
Bicer et al. Adv Struct Chem Imag  (2017) 3:6 

DOI 10.1186/s40679-017-0040-7

RESEARCH

Trace: a high-throughput tomographic 
reconstruction engine for large-scale datasets
Tekin Bicer1* , Doğa Gürsoy2, Vincent De Andrade2, Rajkumar Kettimuthu1,3, William Scullin5, 

Francesco De Carlo2 and Ian T. Foster1,3,4

Abstract 

Background: Modern synchrotron light sources and detectors produce data at such scale and complexity that large-

scale computation is required to unleash their full power. One of the widely used imaging techniques that generates 

data at tens of gigabytes per second is computed tomography (CT). Although CT experiments result in rapid data 

generation, the analysis and reconstruction of the collected data may require hours or even days of computation time 

with a medium-sized workstation, which hinders the scientific progress that relies on the results of analysis.

Methods: We present Trace, a data-intensive computing engine that we have developed to enable high-perfor-

mance implementation of iterative tomographic reconstruction algorithms for parallel computers. Trace provides 

fine-grained reconstruction of tomography datasets using both (thread-level) shared memory and (process-level) 

distributed memory parallelization. Trace utilizes a special data structure called replicated reconstruction object to 

maximize application performance. We also present the optimizations that we apply to the replicated reconstruction 

objects and evaluate them using tomography datasets collected at the Advanced Photon Source.

Results: Our experimental evaluations show that our optimizations and parallelization techniques can provide 158× 

speedup using 32 compute nodes (384 cores) over a single-core configuration and decrease the end-to-end process-

ing time of a large sinogram (with 4501 × 1 × 22,400 dimensions) from 12.5 h to <5 min per iteration.

Conclusion: The proposed tomographic reconstruction engine can efficiently process large-scale tomographic data 

using many compute nodes and minimize reconstruction times.

Keywords: Tomography, Reconstruction, High-throughput, Big data

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made.

Background
Synchrotron light sources enable the visualization of com-

plex materials at very small scales, close to their molecu-

lar level (µm–nm). �e current sensors and detectors at 

light sources can perform rapid data acquisition during 

the experiments at rates of thousands of frames per sec-

ond (fps) with very high resolutions. For instance, the 

2-BM (microCT) beamline at the Advanced Photon Source 

(APS) at Argonne National Laboratory (ANL) can collect 

2000 fps with 2K ×  2K pixels per frame, which translates 

to 16 gigabytes (GB) per second data generation rate with 

16-bit pixels. �ese data generation rates are expected to 

increase by several orders of magnitude with upcoming 

upgrades in synchrotron light sources  [1]. Even now, for 

large specimens, it is feasible to align and stitch together 

multiple frames to generate panoramas, which can increase 

the number of pixels in a 2D projection from 2K × 2K to 

20K × 20K, increasing dataset size by 100 times.

Computed tomography (CT) is a common imaging 

method for collecting x-ray projections at synchrotron 

light sources. During CT experiments, multiple 2D pro-

jections are taken from different orientations of the tar-

get specimen, and then these projections are processed 

computationally to generate a 3D structure. �e compu-

tational requirements of this tomographic reconstruc-

tion task vary according to both dataset size and the 

type of reconstruction algorithm used. Two common 

reconstruction methods are analytical reconstruction, 

Open Access

*Correspondence:  tbicer@anl.gov 
1 Mathematics and Computer Science Division, Argonne National 

Laboratory, 9700 South Cass Ave., Lemont, IL 60439, USA

Full list of author information is available at the end of the article

http://orcid.org/0000-0002-8428-5159
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40679-017-0040-7&domain=pdf


Page 2 of 10Bicer et al. Adv Struct Chem Imag  (2017) 3:6 

including filtered back-projection (FBP), and iterative 

reconstruction. FBP methods, such as Gridrec [2], per-

form only a single pass over the input projection dataset 

and therefore require significantly less computation than 

do iterative reconstruction algorithms, which may need 

tens or even hundreds of iterations. However, several 

critical issues arise with the application of FBP methods 

that affect the quality of reconstructed images. First, FBP 

requires many projections; if the number of projections 

is insufficient, then FBP can introduce artifacts in the 

reconstructed image. Second, since FBP requires a higher 

number of projections, the target specimen is exposed 

to a greater radiation dose, which may be infeasible if 

the specimen (e.g., a biological sample) is dose-sensitive. 

�ird, analytical reconstruction techniques are suscepti-

ble to errors and noise in data, which are common due to 

the experimental limitations.

In contrast, the iterative reconstruction algorithms 

on which we focus in this paper can provide better 3D 

images, albeit at the cost of additional computing power 

(see Fig. 1). Specifically, iterative algorithms such as Arith-

metic Reconstruction Technique (ART), Maximum Like-

lihood Expectation Maximization (MLEM), Simultaneous 

Iterative Reconstruction Technique (SIRT), and Penal-

ized Maximum Likelihood (PML) [3] use statistical mod-

els and cost functions to iteratively converge to a refined 

solution consistent with the measured data. Further, these 

methods can operate effectively with fewer projections, 

resulting in less dose exposure to specimens [4, 5].

In this paper, we focus on parallelization meth-

ods for efficient iterative tomographic reconstruction. 

We describe methods that make it possible to provide 

timely feedback to experimentalists (within minutes, and 

indeed with enough processing power, seconds), even for 

extremely large datasets. �is work builds on and extends 

our previous research [6], with the following new contribu-

tions. First, we enable the reconstruction of a sinogram by 

multiple nodes, using distributed-memory parallelization. 

Distributed memory parallelization, in addition to shared 

memory parallelization from our previous work, lets users 

reconstruct very large datasets in a timely manner. Second, 

we analyze the effect of data organization and structures, 

and perform cache-sensitive execution of reconstruction 

tasks. �ird, we extensively evaluate our optimizations and 

present the cost of different phases during execution.

�e remainder of this paper is organized as follows. 

We discuss the related works in “Related work” section. 

