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Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
As zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe issue width of superscalarprocessors is increased, 

instruction fetch bandwidth requirements will also increase. 
I t  will become necessary to fetch multiple basic blocks per 
cycle. Conventional instruction caches hinder this efsort be- 
cause long instruction sequences are not always in contigu- 
ous cache locations. 

We propose supplementing the conventional instruction 
cache with a trace cache. This structure caches traces of the 
dynamic instruction stream, so instructions that are other- 
wise noncontiguous appear contiguous. For the Instruction 
Benchmark Suite (IBS) and SPEC92 integer benchmarks, 
a 4 kilobyte trace cache improves pegormance on average 
by 28% over conventional sequential fetching. Furthel; it 
is shown that the trace cache’s eflcient, low latency ap- 
proach enables it to outperform more complex mechanisms 
that work solely out of the instruction cache. 

1. Introduction 

High performance superscalar processor organizations 
divide naturally into an instruction fetch mechanism and 
an instruction execution mechanism (Figure 1). The fetch 
and execution mechanisms are separated by instruction is- 
sue buffer(s), for example queues, reservation stations, etc. 
Conceptually, the instruction fetch mechanism acts zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas a 
“producer” which fetches, decodes, and places instructions 
into the buffer. The instruction execution engine is the “con- 
sumer” which removes instructions from the buffer and ex- 
ecutes them, subject to data dependence and resource con- 
straints. Control dependences (branches and jumps) provide 
a feedback mechanism between the producer and consumer. 

Processors having this organization employ aggressive 
techniques to exploit instruction-level parallelism. Wide 
dispatch and issue paths place an upper bound on peak in- 
struction throughput. Large issue buffers are used to main- 
tain a window of instructions necessary for detecting paral- 
lelism, and a large pool of physical registers provides desti- 
nations for all the in-flight instructions issued from the win- 
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Figure 1. Decoupled fetchlexecute engines. 

dow. To enable concurrent execution of instructions, the 
execution engine is composed of many parallel functional 
units. The fetch engine speculates past multiple branches in 
order to supply a continuous instruction stream to the win- 
dow. 

The trend in superscalar design is to increase the scale 
of these techniques: wider dispatchlissue, larger windows, 
more physical registers, more functional units, and deeper 
speculation. To maintain this trend, it is important to bal- 
ance all parts of the processor - any bottlenecks diminish the 
benefit of aggressive ILP techniques. 

In this paper, we are concerned with instruction fetch 
bandwidth becoming a performance bottleneck. Instruc- 
tion fetch performance depends on a number of factors. In- 
struction cache hit rate and branch prediction accuracy have 
long been recognized as important problems in fetch perfor- 
mance and are well-researched areas. In this paper, we are 
interested in additional factors that are only now emerging 
as processor issue rates exceed four instructions per cycle: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 branch throughput - If only one conditional branch is 
predicted per cycle, then the window can grow at the 
rate of only one basic block per cycle. Predicting mul- 
tiple branches per cycle allows the overall instruction 
throughput to be correspondingly higher. 

0 noncontiguous instruction alignment - Because of 
branches and jumps, instructions to be fetched during 
any given cycle may not be in contiguous cache loca- 
tions. Hence, there must be adequate paths and logic 
available to fetch and align noncontiguous basic blocks 
and pass them up the pipeline. That is, it is not enough 
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for the instructions to be present in the cache, it must 
also be possible to access them in parallel. 

stream. The limit zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn is the tnce cache line size, and m is 
the branch predictor throughput. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA trace is fully specified 

Benchmark zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

e fetch unit latency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- Pipeline latency has a profound im- 
pact on processor performance. This is due to the cost 
of refilling the pipeline after incorrect control specula- 
tion. In the case of the fetch unit, we are concerned with 
the startup cost of redirecting fetching after resolv- 
ing a branch misprediction, jump, or instruction cache zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
miss.  Inevitably, the need for higher branch throughput 
and noncontiguous instruction alignment will increase 
fetch unit latency; yet ways must be found to minimize 
the latency impact. 

Current fetch units are limited to one branch prediction 
per cycle and can therefore fetch 1 basic block per cycle 
or up to the maximum instruction fetch width, whichever is 
smaller. The data in Table 1 shows that the average size of 
basic blocks is around 4 or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 instructions for integer codes. 
While fetching a single basic block each cycle is sufficient 
for implementations that issue at most 4 instructions per cy- 
cle, it is not so for processors with higher peak issue rates. 
If we introduce multiple branch prediction [ 1][ 161, then the 
fetch unit can at least fetch multiple contiguous basic blocks 
in a cycle. Data for the number of instructions between 
taken branches shows that the upper bound on fetch band- 
width is still somewhat limited in this case, due to the fre- 
quency of taken branches. Therefore, if a taken branch is 
encountered, it is necessary to fetch instructions down the 
taken path in the same cycle that the branch is fetched. 

taken % avg basic # instr between 
block size taken branches 

espresso 
xlisp 

gcc 
sc 

compress 

I 

I eantott 11 86.2% I 4.20 1 4.81 I 
63.8% 4.24 6.65 
64.7% 4.34 6.70 
67.6% 4.65 6.88 

70.2% 4.71 6.7 1 
60.9% 5.39 8.85 

Table 1. Branch and basic block statistics. 

