is advised. The

correction angle ¥ is also dependent on the signs of (3 and p. If K, is

zero, its default value of 0.45 is used; if IC is zero, its default value of

2.8 is used.
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J. Radio-Frequency Gap (E 0 T L , 4>s, egf, dWf, h)

In an rf gap, as in RFQ cells, coupled-cavity c e l l s , and coupled-cavity

t a n k s , the energy of the beam would normally change. (There are situations

when one does not want acceleration to take place and wants only to consider

the focusing and defocusing properties in the gap: namely, when computing the

matched input in a periodic system.) When the beam energy is changed, the

transverse emittances will change. In this situation, it is convenient to

construct the transfer matrix in three separate stages:

1. A transformation that changes the initial *', y', and Ap/p to

, (fty , and A(f3y) , by multiplying by the initial value of

, the longitudinal component of the normalized momentum.

2. The impulse transformation that calculates the changes in (I3y) ,

, . and A(13y) .

3. A transformation back to the .<' , y', and Ap/p by dividing by

f. the final value of the longitudinal momentum.

For an initial kinetic energy, W. , the normalized momentum is

(By), = VY- -

where

Y, - ' • VE f •

with E being the test energy of the particle. If dWf^ 0, the energy change

in the gap is given by

AW = |q|E TL cos <$> .
0 3

Therefore, the final energy is

Wf = W. + AH ;

al so,

Yf - 1 • V E r

and

16



The changes i n the normal ized momentum components caused by the gap

impulse are

--rrh | q | EQTL s i n <J>s

and

k z z

- i rh |q |E TL s i n

p -0-0

m o c ^ B Y X

2-irh ) q 1 E T s i n §

? - ?
m c 13 X

where the bars denote quantities calculated at the average energy

W = W. + AW/2 ,

and h is the field harmonic (usually h = 1 ) . The field harmonic is used if

the rf gap is operated at h times the basic frequency specified by the user

(see Sec. IX-A). The total transfer matrix for all three stages is

xx

1

0
-1
f (BY)1

1 0

kx/(BY)f

yy

and

Rzz

1 0

k / ( B Y ) f < B Y ) i / < B Y ) f

1 0

kz/(BY)f

17



After computing this R-matrix and using it to calculate the new

a-matrix, if the emittance growth parameter egf is nonzero, the elements of

the new G-matrix are adjusted, as described in App. F, to account for

emittance growth in the gap.

K. RFQ <V/r{j, AV, L, <$>0, type)

In an RFQ, as in a c^i/ied-cavity cell, the rf phase changes continually

as the beam moves i.hvough the element. This statement is also true of the

beam energy (unless type = 0 or 2 ) . Nhen the beam arrives at the end of the

element, the rf phase will depend on the length of the element, and on the

dynamics as the beam passes through the element. When one has a sequence of

RFQ cells, or coupled-cavity cells, the phase shift between adjacent cells is

180°. Therefore, it is more practical to have the parameter $ indicate a

phase shift rather than an absolute phase. In a sequence of RFQ cells, all of

the <}) parameters will be -180° except for the first cell. Before

starting the dynamics calculation, TRACE 3-D sets the phase parameter $ to

zero. When the beam arrives at the first RFQ cell, <|> gets changed to <J> + $ .

For the first RFQ cell, 41 should be the synchronous phase for that cell (for

example, -30°).

The beam matrix is followed through the element by a sequence of drift-

impulse-drift transformations. The element is divided into 18 equal-length

segments (if type = 0 or 1) or into 36L/GX segments (if type = 2 or 3 ) . Each

of these segments is divided into half lengths of As/2. In each As/2 drift,

the phase is incremented by

. . 2ir As

• - • + o x r •

where 6 = v/c and X is the free-space wavelength of the rf. If an energy

change is permitted (when t = 1 or 3 ) , the longitudinal electric field is

calculated, and the new energy is

W f = W, + |q|Ez As

18



The average energy is

W = Wf)/2

The transverse and longitudinal focusing or defocusing forces of the RFQ, and

the space-charge defocusing forces, are calculated and applied at the center

of the segment. The beam is then drifted for another As/2, and this process

is continued through the element.

In an RFQ cell (specified by type = 0 or 1), the linearized electric

field components are

r V k.2AV cos kj; x sin

y

:-nd

E_ =

k2AV

kAV

cos sin

sin sin

where k = ir/L and i is the local longitudinal coordinate within the cell,

defined to be zero at the beginning (upstream end) of the cell. For each

drift of length As/2, £ is increased by As/2. As written, the expressions for

E and E assume that the horizontal vanes (x - z plane) are closer to the
x y 2

axis at the beginning of the cell. Positive values of the V/r parameter

indicate this situation; negative values indicate that the vertical vanes are
2

closer to the axis at the beginning of the cell. The sign of V/r must

alternate in successive RFQ cells.

The changes in x' and y' that are caused by the RFQ fields, acting over

the distance As, are

A(x') = As |q| sin

V BY

k2AV
cos
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and

Ao |q| sin V k AV
cos '<£ I y

ro 4 J

where 6 and Y are relativistic parameters corresponding to W.

The change in Ap/p caused by a parties arriving at a particular

when the rf phase is $ + A<J> rather than <j> is

As

mQc B y 9*

Equating the phase displacement A<f> to the longitudinal displacement z,

A* = i^z ;
BX

the change in Ap/p is

AS ir |q| kAV sin k^ cos » zA(Ap/p)

When the type is 2 or 3, the element is the exit fringe-field region of

an RFQ linac. When the specified length L is 2I3X or longer, this element

would be called an exit-radial-matching section because the transverse

phase-space ellipses would be very similar at the end of the element. Lengths

shorter than BX/2 would be used for controlling the energy change in the

fringe-field region.

The electric fields are obtained from the potential function:

V 8
;T-(r,£) cos 29

' L u v o > '
 2

where

= | [lQ(kfr) cos (kf£) + \ IQ(3kfr) cos

sin 4. ,
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and

T2(r,£) = ^ I2(kfr) cos

wi th

~ I2(3Kfr) cos

k - —f " 2L

The modified Bessel functions I and I- are r e p l a c e d by their s e r i e s
o i. p

expansion, dropping ill terms in r higher than r :

I Q(k fr) = 1 + (k fr)
2/4 ,

- 1 + '— (x2 2)

I2<kfr> = (kfr)
2/8 .

Then, using the identity

7 7 ?

r cos 28 E x - y ,

the potential function can be rewritten in cartesian coordinates, and the

electric field components calculated by

E = -VU .

The results are

Ex = x sin <)> ,

and
k fAV

Ez = ~-

k f
2 A V

sin

y sin 4> ,
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where

CAV = I (cos kf£ + ~ cos 3kf£>

Z A V = | (cos kf£ + 3 cos 3fk£)

and

= | (sin kf£ • sin 3kf£> .

The impulse coefficients for the RFQ fields are

as |q| sin « I V_ - . k f AV r .

. A s |ql s i n <t> ] V

T2 ' 4

and

As tr jq| kf AV S(^) cos <$>
kz =

 2_3_ .

L. Radio-Frequency Cavity (E o, L,

The main purpose of this element is for calculating the motion of a

relatively low-velocity electron beam through a coupled-cavity cell. An

example of such an element is the side-coupled cavity, often used for electron

linacs. When a low-velocity electron enters such a cavity, its velocity can

change significantly in one cell. In this case, approximations of constant

velocity are not appropriate, and the motion must be obtained by integration

through the electromagnetic field in the cavity.

For this purpose, the cell is divided into 18 equal-length segments,

As = L/18. In each segment, the beam is given a drift-impulse-drift

transformation. The impulse is calculated at the middle of the segment using

the values of the E 2, E r , and B Q field components; the beam energy;

and the rf phase. The impulse from the space-charge force is also-calculated

and applied at the middle of each segment.



The electromagnetic-field components depend on the geometry of the cavity

and on E , the average on-axis accelerating field. SUPERFISH9 runs have

been made for several types of cavities and at various cell lengths for each

type. The results are scalable with frequency; therefore, each run at a

particular cell length is associated with a value of 6 = 2L/\, an implicit

assumption for the cell length. For example, SUPERFISH runs were made for the

side-coupled cavity geometry used by the racetrack microtron designed by Los

Alamos for the National Bureau of Standards. Electric-field information was

calculated for cavity lengths having values cf 13 from 0.55 to 1.0 in steps of

0.05. For each value of 13, the fields near the axis were Fourier analyzed and

the first 14 nonzero coefficients were calculated. A table of these

coefficients versus 13 is stored in a TRACE 3-D subroutine, G E N F C Then, for

any given cavity length and frequency, a value is determined for 6 based on

L = BX/2. The Fourier coefficients for this 13 are obtained by a linear

interpolation in the table, and the field components are reconstructed from

the Fourier coefficients and scaled by E . For details on calculating the

electromagnetic-field components in a cavity, and on calculating the linear

impulse coefficients, see App. G.

M. Tank (E OT, L, <j>s, n c)

M coupled-cavity tank consists of n identical cavities L/n long.

The quantity E T is the constant effective accelerating field, and $ is

the synchronous phase. Although most of the acceleration takes place in the

central portion of each cell, one can think of the rate of energy change as

being constant:

f = lQ|E0T cos 4,s .

In the tank element, each cavity is divided in two halves. In the first

half of a cavity, the electromagnetic fields are usually radially focusing and

in the second half they are usually radially defocusing. For a synchronous

phase near zero, these two effects essentially cancel each other when ions are

accelerated, but electrons can have a net inward motion. At each cavity in a

tank, the beam is drifted to the middle of the first half of the cavity, given

an impulse based on field quantities averaged over the first half of the

cavity and on the space-charge forces, and then drifted to the center of the
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cavity. This procedure is repeated for the second half of the cavity and for

all cavitys in the tank. The details for calculating the impulse coefficients

are given in App. H.

N. Special (Q., user-defined parameters)

This element provides a mechanism for the user to insert any special

element of his choice. Of the five parameters available to define this

element, the first must be the total length of the element and the remaining

four are arbitrary. The length is needed by the graphics display when the

beam profiles are drawn. If more parameters are needed, up to 10 can be input

into EXTRA, an array designated for holding extra parameters.

The user must supply a subroutine called SPECIAL, with arguments P and

NEL where P is an array containing the five possible parameters and NEL is the

sequence number of this element.

0. Rotation (9)

The transverse coordinates may be rotated through an angle 0 (deg)

about the longitudinal axis. Thus a rotated element (such as a bending

magnet, quadrupole, doublet, or triplet) may be inserted into a transport

system by preceding and following the element with the appropriate coordinate

rotation. A positive angle rotates the beam clockwise (looking at the x-y

plane from the positive z-direction), simulating a counterclockwise rotation

of the elements that follow it.

The rotation is accomplished by the transfer matrix

R =

c
0

-s

0

0

0

0

c

0

-S

0

0

s
0

c

0

0

0

0

s

0

c

0

0

0

0

0

0

1

0

0

0

0

0

0

1

where C and S denote cos 9 and sin 9, respectively.



