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ABSTRACT

The network inference problem consists of reconstructiegeidge
set of a network given traces representing the chronologyfet-
tion times as epidemics spread through the network. Thib-pro
lem is a paradigmatic representative of prediction tasksachine
learning that require deducing a latent structure from olesepat-
terns of activity in a network, which often require an unigtadally
large number of resources (e.g., amount of available datgro-
putational time). A fundamental question is to understatitciy
properties we can predict with a reasonable degree of amcwith
the available resources, and which we cannot. We defingdbe
complexityas the number of distinct traces required to achieve high
fidelity in reconstructing the topology of the unobservetwoek
or, more generally, some of its properties. We give algorgh
that are competitive with, while being simpler and more &ffic
than, existing network inference approaches. Moreovempruee
that our algorithms are nearly optimal, by proving an infation-
theoretic lower bound on the number of traces that an opfimet-
ence algorithm requires for performing this task in the gehease.
Given these strong lower bounds, we turn our attention taiape

cases, such as trees and bounded-degree graphs, and tayprope

recovery tasks, such as reconstructing the degree distnibwith-
out inferring the network. We show that these problems recai
much smaller (and more realistic) number of traces, makiegt
potentially solvable in practice.
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1. INTRODUCTION

Many technological, social, and biological phenomena ata-n
rally modeled as the propagation of a contagion throughaorét
For instance, in the blogosphere, “memes” spread througiman
derlying social network of blogger§l[1], and, in biology, &ug
spreads over a population through a network of contadts [j2].
many such cases, an observer may not directly probe the-under
lying network structure, but may have access to the sequeice
times at which the nodes are infected. Given one or more such
records, ottraces and a probabilistic model of the epidemic pro-
cess, we can hope to deduce the underlying graph structuat or
least estimate some of its properties. This is tie¢work infer-
enceproblem, which researchers have studied extensively entec
years[A[ 7,12, 18,20].

In this paper we focus on the number of traces that netwoek-nf
ence tasks require, which we define astiiaee complexityof the
problem. Our work provides inference algorithms with rigas
upper bounds on their trace complexity, along with inforiomat
theoretic lower bounds. We consider network inferencestaskler
a diffusion model presented in 3], whose suitability fepresent-
ing real-world cascading phenomena in networks is supgdiye
empirical evidence. In short, the model consists of a randag
cade process that starts at a single node of a network, ahctdge
{u, v} independently propagates the epidemic, omdg infected,
with probability p after a randonincubation time

Overview of results. In the first part of this paper, we focus
on determining the number of traces that are necessaryrad/o
ficient to perfectly recover the edge set of the whole grapth wi
high probability. We present algorithms and (almost) miaigh
lower bounds for exact inference by showing that in the woaise,
Q(nA'~¢) traces are necessary afidnA log n) traces are suffi-
cient, wheren is the number of nodes in the network aadis its
maximum degree. In the second part, we consider a natueal lin
of investigation, given the preceding strong lower boundsere



we ask whether exact inference is possible using a smaller nu
ber of traces for special classes of networks that frequanibe in
the analysis of social and information networks. Accortiingie
present improved algorithms and trace complexity boundsifo
such cases. We give a very simple and natural algorithm factex
inferences of trees that uses oillog n) trace$] To further pur-
sue this point, we give an algorithm that exactly recons¢rgraphs
of degree bounded hgkx using onlyO(poly(A)logn) traces, un-
der the assumption that epidemics always spread througheut
whole graph. Finally, given that recovering the topologyadfid-
den network in the worst case requires an impractical nurober
traces, a natural question is whether some non-trivial gntgpof
the network can be accurately determined using a moderate nu
ber of traces. Accordingly, we present a highly efficienbaiipm
that, using vastly fewer traces than are necessary for stwmt-
ing the entire edge set, reconstructs the degree diswibufi the
network with high fidelity by using)(n) traces.