1.1. The trace cache 

The job of the fetch unit is to feed the dynamic instruc- 
tion stream to the decoder. A problem is that instructions 
are placed in the cache in their compiled order. Storing 
programs in static form favors fetching code that does not 
branch or code with large basic blocks. Neither of these 
cases is typical of integer code. 

We propose a special instruction cache which captures 
dynamic instruction sequences. This structure is called a 
trace cache because each line stores a snapshot, or trace, 
of the dynamic instruction stream, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas shown in Figure 2. A 
trace is a sequence of at most n instructions and at most m 
basic blocks starting at any point in the dynamic instruction 

by a starting address and a sequence of up to m - 1 branch 
outcomes which describe the path followed. The first time a 
trace is encountered, it is allocated a line in the trace cache. 
The line is filled as instructions are fetched from the instruc- 
tion cache. If the same trace is encountered again in the 
course of executing the progrm, i.e. the same starting ad- 
dress and predicted branch outcomes, it will be available in 
the trace cache and is fed directly to the decoder. Otherwise, 
fetching proceeds normally fmm the instruction cache. 

DYNAMIC INSTRUCTION STREAhl * 

trace (A,taken,taken) trace (A,laken,taken) 

t t  

Access exisung m c e  I using A and predtcuons(t,t) 
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Figure 2. High level view of the trace cache. 

The trace cache approach relies on dynamic sequences of 
code being reused. This may tie the case for two reasons: 

e temporal locality - like the primary instruction cache, 
the trace cache can count on instructions which have 
been recently used being used again in the near future. 

e branch behavior - most kaanches tend to be biased to- 
wards one direction, which is why branch prediction 
accuracy is usually high. Thus, it is likely that certain 
paths through the control flow graph will be followed 
frequently. 

1.2. Related prior work 

Three recent studies have focused on high bandwidth in- 
struction fetching and are closdy related to the research re- 
ported here. All of these attempt to fetch multiple, possibly 
noncontiguous basic blocks eazh cycle from the instruction 
cache. 

First, Yeh, Marr, and Patt [ 161 consider a fetch mecha- 
nism that provides high bandwidth by predicting multiple 
branch target addresses every cycle. The method features a 
Branch Address Cache, a naturd extension of the branch tar- 
get buffer [8]. With a branch larget buffer, a single branch 
prediction and a BTB hit produces the starting address of 
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the next basic block. Similarly, a hit in the branch address 
cache combined with multiple branch predictions produces 
the starting addresses of the next zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAseveral basic blocks. These 
addresses are fed into a highly interleaved instruction cache 
to fetch multiple basic blocks in a single cycle. 

A second study by Franklin and Dutta [2] uses a simi- 
lar approach to the branch address cache (providingmultiple 
branch targets), but with a new method for predicting multi- 
ple branches in a single cycle. Their approach hides multi- 
ple individual branch predictions within a single prediction; 
e.g. rather than make 2 branch predictions, make 1 predic- 
tion that selects from among 4 paths. This enables the use 
of more accurate two-level predictors. 

Another hardware scheme proposed by Conte, Mills, 
Menezes, and Pate1 [ l ] uses two passes through an inter- 
leaved branch target buffer. Each pass through the branch 
target buffer produces a fetch address, allowing two non- 
adjacent cache lines to be fetched. In addition, the inter- 
leaved branch target buffer enables detection of any number 
of branches in a cache line. In particular, the design is able to 
detect short forward branches within a line and eliminate in- 
structions between the branch and its target using a collaps- 
ing buffer. The work also proposes compiler techniques to 
reduce the frequency of taken branches. 

Two previously proposed hardware structures are similar 
to the trace cache but exist in different applications. The fill 
unit, proposed by Melvin, Shebanow and Patt [lo], caches 
RISC-like instructions which are derived from a CISC in- 
struction stream. This predecoding eased the problem of 
supporting a complex instruction set such zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas VAX on the 
HPS restricted dataflow engine. Franklin and Smother- 
man [3] extended the fill unit’s role to dynamically assem- 
ble VLIW-like instruction words from a RISC instruction 
stream, which are then stored in a shadow cache. The goal 
of this structure is to ease the issue complexity of a wide is- 
sue processor. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1.3. Problems with other fetch mechanisms 

Recall that the job of the fetch unit is to feed the dynamic 
instruction stream to the decoder. Unlike the trace cache ap- 
proach, previous designs have only the conventional instruc- 
tion cache, containing a static form of the program, to work 
with. Every cycle, instructions from noncontiguous loca- 
tions must be fetched from the instruction cache and assem- 
bled into the predicted dynamic sequence. There are prob- 
lems with this approach: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 Pointers to all of the noncontiguous instruction blocks 
must be generated before fetching can begin. This 
implies a level of indirection, through some form of 
branch target table (e.g. branch target buffer), which 
translates into an additional pipeline stage before the 
instruction cache. 