P. Identical Element (n)

This element gives the user an easy way to duplicate any element d e f i n e d

in the transport system. The only parameter required is the sequence n u m b e r

of the element with which it is identical. For exam p l e , if there are several

quadrupoles in the system that all have the same c h a r a c t e r i s t i c s , only o n e

needs to be specifically defined by a type code and parameter set; the rest

can be included using the identical element. When any parameter in the

defined quadrupole is modified, all quadrupoles defined by the identical

element are likewise modified. The sequence number defining the identical

element must not be the sequence number of another identical element.

VII. SPACE-CHARGE IMPULSES

Approximate expressions for the electric field components that are due to

a uniformly charged ellipsoid, as given by Lapostolle, 1 0 are

r J 3IX (1-f)
x = *x = 2

4ire CY r (r + r )r
0 ' x x y z

c 1 3IX (1-f)
E = — j y
^ 4ire CY r (r + r )r

o ' y x y z

and

4ire CY r r r
0 ' x y z

where r r and r are the semiaxes o f the ellipsoid; I is the average
X J Z

particle current (the average electrical current is I|q|), assuming that a

bunch occurs in every period of the rf; X is the free-space wavelength of

the rf; c is the velocity of light; and e is the permittivity of free

space. The form factor f is a function of p = vr /-/r r . Values

for f ar& given in Table II for specific values of p and 1/p.
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The change in the normalized momentum components caused by applying the

space-charge force during the time interval required for the beam to move a

distance As is

A(B Y) U =
q E As
—7-
V B

where u represents x, y, or z.

p

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1 .00

TABLE II

SPACE-CHARGE FORM
P = Yrz//r~r\

f

1.000

0.926

0.861

0.803

0.750

0.704

0.661

0.623

0.588

0.556

0.527

0.500

0.476

0.453

0.43;

0.4^

0.794

0.378

0.362

0.347

0.333

_FACTOR
/
1/p

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

f

0

0.007

0.020

0.037

0.056

0.075

0.095

0.115

0.135

0.155

0.174

0.192

0.210

0.227

0.244

0.260

0.276

0.291

0.306

0.320

0.333
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The above formulation is valid only for ellipsoids that are upright with

respect to the local coordinate system. When the beam passes through a

solenoid or a bending magnet, it is possible for the ellipsoid to become

tilted with respect to the local coordinate system. In this case, the beam

ellipsoid must first be transformed to a coordinate system in which it is

upright before calculating and applying the space-charge impulses. The

ellipsoid is then transformed back to the local coordinate system.

A tilted ellipsoid is indicated if the a-matrix elements a,.,, Q ^ , or

a,-, are nonzero. If a,., is nonzero, the ellipsoid is tilted in the x-y

plane. The angle between the x-axis and the axis of the elliptical projection

on the x-y plane i s

1 -1 2 a 1 36 = ^ tan ' IJ

2 CT33 - CT11

The ellipsoid can be brought upright with respect to the x-y plane by a

rotation of -9, accomplished by applying the transfer matrix

R =

c
0

s

0

0

0

0

c

0

s

0

0

-s
0

c

0

0

0

0

-s

0

c

0

0

0

0

0

0

1

0

0

0

0

0

0

1

where C and S denote cos 9 and sin 9. The rotated ellipsoid can be

checked to see if it is upright with respect to ' he y-z plane. If not, it can

be rotated by a similar transfer matrix. It can be rotated a third time, if

necessary, to make it upright with respect to the z-x plane.

When the beam is in the upright position, the space-charge impulses can

be calculated and applied, and the three rotations given in the reverse

directions in the reverse order.

Before the initial rotations are made, the ellipsoid is expanded in the

z-direction by applying a transfer matrix that is equal to the identity matrix

except that the 5,5 element is the relativistic parameter y After the

final rotation described above, the ellipsoid is contracted by the inverse of

the perturbed identity matrix discussed above.
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VIII. USER INSTRUCTIONS

In addition to the input and output filts associated with the graphics

terminal, TRACE 3-D uses tapelO, tape20, tape30, and tape31 . TapelO is a

binary (unformatted) file written by TRACE 3-D whenever a parameter is changed

(through the "input" command) and after every dynamics run. This file

contains all the information needed for restarting the program if, for

whatever reason, it has been terminated. Tape30 is an ASCII input file

containing the initial value of various parameters, including beam

characteristics and transport-system parameters. Tape20 and tape31 are

described below.

Upon funning TRACE 3-D, the message "enter 3 to read tape30 or 1 to read

tapelQ" will appear on the graphics terminal. Unless a tapelO exists and the

user is restarting the program, the normal response would be to enter a " 3 " ,

followed by a "return." The information on tape30 is read by a single READ

(30, DATA) statement, using the namelist feature of the FORTRAN Extended

Compiler for Control Data operating systems. This feature is extremely useful

because it allows one to enter a few or all of the parameters defined in the

NAMELIST statement.

After reading the initial input values, a few constants are initialized,

the terminal is put in the graphics mode, and a cursor (cross hairs) will

appear on the screen. The program is waiting for a command from the user. A

command is issued by striking 1 of 18 alphabetic characters on the keyboard.

(Some terminals require a "carriage return" to be struck after entering a

letter, and some do not.) The program performs the task specified by the

character. After the task has been completed, the cursor is again displayed

and the program awaits another command. Table III gives the commands

recognized by TRACE 3-D.

The user terminates the program by typing an "e" for "end." Information

is then written on tape31 in a format suitable to be used as input data

(tape30) for a future run.

The other file mentioned earlier, tape20, is a strall file used to

facilitate the namelist feature after the "i" (input) command. After this

command, a prompt "?" appears, asking the user to type input information on

the screen followed by a return. This information is read using an A-format

and is written on tape20 after appending the characters "$DATA" at the
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beginning and a "$" at the end of the character string. Tape20 is then

rewound and read with a READ (20, DATA) statement.

TABLE III

Command

COMMANDS RECOGNIZED BY TRACE 3-D

Action

a

b

d

e

f

g

i

j

(add)

(beam)

(delete)

(end)

(phase)

(go)

(input)

(projections)

(el 1ipse)

m

0

P

r

s

(match)

(mi smatch)

(pr int)

(R-matri x)

(save)

(trace)

w
z

(update)

(o-matrix)

add (insert) elements in transport system

print beam parameters

delete elements from transport system

terminate the program

calculate and print phase advances

draw graphics background and follow beam through
transport system

enter new parameters

plot initial and final beam projections on the
x-y, x-z, and x-Ap/p planes

determine emittance ellipses from three profile
measurements

perform matching specified by the mt parameter

calculate and print mismatch factors

print parameters for beam, control, graphics, and
transport

print R-matrix from latest run

save ellipse parameters and cr-matrix

follow the beam through a sequence of elements and
display results on existing graph

replace ellipse parameters and a-matrix by their
stored values

print phase and energy information

print modified a-matrix

IX. INPUT VARIABLE5

Before giving a detailed description of the action taken when each

command is issued, all of the input variables will be defined. The internal

names of the variables will be written in capital letters. If the variable is

a dimensioned array, the dimensions as appearing in a DIMENSION or COMMON
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statement will be enclosed in parenthesis. The variables can be grouped in

several categories: transport system, beam characteristics, control

parameters, matching parameters, graphics scales, print parameters, and extra

parameters.

A. Transport System [ N T ( N E L M A X ) , A ( 5 , N E L M A X ) , FREQ, PQEXT, and ICHROM]

The elements of a transport system are defined in sequential order by a

"type code" in the NT array and by the associated parameters (five or f e w e r )

in the A array. The quantities have been defined earlier in Sec. IV. (The

maximum number of elements, NELMAX, is defined in the FORTRAN program by

PARAMETER statements.) FREQ is the frequency of the rf in MHz. Even if no rf

elements appear in the transport system, FREQ is necessary for defining the

length of the beam bunch, which is specified in degrees at this frequency.

PQEXT defines the extension of the fringe field in PMQs. These fields will be

calculated for a distance of PQEXT times r. from each edge of a PMQ, where

r. is the inner radius of the PMQ. ICHROM is a flag that, if nonzeio,

specifies that chromatic aberrations are to be taken into account when the

beam passes through a thin lens, a PMQ, and a quadrupole (and, therefore, a

doublet and a triplet). Chromatic aberrations cause an effective emittance

growth, so the a-matrix is modified as described in App. I.

B. Beam Characteristics [ER, Q, W, X I , B E A M K 6 ) , E M I T K 3 ) , S I G K 6 . 6 ) ]

ER is the rest energy of the particles, and W is their kinetic energy

(units in M e V ) ; Q is the charge state (+1 for p r o t o n s ) , and XI is the beam

current in mA. The initial ellipse parameters are in the BEAMI array in the

order a 0 a 0 « , 0.. These are the Courant-Snyder, or Twiss,
X A y y (p <p _/» »

parameters for the initial phase-space ellipses in the three phase p l a n e s .

The a's are dimensionless, 0^ and 0 are in meters (or m m / m r a d ) , and

B is in deg/keV. The initial emittances in the x-x 1, y-y', and A<)>-AW

phase spaces are in the EMITI array. The units are in ir»mm»mrad in the x-x 1

and y-y 1 planes, and in Tr»deg»keV in longitudinal phase space. When space-

cha.ge forces are included (when XI i 0 ) , these emittances should be f_i_v_e

times the rms emj_ttanc_es. SIGI is a 6 x 6 array containing the initial

a-matrix. The elements of the SIGI array usually are not, but can be, input

quanti ties.
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C. Control Parameters (Nl, N2, SMAX, PQSMAX, IBS, NEL1 , NEL2)

Nl and N2 are the sequence numbers of the transport elements through

which the beam is followed. When the beam is followed in the forward

direction (normally the case), the beam starts at the beginning (upstream end)

of Element Nl and is followed to the downstream end of Element N2. If

Nl > N2, the beam starts at the downstream end of Element Nl and is followed

to the upstream end of Element N2. A negative value in Element N2 tells the

program to follow the beam backward through Element Nl. SMAX is the maximum

step size (in mm) for the dynamics calculations in most of the elements. Near

PMQs, the maximum step size is PQSMAX (mm), usually a smaller value than

SMAX. In some elements, the step size is set automatically. For example,

each RFQ cell and coupled-cavity is divided into 18 segments, and each cavity

in a tank is divided into 2 parts. IBS is a flag indicating how the initial

o-matrix is generated. If IBS = 0 (the normal case), the elements of the

initial a-matrix are calculated from the BEAMI and EMITI arrays. If IBS i

0, the initial a-matrix is assumed to be in the SIGI array.

NEL1 and NEL2 are the sequence numbers of the first and last transport

elements to be plotted and printed. Their default values are 1 and NELMAX.

These parameters allow the user to select small segments of a transport system

that would have too many elements to plot legibly on one display.