�en, we introduce our middleware, Trace, and its opti-

mizations in “High-performance iterative tomographic 

reconstruction” section. We evaluate and present the per-

formance of Trace with medium- and large-scale datasets 

in “System evaluation” section, and conclude in “Conclu-

sion” section.

Related work
�e parallelization of iterative reconstruction algorithms 

has been researched in different areas  [7–11]. Although 

these works show satisfactory reconstruction performance, 

most of them focus on improving the performance of a spe-

cific reconstruction algorithm with shared memory parallel-

ization. In our work, we consider easing the implementation 

and parallelization of different reconstruction algorithms 

Fig. 1 Reconstructed 3D image of a shale sample [46]. The input dataset consists of 90 projections each with 2K × 2K pixels. a, b The 3D recon-

structed image using SIRT and Gridrec algorithms, respectively. Reconstruction with SIRT takes ∼353 s for 80 iterations, using two threads, recon-

struction with Gridrec takes only ∼9 s, using one thread. However, SIRT with 80 iterations provides a higher-quality image than does Gridrec



Page 3 of 10Bicer et al. Adv Struct Chem Imag  (2017) 3:6 

using a MapReduce-like middleware [6, 12, 13], and scale 

reconstruction operations to many compute nodes.

Manycore architectures, such as GPUs, have been 

extensively used for iterative reconstruction  [14–17]. 

Especially in medical imaging, iterative reconstruc-

tion approaches are used for generating high-quality 3D 

images  [18–20]. Although GPUs can provide high com-

putational throughput, the analysis code is typically tai-

lored for a specific device and application. Moreover, 

GPUs can accommodate only small datasets and are not 

suitable for large-scale tomography data. Trace enables 

efficient reconstruction of large-scale datasets on multi-

core clusters where adequate memory is available.

Domain decomposition techniques have been used for 

parallelization of reconstruction operations  [21, 22]. We 

perform decomposition at the sinogram space, while con-

sidering the distribution and synchronization of recon-

struction tasks on many physical nodes. In a recent work, 

Wang et.al. highlight the long execution times of iterative 

reconstruction approaches and address the cache uti-

lization issues of model-based iterative reconstruction 

(MBIR) [23, 24] using optimized buffers called supervoxel. 

�eir approach mainly addresses the cache utilization 

issues; however, the scalability of reconstruction tasks on 

large number of compute nodes is not considered.

Data analysis and workflow management at syn-

chrotron light sources have gained a lot of importance 

in recent years  [25–28]. CAMERA, for instance, is an 

interdisciplinary project at Lawrence Berkeley National 

Laboratory  [29], which investigates problems of DOE 

user facilities and develops fundamental new mathemati-

cal solutions. Another similar effort is also initiated at 

Brookhaven National Laboratory to ease the data analysis 

tasks for NSLS-II facility users  [30]. Most of these pro-

jects aim to provide timely data analysis for beamline 

users [31, 32]. Our data analysis tasks and workflows rely 

on a MapReduce-like processing structure for efficient 

and scalable processing. Since MapReduce lets users eas-

ily customize Map and Reduce phases, the integration 

of other reconstruction and analysis algorithms, such as 

Discrete Algebraic Reconstruction Technique [33], Total 

Variation [34], and Sparse Reconstruction[35] between 

(and during) iterations, is possible.

Although other MapReduce implementations, such as 

Spark [36] and Hadoop [37], can provide scalability and fault 

tolerance, they are tailored to commodity hardware and 

cannot perform efficient execution on high-performance 

computing resources. Our middleware utilizes the repli-

cated reconstruction objects which enables reconstruction 

tasks to scale tens of thousands cores on high-performance 

computing resources and provide timely turnaround times 

for compute-intensive works [6, 38]. We provide the details 

of our middleware in the following section.

High-performance iterative tomographic 
reconstruction
In this section, we first provide some background on the 

organization of tomographic datasets and iterative recon-

struction techniques, and then, we present the compo-

nents and execution flow of our middleware.

Tomographic data acquisition and organization

During tomographic data acquisition, a detector col-

lects 2D projections from different rotations (θs). �is 

process generates a 3D dataset with (z, y, x) dimensions, 

where z, y, and x represent projections (angular dimen-

sion), sinograms, and columns (spatial dimensions), 

respectively. Each value (pixel) in the dataset, which is 

generally a 16-bit unsigned integer, is a line integral of 

an X-ray passing through the target object from a spe-

cific angle θ.

Since each 2D projection represents the same object 

from a different θ, projections as a collection can be used 

to reconstruct a 3D image of the target object. Typi-

cally, the dimensions of a reconstructed 3D image fol-

low a (y, x, x) pattern. For example, a tomography dataset 

with dimensions (720, 512, 2048) yields a 3D image with 

dimensions (512, 2048, 2048). Note that each sinogram 

corresponds to a slice in 3D image; that is, a one-to-one 

relationship exists between sinograms and slices. �is 

relationship is sufficient for performing parallel process-

ing on y dimension for unregularized reconstruction 

algorithms. In this paper, we focus on iterative tomo-

graphic reconstruction algorithms, where unknown coef-

ficients in a 3D image are converged to a refined solution 

at each iteration.

Iterative reconstruction algorithms consist of two main 

computational stages: forward and back projection. Dur-

ing the forward projection, a simulated data value is 

computed for each ray. �e computation of simulated 

data depends on previous iteration’s voxel values and ray-

lengths on intersected voxels. For instance, SIRT algo-

rithm computes dr =

∑
(i)∈V mi × li while calculating 

the simulated data value (dr) of a ray (r). Here, mi is the 

value of voxel with index i on reconstructed image; li is 

the length of r on voxel  ; and V is a set of voxel indices 

that are visited by r. Since the number of simulated rays 

and voxels can be very large, forward projection requires 

large-scale compute resources. After forward projec-

tion computation, back projection is performed. During 

this stage, the simulated data values of all the rays that 

pass through the voxel  are used for computing weight 

values, wi. Later, wi values are normalized with li, and 

update operations on 3D image voxels are performed. 