0 The instruction cache must support simultaneous ac- 
cess to multiple, noncontiguous cache lines. This 
forces the cache to be multiported; if multiporting is 

done through interleaving, bank conflicts will occur. 

0 After fetching the noncontiguous instructions from the 
cache, they must be assembled into the dynamic se- 
quence. Instructions must be shifted and aligned to 
make them appear contiguous to the decoder. This 
most likely translates into an additional pipeline stage 
after the instruction cache. 

The trace cache approach avoids these problems by 
caching dynamic instruction sequences themselves, ready 
for the decoder. If the predicted dynamic sequence exists 
in the trace cache, it does not have to be recreated on the 
fly from the instruction cache’s static representation. In par- 
ticular, no additional stages before or after the instruction 
cache are needed for fetching noncontiguous instructions. 
The stages do exist, but not on the critical path of the fetch 
unit zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- rather, on the fill side of the trace cache. The cost of 
this approach is redundant instruction storage: the same in- 
structions may reside in both the primary cache and the trace 
cache, and there might even be redundancy among lines in 
the trace cache. 

1.4. Contributions 

As with prior work in high bandwidth instruction fetch- 
ing, this paper demonstrates the importance of fetching past 
multiple possibly-taken branches each cycle. Unlike other 
work in the area, we place equal emphasis on fetch unit la- 
tency. The end result is the trace cache as a means for low 
latency, high bandwidth instruction fetching. 

Another contribution is a detailed simulation study com- 
paring proposed high bandwidth fetch mechanisms includ- 
ing the trace cache. Previously, the approaches described in 
Section 1.2 could not be directly compared due to different 
experimental setups - different ISAs, processor execution 
models, branch predictors, caches, workloads, and metrics. 

In the course of this work, many microarchitectural and 
logic design issues arose. We looked at issues for not only 
the trace cache, but other proposed mechanisms as well. The 
results of this detailed study are documented in [12]. 

1.5. Paper overview 

In the next section the trace cache fetch unit is described 
in detail. Section 3 follows up with an analysis of other pro- 
posed high bandwidth fetch mechanisms. In Section 4 we 
describe the simulation methodology including the proces- 
sor model, workload, and performance metric. Simulation 
results are presented in Section 5. As part of the study in 
Section 5, we compare the trace cache with previously pro- 
posed high performance fetch mechanisms. 
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Figure 3. The core fetch unit. 

2. nace cache 

In Section 1.1 we introduced the concept of the trace 
cache - an instruction cache which captures dynamic in- 
struction sequences. We now present a trace cache imple- 
mentation. Because the trace cache is not intended to re- 
place the conventional instruction cache or the fetch hard- 
ware around it, we begin with a description of the core fetch 
mechanism. We then show how the core fetch unit is aug- 
mented with the trace cache. 

2.1. Core fetch unit 

The core fetch unit is implemented using established 
hardware schemes. It is called zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAinterleaved sequential in [ 11. 
Fetching up to the first predicted taken branch each cycle 
can be done using the combination of an accurate multiple 
branch predictor [16], an interleaved branch target buffer 
(BTB) [l][S], a return address stack (RAS) [6], and a 2-way 
interleaved instruction cache [1][4]. Refer to Figure 3. 

The core fetch unit is designed to fetch as many contigu- 
ous instructions possible, up to a maximum instruction limit 
and a maximum branch limit. The instruction constraint 
is imposed by the width of the datapath, and the branch 
constraint is imposed by the branch predictor throughput. 
For demonstration, a fetch limit of 16 instructions and 3 
branches is used throughout. 

The cache is interleaved so that 2 consecutive cache lines 
can be accessed; this allows fetching sequential code that 

spans a cache line boundary, always guaranteeing a full 
cache line or up to the first taken branch [4]. This scheme 
requires minimal complexity for aligning instructions: (1) 

logic to swap the order of the two cache lines (interchange 
switch), ( 2 )  a left-shifter to align the instructions into a 16- 
wide instruction latch, and (3) logic to mask off unused in- 
structions. 

All banks of the BTB are accessed in parallel with the 
instruction cache. They serve the role of (1) detecting 
branches in the instructions currently being fetched and ( 2 )  
providing their target addresses, in time for the next fetch 
cycle. The BTB must be n-way interleaved, where n is the 
number of instructions in a cs che line. This is so that all in- 
structions within a cache line can be checked for branches 
in parallel [I]. The BTB Cim detect other types of con- 
trol transfer instructions as well. If a jump is detected, the 
jump address may be predicl.ed. (Jump target predictions 
are not considered in this paper, however.) Return addresses 
can almost always be obtaincd with no penalty by using a 
callheturn stack. If the BTB detects a return in the instruc- 
tions being fetched, it pops the address at the top of the RAS. 