P. Matching Parameters [MT, NC, MP(2,6), MVC(3,6), BEAMF(6), DELTA,

IJM(2,6), VAL(6), NIT]

MT specifies the type of matching desired. Types 1 through 4 specify

that the matched-ellipse parameters are to be found for a periodic system.

Types 5 through 9 indicate that values are to be found for specified element

parameters, called variables, that cause the beam ellipse parameters, R-matrix

elements, or modified a-matrix elements to satisfy specified conditions at

the end of Element N2. The meanings of the type codes are given below.

determines matched values of a , 6 , a , and B .

determines matched values of a, and 13..

determines matched values of 13 , 13 , and 6 assuming

that a x = a y = a + = 0.

determines matched values of a . 13 , a , 13 , a,, and 13..
x x y y <j> <p

determines values of the variables U 2 ) that produce specified

values for a and 6 .
X X

Jl

MT =

MT =

MT =

MT =

MT =

1:

2:

3:

4:

5:



MT = 6: determines values of the variables (<2) that produce specified

values for a and 13 .

MT = 7: determines values of the variables (<_2) that produce specified

values for a, and (3

MT = 8: determines values of the variables (£4) that produce specified

values for a 13 , a and (3 .

MT = 9: determines values of the variables U 6 ) that produce specified

values for a y , B x , o y 6 y, < y and 13^.

MT = 10: determines values of the variables U N O that produce specified

elements of the R-matrix.

MT = 11: determines values of the variables (<_ N O that produce speci-

fied values of specified elements of t^e modified a-matrix

(defined in Sec. X under the " z " command).

NC is the number of conditions to be satisfied by the matching procedure

and is automatically set by the program for matching types 1 through 9. The

user must specify a value (<_6) for NC for matching types 10 and 11. The MP

array contains the parameter and element numbers of the variables for matching

types 5 through 11. MP (1 ,n) contains the parameter number (1 to 5) and

MP (2,n) contains the element number (1 to NELMAX) for the nth variable.

Ideally, the number of variables, NV, should equal the number of conditions,

NC. When either M P d . n ) or MP(2,n), n <_ NC, is not vrthin its legitimate

range, that variable is not properly defined and is ignored. Matching is

attempted even though NV < NC.

It is possible to "couple" one transport element parameter to each

variable parameter. For example, two drifts may be coupled so that when one

is increased the other is decreased by the same amount, keeping the total

distance constant. Or two drifts may be coupled so that they are both changed

by the same amount, a feature that could be used for maintaining symmetry.

The other type of coupling allowed is a proportional change in a parameter.

For example, two quadrupole gradients may be coupled so that when one changes,

the other changes by the same proportion. The indices of the coupled

parameters and k, the type of coupling, are specified in the MVC array.

MVC(l,n) and MVC(2,n) contain i and j , the parameter and element number,

respectively, of the transport parameter A(i,j) that is coupled to the nth

variable. MVC(3,n) contains k, either +1 or - 1 . If the coupled variables are

drifts, k = -1 keeps the sum of the two drifts constant, and k = +1 changes
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both drifts by the same amount. If the coupled variables are not drifts, when

the value of the nth variable is changed from x, to x_, the coupled parameter

is multipl ied by k x ^ x ^ .

The BEAMF array contains the values wanted (for MT = 1 through 9) for

some or all of the ellipse parameters a , 13 , a , 13 , a., and 6, at the end

of Element N2. For MT = 1 through 4, the values in BEAMF are adjusted by the

program; for MT = 5 through 9, the values in BEAMF are set by the user. The

indices for the R-matrix elements for MT = 10 are in the IJM array, and the

desired values for these elements are in the VAL array. IJM (l,n) contains

the i-index (row), IJM (2,n) contains the j-index (column), and VAL (n)

contains the desired value for Rij for the nth condition, where n _< NC. These

same arrays are used for MT = 11, except that they refer to the indices and

values of the modified a-matrix. A convergence factor is calculated each

iteration in the matching procedure. For matching types 1 through 9, the

convergence factor is the largest of the mismatch factors calculated for the

ellipse parameters in the appropriate planes. (For a definition of ellipse

mismatch factors, see App. C.) For matching types 10 and 11, the convergence

factor is the largest difference between the values desired and the values

obtained for specified elements of the R- or a-matrices. (If the specified

value has a magnitude greater than one, a relative difference is used.) DELTA

is a convergence criterion defaulted to 0.0001. When the largest of the mis-

match factors is less than or equal to DELTA, the solution is assumed to be

close enough and the procedure i •. "Terminated. The procedure is also termi-

nated if convergence has not been achieved after NIT iterations. NIT is

defaulted to 10, but may be changed by the user.

E. Graphics Scales (XM, XPM, YM, PPM, DNM, DPP)

These quantities set values for the boundaries of the phase-space and

profile plots. XM and XPM set limits on the transverse phase-space plots in
mm and mrad, respectively, and YM (mm) sets the limit on the transverse-profile

plots. DPM (deg) and DWM (keV) are the limits of the longitudinal phase-space

plots, and DP p (deg) is the limit on the phase-profile plot.
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F. Print Parameters [NPRIN, IJPRIN(2,20)]

Up to 20 transport parameters can be written on the graphics display to

identify the results with the more important parameters. NPRIN is the number

of parameters to print, and the i and j indicies of parameter A(i,j) are in

IJPRIN(l,n) and IJPRIN(2,n) for the nth parameter.

G. Extra Parameters [NXTRA, EXTRA(IO)]

Some additional storage space is reserved for any extra parameters, and

NXTRA of these parameters in the array EXTRA will be printed by the "p" (see

Sec. X) command. One use for this EXTRA array would be to provide a place for

the user to store additional parameters needed for defining a special element.

X. DESCRIPTION OF COMMANDS

The following description of the action taken when each command is given,

rather than being in alphabetical order, will be in an order in which the user

might reasonably issue the commands.

To print most of the data file on the graphics terminal, type "p". The

location of the cross hairs determines the scope position at which the

printing starts. It is a good idea to give this command in the beginning and,

after any complicated input sequence, to check the accuracy of the data. When

a dynamics run gives unrealistic results, or when a matching procedure is

getting nowhere, something is probably wrong with the data.

If the printed output comes too close to the bottom of the graphics

display, printing will stop and the cursor will be displayed. Printing may be

resumed at the cursor by entering a "c". Any other command will cause the

program to exit from the print mode and to wait for another command.

If the data appear to be correct, perform the dynamics calculations by

typing "g". The scope is erased and the graphics background is drawn. The

initial phase-space ellipses are drawn, the horizontal (solid) ellipse and

vertical (dashed) ellipse on the same background, and the longitudinal (also

dashed) ellipse on a separate background. If the beam is going forward, the

initial ellipses (defined by arrays BEAMI and EMITI) will be drawn at the

upper left; if the beam goes backward, the ellipses will be drawn at the upper

right. As the beam is followed through the specified elements, the envelopes

are o l o t e d on the lower part of the screen: the horizontal (solid line) and

phase (dots) on the upper half and the vertical (dashed line) on the lower
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half. When the beam reaches its destination, the final ellipses (defined by

ellipse parameters in array BEAMQ and emittances in array EMITO) are drawn and

the following information is written in the space between the initial and

final ellipses: the beam current; the initial and final emittances; the

initial and final energies; the values of the NPRIN parameters, if any.

To see how a particular parameter affects the beam, one or more values

can be changed by getting into the input mode by typing " i " . The location of

the cross hairs specifies the point on the screen at which the input will be

typed. After a " ? " appears on this spot, type one or more parameter names and

their new values using the format

NAME! = valuel, NAME2 = value2, ....

Sequential values in an array can be entered without retyping the array name.

For example, to change the third and fourth parameters in the fifth element,

type

A<3,5> = 1., 2.

followed by a return. Any of the quantities defined previously in Sec. IX may

be entered. Any typing mistake detected by the namelist read will cause the

entire line to be rejected, and an error message will appear asking the user

to try again or to exit from the input mode. Each input line is limited to

100 characters.

After making some changes, one would usually want to see the effect on

the beam. Typing "t" causes the new input ellipses, the new profiles, and the

new final ellipses to be drawn on top of the previous ones, providing an easy

compari son.

To find the matched ellipse parameter in a periodic system, or to find

the values of some transport parameters that match the beam or give the

desired values for specified elements of the R- or a-matrices, type "m".

Depending on the matching type, specified by MT, a solution is sought for a

set of NC nonlinear, simultaneous equations. The method used is that of

regula faisi, an iterative procedure that, starting with an initial "guess"

for the solution, usually converges to a solution in a reasonable number of

trials. (If the value of any variable is zero, that value will not be
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changed.) At each iteration, the convergence factor and the values of the

variables are printed on the screen, starting at the position of the cross

hairs. If a solution has not been found after NIT iterations, the variables

will be set to their "best" values, those that give the minimum convergence

factor. To try again for NIT iterations, starting with the best results as

the initial guess, issue the "m" command again. If no progress is made toward

a solution after several of these tries, there are several possible reasons:

1. Something is wrong with the data. Check this by issuing the "p"

command.

2. The solution is too far from the initial guess to be found by this

technique. Using the " i " command, put in different parameters and try again.

3. No solution exists. In this case, the transport system may have to

be modified, for example by adding more elements.

4. If the number of variables is less than NC, an exact solution

probably does not exist.

To insert one or more elements between any two elements, type "a". At

the location of the cross hairs, the message "enter ml, m2 (insert ml elements

before Element m 2 ) " will appear. (If this command has been issued by mistake,

enter a negative number for ml and anything for m2.) To insert two new

elements between Elements 5 and 6, enter 2,6 (a comma or a space can be used

to separate the two integers). The program will move all type codes (in array

NT) and all transport parameters (in array A ) , starting at Element m2, to

locations increased by m l . [NT(6) Is moved to N T ( 8 ) , etc.] The program is

then put in the input mode, just as if the user had issued an " i " command.

Enter any needed parameters, including correct element type in the NT array,

followed by a return.

To remove one or more elements, type "d". At the location of the cross

hairs, the message "enter m l , m2 (delete ml elements starting with Element m 2 ) "

will appear. (If this command has been issued by mistake, enter a negative

number for ml and anything for m2.) To remove Elements 6 and 7, enter 2,6.

All type codes (in array NT) and all transport parameters (in array A ) ,

starting at Element m 2 , will be moved up by ml elements.

Sometimes it is useful to save the ellipse parameters by typing " s " . The

following message will appear at the location of the cross hairs: "enter two

numbers, which beam to save and where. BEAMI = 1 , BEAMF=2, BEAMO=3. Five posi-

tions available." After receiving a prompt " ? " , the user should enter two
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integers separated by a comma or a space. For example, to save BEAMI in the

third of the five storage areas provided, enter 1,3. The six ellipse

parameters in BEAMI will be stored in the array HOLD (i,3), i=l,6. At the

same time, the initial a-matrix, contained in the array SIGI, is stored in

the third of five storage arrays SIGS (i,j,3), i=l,6; j=l,6. Also, the

initial kinetic energy W is stored in HS(3). When the beam is followed from

Element Nl through Element N2, the final ellipse parameters and the a-matrix

are in the arrays BEAMO and SIG, and the final kinetic energy is in WW. These

quantities can be saved in the second storage positions, HOLD(i,2),

SIG(i,j,2), and WS(2), by issuing the "s" command and entering 3,2.