Parallelization at the sinogram level is typically straight-

forward, since all the rays can sequentially be simulated 

on a sinogram and each sinogram can be reconstructed 



Page 4 of 10Bicer et al. Adv Struct Chem Imag  (2017) 3:6 

independently. However, in-sinogram (or in-slice) paral-

lelization, where a single sinogram is processed by many 

processing units, is nontrivial. �is is mainly due to the 

data dependencies between rays’ simulated data and vis-

ited voxels (dr computation), and wi computation.

Parallelization of iterative reconstruction using distributed 

and shared memory techniques

Figure  2 presents our approach to parallelize iterative 

reconstruction algorithms in Trace. Trace performs itera-

tive reconstruction in several steps. First, the ray-sum 

values that intersect the same plane, that is, sinogram (y 

dimension), are equally distributed among processes, Pj 

(step 1). For instance, in Fig. 2, the tomographic dataset 

consists of two sinograms, s0 and s1, and these sinograms 

are evenly distributed between P0...3.

Each Pj, initiates a number of threads, tj,k that then com-

pute the wi and li values. In Trace, these values are derived 

by using a modified version of Siddon’s algorithm  [39]. 

�ere are many iterative reconstruction algorithms that 

perform different computations in forward and backprojec-

tion stages. �ese computations typically result in different 

li and wi values. Trace provides an API that makes it easy 

for developers to implement their algorithms for forward 

and backprojection kernels. Specifically, users can develop 

and parallelize customized reconstruction algorithms by 

extending the Reduce(...) and Update(...) func-

tions in API, which correspond to parallel forward and 

backprojection kernels, respectively. During step 2, Trace 

runtime system automatically applies the user-selected (or 

user-implemented) Reduce(...) function to the li and 

wi arrays. Trace uses a wrapper data structure called rep-

licated reconstruction object (replica) for the management 

of li and wi. It is important to note that the parallelization 

techniques in Trace rely on full replication, that is, each 

thread works on its own replica  [40]. �is parallelization 

technique also lets Trace scale up to the number of ray-sum 

values in input dataset; therefore, it provides fine-grained 

reconstruction. On the other hand, since each thread 

requires a private replica, memory utilization can be high 

which may limit the level of parallelization.

After all rays are processed and new length and weight 

values in replicas are computed, threads perform local 

combination (step 3). During this phase, threads that oper-

ate on the same sinogram synchronize and combine their 

replicas. �is phase leads to a single reconstruction object 

per process. If the number of sinograms, ns, in the tomog-

raphy dataset is larger than (or equal to) the number of 

initiated processes, np, then the Trace runtime system 

starts updating the corresponding 3D image slices (with 

Update(...) function) using locally combined replicas 

(shared memory parallelization) and proceeds to the next 

iteration (step 5.a).

Shared memory parallelization alone can provide suf-

ficiently good performance for many tomography data-

sets  [41–43]. However, it is still limited with parallel 

reconstruction of a sinogram on a single compute node, 

i.e., ns ≥ np. For very large datasets, such as that of the 

mouse brain [44], reconstruction of a single sinogram can 

take hours to finish. �erefore, a higher level of paralleli-

zation, where a compute node can perform reconstruc-

tion with part of a sinogram, is needed. �is type of data 

parallelization requires a combination of shared and dis-

tributed memory parallelization, and thus both thread- 

and process-level synchronizations. Specifically, if there 

are more processes than sinograms, that is, if np > ns , 

then processes that operate on the same sinogram per-

form interprocess synchronization to compute refined 

reconstruction object values. Trace automatically man-

ages this group-level synchronization using sinogram 

identifiers (e.g., s0 and s1). Figure 2 illustrates this process 

with P0 and P1, which operate on the same sinogram, s0. 

P0 and P1 can start the next iteration only after the group 

combination phase (step 4).

Fig. 2 Execution flow (steps 1–5) of Trace middleware with sinogram-level group communication



Page 5 of 10Bicer et al. Adv Struct Chem Imag  (2017) 3:6 

Algorithm 1 presents the pseudocode of this process. At 

line 1, the system reads corresponding sinograms accord-

ing to process IDs (Pj). At line 2, the Trace middleware is 

initialized with ReconClass, number of threads (t) and 

sinogram shape (Shape(si)). ReconClass wraps user 

defined Reduce(...) and Update(...) functions 

that will be applied to the input data. �e Trace middle-

ware allocates and initializes t number of replicas, and 

assigns each thread to a replica. Recall that replica sizes 

are determined according to dimensions of the assigned 

sinograms, hence dimension information of the sinogram 

is also passed to the middleware. Lines 2 and 3, perform 

shared memory parallelizations in which Parallel-

Reconstruction(...) updates the replicas using 

user defined functions. LocalCombination(...) 

combines the replicas and generates a local intermediate 

replica. �en, this replica is further combined with repli-

cas from other processes (distributed memory paralleli-

zation) using GroupCombination(...). Finally, the 

resulting replica is used for updating local recon object.

While this hybrid parallelization method significantly 

improves the scalability of reconstruction process, it can 

also introduce some overhead. In particular, if the repli-

cated reconstruction objects are large, the communica-

tion overhead between processes becomes more visible 

(mainly because of the process-level group combination 

operations). �is overhead is extensively evaluated with 

different tomography datasets in “System evaluation” 

section.

Improving the cache utilization of Trace

Another important issue for efficient reconstruction is 

the data access pattern, which affects cache utilization. 