Theinformation contained in a trace. Our asymptotic results
also provide some insight into the usefulness of infornmaton-
tained in a trace. Notice that the first two nodes of a tracendna
biguously reveal one edge — the one that connects them. As we
keep scanning a trace the signal becomes more and moredblurre
the third node could be a neighbor of the first or of the secantén
or both. The fourth node could be the neighbor of any honempty
subset of the first three nodes, and so on. The main techitiakl ¢
lenge in our context is whether we can extract any usefutinés
tion from thetail of a trace, i.e., the suffix consisting of all nodes
from the second to the last. As it turns out, our lower bourss
that, for perfect inference on general connected grapbsarikwer
is “no”: we show that thé-irst-Edge algorithmwhich just returns
the edges corresponding to the first two nodes in each trate an
ignores the rest, is essentially optimal. This limitatioequdes
optimal algorithms with practical trace complefty This result
motivates further exploration of trace complexity for spécase
graphs. Accordingly, for trees and bounded degree grapasl-w
lustrate how the tail of traces can be extremely useful ftwaek
inference tasks.

Our aforementioned algorithms for special-case graph&msé
of maximum likelihood estimation (MLE) but in different way
Previous approaches, with which we compare our resultg, &dlao
employed MLE for network inference. For instances NINF [13]
is an algorithm that attempts to reconstruct the networinfeoset
of independent traces by exploring a submodular propertysof
MLE formulation. Another example, and closest to ours, is th
work by Netrapalli and SangahvVi [20], whose results inclgdali-
tatively similar bounds on trace complexity in a quite diéfet epi-
demic model.

Turning our attention back to our algorithms, our tree restarc-
tion algorithm performs global likelihood maximizationewthe
entire graph, like the KITINFalgorithm [13], whereas our bounded-
degree reconstruction algorithm, like the algorithm[in][2@er-
forms MLE at each individual vertex. Our algorithms and el
techniques, however, differ markedly from those[of| [13] §2f],
and may be of independent interest.

In the literature on this rapidly expanding topic, researsthave
validated their findings using small or stylized graphs angla
atively large number of traces. In this work, we aim to previd

LAl inference results in this paper hold with high probatyili

20n the other hand, the use of short traces may not be only a the-
oretical limitation, given the real world traces that we eb® in
modern social networks. For example, Bakshy efal. [3] reghait
most cascades in Twitteirw_t t er . con) are short, involving one

or two hops.

in the same spirit a$ [20], a formal and rigorous understandf
the potentialities and limitations of algorithms that aorsblve the
network inference problem.

This paper is organized as follows. Secfibn 2 presents awieve
of previous approaches to network learning. Sedflon 3 ptethe
cascade model we consider throughout the paper. Sédtioald de
with the head of the traceit presents the First-Edge algorithm for
network inference, shows that it is essentially optimahia worst
case, and shows how the first edges’ timestamps can be used to
guess the degree distribution of the network. Sediion Geauk
deals with theail of the trace it presents efficient algorithms for
perfect reconstruction of the topology of trees and of beahde-
gree networks. Sectidd 6 presents an experimental anahats
compares ours and existing results through the lens of trace
plexity. Finally, Sectiofi]7 offers our conclusions.

2. RELATED WORK

Network inference has been a highly active area of invetstiga
in data mining and machine learnird [1, 7|[12[13, 20]. It isally
assumed that an event initially activates one or more nodasét-
work, triggering a cascading process, e.g., bloggers exzqupiece
of information that interests other bloggers][15], a grofipeople
are the first infected by a contagious virli$ [2], or a smallugro
of consumers are the early adopters of a new piece of teajyolo
that subsequently becomes popularl [22]. In general, theegs
spreads like an epidemic over a network (i.e., the netwonkéal
by blog readers, the friendship network, the coworkers adtjy
Researchers derive observations from each cascade inrtheofo
traces— the identities of the people that are activated in the pro-
cess and the timestamps of their activation. However, wirdalo
see traces, we do not directly observe the network over wthieh
cascade spreads. The network inference problem consistsai-
ering the underlying network using the epidemic data.