If one wants to follow the beam from the end of Element N2 through

another element farther downstream (or upstream, for that matter), the initial

ellipse parameters, a-matrix, and energy can be loaded from the second

storage positions by typing "u". At the location of the cross hairs, the

message "enter two numbers, which beam to restore and whence BEAMI=1,

BEAMF=2. Five holding positions possible." To load BEAMI, SIGI, and W from

the second storage positions, enter 1,2 after receiving the prompt.

To see what is stored in all beam arrays and storage positions, issue the

command "b". At the cross-hairs position, the BEAMI, BEAMF, BEAMO, and HOLD

arrays are printed.

Whenever the beam is followed between Nl and N2, by either "g" or "t"

commands, the transfer matrix for this distance is stored in the array RM. To

see what is in RM, type "r". The 6 x 6 transfer matrix will be printed

starting at the cross hairs.

If the beam has just been followed through one period of a periodic

structure, the phase advances and the matched ellipse parameters can be

calculated from the R-matrix by giving the command "f". The phase advance and

the a and 13 ellipse parameters for each of the three phase-space planes are

calculated, assuming the 2 x 2 R-matrix for each plane can be written in the

form

c o s ji + a s i n |j B s i n
R =

-Y sin P '-os (a - a sin

where Y = d + a )/B. The parameters are printed at the position
specified by the cross hairs.
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Several other print options are a v a i l a b l e . One is a print of the

mismatch factors, obtained by typing " o " . The mismatch factors between the

ellipses defined by the parameters in the BEAMO array and the parameters in

the BEAMF array are calculated and printed at the location of the cross

hairs. The definition of the mismatch factor and the explanation of how it is

calculated are given in App. C.

Some useful information about the longitudinal plane can be printed by

typing "w". At the position of the cross h a i r s , the following information is

printed: the phase and energy of the beam center, the phase and energy

h a l f - w i d t h s , the length (mm) of the longitudinal s e m i a x i s , the Ap/p

half-width ( m r a d ) , and the longitudinal emittance in the z-Ap/p plane

(ir»mm»mrad) .

The command " z " prints the modified j-matrix in the same format used in

T R A N S P O R T , namely;

xmax

*'max r 1 2

ymax '"13 '"23

y'max r 1 4 '"24 '"34

z m a x '"15 r 2 5 r 3 5 '"45

( A p / p ) m a x H 5 r?5 r 36 r 4 s r 5 6

The m a x i m u m extent of the beam ellipsoid in the ith dimensions is given by

Ja\\ . The correlations between the various coordinates are defined by

Because a is a symmetric matrix, only half of the r :.'s need be printed.

The command "9," provides a mechanism for determining the ellipse

parameters and emittances in the two transverse phase planes from measurements

of beam sizes at three locations. When this command is g i v e n , the message

"determine emittances from three width m e a s u r e m e n t s " aopears on the screen.

The locations of the measurements are to be {or may have been) specified by

the user by three element numbers in the array LOC. The measurements are
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assumed to be at the downstream end of the specified elements. If LOC(l) = 0,

the first measurement is at the beginning of the first element. If LOC(2) or

L0C(3) is ,'iot greater than zero, the program assumes that the information on

the locations and beam widths has not been input, and the user will be asked

to do so by the message "enter lo c ( 3 ) , x h w ( 3 ) , y h w ( 3 ) . ( l o f l ) . lt.O

aborts.)". The user should then enter three values in LOC, three horizontal

beam half-widths in array XHW, and three vertical beam half-widths in array

YHW. Before issuing this command, the graphics display should be on the

screen because measured widths will be plotted and beam profiles will be

drawn as the program goes through five iterations in the attempt to solve the

problem. The details of the procedure are described in App. J. If the

solutions to the equations result in a negative value for the emittance in

either plane, the message will be written "unrealistic solution, check data."

The command " j " causes the initial and final x-y, x-z, and x-Ap/p

projections of the beam ellipsoid to be displayed.

XI. EXAMPLES

A. Matching Between 400-MHz REQ and DTL

This example is the one mentioned in the introduction. Figure 1 shows an

input fil:, to be read as Tape30 as described in Sec. VIII. The input file

Sdata
er* 938,S80» a» 1., w» 2.000, jci« 8.060*
emitici). 25.ce, 25.ee, 7ee.ee,
b»anii(i>. -1.0000, .2000. 1.0000, .2000* .$200, .3000,
freq" 400.000* pgext" £.50. ichrom* 0/
xrn- 10.00. xpm" 56.0, ym« 5 0 d 3
nl" 1, n£a 2, smax* 5.0, pq
nt( 1)- 11, a(l, 1)» 5.500 » 57.00 , 24.43 .-30.00 , 0.
ntC 2)- 11, ad, 2)—5.500 , 57.00 , 24.43 ,-180.0 , 0.
nlf 3>- 1, ad, 3)" 100.0
nt( A)' 4. ad, 4)- 166.0
nt( 5)- 4, B(1, 5)- 160.0
nt( 6)- 1, B(1, 6)- 11.73
nt( 7)« 10, ad, ?)• 1.750 ,-35.00 , 0 . , 0 . , 0 .
nt( S)« 1, a(l, 8)- 11.73
ntC 9)- 4, B(1- 9)—166.0
ntiiiei- 4, B(1,10)—160.0
ntCH)- 1, B ( 1 , 1 1 ) ' 11.73
nt(12)« 10, ad.12)- 1.750 ,-35.00 , 6 . , 0 . , 0 .
nt(13)« 1, a(l,13)- 11.73
ntC14)« 4, ad.14)- 160.0
ntti5)- 4, B(1,15)- 160.0
tend

X

Fig. 1. Input file (to be read as TAPE30) for Example A.
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, 57.00
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'-35.00

'. IE.70
, 12.70

'-35.ee

', 12.70
, 12.70

30.0, dwrn
2.0, mi*
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, 24.43

, g.000

, 6.000

, 0.

* 6.000
, 6.000

, w.

, 6.000
, 5.000

• 100.0, d
4,

.-30.00
,-180.0

, 20.00

, 20.00

, 0.

, 20.00
, 20.00

, e.

, 20.00
, 20.00



defines a 2-MeV proton beam with a transverse emittance of 25 ir»mm«mrad

and a longitudinal emittance of 700 ir»deg«keV. The transport system

consists of the final two cells of a 400-MHz RFQ and the first 2 cells of a

400-MHz DTL, separated by a 100-mm drift space. This drift space will later

be replaced by drifts, quadrupoies, and an rf gap for transverse and

longitudinal matching.

The current of interest is 75 mA but matching will first be done for

0 mA. If the design of the two structures has made the focusing strengths per

unit length about the same in each, a match found for zero current should be

acceptable for any current. 1 1 Multicurrent matches are desirable partic-

ularly when permanent-magnet quadrupoles are used, as they are in this example.

The first step is to determine the matched ellipse parameters at the exit

of the RFQ, first for zero current and then for 75 mA. For this purpose, the
2

two RFQ cells must be one period in a focusing system. Values for V/r and

AV are 5.5 kV/mm and 57 kV, respectively. Assuming that the horizontal

vanes are nearer to the longitudinal axis at the beginning of the first cell,

V/r is +5.5 for the first cell and -5.5 for the second cell. The length

of each cell is 24.43 mm, which is BX/2 for 2-MeV protons at 400 MHz. A

synchronous phase of -30° is assumed, and the fifth parameter in both cells is

set to zero to avoid energy changes.

The input file is already set to do matching through the two RFQ cells

for zero current. That is. XI = 0, Nl = 1 , N2 = 2, and MT = 4. When the "m"

command is issued, the program finds the input ellipse parameters that equal

the output ellipse parameters in all three phase planes.. It is important to

remember that none of the alphas or betas should be zero when the matching is

begun, because zero values will not be changed.

After the matching procedure, one can see the input and output beam

ellipses and the profiles through the RFQ ce'ls by issuing the !'g:! command.

The graphics display is shown in Fig. 2. The results of issuing the "f" and

"w" commands are also shown in this figure. The "f" command determines the

phase advances and the matched ellipse parameters calculated from the transfer

matrix. The "w" command gives information on the longitudinal properties of

the beam, the output phase and energy of the beam center, the half-widths of

the phase and energy spreads, the half-widths in z- and Ap/p, and the

emittance in z - Ap/p phase space.
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Fig. 2. Graphical display showing the matched output from the RFQ for zero
current, the Twiss parameters, and the longitudinal parameters
(Example A ) .

The zero-current ellipse parameters will be saved in the first of five

holding arrays by issuing the "s" command and responding to the question about

"which beam to save and where" by entering a 1,1. The match for 75 mA is

found by getting into the input mode by typing " i " , changing the current to
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The next step is to find the ellipse parameters that are matched to the

input of the DTL, the first two cells of which are represented by a sequence

of permanent-magnet quadrupoles, drifts, and rf-gaps. The transverse focusing

period of interest begins in the middle of the first quadrupole and ends in

the middle of the third quadrupole. The other halves of the first and third

quadrupole must be included in the transport system because they affect the

magnetic fields in their neighborhoods. The PMQ gradients are 160 T/m and

their lengths are 25.4 mm. The inner and outer radii of the quadrupoles are 6

and 20 mm, and because PQEXT = 2.5 in the data file, the fringe fields will

extend to 2.5 x 6 mm. The effective accelerating field strength, E T, in

each cell is 1.75 MV/m. The length of each cell is 48.86 mm, equal to BX

for 2 MeV-protons at 400 MHz. To make the two cells identical, no energy gain

is allowed. The synchronous phase is - 3 5 ° .

To find the matched ellipse parameters for zero current, get in the input

mode and set XI = 0, Nl = 5, N2 = 14, and MT = 3. Then give the "m" command.

When the solution is found, issue the "g", "f", and "w" commands. The result

is shown in Fig. 4. Save the solution in the third holding position using the

"s" command. Change the current to 75 mA, repeat this procedure (see Pig. 5

for the results), and save the solution in the fourth holding position.

Notice that the zero-current transverse phase advances in the two structures

are the same per unit length, 18.4°/BX. The zero-current longitudinal phase

advances are nearly the same, 15.2°/BX for the RFQ and 16°/GX for the

DTL. If the quadrupole periodicity is continued upstream of the DTL and an

rf-gap is added, the output of the RFQ should be well matched into the DTL

both transversely and longitudinally.

We will add the necessary elements and reduce the length of the long

drift to a small distance that will change the RFQ output beam to one more

nearly round in real space; the shape it should be at the mid point between

quadrupoles where our periodic transport will begin.