We transform the independent wi and li arrays in rep-

licas from a struct of arrays (SoA) to an array of structs 

(AoS) to improve cache utilization. Figure  3 represents 

the organization of both data structures. �e initial rep-

lica implementation in Fig.  3 treats both arrays inde-

pendently, that is, SoA representation is used, whereas 

Trace-OC combines both arrays and performs data 

accesses on AoS. Specifically, since most of the data 

accesses rely on voxels, we reorganize w and l values with 

respect to their corresponding voxels; thus, accessing to 

one of the voxel variables results in loading both w and l 

values into the cache. �is transformation improves both 

temporal and spatial data locality in Trace and provides 

better cache utilization. Note that, it is typically prefer-

able to use SoA representation, where consecutive data 

access pattern to an array of elements is observed. How-

ever, since we have irregular data access pattern during 

reconstruction, AoS provides better cache utilization. In 

the next section, we analyze the impact of large replicas 

and cache optimizations on overall execution time.

System evaluation
We evaluated our system on Cooley, a visualization clus-

ter located at Argonne National Laboratory [45]. Cooley 

has 126 compute nodes, where each node consists of 

12 cores (two 2.4 GHz Intel Haswell CPUs, each with 6 

cores). Moreover, each node has 384 GB of memory for 

large-scale data visualization and analysis. �e compute 

nodes are connected with FDR InfiniBand for high-per-

formance communication.

Trace provides four different iterative reconstruc-

tion algorithms, ported from the TomoPy package  [3]: 

MLEM, SIRT, PML, and Accelerated PML Reconstruc-

tion (APMLR). We present here results on the per-

formance of our system using SIRT. Considering the 

dimension parameters that were introduced in “High-

performance iterative tomographic reconstruction” sec-

tion, the computational complexity of SIRT algorithm is 

O(Nz × Ny × N 2
x ) per iteration.

We used three tomography datasets to evaluate the 

performance of our middleware. Two are real experi-

mental data collected at APS beamlines: a mouse brain 

dataset  [44] and a shale sample  [46]. �e mouse brain 

dataset is a large tomography dataset that consists of 4501 

projections, 22,400 sinograms, and 22,400 columns, which 

requires ∼4.2 TB disk space. Moreover, the reconstructed 

3D image’s dimensions are 22,400 × 22,400 × 22,400, where 

each voxel is a single-precision floating-point number. 

�e total size of the reconstructed mouse brain image is ∼

40.9 TB. �e shale sample is a medium-sized dataset and 

includes 1440 projections, 2048 sinograms, and 2048 col-

umns. �e total size of the shale data is ∼12 GB, and its 

corresponding reconstructed 3D image size is ∼32 GB. We 

also used simulation data to evaluate system performance 

with varying numbers of projections and column sizes.

Cache‑sensitive iterative reconstruction

In our first set of experiments, we evaluate the serial 

(non-parallelized) performance of our system on a single 

compute node. �is version of our system uses only a sin-

gle core during reconstruction.
Fig. 3 Data organization replicated reconstruction object: Trace and 

cache optimized Trace-OC



Page 6 of 10Bicer et al. Adv Struct Chem Imag  (2017) 3:6 

In Fig. 4a, we present the reconstruction times (y-axis, 

in log scale) of a single sinogram with respect to varying 

numbers of projections (x-axis). �e total size of the col-

umns is set to 2048. �us, for instance, when the number 

of projections is P = 1440 (first set of bars in Fig. 4a), the 

dataset dimensions are 1440 × 1 × 2048. For all configura-

tions, we set the number of iterations to five.

We performed the reconstructions using the original 

TomoPy and two different versions of our middleware: 

the version without any optimizations, Trace; and the 

optimized cache-sensitive version, Trace-OC. In all 

configurations, Trace-OC outperforms both TomoPy 

and Trace. Compared with TomoPy, the speedups with 

Trace-OC range from 1.19 to 1.44, which effectively 

reduce the execution times by up to 30%. Compared with 

Trace, the speedups with Trace-OC are from 1.12 to 

1.21, which result in up to ∼18% reduction in reconstruc-

tion time.

�e main reason for this performance increase is bet-

ter cache utilization in Trace-OC. Specifically, since 

both the temporal and spatial localities of the length 

and weight values are improved with the alternative data 

organization, the reconstruction operations incur fewer 

number of cache misses. We present the L1 cache misses 

in Fig.  4b to show the correlation between reconstruc-

tion times and the cache misses. Since L1 is the first level 

cache that buffers the data for processing, the miss rate 

at L1 cache has significant effect on overall performance 

of application. Here, the y-axis shows the total number 

of L1 cache misses, whereas the percentages are the ratio 

between cache misses and the total number of requests 

to the cache (i.e., the sum of both hits and misses at L1 

cache). In general, the smaller number of cache misses 

results in shorter execution times. Similarly, the lower 

ratios between L1 cache misses and hits (miss ratios) 

indicate better cache utilization. �e only outlier configu-

ration to this generalization is Tomopy with 1440 pro-

jections, where both the number of L1 cache misses and 

percentage values are smaller than the Trace configu-

ration. In this case, last level cache (LLC) bandwidth of 

Trace is higher than that of TomoPy (58.9 vs 55.1 mil-

lion loads per second), which favors Trace performance.

In Fig.  4c, d, we profile the reconstruction times and 

cache utilization, respectively, with varying column sizes 

(x-axis). We set the number of projections to 1440 for all 

configurations and reconstruct a single sinogram. �e 

performance improvements follow the same trend as 

before. Specifically, Trace-OC provides speedups that 

range from 1.29 to 1.35, with up to ∼26% shorter execu-

tion times than with TomoPy. Similarly, compared with 

Trace, the observed reduction in execution times with 

Trace-OC is between 6.3 and 14.4%.

If we compare Fig.  4a, c, we see that the reconstruc-

tion times are more sensitive to column sizes than to the 

number of projections. Specifically, when the number of 

the projections is doubled, the execution times also dou-

ble; in other words, we observe a linear increase. When 

the column sizes are doubled, however, the reconstruc-

tion times show an almost exponential increase. �e 

main reason for this higher sensitivity to column sizes 

(i.e., x dimension) is the relationship between the number 

of variables in input dataset O(Nz × Ny × Nx) and output 

3D image O(Ny × N 2
x ) [13].