Notice in Figure 3 that the branch predictor is separate 
from the BTB. This is to all0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw for predictors that are more 
accurate than the 1-bit or 2-bit counters normally stored 
with each branch entry in the BTB. While storing counters 
with each branch achieves m dtiple branch prediction triv- 
ially, branch prediction accuritcy is limited. Branch predic- 
tion is fundamental to ILP, and should have precedence over 
other factors. For high branch prediction accuracy, we use 
a 4kB GAg( 14) correlated branch predictor [15]. The 14 bit 
global branch history register indexes into a single pattern 
history table. This predictor was chosen for its accuracy and 
because it is more easily extended to multiple branch pre- 
dictions than other predictors which require address infor- 
mation [16][2]. Multiporting the pattern history table and 
changing its organization slightly extends the single corre- 
lated branch predictor to multiple predictions each cycle, as 
proposed in [ 161. (Refer to [ 1 21 for an implementation.) 

BTB logic combines the EITB hit information with the 
branch predictions to produce the next fetch address, and to 
generate trailing zeroes in the valid instruction bit vectors 
(if there is a predicted taken branch). The leading zeroes in 
the valid instruction bit vectors are determined by the low- 
order bits of the current fetch address. The masking logic is 
controlled by these bit vectors. 

Both the interchange and shift logic are controlled by the 
low-order bits of the current fetch address. This is a key 
point: the left-shifl amount is known at the beginning of the 
fetch cycle, and has the entire cache access to fanout to the 
shifterdatapath. Further, if a ti~ansmission gate barrel shifter 
is used, instructions pass through only one transmission gate 
delay with a worst case capacil ive loading of 15 other trans- 
mission gates on both input and output. In summary, con- 

trol is not on the critical path, and datapath delay is minimal. 
Therefore, in our simulations we treat the core fetch unit as 
a single pipeline stage. 
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2.2. Adding the trace cache zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The core fetch unit can only fetch contiguous sequences 

of instructions, i.e. it cannot fetch past a taken branch in 
the same cycle that the branch is fetched. The trace cache 
provides this additional capability. The trace cache together 
with the core fetch unit is shown in Figure 4. 
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Figure 4. The trace cache fetch mechanism. 

The trace cache is made up of instruction traces, control 
information, and line-fill buffer logic. The length of a trace 
is limited in two ways - by number of instructions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn and 
by number of basic blocks m. The former limit n is chosen 
based on the peak dispatch rate. The latter limit m is chosen 
based on n and the average number of instructions in a basic 
block. m also determines, or is constrained by, the number 
of branch predictions made per cycle. In Figure 4, n = 16 
and m = 3. The control information is similar to the tag 
array of standard caches but contains additional state infor- 
mation: 

valid bit: indicates this is a valid trace. 

tug: identifies the starting address of the trace. 

branchjlags: there is a single bit for each branch within 
the trace to indicate the path followed after the branch 
(takerhot taken). The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmth branch of the trace does not 
need a flag since no instructions follow it, hence there 
are only m - 1 bits instead of m bits. 

brunch mask state is needed to indicate (1) the num- 
ber of branches in the trace and (2) whether or not the 

trace ends in a branch. This is needed for compar- 
ing the correct number of branch predictions against 
the same number of branch flags, when checking for 
a trace hit. This is also needed by the branch predic- 
tor to know how many predictions were used. The first 
[Zogz(m + 1)1 bits encode the number of branches. 
One more bit indicates if the last instruction in the trace 
is a branch; if true, the branch’s corresponding branch 
flag does not need to be checked since no instructions 
follow it. 

e truce full-throughaddress: next fetch address if the last 
branch in the trace is predicted not taken. 

e trace target address: next fetch address if the last 
branch in the trace is predicted taken. 

The trace cache is accessed in parallel with the instruction 
cache and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABTB using the current fetch address. The predic- 
tor generates multiple branch predictions while the caches 
are accessed. The fetch address is used together with the 
multiple branch predictions to determine if the trace read 
from the trace cache matches the predicted sequence of ba- 
sic blocks. Specifically, a trace cache hit requires that (1) the 
fetch address match the tag and (2) the branch predictions 
match the branch flags. The branch mask ensures that the 
correct number of prediction bits are used in the comparison. 
On a trace cache hit, an entire trace of instructions is fed into 
the instruction latch, bypassing the instruction cache. 

On a trace cache miss, fetching proceeds normally from 
the instruction cache, i.e. contiguous instruction fetching. 
The line-fill buffer logic services trace cache misses. In the 
example in Figure 4, three basic blocks are fetched one at a 
time from the instruction cache, since all branches are pre- 
dicted taken. The basic blocks are latched one at a time into 
the line-fill buffer; the line-fill control logic serves to merge 
each incoming block of instructions with preceding instruc- 
tions in the line-fill buffer. Filling is complete when either n 
instructions have been traced or m branches have been de- 
tected in the trace. At this point the contents of the line-fiIl 
buffer are written into the trace cache. The branch flags and 
branch mask are generated during the line-fill process, and 
the trace target and fall-through addresses are computed at 
the end of the line-fill. If the trace does not end in a branch, 
the target address is set equal to the fall-through address. 