The elements are inserted after giving the command "a". Figure 6 shows

the exact procedure, with a series of input commands to avoid a string longer

than 100 characters. Both the type array NT and the element array A must be

corrected for the eight new elements. Also included in the figure are the

results of a "p", to print the transport system, and a " b " , to show the

contents of the beam holding positions from our saves during the first

matching efforts.
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Next, the matching section is tested by following the beam from the RFQ
to the beginning of the DTL and comparing the beam parameters with those of
the matched beam at that position. Two update ("u") commands must be made.
In response to the query about "which beam to restore and whence," a response
of "1,1" moves the matched output for the RFQ to BEAMI from holding position 1.
Next, the matched beam for the DTL is moved to BEAMF from holding position 3
by responding 2,3. The current is set to zero, and Nl and N2 are set to 1 and
12 after an input command. The command "g" is given, then an "o" is typed to
compare the output beam to BEAMF and to print the mismatch factors as shown in
Fig. 7. To illustrate another command, the E T parameter for Element 7 was
changed from 2.5 to 2.3 MV/m, and a "t" caused a second trace on the graph. A
repeat of the "o" command shows slight improvement in mismatch factors.

Before repeating the procedure for 75 mA, a printing option on graphics out-
put was initiated by going into input mode and typing "nprin = 4, ijprin (1,1) =
1, 5, 1, 9, 1, 7, 1, 3". Now values for the first parameters of Elements 5,
9, 7, and 3 will be printed whenever a graph is drawn.

Next, BEAMI and BEAMF were updated from holding positions 2 and 4, cur-
rent was changed to 75 mA, a "g" command was issued, and the mismatch factors
were printed as shown in Fig. 8. Notice that the values of four element param-
eters are now printed.

The mismatch factors, all of which are less than 0.1, are almost
acceptable, but we shall go through a matching procedure to see if they can be
improved. We will use Matching Type 9, which expects six variables to be
changed. However, if fewer variables are given, matching will still be
attempted but an exact solution will not be found. Only four values will be
changed in our example: gradients for Elements 5 and 9, length of drift
Element 3, and E TL of Gap Element 7. These are set by typing "mt = 9,
mp(l,l) = 1, 5, 1, 9, 1, 7, 1, 3" in input mode. Successive typing of "m"
until there was no further decrease in largest mismatch factor gave the
results shown in Fig. 9. Because the optional printed parameters are the same
as the matching variables, the final selected values can be easily seen. With
all mismatch factors below 0.05, a good solution has been obtained.



«• -1.365 B»
ft. 1.513 B* i
A. -1.365 B-
(*• 1.513 B*

.1*12 »

.1663 Y

.ma «

.1669 0

sa

.337 3-

.237 3-

.3385

.3385

38.3 DES X ie« .0 KEU

:• a.3
E - I T I - as.aa as.00 ?8e.ee
E<"IT> as.ae 25.0* 7ee.ee
u> a.aee 2.000

j xnn- .035 vnn- .105 znn- .030

xnn- .045 vnn- .395 znn- .006

o.
a.
A*
A*

10

A-

A>

30

-.an
.383

-.eea
.322

.a nn x

-.032

.012

0

§
1

1

0.

B-
B-

50,

B-

B«

\

.0 DEG X\Zi

J

.aa"?i

. 1343

.3030

.1319

\

}

1RAD

.305a

.3196

i

•

0
0

.3
1

<EU

H
V
H
U

Z

z

5.3 ̂ f

,

RFQ

1

33.

~ .

R-Q

a

. • —

3 *

PHQ

5 6 7 8

P«Q

9 10 U

.- —

PfiQ

12

*

PP10

13 141616

pno
l?

PPIQ

18 192021

PMQ

22

PMQ

23

F i g . 7 . M a t c h e d RFQ o u t p u t f o r z e r o c u r r e n t f o l l o w e d t o i n p u t o f DTL. Run

r e p e a t e d f o r r f - g a p f i e l d c h a n g e d t o 2 . 3 MV/m ( E x a m p l e A ) .



a- .0S9 3 - i .S385 Z

E.-IT;. as.ee 25.ee 7ea,38
Erno* as.ee as.ee 7ee.ae
u* s.eee a.oee

HP NE
i 5 lse.eee
l 9 -i6e.eee
l 7 a.3ee
l 3 3.?ee

xnn- .375 yen- .392 zm-

.373 B-

.3*3 B*
.3115 H
.3693 ^

.e nci x 50,0 PIRAD

fl- .017 B- .S073 2

3 0 . 0 DEG X <EU

5.3 flf

, - — •

RFQ

1

• - ' "

3 0 . DEG

RFQ j |

a pi 4

- - . „ - - -

— —.

PHQ

S

,

0

6 7 8

PHQ

9 10 11

_ - -

PHQ

12

PP1Q

13

tt

14ltl6

PfiG

17

PP13

ia
4

192021

PflQ

22

PflQ

S3

Fig. 8. Matched RFQ output for 75 mA followed to input of DTL (Example A ) .



ft. -2.147 3* .2533 H
.2633 V

fl« .069 B- .R385 Z

39.9 DEG X 190.9 <EU

!• 75.9
Em-> 25.aa as.ee 799.99
EHITO 2S.ee as.ae 799.99
u« a.ew a.see

NP NE
1
1
1
1

UAUIE
151.146

9 -153.634
£.304
3.347

xnn- .951 ynn- .343 znn» .019

A* - .935 B»
A* - .930 I *

10.3 i n X 50.

30.0 DEG X 1W

.3858 H

.1333 V

0 flRflD

.S841 Z

.9 KEU

5.9 nn

„_ -

RFQ

1

.-- "

30.

~ — — -

RFQ

a

-----

DEG

- — —

- -
1

-—.

PfTQ

5
9

6 7 8

PfW

9 19 11

. •

pro

12

PfiQ

13

0

i4ife:s

m
l ?

pno
i s

Q

1S2B31

PftQ

22

PHQ

S3

Fig. 9. Matched RFQ output for 75 mA followed to input of DTL after the first
parameter in Elements 3, 5, 7, and 9 have been adjusted by the
matching procedure (Example A ) .

50



B. Matching Between 80-MHz RFQ and DTL

A different approach to matching between an RFQ and DTL must be used

either when the periodicity of the quadrupoles is not maintained or when the

two structures have different focusing strengths. No buncher or rf gap will

be added, so longitudinal matching will be ignored. Transverse matching will

be accomplished by using the first four quadrupoles of the DTL as matching

variables. It is not expected that the solution will be appropriate for other

currents or emi ttances.

In our example, the frequency is 80 MHz, the energy is 2 MeV, the 100-mA

deuteron beam has a transverse emittance of 60 ir»mm»mrad and a longitudinal

emittance of 1000 ir»keV'deg. The initial step (not shown) is to find the

matched beam for the final two cells of the RFQ and save the beam as we did in

the first example.

Next, also not shown, we simulate (with electromagnetic quadrupoles,

drifts, and rf gaps) two cells of a periodic DTL with no energy gain. Instead

of the conditions at the beginning of the DTL, we select those at the end of

Cell 4 and match into a periodic structure at that point. The energy is

2.594 MeV, BX is 196.7 mm, E T is 1.05 MV/m, and the 96-mm quadripoles

have a gradient of 26.2 T/m. The beam energy N must be changed to 2.594, and

the unnormalized transverse emittances reduced from 60 to 52.69 ir»mm»mrad.

The longitudinal emittance E M I T K 3 ) does not have to be changed. A matched

beam for these two cells is determined and saved as in the first example.

Next, the two RFQ cells, a drift, and the first four cells of the DTL are

made into a transport system as shown in Fig. 10. Notice that the initial

energy is 2 MeV and that each rf gap element, Type 10, has an energy increase

as the fourth parameter. Each cell has been given the correct total length,

but the rf gap is not positioned off-center as it more accurately could be.

BEAMI has the correct values for matched input to the RFQ, 8EAMF has the

values of the matched beam at the end of Cell 4, or Element 20, and will be

used to calculate mismatch factors. The drift space between the RFQ and DTL

is about one BX, a distance long enough to allow separation of the

structures, but is short enough to prevent extreme debunching of the beam.

The file has already been prepared for matching by entering the proper

parameter and element numbers into the MP array (Parameter 1 of Elements 4, 8,

12, 16) and setting MT = 8 and NV = 4. (NV is not set automatically until
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UNITSI nn. tiRAD. T/Pi.
er- 1875.606 q> 1. y- 2.090 xi«
emiti" 60.00 6e.ee ieae.ee
beami* 3.1140 .7536 -2.6262 .5789 .1210 .568?
beamf" 0.6000 .-4154 0.9000 1.3289 0.0000 .3570
freq" 80.000 pgext" 2.50 lchroui" 0
xiti" 1 4 . 0 xpm« 6 0 . 0 ym» 2 0 . 0 dpm« 3 0 . dwni« 100 . dpp" 3 0 .
Hi* 1 n2» 20 smax» 5.® pqsmax- 2 . 0
n p r i n ' 4 i j p r i n d . j ) ' 1 4 1 8 1 12 1 16
mt« 8 nv» 4

mp(l#n) mp(S.n) value mvc value
1 4 -B6.S0
1 8 26.20
1 12 -26.20
1 16 26.20

n tit(n) s(i,n)
1 11 -.710 110.400 86.440 -28.700 e.000
2 11 .710 110.400 86.440 -180.000 0.000
3 1 173.000
4 3 -26.200 96.000
5 1 39.750
6 10 1.050 -40.000 0.000 .141 0.000
7 1 39.750
8 3 26.200 96.000
9 1 42.740
10 16 1.050 -40.000 0.000 .146 0.000
11 1 42.740
12 3 -26.200 96.000
13 1 45.740
14 10 1.050 -40.000 0.000 .151 0.000
15 1 45.740
16 3 26.200 96.080
17 1 48.730
18 10 1.050 -4e.eee e.eee .156 0.000
19 1 48.730
20 3 -26.200 48.000

Fig. 10. Result of the "p" (print) command for the initial conditions of
Example B.

matching is requested, but it can be input at any time so the variables will

be printed.) Before matching, the input beam is followed through all the

elements and the mismatch factors printed (Fig. 1 1 ) .