Parallel reconstruction of medium‑ and large‑scale 

tomography data

We next compare the execution times taken in the dif-

ferent phases of the reconstruction for medium- vs 

large-sized datasets. As in the preceding section, we 

reconstructed a single sinogram from each dataset and 

set the total number of iterations to 5 and 40 for brain 

and shale datasets, respectively. We used 32 Cooley 

nodes (32 × 12 = 384 cores) for the computation. This 

type of reconstruction requires sharing and process-

ing one sinogram with multiple nodes and therefore 

needs both inter- and intra-node synchronization 

among processes and threads. We break down the 

execution times to observe performance issues during 

reconstruction.

In Fig.  5a, we show execution times when processing 

a mouse brain sinogram. We use different numbers of 

processes and threads for each configuration in order to 

observe their effect on performance. We format the label 

of each configuration as ppn#-t#, in which ppn# refers 

to the number processes that are initiated in each com-

pute node and t# is the number of threads in each pro-

cess. For instance, the ppn2-t6 configuration initiates 

two processes in each node, where each process runs six 

threads. �erefore, the total number of active processes 

during the reconstruction is 32 ×  2 =  64, and the total 

number of threads is 64 × 6 = 384.

For each configuration, we divide the execution times 

into six phases. In the Reconstruction and Update 

phases, forward and back projections are computed. In 

the Local Combination phase, threads in a process 

perform shared memory synchronization and exchange/

reduce intermediate values, namely forward projection 

values, inside a node (intra-node synchronization). Dur-

ing the Group Communication phase, the processes 

that work on the same sinogram exchange the locally 

reduced values (inter-node synchronization). �e Read 

and Write phases correspond respectively to the read-

ing time of the sinogram dataset (input file) and writing 

time of the reconstructed 3D image (output file).



Page 7 of 10Bicer et al. Adv Struct Chem Imag  (2017) 3:6 

Performance analysis of parallel large‑scale sinogram 

reconstruction

Our first observation from Fig.  5a is that the Group 

Communication dominates the overall execution time 

for all configurations. �e main reason for this behavior 

is the large replicas that are exchanged during the inter-

node communication. Specifically, the size of a replica is 

2× larger than the size of a 3D image slice, since it accom-

modates li and wi values. Recall that each 3D image slice 

requires an array with 1 ×  22,400 ×  22,400 dimensions 

for the mouse brain, which is ∼2 GB (single-precision 

floating-point numbers). Since a locally combined replica 

(replicalocal) is 2× larger than 3D slice, its size is 4 GB. If 

we consider ppn4-t* configuration, where the total 

number of processes is 32 × 4 = 128 and number of itera-

tions is 5, the total exchanged data are (at least) 5 × 128 

× 4 = 2.5 TB throughout the execution. �is data move-

ment introduces significant overhead. Specifically, Group 

Communication corresponds to 63.8–72.3% of the total 

execution times in Fig.  5a, in which the minimum com-

munication time occurs with the ppn2-t6 configuration. 

We suspect that this configuration provides good data 

and process locality for compute nodes, where each node 

consists of two CPUs and each CPU has six cores.

a b

c d

Fig. 4 Execution times (secs) and L1 cache misses with respect to different numbers of projections and columns using SIRT. a Execution times 

with varying numbers of projections. b Number od L1 cache misses with varying number of projections. c Execution times with varying number of 

columns. d Number of L1 cache misses with varying number of columns



Page 8 of 10Bicer et al. Adv Struct Chem Imag  (2017) 3:6 

Looking next at the Reconstruction phase, we see 

that all configurations follow similar trends, with the 

ppn12-t1 configuration being the most efficient. Since 

this configuration maps each process to a core, it pro-

vides the most isolated environment for the processes 

and provides the highest throughput. Considering the 

overall execution time, however, we observe that ppn2-

t6 is the most efficient configuration, since it provides 

above-average reconstruction time with better communi-

cation performance.

If we compare ppn2-t6 with other configurations, 

ppn2-t6 shows speedups ranging from 1.12 to 1.49. 

Note that, these speedups are all based on end-to-end 

processing time of a single sinogram using 32 compute 

nodes. �e end-to-end execution time of the same data-

set with a single core is more than ∼63 h, which means 

that ppn2-t6 can provide 158× speedup relative to 

the best single-core (sequential) performance. Since the 

mouse brain dataset consists of 22,400 sinograms, itera-

tive reconstruction with a single core is not feasible, 

especially considering that many of iterations are needed 

for high-quality 3D images.

Performance analysis of parallel medium‑scale sinogram 

reconstruction

Figure  5b shows results for the same experiments 

with a shale sample. Since the shale dataset is smaller 

than that of the mouse brain, Group Communica-

tion introduces much less overhead. �erefore, the 

Reconstruction phase becomes the dominating fac-

tor, which corresponds to 52–73% of the total execution 

time. As in the previous experiments, we observe the best 

total execution time with the ppn2-t6 configuration, 

even though ppn12-t1 shows the best Reconstruc-

tion time.

In the Local Combination phase, we observe 

that the configurations with more threads—ppn1-t12, 

ppn1-t24, and ppn2-t12—require more time than 

the other configurations. Since all the threads that belong 

to same process need to synchronize after updating their 

replicas, synchronization time increases with larger num-

ber of threads. �e maximum thread synchronization 

overhead is 12.2%, which is observed in the ppn1-t24 

configuration. We see a similar trend in Fig.  5a, though 

the Local Combination phase is mostly dominated 

by communication and reconstruction times.