There are different classes of control transfer instructions 
- conditional branches, unconditional branches, calls or di- 
rect jumps, returns, indirect jumps, and traps - yet so far 
only conditional branches have been discussed. The com- 
plex alternative for handling all of these cases is to add ad- 
ditional bits to each branch flag to distinguish the type d 
control transfer instruction. Further, the line-fill buffer must 
stop filling a trace when a return, indirectjump, or trap ism- 
countered, because these control transfer instructions have 
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an indetenninite number of targets, whereas the predictor 
can only predict one of two targets. Lastly, the branch mask 
and the hit logic are made slightly more complex since un- 
conditional branches and calls should not be involved in pre- 
diction (the outcome is known). 

We simplify these complications in two ways. First, the 
trace cache does not store returns, indirect jumps, or traps 
at all; the line-fill buffer aborts a fill when it detects any of 
these instructions. Second, unconditional branches and calls 
can be viewed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas conditional branches that are extremely 
predictable; from this point of view, they can be grouped 
into the conditional branch class and not be treated any dif- 
ferently. With these two simplifications, the trace cache has 
only to deal with conditional branches. 

The size of a direct mapped trace cache with 64 lines, 
n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 16, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm = 3 is 712 bytes for tagslcontrol and 4 kilo- 
bytes for instructions (comparable in area to the correlated 
branch predictor, 4kB). This configuration is used in the ex- 
periments which follow. 

2.3. Trace cache design space 

The trace cache depicted in Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 is the simplest de- 
sign among many alternatives. It is the implementation used 
in simulations of the trace cache. However, the design space 
deserves some attention: 

I) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAassociativity: The trace cache can be made more asso- 
ciative to reduce conflict misses. 

2 )  multiple paths: A downside of the simple trace cache 
is that from a given starting address, only one trace can be 
stored. It might be advantageous to be able to store mul- 
tiple paths eminating from a given address. This can be 
thought of as another form of associativity - path associu- 
tivity. Adding path associativity could reduce thrashing be- 
tween traces that start at the same address. 

3)partial matches: An alternative to providing path asso- 
ciativity is to allow partial hits. If the fetch address matches 
the starting address of a trace and the first few branch predic- 
tions match the first few branch flags, provide only a prefix 
of the trace. This is in place of the simple “all or nothing”ap- 
proach we use. The additional cost of this scheme is that in- 
termediate basic block addresses must be stored for the same 
reason that trace target and fall-through addresses are stored. 
Also, there is the question of whether or not a partial hit be 
treated as a miss (i.e. to replace the line or not). 

4)  other indexing methods: The simple trace cache in- 
dexes with the fetch address and includes branch predictions 
in the tag match. Alternatively, the index into the trace cache 
could be derived by concatenating the fetch address with the 
branch prediction bits. This effectively achieves path asso- 
ciativity while keeping a direct mapped structure, because 
different paths starting at the same address now map to con- 
secutive locations in the trace cache. 

5)fill issues: While the line-fill buffer is collecting a new 
trace, the trace cache continues to be accessed by the fetch 
unit. This means a miss could occur in the midst of handling 
a previous miss. The design options in order of increasing 
complexity are: ignore any new misses, delay servicing new 
misses until the line-fill buf ‘er is free, or provide multiple 
line-fill buffers to support concurrent misses. Another issue 
is whether to fill the trace cache with speculative traces or to 
wait for branch outcomes beFore committing a trace. 

6)judicious trace selection: There are likely to be traces 
that are committed but never reused. These traces may dis- 
place useful traces, causing needless misses. To improve 
trace cache hit rates, the design could use a small buffer to 
store recent traces; a trace iri this buffer is only committed 
to the trace cache after one or more hits to that trace. 

7)  victim trace cache: An alternative to judicious trace 
selection is to use a victim cache [5]. It may keep valuable 
traces from being permanently displaced by useless traces. 

3. Other high bandwidth fetch mechanisms 

In this section we analyze the organization of two pre- 
viously proposed fetch mechanisms aimed at fetching and 
aligning multiple noncontiguous basic blocks each cycle. 
The analysis compares these mechanisms against the trace 
cache, with latency being a key point for comparison. 

3.1. Branch address cache 

The branch address cache fetch mechanism proposed by 
Yeh, Marr, and Patt [ 161 is shown in Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. There are four 
primary components: (1) a branch address cache (BAC), (2) 
a multiple branch predictor, (3) an interleaved instruction 
cache, and (4) an interchangc and alignment network. The 
BAC extends the BTB to mu1 tiple branches by storing a tree 
of target and fall-through addresses as depicted in Figure 6. 
The depth of the tree depends on the number of branches 
predicted per cycle. 