A match is now made by typing "m" until convergence is obtained. The

results are displayed by typing "g" and " 0 " as shown in Fig. 12. The new

quadrupole values, which are printed because of the previous setting of the

NPRIN and IJPRIN variables, are reasonable. The transverse solution is

exact. Notice the increase in energy as shown by "W = 2.000 2.594" and the

apparent decrease in transverse emittances. There is, of course, no change in

normalized emittance; the values printed are unnormalized.
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C. Electron Linac and Transport System

This example shows the transport of an electron beam through triplets, a

linac tank, and some bending magnets. Figure 13 shows tne data printed by

issuing the "p" command, and Fig. 14 shows the graphics display produced when

the "g" command is given. A 1000-mA, 10-MeV electron beam is passed through a

triplet and then accelerated to about 20 MeV by a 15-ce11, 1300-MHz linac

tank. Because of the increased energy, the unnormalized transverse emittance

is reduced from 6 Tr*mm«rad to 3.C6 ir«cm»rad. After it passes through

the tank, the beam then passes through a quadrupole triplet, three bending

magnets, and another triplet. In the absence of space-charge forces, the

three bending magnets would be an achromatic system. The space-charge forces

prevent the system from being completely achromatic, and a small change is

seen in the emittance in the horizontal and longitudinal planes.

UNITSi Nit. NRAD. T/N. tWtPS.
er« .511 a' 1. u> 1C00C xi* 1006.000
emiti" B.ee 6.00 506.06
beawi" .1642 1.5907 .0486 1.50S7 -4.3971 .2060
beamf. 6.0000 0.0000 0.0000 0.0000 0.0000 0.0000
freq* 1306.000 pgext* 2.50 ichrom* 0
xm* 16.C xp»* 5'.0 ym» 10.0 dpm« 30. dwm« 500. dlpp" 30.
nl" 1 n2m £4 smax« 30.0 pqsrtiax* 2.0
mi» 0 iw 0

n nt(n> sCi.n!
1 1 285.000
2 7 .462 100.080 50.000 -.449 200.000
3 1 280.006
4 13 5.814 1730.000 -1.000 15.000
5 1 181.000
6 7 . .894 100.900 52.000 -.885 200.000
7 1 506.000
8 1 40C.000
9 9 17.000 477.500 58.800 .255 0.000
10 8 60.000 477.500 0.000
11 9 17.000 477.500 50.800 .255 0.000
12 1 52G.000
13 9 17.000 477.500 50.800 .255 0.000
14 8 -30.000 -477.500 0.000
15 8 -30.000 -477.500 0.000
16 9 17.009 477.500 50.800 .255 0.000
17 1 52G.000
18 9 17.000 477.500 58.800 .255 0.000
19 8 60.000 477.500 0.000
20 9 17.000 477.500 50.800 .255 0.000
21 1 120.000
22 1 1080.000
23 7 1.036 100.000 50.000 -1.601 200.000
24 1 140.000

Fig. 13. Results produced by "p" command for transport system of Example C.
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A C K N O W L E D G M E N T

R. S. Mi l l s h e l p e d with the c o d i n g , c o n t r i b u t e d m a n y good i d e a s , a n d

w r o t e m o s t of S e c . XI for this r e p o r t . Her c o n t r i b u t i o n s are g r a t e f u l l y

a c k n o w l e d g e d .
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APPENDIX A

THE o-MATRIX

The general equation for an n-dimensional ellipsoid may be written as

2 a . - u . u . = 1

where u. denotes distance along the kth coordinate axis. (In TRACE 3-D, n

is 6 and the coordinates are x, x', y, y', z and Ap/p.) There are two

coefficients for each u.u. product when i / j, namely a., and a...

Because only the sum a.. + a., is important, we can define a.. = a..
J J J J

without losing any generality and express the ellipsoid equation in matrix

form. Let U be the column vector of the coordinates,

U =

and a"1 represent the symmetric coefficient matrix.

- - - - a,

a21 a22 ~ ~ " a2n

anl an2 - - — ann

-1The reason for defining this coefficient matrix to be a rather than a

will become apparent later.

The ellipsoid equation in matrix form is

U Ta - 1U = 1 ,

where U is the transpose of U. For this to represent an n-dimeisional

ellipsoid, all of the diagonal elements of the a" -matrix must be positive.
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Let a, represent a matrix that d e f i n e s a p a r t i c u l a r e l l i p s o i d ,

and let Ik be any point on the surface of the ellipsoid. Then

Let R be the transfer m a t r i x that t r a n s f o r m s point Ik to p o i n t L L :

U 2 = R U ] •

The p o i n t IL will lie on the surface of a n o t h e r ellipsoid having the

c o e f f i c i e n t matrix o ? . The following m a t r i x m a n i p u l a t i o n s show how to

obtain o7 from a, and R.

U | R T ( R T ) ^ ^ R 1RU 1 =

and

( R U ] )
T ( R T )

This is the equation for the second e l l i p s o i d , with

or

Meani ng of g-Matrix Elements

D e f i n e a function

f(U) = U T a ]

The c o n d i t i o n f(U) = c o n s t a n t defines the surface of a h y p e r e l 1 i p s o i d (if all
_l

diagonal elements of a are p o s i t i v e ) and f ( U ) = 1 d e f i n e s the surface of
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the particular hyperel1ipsoid discussed above. At any point U, the gradient

of f(U) is a vector normal to the surface of the hyperel1ipsoid passing

through U.

The gradient in n-dimensional space is defined as

Vf = f f- (L .
L^ 3u. k
k=l k

where 0. is the unit vector along the kth coordinate a x i s . Nriting f ( U ) in

terms of the matrix e l e m e n t s ,

n n

f(U) = V V a-.u.u. ,
L—i L^ 1J 1 J

the gradient is

n f n n

7f(U) = T \Y ak.u. + 7 a. u
k=l [j=l 1=1

Because a.. = a.., and 0. is a column vector whose only nonzero element
1 J J 1 K.

is a 1 in the kth row, the gradient of f can be expressed in matrix notation:

7f(U) = 2a"]U .

At the point U k on the surface at which the kth coordinate has its

maximum extent, the gradient is parallel to u k and has a magnitude (unknown)

of |Vf<U k)|. Then

from which

and
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For the hyperel1ipsoid for which f(U) = 1,

where a,, is the kth diagonal element of the a-matrix. The magnitude of

the gradient at U. is

and the point on the surface at the maximum extent in the kth direction is

Uk = a Q k / 7 \ k •

The term Uk is the kth column (and, because a is symmetric, the kth row)

of the a-matrix divided by •/akk> In particular, a., is the square of the

maximum extent of the ellipsoid in the kth direction, and a^JJoTT (and
K • kk^ | is the value of the ith coordinate at the maximum extent in the kth

direction. Each off-diagonal element is therefore related to two diagonal ele-

ments, and sometimes they are written as

CTik = CTki = rik 7 aii 7 a k k •

where r., is referred to as the correlation coefficient.
I K.
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APPENDIX B

TWISS PARAMETERS AND THEIR RELATIONSHIPS TO a-MATRIX ELEMENTS.

The ellipse equation often used in beam-dynamics calculations is

2 2
yX + 2aXX ' + 13< x ' ) = c

where e = E/it, the em i t t a n c e (area of the ellipse) divided by IT, and 0

and y are positive q u a n t i t i e s . In this form, a, 6, and y are called the

T w i s s , or C o u r a n t - S n y d e r , parameters and are related by

By - a 2 = 1 .

The ellipse intersects the positive x-axis at x^ = /e/y and the positive

x'-axis at x! = / e / B , as sketched below.

X1,

The product of x. and x^, the maximum extent of the ellipse in the x'-

direction, is equal to e, so x^ = Tye. Likewise, x = JOz. At the point^ = Tye. Likewise, x = JO

on the ellipse at which x' = x^, the x-coordinate is x = -a/e7y, and at

x = x x' = - T h e r e f o r e ,

x.

For the ellipse shown above, a is positive.
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Relationship Between o-Matrix and Twiss Parameters

T h e 6 x 6 a - m a t r i x c a n b e p a r t i t i o n e d i n t o n i n e 2 x 2 s u b m a t r i c e s :

a =

CTxx

CTzx

1
1

1

1
i

1

a i
i

°yy
i

azy '

axz

a

azz

The a , a , and a submatrices are related to the Twiss parameters in the

x-x', y-y', and z-Ap/p planes, respectively. In App. A, it was shown that

the six diagonal elements of the a-matrix are the squares of the maximum

extent of the ellipsoid in each of the six directions and that a., is the

product of the maximum extent in the jth direction and the value of the ith

coordinate at that maximum extent. Then

xx
x' x
e m

Vm

Using the relationships derived above for a, B, and y.

a = ixx
' Vi\n

- a x . x 'x 1 m

X X

where the subscript x has been appended to a, B, y, and e to denote properties

on the x-x' plane. Because x.x' = x!x = e , this reduces to
i m i m x

XX

- a e
x x

Vx

having a determinant

det("xx> - >S

= E
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APPENDIX C

MISMATCH FACTOR

As the name implies, the mismatch factor is a quantitative measure of the

difference between two ellipses having the same area and the same center. If

the two ellipses are not identical, one ellipse could be enlarged so that it

just encloses the other ellipse; the amount of enlargement is related to the

mismatch factor.

One way of lookjng at the problem is as follows (See Fig. C-l): First,

find the transformation that maps one of the ellipses into a circle, and apply

the same transformation to the second ellipse to get a modified ellipse.

Denote the radius of the circle by R~ and the length of the major semiaxis

of the ellipse by R^. Because the ellipse and the circle have the same

area, R,- will be greater than or equal to R~. The mismatch factor used in

TRACE is

RE
M = T± - 1 .

RC

Periodic beam-transport systems have matched conditions if they are

stable. That is, if one matches a beam to the transport system, and if one

could measure the size of the beam at the same location in each period of the

system, then one would see a constant beam size. A mismatched beam would

oscillate about this matched size, and at some places the beam would be larger

by a factor of 1 + M. For example, a mismatch factor of 0.1, defined as

above, would mean that the beam would occasionally be 10% larger than it would

be if it were matched. An example of two ellipses having a mismatch factor of

0.1 is shown in Fig. C-l.

A wo-d of caution is in order. It is quite common in the literature for
2

the mismatch factor to be defined as (R^/Rp) - 1, which relates to how

much the area of the circle would have to be increased to enclose the

ellipse. If this definition is used, one would calculate a mismatch factor of

0.21 for the example given above.

The mismatch factor (as defined above) between the two ellipses

2axx' + B(x'> = e

63



and

Gx2 + 2Axx'

is given by

r
M = £ R +

B ( x ' ) 2

- 4

1/2

where

R = BG + By - 2aA .

(a) (b)

Fig. C-l. An example of two ellipes having a mismatch factor of
0.1, shown before (a) and after (b) being transformed to
a coordinate system in which the solid ellipse is a
circle.



APPENDIX D

RMS EMITTANCE AND THE EQUIVALENT UNIFORM BEAM

The emittance in any phase plane is defined as the area enclosing all of

the particle coordinates on that plane. In TRACE 3-D, the particles are

assumed to be contained within a six-dimensional ellipsoid, and the emittance

is the area of the ellipse that is the projection of the six-dimensional

ellipsoid. The ellipse equation in the x-x' plane is

yx2 + 2<xxx ' + 13< x ' )2 = c

where the parameters a, (3, y, and z are defined in App. B.
9 0

The second moments x , (x 1 ) ' ' , and xx' can be calculated if the density of

particles within the ellipse is Known. Let f(x,x') denote the particle

density function in the x-x 1 plane, normalized so that

f(x,x 1)dA = 1

where the integration is over the area of the ellipse. Then

x 2 = J x 2f(x,x')dA .