Analysis of large‑scale parallel reconstruction with strong 

scaling

Figure 6 shows how execution times for the mouse brain 

dataset scale with different numbers of compute nodes 

when using the ppn2-t6 configuration. As in the pre-

vious experiments, the Reconstruction and Group 

Communication phases dominate overall execution 

times. Specifically, the reconstruction phases take the 

most time on up to 8 nodes, then (for 16 and 32 nodes) 

communication cost becomes dominant. �e main 

reason for this change is that while the computation 

a b

Fig. 5 Breakdown of iterative reconstruction times (secs) with respect to varying parallelization configurations. Here ppn stands for processes per 

node, and t is the number of initialized threads per process. For example, with configuration ppn2-t6, Trace-OC initiates two processes on each 

compute node, each with six worker threads (i.e., a total of 12 threads per compute node). We used 32 compute nodes for the reconstruction. a 

Mouse brain, b shale sample



Page 9 of 10Bicer et al. Adv Struct Chem Imag  (2017) 3:6 

parallelizes almost perfectly, communication does not; 

and thus, while it reduces in absolute terms as we scale 

from 2 to 32 nodes, it increases as a percentage of total 

time, from 19.7 to 60.1%. Nevertheless, we still achieve a 

speedup of 21.6 on 32 nodes relative to 1 node.

Conclusion
In this paper, we have presented our middleware, Trace, 

which provides a framework for high-performance 

implementation of iterative tomographic reconstruction 

algorithms. It enables the fine-grained parallelization of 

reconstruction algorithms using shared and distributed 

memory parallelization techniques, where a single sino-

gram can be reconstructed by many processes. Further, 

we optimize the cache utilization of reconstruction by 

transforming replicated reconstruction objects, in which 

we reorganize data structures according to application’s 

data access pattern.

We evaluated our methods using simulated and real-

world tomography datasets, and presented execution 

times of different phases. Our experimental results 

showed that the proposed methods can provide up to 

158 × speedup (using 32 compute nodes) over single-core 

configuration, which decreases the end-to-end process-

ing time of a sinogram (with (4501, 1, 22,400) dimen-

sions) from ∼12.5 h to <5 min per iteration.

Authors’ contributions

TB developed and implemented Trace middleware. DG provided informa-

tion about iterative tomographic reconstruction algorithms. VDE and FDC 

provided tomographic datasets and addressed problems regarding detectors. 

WS participated software installation and cluster setup. RK and ITF provided 

expertise on parallelization techniques and manuscript writing. All authors 

read and approved the final manuscript.

Author details
1 Mathematics and Computer Science Division, Argonne National Labora-

tory, 9700 South Cass Ave., Lemont, IL 60439, USA. 2 X-Ray Science Division, 

Advanced Photon Source, Argonne National Laboratory, 9700 South Cass 

Ave., Lemont, IL 60439, USA. 3 Computation Institute, University of Chicago 

and Argonne National Laboratory, 5735 South Ellis Ave., Chicago, IL 60637, 

USA. 4 Department of Computer Science, University of Chicago, 5801 South 

Ellis Ave., Chicago, IL 60637, USA. 5 Argonne Leadership Computing Facility, 

Argonne National Laboratory, 9700 South Cass Ave., Lemont, IL 60439, USA. 

Acknowledgements

We gratefully acknowledge the computing resources provided and operated 

by the Argonne Leadership Computing Facility, which is a U.S. Department of 

Energy, Office of Science User Facility.

Competing interests

The authors declare that they have no competing interests.

Funding

This material was based upon work supported by the U.S. Department of 

Energy, Office of Science, Advanced Scientific Computing Research and Basic 

Energy Sciences, under Contract DE-AC02-06CH11357.

Received: 29 September 2016   Accepted: 17 January 2017

References

 1. Early science at the upgraded advanced photon source: technical report. 

Argonne National Laboratory, Advanced Photon Source (2015)

 2. Marone, F., Stampanoni, M.: Regridding reconstruction algorithm for 

real-time tomographic imaging. J. Synchrotron. Radiat. 19(6), 1029–1037 

(2012)

 3. Gürsoy, D., De Carlo, F., Xiao, X., Jacobsen, C.: Tomopy: a framework for the 

analysis of synchrotron tomographic data. J. Synchrotron. Radiat. 21(5), 

1188–1193 (2014)

 4. Sidky, E.Y., Kao, C.-M., Pan, X.: Accurate image reconstruction from few-

views and limited-angle data in divergent-beam CT. J. X-Ray. Sci. Technol. 

14(2), 119–139 (2006)

 5. Jang, B., Kaeli, D., Do, S., Pien, H.: Multi gpu implementation of iterative 

tomographic reconstruction algorithms. In: IEEE International Symposium 

on Biomedical Imaging: From Nano to Macro, pp. 185–188. IEEE, New 

Jersey (2009)

 6. Bicer, T., Gursoy, D., Kettimuthu, R., De Carlo, F., Agrawal, G., Foster, I.T.: 

Rapid tomographic image reconstruction via large-scale parallelization. 

In: European Conference on Parallel Processing, pp. 289–302. Springer, 

Berlin (2015)

 7. Agulleiro, J., Fernandez, J.-J.: Fast tomographic reconstruction on multi-

core computers. Bioinformatics 27(4), 582–583 (2011)

 8. Treibig, J., Hager, G., Hofmann, H.G., Hornegger, J., Wellein, G.: Pushing the 

limits for medical image reconstruction on recent standard multicore 

processors. Int. J. High Perform. Comput. Appl. 27(2), 162–177 (2012)

 9. Zeng, K., Bai, E., Wang, G.: A fast CT reconstruction scheme for a general 

multi-core PC. Int. J. Biomed. Imag. (2007)

 10. Johnson, C.A., Sofer, A.: A data-parallel algorithm for iterative tomo-

graphic image reconstruction. In: Seventh Symposium on the Frontiers 

of Massively Parallel Computation, pp. 126–137 (1999). doi: 10.1109/

FMPC.1999.750592

 11. Jones, M.D., Yao, R., Bhole, C.P.: Hybrid MPI-OpenMP programming for 

parallel OSEM PET reconstruction. IEEE. Trans. Nucl. Sci. 53(5), 2752–2758 

(2006). doi:10.1109/TNS.2006.882295

 12. Jiang, W., Ravi, V.T., Agrawal, G.: A map-reduce system with an alternate 

API for multi-core environments. In: Proceedings of the 2010 10th IEEE/

ACM International Conference on Cluster, Cloud and Grid Computing. 