In Figure 5, light grey box :s represent non-control trans- 
fer instructions and dark grey boxes represent branches; the 
fields in the BAC correspond to the tree in Figure 6, as in- 
dicated by the address labels 4 through 0. The diagram de- 
picts the two-stage nature of the design. In the first stage, 
an entry containing up to 14 basic block addresses is read 
from the BAC. From these addresses, up to 3 basic block 
addresses corresponding to the predicted path are selected. 
In this example, the next 3 brmches are all predicted taken, 
corresponding to the sequenc: of basic blocks { C,G,O). In 
the second stage, the cache r:ads the three basic blocks in 
parallel from its multiple banks. Since the basic blocks may 
be placed arbitrarily into the cache banks, they must pass 
through an alignment network to align them into dynamic 
program order and merge them into the instruction latch. 
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Figure 5. Branch address cache approach. 

The two stages in this design are pipelined. During the 
second stage, while basic blocks {C,G,O} are being fetched 
from the instruction cache, the BAC begins a new cycle us- 
ing address 0 as its index. In general, the last basic block 
address indexing into the instruction cache is also the index 
into the BAC. 

If an address misses in the BAC, an entry is allocated for 
the portion of the control flow graph which begins at that 
address. Branch target and fall-through addresses are filled 
in the entry as paths through the tree are traversed; an en- 
try may contain holes corresponding to branches which have 
not yet been encountered. 

A 

----2nd branch 

Figure 6. BAC stores subgraphs of the CFG. 

Though conceptually the design has two pipeline stages, 
possibly one or more additional pipeline stages are implied 
by having the complicated alignment network. The align- 

ment network must (1) interchange the cache lines from 
numerous banks (with more than two banks, the pennuta- 
tions grow quickly), and (2) collapse the basic blocks to- 
gether, eliminating unused intervening instructions. Though 
not discussed in [ 161, logic like the collapsing buffer [ 11 dis- 
cussed in the next section will be needed to do this. 

3.2. Collapsing buffer 

Figure 7. The collapsing buffer approach. 

The hardware is similar to the core fetch unit of the trace 
cache (described in Section 3), but has two important dis- 
tinctions. First, the BTB logic is capable of detecting intru- 
block branches - short hops within a cache line. Second, 
a single fetch goes through two BTB accesses. As will be 
described below, this allows fetching beyond one taken in- 
terblock branch - a branch out of the cache line. In both 
cases, the collapsing buffer uses control information gener- 
ated by the BTB logic to merge noncontiguous basic blocks. 

Figure 7 illustrates how three noncontiguous basic blocks 
labelled A, B, and C are fetched. The fetch address A ac- 
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cesses the interleaved BTB. The BTB indicates that there are 
two branches in the cache line, one at instruction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 with tar- 
get address B, the other at instruction 13 with target address 
C. Based on this branch information and branch predictions 
from the predictor, the BTB logic indicates which instruc- 
tions in the fetched line are valid and produces the next basic 
block address, C. 

The initial BTB lookup produces (1) a bit vector indi- 
cating the predicted valid instructions in the cache line (in- 
structions from basic blocks A and B), and (2) the predicted 
target address C of basic block B. The fetch address A and 
target address C are then used to fetch two nonconsecutive 
cache lines from the interleaved instruction cache. This can 
be done only if the cache lines are in different banks. In 
parallel with this instruction cache access, the BTB is ac- 
cessed again, using the target address C. This second, seri- 
alized lookup determines which instructions are valid in the 
second cache line and produces the next fetch address (the 
predicted successor of basic block C). 

When the two cache lines have been read from the cache, 
they pass through masking and interchange logic and the 
collapsing buffer (which merges the instructions), all con- 
trolled by bit vectors produced by the two passes through 
the BTB. After this step, the properly ordered and merged 
instructions are captured in the instruction latches to be fed 
to the decoders. 

This scheme has several disadvantages. First, the fetch 
line and successor line must reside in different cache banks. 
Bank conflicts can be reduced by adding more banks, but 
this requires a more complicated, higher latency inter- 
change switch. Second, this scheme does not scale well 
for interblock branches; supporting additional interblock 
branches requires zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas many additional BTB accesses, all se- 
rialized. Third, the BTB logic requires a serial chain of n 
address comparators to detect intrablock branches, where n 
is the number of BTB banks. Most seriously, however, is 
that this fetch mechanism adds a significant amount of logic 
both before and after the instruction cache. The instruction 
fetch pipeline is likely to have three stages: (1) initial BTB 
lookup and BTB logic, (2) instruction cache access and sec- 
ond BTB lookup, and (3) interchange switch, masking, and 
collapsing buffer. The collapsing buffer takes only a single 
stage if implemented as a bus-based crossbar zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4. Simulation methodology 