For a uniform density on the x-x' plane, f(x.x') is the reciprocal of the

ellipse area, and the second moments are easily calculated:

x
~2 1 ( m 2

x = — x h(x)dx ,
m

where x = /J3~e is the maximum extent of the ellipse in the x-direction,

and h(x) is the width of the ellipse in x' at a given value of x,

h(x> I Vfie - x2

B
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The results for the three second moments are

x2 = Be/4 ,

<x') 2 =

and

xx ' = -O.E/4 .

Because (3y - a 2 = 1

y2 ' • • " 2

V
IT \/ X ( X ' ) - X X 1 ^ = TTC/4

The term on the left-hand side is defined as the rms emittance. the rms

emittance can be calculated for any arbitrary distribution whose second

moments can be measured or calculated. The "equivalent uniform beam" is

defined to be the beam having a uniform charge distribution and having the

same second moments as the arbitrary distribution. Notice that a

longitudinally continuous uniform beam has a total emittance that is four

times its rms emittance.

In TRACE 3-D, we assume linear space-charge forces, which implies a

uniform charge distribution in an ellipsoid in x-y-z space. Let us assume

that the distribution in any three-dimensional projection of the six-

dimensional hyperel1ipsoid is uniform. When calculating second moments for

the x- and x'-coordinates, take z to be the third coordinate of the uniform

ellipsoid and further assume that z is uncorrelated with x and x 1. The

intersection of the ellipsoid with the x-x1 plane is the ellipse defined by

yx2 + 2aXX' + (3(x' ) 2 = E

At a n y z b e t w e e n - z a n d + z , w h e r e z is t h e e x t e n t o f t h e e l l i p s o i d in t h e

z - d i r e c t i o n , the i n t e r s e c t i o n of the e l l i p s o i d w i t h a p l a n e p a r a l l e l to t h e

x-x' p l a n e is an e l l i p s e d e f i n e d by

Yx
2 + 2axx' + (3<x' ) 2 = e[l - (z/z)2]

The a r e a o f the e l l i p s e is r e d u c e d f r o m t h a t o f the m i d p l a n e e l l i p s e by t h e

f a c t o r [1 - ( z / z ) 2 ] . T h e n the s e c o n d m o m e n t s o f the e l l i p s e in this p l a n e
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are

x2(z) = Bed - (z/z>2]/4

= x2(0) [l - (z/z)2]

(x')2(z) = (x')2(0) [l - (z/z)2

and

xx'(z) =. xx'(O) [l - (z/z)2] .

The second moments over the entire ellipsoid are obtained by integration over

z:

z
1-z

x2 = x2(0) L 1 - (z/z)2 If(z)dz .

But f(z) is the area of the ellipse at z divided by the volume of the

el 1i psoid:

f(z) = T- I 1 - (z/z)2

Therefore

x2 = x
2(0> li I „ [l - (z/z)2]2dz

= | x2(0)

= Be/5 .

S i m i l a r l y ,

(x')2 = Ye/5 ,
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xx' = -ae/5

and

x 2 ( x 1 ) 2 - x F 2 = (e/5) 2 .

The equivalent uniform beam in three-dimensions has an emittance five times

larger than the rms emittancs.
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APPENDIX E

FIELD FORMULAE FOR PERMANENT-MAGNET QUADRUPOLE (PMQ)

The PMQ field formulae are obtained from Ref. 6, to which we refer the

reader for further discussion and for the assumptions under which the formulae

are valid. The formulae are based on the REC quadrupole of the standard

design using trapezoidal blocks as shown in Fig. E-l and are derived using a

semi-infinite model with a flat-cut end (Fig. E-2).

Fig. E-l. Cross section of seg-
mented REC quadrupole
(beam perpendicular to
drawing plane).

Fig. E-2. Cross section through semi-
finite REC quadrupole (beam
in drawing plane).

The fringe field to first order is as follows:

Bx(x,y,z) = G(z)y = G o F(z)y ,

By(x,y,z) = G(z)x = G o F(z)x , and

B z = 0 ,

where the g r a d i e n t G(z) i s expressed in terms o f the peak va lue GQ t imes the

f r i n g e - f i e l d f u n c t i o n F ( z ) :

G(z) = GQ F (z ) ,
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and where the fringe field function F(z>, as shown in Fig. E-3, is qiven by

F(z) = I

where

8 / v l V 2

v = 1

-1/2

,2

Go = 2BrC2(l/ri - 1/r2> = 2G(0> = G(-») ,

B r = magnitude of remnant magnetization of REC material

rj = inner radius of quadrupole,

vi = outer radius of quadrupole,

C 2 = sin (3ir/M)/(3Tr/M), and

M = number of trapezoidal blocks composing the magnet.

Fig. E-3. Quadrupole fringe-field function. Note that F(-z) = 1 - F(z).

To find the fringe field for ?. quadrupole of finite physical length

1 , a second semi-infinite magnet of opposite sign is superimposed on the

first semi-infinite magnet with a nonoverlapping distance equal to a .

The fields are added, resulting in the fringe field as shown in the lower

portion of Fig. E-4.
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For doublets, triplets, or any combination of PMQs, the total fringe

field G. is found by summing the individual gradients G(z) as follows:

Gt - ̂  V V =

r
0.81-

0.4

0

>[ 5

ilplr
Resultant
Fringe Field

J
- 3 - 4 0 4 8

Fig. E-4. Two semi-infinite magnets, nonoverlapping by Q.n, resulting in
fringe field for PMQ of length ftp.
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APPENDIX F

TRANSVERSE EMITTANCE INCREASE IN AN RF GAP

Weiss 1 2 has calculated the increase in the rms emittance of a bunched

beam as it crosses an rf gap. The gap is treated as a thin lens, and the

impulse coefficients are given in Sec. VI.J of this report. The emittances

increase because the transverse impulses depend on <j>, the phase of the rf

when a particle arrives at the gap, and $ differs from one end of the bunch

to the other. The transfer matrix is calculated assuming that the phase is

constant at <j> , the phase when the beam center is at the gap.

At the gap, the x-coordinate is unchanged and the x'-coordinate is

changed by

x^ = nx: + k^ sin $ x. ,

where

n = 1 f

-ir|q|E TL
i- i O

X 2 2 2

the i and f subscripts denote initial (before the gap) and final (after the

gap) values, and the bars denote average values.

The second moments before and after the gap are related as follows:

2 2x f = x,

( x M 2 = n
2 ( x : ) 2 + 2 nk' x.xisin 4> + ( k 1 ) 2 x 2 s i n 2

' I A l l X I

a n d

x.xj + k^ x. s i n

A s s u m i n g t h a t 4> is u n c o r r e l a t e d w i t h x a n d x ' , t h e a v e r a g e s a r e g i v e n b y

2 2x. s i n 4> = x. sin «J> f(A<f>)



^ l s i n 4> = x . x : s i n tj>s

and

x 2 s i n 2 <J> = x 2 g ( 4 > s ,

w h e r e A<{> i s t h e h a l f - w i d t h o f t h e p h a s e s p r e a d ,

r 3 / s i n

I (A<J>) \

and

1 9 n

g(<t> , A<j>) = -j C l + ( s i n $ - c o s " <t> ) f ( 2 A < j ) ) ]

. 2
In t h e l i m i t , t h e n A<j> -> 0 , f(A<(>) •• 1 a n d g(4>c,A<t>) -» sin s

Substituting the above averages into the equations for the second moments,

' ) 2 ' ) 2
< x ' ) 2 = n 2 x ? + 2 n k . ' s i n 4> f ( A < j ) ) x . x : + ( k ' ) 2 g (< |> , A $ ) x ?

I I A j I I X j 1

and

x f x ^ = n x ^ ! + r s in 4>s f(A4>) x1 .

If the original equation for x^ is replaced by

x̂r = n x. + ^ sin $s f(A<})) x. ,

2 ?
then one obtains the above second moments if a term A(xjJ is added to (xi)
where

A(x') 2 = ( k ^ ) 2 Eg<4> ,A<t>) - sin 2 <|> f2(A<{))] x.2

The increase in the rms emittance is
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APPENDIX G

ELECTROMAGNETIC FIELDS IN CYLINDRICAL CAVITIES 1 3' 1 4

For cylindrical cavities resonating in the T M Q 1 0 standing-wave mode,

the only nonzero components of bhe electromagnetic field are E E , and

8 Q, and these quantities are independent of 9. The stationary solutions
9
have a harmonic dependence on time; therefore,

E ( r , z , t ) = E ( r , z ) s i n w t ,

where co is the angular frequency of the standing wave. The term Ez(r,z)

can be expressed by a Fourier series in z. Let L denote the length of the

cavity, and take the origin of the coordinate system to be at the center of

the cavity. Then

z "Lh" cos"+ m sin " i
m

We now restrict ourselves to consider accelerating structures operating

in the -rr-mode in which alternating cavities are 180° out of phase (one

complete period consists of two cavities). We also assume E to be

symmetric about the center of the cavity. These restrictions imply that

b = 0 for all m, and a = 0 when m is zero and even integers. Then

Ez<r,z.t) = I am(r) cos -1 sin cot , m = 1,3,5, ....
m

Inserting this expression into the wave equation

az2 + r 9r + ar2 = c2 at2 '

we obtain

^—' ~ 1

> : U a-

where



i C O i

Each term in the above sum will be zero if

a = A I (k r) when k2 > 0 ,m m o m m -

and

a = A J (k r) when k2 i 0 ,m m o m m

where J is the standard Bessel function of order zero, and I is the
modified Bessel function of order zero. The value of k will normally be
positive (although if L > X/2, k, will be negative), thus the modified
Bessel functions will be used below.

Having obtained an expression for E (r,z,t), similar expressions can be
obtained for E (r,z,t) and BQ(r,z,t) by using the Maxwell equationsr y

->
V • E = 0 ,

and

V • B - - L ^
C2 9t •

For our particular geometry and symmetry assumptions, these equations reduce to

1 3 8E7

!!!e J_!!r
3z = " c2 at

and

? 37 ( r V = ^2 3 F •

The results, which can be verified by using the recurrence formula,
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I,(x) + X X " I,CX) = X I (X) ,

i dx 1 o

are
E <r,z.t) = I A mI 0(k mr) cos '^ sin cot ,

m

. A rmr
E (r,z,t) = \ T — J — I,(k r) sin ^ sin cot

1—' mm

and

\—' A
m
u

B Q(r,z,t) = \ J L ^ I,(k r) cos ^ p cos9 ' 2 1 m L

The A coefficients can be determined for a particular geometry by

Fourier analyzing the E (r,z) values calculated by SUPERFISH. The results

are usually normalized so that the average axial accelerating field E is

1 MV/m, where

L/2
E z ( 0 ' z ) dz

-1/2

The field components are linearized by replacing I (k r) by 1 and

I^(k r) by k r/2. Also, substituting 2irc/\ for u and $ for ait, the

linearized components are

Ez(r,z,<J,) = E Q I A m cos ^ sin 4» ,
m

E (r,z,<J>) = E Q I A '-- sin ~ sin <f> r ,
m

and

B (r,z,(t)) = E J A Jr cos ^ cos $ r .
v7 U III L A L

In moving a distance As through a constant accelerating field E , the

energy of the beam changes from W to W + AW, where
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AW = EzAS .