CCGRID ’10, pp. 84–93. IEEE Computer Society, Washington, DC (2010). 

doi: 10.1109/CCGRID.2010.10

 13. Bicer, T., Gürsoy, D., Kettimuthu, R., De Carlo, F., Foster, I.T.: Optimization 

of tomographic reconstruction workflows on geographically distributed 

Fig. 6 Execution times (s) of reconstructing a single sinogram mouse 

brain with different numbers of compute nodes. The number of itera-

tions is set to five and the ppn2-t6 configuration is used

http://dx.doi.org/10.1109/TNS.2006.882295
http://dx.doi.org/10.1109/CCGRID.2010.10


Page 10 of 10Bicer et al. Adv Struct Chem Imag  (2017) 3:6 

resources. J. Synchrotron. Radiat. 23(4), 997–1005 (2016). doi:10.1107/

S1600577516007980

 14. Stone, S.S., Haldar, J.P., Tsao, S.C., Hwu, W.-M., Sutton, B.P., Liang, Z.-P., et al.: 

Accelerating advanced MRI reconstructions on GPUs. J. Parallel. Distrib. 

Comput. 68(10), 1307–1318 (2008)

 15. Xu, F., Mueller, K.: Accelerating popular tomographic reconstruction algo-

rithms on commodity PC graphics hardware. Nucl. Sci. IEEE. Trans. 52(3), 

654–663 (2005)

 16. Pelt, D.M., Gürsoy, D., Palenstijn, W.J., Sijbers, J., De Carlo, F., Batenburg, K.: 

Integration of tomopy and the astra toolbox for advanced processing 

and reconstruction of tomographic synchrotron data. J. Synchrotron. 

Radiat. 23(3), 842–849 (2016)

 17. van Aarle, W., Palenstijn, W.J., De Beenhouwer, J., Altantzis, T., Bals, S., 

Batenburg, K.J., Sijbers, J.: The astra toolbox: a platform for advanced 

algorithm development in electron tomography. Ultramicroscopy 157, 

35–47 (2015)

 18. Chou, C.-Y., Chuo, Y.-Y., Hung, Y., Wang, W.: A fast forward projection using 

multithreads for multirays on GPUs in medical image reconstruction. 

Med. Phys 38(7), 4052–4065 (2011). doi:10.1155/2007/29160

 19. Pratx, G., Chinn, G., Olcott, P.D., Levin, C.S.: Fast, accurate and shift-varying 

line projections for iterative reconstruction using the GPU. IEEE. Trans. 

Med. Imag. 28(3), 435–445 (2009). doi:10.1109/TMI.2008.2006518

 20. Lee, D., Dinov, I., Dong, B., Gutman, B., Yanovsky, I., Toga, A.W.: CUDA 

optimization strategies for compute-and memory-bound neuroimaging 

algorithms. Comput. Meth. Prog. Biomed. 106(3), 175–187 (2012)

 21. Brokish, J., Guo, H., Sack, P., Keesing, D.B., Bresler, Y.: Iterative helical cone-

beam CT reconstruction using fast hierarchical backprojection/reprojec-

tion operators. In: Proc. 2nd Intl. Mtg. on Image Formation in X-ray CT, pp. 

339–42 (2012)

 22. InstaRecon, Technology Overview. https://instarecon.com/technology/ . 

Accessed Dec 2016]

 23. Mohan, K.A., Venkatakrishnan, S.V., Gibbs, J.W., Gulsoy, E.B., Xiao, E.B., 

De Graef, M., Voorhees, P.W., Bouman, C.A.: TIMBIR: A method for time-

space reconstruction from interlaced views. IEEE. Trans. Comput. Imag. 

1(2), 96–111 (2015)

 24. Wang, X., Sabne, A., Kisner, S.J., Raghunathan, A., Bouman, C.A., Midkiff, 

S.P.: High performance model based image reconstruction. In: 21st ACM 

SIGPLAN Symposium on Principles and Practice of Parallel Programming 

(PPoPP), pp. 2–1, ACM, New York (2016)

 25. Basham, M., Filik, J., Wharmby, M.T., Chang, P.C.Y., El Kassaby, B., Gerring, M., 

Aishima, J., Levik, K., Pulford, B.C.A., Sikharulidze, I., Sneddon, D., Webber, 

M., Dhesi, S.S., Maccherozzi, F., Svensson, O., Brockhauser, S., Naray, G., 

Ashton, A.W.: Data Analysis WorkbeNch (DAWN). J. Synchrotron. Radiat. 

22(3), 853–858 (2015). doi:10.1107/S1600577515002283

 26. Hong, Y.P., Chen, S., Jacobsen, C.: A new workflow for x-ray fluores-

cence tomography: MAPStoTomoPy 9592, 95920–959208 (2015). doi: 

10.1117/12.2194162

 27. Patton, S., Samak, T., Tull, C.E., Mackenzie, C.: Spade: decentralized orches-

tration of data movement and warehousing for physics experiments. 

In: Integrated Network Management (IM), 2015 IFIP/IEEE International 

Symposium On, pp. 1014–1019 (2015). doi: 10.1109/INM.2015.7140427

 28. Ushizima, D.M., Bale, H.A., Bethel, E.W., Ercius, P., Helms, B.A., Krishnan, H., 

Grinberg, L.T., Haranczyk, M., Macdowell, A.A., Odziomek, K.: Ideal: images 

across domains, experiments, algorithms and learning. JOM 68(11), 

2963–2972 (2016)

 29. Donatelli, J., Haranczyk, M., Hexemer, A., Krishnan, H., Li, X., Lin, L., Maia, F., 

Marchesini, S., Parkinson, D., Perciano, T., Shapiro, D., Ushizima, D., Yang, 

C., Sethian, J.A.: Camera: the center for advanced mathematics for energy 

research applications. Synchrotron. Radiat. News. 28(2), 4–9 (2015). doi:10.

1080/08940886.2015.1013413.