4.1. Processor model 

Our simulation model follows the basic structure shown 
in Figure 1 - a fetch engine and an execute engine decou- 
pled via instruction issue buffers. Various fetch engines - 
trace cache, branch address cache, and collapsing buffer - 
are modeled in detail. The processor execution part of the 

model is constrained only I)y true data dependences. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWe 
assume unlimited hardware resources - any instructions in 
the instruction buffers that have their data available may is- 
sue. This is done to place as much demand on the fetch unit 
as possible, making instruction fetch the performance bot- 
tleneck. In effect, unlimited register renaming and full dy- 
namic instruction issue are assumed. Loads and stores are 
assumed to have oracle addrm disambiguation - loads and 
stores wait for previous storcs only if there is a true address 
conflict. Also, the data cache always hits. The only hard- 
ware limitations imposed ar: the maximum size of the in- 
struction buffer and the degree of superscalar dispatch. In 
all simulations, the size of the instruction buffer is 2048 use- 
ful instructions and the maxi mum fetchldispatch bandwidth 
is 16 instructions per cycle. In summary, the amount of ILP 
exploited is limited by 5 factors: 

maximum fetcwdispatch rate (16/cycle) 
maximum size of instruction window (2048) 
true data dependences in the program 
operation latencies 
performance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the fetch engine 

It is the last factor that we are interested in and which will 
vary between simulations. 

The instruction pipeline if; composed of 4 phases: fetch, 
dispatch, issue, and execution. The latency of the fetch 
phase is varied according to implementation, and the dis- 
patch latency is fixed at 1 cycle. If all operands are avail- 
able at or immediately after dispatch, instruction issue takes 
only 1 cycle; otherwise issue is delayed until operands ar- 
rive. Because of unlimited resources and unlimited regis- 
ter renaming, issue never stalls due to structural or register 
WARNAW hazards. After issue, execution takes a certain 
number of cycles based on the operation. Operation laten- 
cies are similar to those of the MIPS R10000processor. 

4.2. Workload 

The six integer SPEC92 benchmarks and six benchmarks 
from the Instruction Benchmzrk Suite (IBS) [ 141 are used to 
evaluate the performance of :he various fetch mechanisms. 
SPEC92 floating-point results can be found in [12]. 

The SPEC92 benchmarks were compiled on a Sun 
SPARCstation 10/30 using “gcc -04 -static -fschedule-insns 
-fschedule-insns2”. SPARC instruction traces were gener- 
ated using the Quick Projiler (2nd Tracer (QPT) [7] and then 
fed into the trace-driven SPPRC processor simulator. The 
SPEC92 benchmarks were si mulated to completion. 

The IBS benchmarks are MIPS traces obtained via a logic 
analyzer connected to the CPI J of a DECstation 3 100. These 
benchmarks are a better test of instruction fetch performance 
than SPEC92 [14]. For one :hing, a significant fraction of 
the traces are kernel and X-server references, increasing in- 
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structionpath lengths. To simulate the IBS traces, we devel- 
oped a trace-driven MIPS processor simulator similar to the 
SPARC one. 

SIMULATION 
PARAMETER 

instruction fetch limit 
Multiule I BHR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4.3. Performance metric 

INSTR SUPPLY MECHANISM 
TC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 CB I BAC 

16 instructions per cycle 
14 bits 

For measuring performance we use instructions com- 
pleted per cycle (IPC), which is a direct measure of perfor- 
mance and is almost certainly the measure that counts most. 
The harmonic mean is used to average the performance of 
benchmarks. 

line size 
prefetch 

miss oenaltv zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5. Results 

16instr I 16instr I 4instr 
none I none 1 3 lines 

10 cvcles 

Branch 
Predictor 

Instr 
Cache 

size 11 64entries 
assoc I1 dir mao zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd a  I 

Cache line size 16 instr 
# conc fills 

Branch size 1K entries 
Address assoc dir map 
Cache # conc fills zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Table 2. Fetch unit configurations. 

The results are split into two sets. The first set assumes 
all fetch units have a latency of 1 cycle, in order to demon- 
strate each mechanism’s ability to deliver bandwidth perfor- 
mance. The second set shows what happens when the extra 
pipe stages implied by CB and BAC are actually simulated. 

5.1. Single-cycle fetch latency 

The first set of results, the two graphs in Figure 8, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas- 
sumes a fetch unit latency of 1 cycle for all schemes. This is 
done to isolate the ability of the fetch mechanisms to supply 
instruction bandwidth. 

The first observation is that SEQ.3 gives a substantial per- 
formance boost over SEQ.l. The graph in Figure 9 shows 
that fetching past multiple not-taken branches each cycle 
yields performance improvement above 7% for all of the 
SPEC benchmarks. Over half of the SPEC benchmarks 
show a 17% or better performance improvement. Four of 
the IBS benchmarks show a 7% or greater improvement. 

The second observation is that for both SPEC and IBS 
workloads, fetching past taken branches is a big win. 
Adding the TC function to the SEQ.3 mechanism yields 
about as much performance improvement as extending 
SEQ.l to multiple not-taken branches per cycle. 