The average energy over the distance As is

W = W + AW/2 .

The change in the x-component of the normalized momentum that is due to

constant E and B_ fields applied for a distance As is
r y

m Qc
2B

A Tm . mirz . A B mir2

. Am | 2L S in I T S in • - x cos T C0S

= k x ,
x

where B is v/c for particles having energy W. The impulse coefficient k is

i d e n t i c a l t o k .
AA

The change in A ( I 3 Y > ? caused by a p a r t i c l e a r r i v i n g a t a p a r t i c u l a r

l o c a t i o n i n the c a v i t y when the r f phase i s 4> + A<j> r a t h e r than cf> i s

A(By>.

The longitudinal displacement, 2', of a particle from the center of the beam

is related to the phase displacement A<J> by

z ' = -BX A4>/2ir ,

so the change in A(By) i

-2-trqAsE
A m cos

m

In this appendix, z denotes the longitudinal displacement from the center of

the cavity, and z' denotes longitudinal displacement from the center of the

beam el 1ipsoid.
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APPENDIX H

COUPLED-CAVITY TANKS

A tank element implies a sequence of identical cylindrical c a v i t i e s ,

coupled in some way to permit power flow. The fields in ad j a c e n t cells

(cavities) are assumed to be 180° out of p h a s e , and a standing-wave TNL,,,

mode is assumed. Tank transformations are valid when the beam veloci t y d o e s

not change appreciably as the particles go through the tank, and the t i m e - o f -

flight through two cavities is approximately one rf period. In this c a s e , the

detailed shapes of the fields in a cavity are not very important as long as

their averages over one cavity (or a hal f - c a v i t y ) are c o r r e c t .

A reasonable approximation for the longitudinal electric field is

E z ( r , z , t ) = A I Q (k T- ) cos ̂  sin cot ,

where

This is the first term in the Fourier expansion for E (r, z , t ) given in

App. G. A quantity whose value is usually specified for a tank is E T, the

effective accelerating f i e l d , the product o f the average axial electric f i e l d ,

and the transit-time f a c t o r . This quantity is defined by

E (0,z) cos (irz/L) Jz .

P u t t i n g i n t h e assumed f o r m f o r E and i n t e g r a t i n g , we f i n d

A - 2EJ

The t h r e e n o n z e r o f i e l d componen ts a r e

E z ( r , z , t ) = 2EQT I Q ( k r ) cos ( t r z / L ) s i n cot

2TTE T

E . r ( r , z , t ) = k L ° I ^ k r ) s i n d r z / L ) s i n cot
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and

2E Tu
B ( r , z , t ) = —%r- I , ( k r ) cos ( i r z / L ) cos tot ,

9 kc^ '

where u = 2-rrc/X i s the angu lar f r equency o f the r f and z = 0 a t the

midd le o f a c a v i t y . Using the assumpt ions ment ioned e a r l i e r , cut can be

rep laced by i rz /L + $ + TT/2, where <t> i s the phase o f the r f when the

cen te r o f the beam a r r i v e s a t the beg inn ing o f the c a v i t y . Then

cos u t = cos i rz /L cos ($ + t r /2) - s i n TTZ/L s i n (<j> + W 2 )

= - cos i rz /L s i n <)> - s i n i r z /L cos §

s i n u t = s i n -rrz/L COS (<)> + i r /2) + COS trz/L s i n dj> + W 2 )

= - s i n i r z /L s i n $ + cos I T Z / L COS <|> .

The c a l c u l a t i o n o f the averages o f the f i e l d components over each h a l f o f
o

a cavity (assuming r is constant) involves f inding the averages of cos irz/L,
o

s i n i r z / L , and s i n -rrz/L cos i r z / L . O v e r t h e f i r s t h a l f o f a c a v i t y

( - L / 2 < z < 0 ) ,

C O S 2 i r z / L = s i n 2 i r z / L = 1 / 2 ,

sin irz/L cos irz/L = - 1/ir .

The average, l i n e a r i z e d , f i e l d components in the f i r s t ha l f of a cav i t y are

/s in <t> cos
+T

1 ir + 2

i r E T /
F— o /cos
Erl = " T ~ ^

^ o ,'cos <{> sin
91 ~ cL \ « " 2

where we have used L = BX/2. The change in the beam energy in the f i r s t

ha l f of a cav i ty is
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= q Ez1 L/2

sin
—

r T .= q E J L

The average energy in the first half is assumed to be

= w

where W is the energy at the beginning of the cavity. The average normalized

velocity (3, is calculated from W,. The average radial force is

F n - o ( E r i - B i c B e i } •

so the change in the x-component of the normalized momentum is

= k , xxl

2m c 13,o 1

i -\ rc~2 x COS A - , 75—2 . SI
(I +13, ) ^ + ( 1 - R, )l r 1

The vertical impulse coefficient kvi is the same as k xi. In the above
2 —

expression, :31 should actually be 13̂ 13, where 6 = 2L/X, but the assumptions
imply that i31 ~ 13.

The change in A(!3y^z caused by a particle having a displacement z1

from the center of the beam is

ALA(BY)ZJ

qL

2m c 13.
0

q*EoT

" 2x

9E

9

1 —

zl

-e
-

n <
2

9 ^ Z

fe. cos
IT

where

Z' = " U
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In the second half of a cavity, the averages of the field components are

Ez2 " 2 E o T
cos 6 sin

!!o! /COL

L V ff
* E o T B /cos

"r2

U<- CL \ IT c.

The energy charge in the second half is

... r TI /cos <b s i n
m
2 = qEoTL I 2 - —

and the average energy W- and the corresponding 8~ can be calculated. The

impulse coefficients for the second half are

1

x2

^ E o T

2mcA
1 2 2

M o ~ ^ COS
(1 + 3« )

2 ir

z2 i y
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APPENDIX I

TRANSVERSE EMITTANCE INCREASE FROM CHROMATIC ABERRATIONS

The focusing and defocusing forces acting on a particle passing through a

magnetic quadrupole depend on the particle's momentum p. An energy spread

can, therefore, cause an increase in the effective transverse emittance. This

increase can be calculated if we approximate a quadrupole by a sequence of

drifts and thin lenses. At each lens, the x'-coordinate of a particle having

a momentum p + Ap is modified by

xf = x! - kxx./(l + 8) ,

where

S = Ap/p ,

and the i and f subscripts denote initial and final values. The quantity k

is the impulse coefficient for a thin-lens equivalent for a quadrupole having

a magnetic g-adient B' and effective length As.

The second moments of the initial and final coordinates are related by

x f = x.

( x ; ) 2 = ( x ! ) 2 - 2 k x . x : / < 1 + 6 ) + k 2 x ? ( 1 + 6 ) 2

i ' X I I X i

and

i = x.x! - k x./(I + 6)
I ii x i

The averages are calculated over the volume occupied by the hyperel1ipsoid

representing the beam. Let x.x!(&) denote the average of x.x! at a

particular 6. Then

..... . x . x l ( S ) f ( S ) d 6 ,
I I / ? i i

x.x: =

where § is the maximum value of 6 in the hyperel1ipsoid, and f(5) is the

density function that satisfies
82



5
f(6)dS = 1 .

-S

If we assume a uniform ellipsoid in the x,x' , 5 space, then

f(6) = | j [1 - (6/S) 2] .

Also, if we assume x and x' are uncorrelated with 5, then the effect of a

nonzero value of 6 is to reduce the space available to x and x':

x.x!<6> = [1 - (6/8) ] x.xj(O) -

Then

S

-5

, f S ? o
x.x! = x.xl(O) ̂  [1 - (S/6) I21 d6
1 1 1 1 46J «

= 5 X i x .

and

[1 + (S/S)2]2

12 4 ,2

= x.x|(1 + 6/7) .

Repeating this procedure for calculating the other two averages, we find

x2/(l + 6) = x? M + 62/7

and

x2/(l + 6) 2 = x2 (1 + 3 S2/7
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The second moments after the thin lens are

x f - x,

9 v ?

^)1- = (x:r
2 2

.. - 2k x.x: d + 6/7) + k^ xf (l + 4 S ) ,
I X 1 1 X I /

If the original equation for x^ is replaced by

x' = xi - k <l + 6 2/7;x, ,

then the above second moments are obtained if a term A(xM is added to (xi)

where

A( • ) 2
)

2 / t 3 ? 2 * 7 1 ?2/-7\2
x. ( l + ^ & ) - ( ! + & /7)

The increase in the rms emittance is

'rms

= x? k



APPENDIX J

CALCULATION OF TRANSVERSE EMITTANCES

FOR BEAM-WIDTH MEASUREMENTS AT THREE LOCATIONS

If the width of the beam is measured at three separate locations, and if

the transfer matrices between these locations are known, then the transverse

emittances and ellipse parameters can be calculated. Let a denote the

a-matrix at the mth measurement location, where m is 1, 2, or 3. The

measurements define the 1.1 and 3,3 elements at each location. The unknown

quantities are a,?, a ? ?, o~., and a., at each location. But if these

quantities are known at any of the three locations, they can be calculated at

the other two locations using the assumed known transfer matrices.

Let a denote the initial estimate of the a-matrix at the first

measurement location, and 6 denote the (unknown) correction matrix for

a . That is, the actual a-matrix at the first measurement is a + 6 . Because

a,, and a-,-, are given by the measurement, the only nonzero elements of the

S-matrix are S^- (= & 2 1 ^ ' S 2 2 ' &34 (= S 4 3 ) ! and S44' Let R denote the
transfer matrix from the first to the second measurement location, and r..

J
be the i,jth element of this matrix. Then

a 2 = R a V + R6RT .

2 2
From measurements at the second location, a,, and a,, are known, giving two

equations to be satisfied by the elements of the S-matrix:

9 T 9 9

[a - RCT]R I n = 2 r l l r 2 2 6 l 2 + r12622 + 2 r l

and

[a - Ra
]
R

Two similar equations exist for the beam measurements at the third location in

terms of the a - and S-matrix elements and the transfer matrix between

the first and third locations. The elements of the S-matrix can be

determined from these four linear equations.

When space-charge forces are involved, an iterative procedure must be

used because the transfer matrices depend on the beam profiles. In TRACE 3-D,
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the zero-current solution is used as the first step in the iteration.

Successive steps use the previously determined a -matrix as the input beam

to be followed through the transport system to the measurement locations.
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