 30. Computational science initiative, Brookhaven National Laboratory. URL: 

https://www.bnl.gov/compsci/c3d/programs/NSLS.php. Accessed Aug 

2016

 31. Parkinson, D.Y., Beattie, K., Chen, X., Correa, J., Dart, E., Daurer, B.J., 

Deslippe, J.R., Hexemer, A., Krishnan, H., MacDowell, A.A., et al: Real-time 

data-intensive computing. In: Proceedings of the 12th International Con-

ference on Synchrotron Radiation Instrumentation, vol. 1741, p. 050001, 

AIP Publishing, New York (2016)

 32. Deslippe, J., Essiari, A., Patton, S.J., Samak, T., Tull, C.E., Hexemer, A., Kumar, 

D., Parkinson, D., Stewart, P.: Workflow management for real-time analysis 

of lightsource experiments. In: Proceedings of the 9th Workshop on 

Workflows in Support of Large-Scale Science. WORKS ’14, pp. 31–40. IEEE 

Press, Piscataway (2014). doi: 10.1109/WORKS.2014.9

 33. Batenburg, K.J., Sijbers, J.: Dart: a practical reconstruction algorithm for 

discrete tomography. IEEE. Trans. Image. Proc. 20(9), 2542–2553 (2011)

 34. Goris, B., Van den Broek, W., Batenburg, K., Mezerji, H.H., Bals, S.: Electron 

tomography based on a total variation minimization reconstruction 

technique. Ultramicroscopy 113, 120–130 (2012)

 35. Jørgensen, J., Hansen, P., Schmidt, S.: Sparse image reconstruction in com-

puted tomography. PhD thesis, Technical University of Denmark (2013)

 36. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: 

Cluster computing with working sets. In: Proceedings of the 2Nd 

USENIX Conference on Hot Topics in Cloud Computing. HotCloud’10, 

p. 10. USENIX Association, Berkeley (2010). http://dl.acm.org/citation.

cfm?id=1863103.1863113

 37. Apache Software Foundation: Apache Hadoop. http://hadoop.apache.

org. Accessed Jan 2015

 38. Bicer, T.: Supporting data-intensive scientific computing on bandwidth 

and space constrained environments. PhD thesis, The Ohio State Univer-

sity (2014)

 39. Siddon, R.L.: Fast calculation of the exact radiological path for 

a three-dimensional ct array. Med. Phys. 12(2), 252–255 (1985). 

doi:10.1118/1.595715

 40. Jin, R., Yang, G., Agrawal, G.: Shared memory parallelization of data mining 

algorithms: techniques, programming interface, and performance. IEEE. 

Trans. Knowl. Data. Eng. 17(1), 71–89 (2005)

 41. Duke, D.J., Swantek, A.B., Sovis, N.M., Tilocco, F.Z., Powell, C.F., Kastengren, 

A.L., Gürsoy, D., Biçer, T., et al.: Time-resolved x-ray tomography of gasoline 

direct injection sprays. SAE. Int. J. Eng. 9, 143–153 (2015)

 42. Gürsoy, D., Biçer, T., Almer, J.D., Kettimuthu, R., Stock, S.R., De Carlo, F.: 

Maximum a posteriori estimation of crystallographic phases in x-ray dif-

fraction tomography. Phil. Trans. R. Soc. Lond. 373(2043), 20140392 (2015)

 43. Gürsoy, D., Biçer, T., Lanzirotti, A., Newville, M.G., De Carlo, F.: Hyperspectral 

image reconstruction for x-ray fluorescence tomography. Opt. Expr. 23(7), 

9014–9023 (2015)

 44. Dyer, E.L., Roncal, W.G., Fernandes, H.L., Gürsoy, D., Xiao, X., Vogelstein, J.T., 

Jacobsen, C., Körding, K.P., Kasthuri, N.: Quantifying mesoscale neuro-

anatomy using x-ray microtomography. arXiv preprint arXiv:1604.03629 

(2016)

 45. Cooley visualization cluster, argonne leadership computing facility. 

https://www.alcf.anl.gov/user-guides/cooley . Accessed Aug 2016

 46. Kanitpanyacharoen, W., Parkinson, D.Y., De Carlo, F., Marone, F., Stampa-

noni, M., Mokso, R., MacDowell, A., Wenk, H.-R.: A comparative study of 

x-ray tomographic microscopy on shales at different synchrotron facili-

ties: ALS, APS and SLS. J. Synchrotron. Radiat. 20(1), 172–180 (2013)

http://dx.doi.org/10.1107/S1600577516007980
http://dx.doi.org/10.1107/S1600577516007980
http://dx.doi.org/10.1155/2007/29160
http://dx.doi.org/10.1109/TMI.2008.2006518
https://instarecon.com/technology/
http://dx.doi.org/10.1107/S1600577515002283
http://dx.doi.org/10.1109/INM.2015.7140427
http://dx.doi.org/10.1080/08940886.2015.1013413.%20
http://dx.doi.org/10.1080/08940886.2015.1013413.%20
http://dx.doi.org/10.1109/WORKS.2014.9
http://dl.acm.org/citation.cfm?id=1863103.1863113
http://dl.acm.org/citation.cfm?id=1863103.1863113
http://hadoop.apache.org
http://hadoop.apache.org
http://dx.doi.org/10.1118/1.595715
http://arxiv.org/abs/1604.03629
https://www.alcf.anl.gov/user-guides/cooley

	Trace: a high-throughput tomographic reconstruction engine for large-scale datasets
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusion: 

	Background
	Related work
	High-performance iterative tomographic reconstruction
	Tomographic data acquisition and organization
	Parallelization of iterative reconstruction using distributed and shared memory techniques
	Improving the cache utilization of Trace

	System evaluation
	Cache-sensitive iterative reconstruction
	Parallel reconstruction of medium- and large-scale tomography data
	Performance analysis of parallel large-scale sinogram reconstruction
	Performance analysis of parallel medium-scale sinogram reconstruction
	Analysis of large-scale parallel reconstruction with strong scaling


	Conclusion
	Authors’ contributions
	References