The graph in Figure 10 shows the performance improve- 
ment that BAC, CB, and TC yield over SEQ.3 (SEQ.3 is 
used as the base instead of SEQ. 1 because it is aggressive, 
yet not much more complex than SEQ.1). One might ex- 
pect that under the single-cycle fetch latency assumption, 
the three approaches would perform similarly. This is the 
case for much of the IBS workload, with TC always per- 
forming as well or better than the other two schemes. 

For the SPEC workload, however, TC enjoys a noticeable 
lead over CB. This is most likely because the original col- 
lapsing buffer was not designed to handle backward taken 
intrablock branches [I], whereas the TC can handle any ar- 
bitrary trace. 

For the majority of the benchmarks, BAC performs worst 
of the three, but this is particularly noticeable in the SPEC 
runs. There are two reasons for this. First, instruction cache 
bank conflicts are the primary performance loss for BAC. 
Data in [ 121 shows that BAC is comparable to TC if bank 
conflicts are ignored. Second, the BAC treats basic blocks 
as atomic units. As a result, a BAC entry will provide only 
as many basic block addresses as will fit within the 16 in- 
struction fetch limit. Given hits in both the TC and BAC, 
the BAC can never supply more instructions than the TC. 

To summarize the major results, TC performs on average 
15% better than SEQ.3 for the SPEC workload and 9% bet- 
ter for the IBS workload - overall, a 12% performance gain. 
Compared to SEQ. 1, TC improves performance by 37% for 
SPEC, 20% for IBS, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA28% for the combined workload. 
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Figure 8. IPC results (fetch latency = 1 cycle). 
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Figure 9. Improvement of SEQ.3 over SEQ.l. 
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Figure 10. Improvement over SEQ.3. 

5.2. The effect of latency 

The effect of fetch unit 1atl:ncy is quantified by the graph 
in Figure 11. Since both CB and BAC add stages before and 
after the instruction cache, we: give the performance of these 
schemes for fetch latencies o m  2 and 3 cycles. CB and BAC 
fall well below the performance of TC. For all but 4 of the 
benchmarks, BAC with a lateiicy of 2 cycles performs worse 
than SEQ.3. Likewise, for most of the benchmarks, CB with 
a latency of 3 cycles performs worse than SEQ.3. 

I Performance Improvement #over SE0.3, Non-unit Latency 
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Figure 11. lmprovemelnt over SEQ.3 (L2 and 
L3 stand for 2 and 3 cycle latency.) 

5.3. Trace cache effectiveness 

To determine how effectiv: the trace cache is, we estab- 
lish an upper bound on its performance and measure how far 
short it falls from this bound. 'The bound is established by an 
"ideal" fetch model, defined , is  follows: as long as branch 
outcomes are predicted correctly and instructions hit in the 
instruction cache, up to 3 basic blocks or 16 instructions - 
whichever comes first - can be fetched every cycle. 

Figure 12 shows that the,*e is still performance to be 
gained by better instruction fetching. TC falls short of ideal 
performance due to trace cacl-e and BTB misses. The trace 
cache used in the previous experiments has only 64 entries 
and is direct mapped; adding 214-way associativity or sim- 
ply increasing the number of cntries will narrow the perfor- 
mance gap between TC and id:al. Figure 12 provides incen- 
tive to explore the design space alternatives of Section 2.3 
aimed at improving hit rate. 'To demonstrate the benefit of 
using a larger trace cache, we include IBS results for a 32 
kilobyte, 4-way associative trice cache in the same graph. 

Trace cache miss rate can be specified in two ways: in 
terms of traces (trace miss ratc:) and in terms of instructions 
(instruction miss rate). Trace iniss rate is the fraction of ac- 
cesses that do not find a trace present. Instruction miss rate 
is the fraction of instructions n at supplied by the trace cache. 
Trace miss  rate is a more direct measure of trace cache per- 
formance because it indicates the fraction of fetch cycles 
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Comparing Trace Cache to Ideal 
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Figure 12. TC performance potential. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
that benefit from higher bandwidth. However, instruction 
miss rate is also reported because it corresponds to cache 
miss rate in the traditional sense. Both trace m i s s  rate (tmr) 
and instruction m i s s  rate (imr) are shown in Table 3. 

I - I ,  

jpeg 1 1  64% I 43% 11 53% I 25% I sc 11 50% I 28% 
nroff 1 1  62% I 42% 11 45% I 24% comD 11 18% I 6% 

Table 3. Trace cache miss rates. 

6. Conclusions 

We have shown that it is important to design instruction 
fetch units capable of fetching past multiple, possibly taken 
branches each cycle. However, this additional bandwidth 
should not be achieved at the expense of longer fetch unit 
latency. The trace cache is successful in satisfying both of 
these requirements. 

While a small trace cache performs well, comparison 
with the “ideal” noncontiguous instruction fetch model 
shows the potential for even higher performance. This ex- 
periment motivates investigation of larger and/or more com- 
plex trace cache designs, such zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas path associativity, partial 
matches, judicious trace selection, and victim trace caches. 
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