In this paper we study the cascade model that Gomez-Rodrigue
et al. [13] introduced, which consists of a variation of thedpen-
dent cascade modél [16]. Gomez-Rodrigues et al. propase N
INF, a maximum likelihood algorithm, for network reconstrocti
Their method is evaluated under the exponential and poavedis-
tributed incubation times. In our work, we restrict our & to
the case where the incubation times are exponentiallyiloliséd as
this makes for a rich arena of study.

Gomez-Rodrigues et al. have further generalized the modie t
clude different transmission rates for different edgesahdoader
collection of waiting times distribution§ [12,119]. Laten,0Du et
al. [7] proposed a kernel-based method that is able to redcbee
network without prior assumptions on the waiting time dltr
tions. These methods have significantly higher computaticosts
than NETINF, and, therefore, than ours. Nevertheless, experiments
on real and synthetic data show a marked improvement in accu-
racy, in addition to gains in flexibility. Using a more cométarial
approach, Gripon and Rabbhat[14] consider the problem afirec
structing a graph from traces defined as sets of unorderezsnod
which the nodes that appear in the same trace are connected by
path containing exactly the nodes in the trace. In this wiseces
of size three are considered, and the authors identify sacgand
sufficient conditions to reconstruct graphs in this setting

The performance of network inference algorithms is depende
on the amount of information available for the reconstargti.e.,
the number and length of traces. The dependency on the humber
of traces have been illustrated inl [7].[12], and1[13] by pig
the performance of the algorithms against the number ofablai
traces. Nevertheless, we find little research on a rigoroatysis
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of this dependency, with the exception of one papel [20] weat
now discuss.

Similarly to our work, Netrapalli and Sangahvi|20] presgunan-
titative bounds on trace complexity in a quite differentdspnic
model. The model studied in [20] is another variation of the i
dependent cascade model. It differs from the model we study i
number of key aspects, which make that model a simplificaifon
the model we consider here. For instance, (i) [20] assumes-a ¢
cading process over discrete time steps, while we assuntimgon
ous time (which has been shown to be a realistic model of akver
real-world processeB [13)), (ii) the complexity analyzed2Q] ap-

discovered, accompanied by a timestamp representing treesh
path length.

4. THE HEAD OF A TRACE

In this section we will deal with the head of a trace — that is,
with the edge connecting the first and the second nodes ofa tra
We show that, for general graphs, that edge is the only usgtrt
mation that can be extracted from traces. Moreover, andapsrh
surprisingly, this information is enough to achieve cléos@ptimal
trace complexity, i.e., no network inference algorithm eahieve

plies to a model where nodes are active for a single time step — better performance than a simple algorithm that only exdréte

once a node is infected, it has a single time step to infecigigh-
bors, after which it becomes permanently inactive. The hoge
consider does not bound the time that a node can wait beffaretin
ing a neighbor. Finally, (iii)[[2D] rely crucially on the “ccelation
decay” assumption, which implies — for instance — that eamten
can be infected during the course of the epidemic¢ebgthan 1
neighbor in expectation. The simplifications in the modekgnted
by [20] make it less realistic — and, also, make the inferaask
significantly easier than the one we consider here.

We believe that our analysis introduces a rigorous foundétd
assess the performance of existing and new algorithms faonie
inference. In addition, to the best of our knowledge, ourepap
the first to study how different parts of the trace can be udefu
different network inference tasks. Also, it is the first tadst the
trace complexity of special case graphs, such as boundeeeleg
graphs, and for reconstructing non-trivial propertieshef hetwork
(without reconstructing the network itself), such as thdendegree
distribution.

3. CASCADE MODEL

head of the trace and ignores the rest. We analyze this tigoimm
the next section.

4.1 TheFirst-Edge Algorithm

The First-Edge algorithm is simple to state. For each tratled
input, it extracts the edge connecting the first two noded,aalts
this edge the guessed edge set, ignoring the rest of the {faie
procedure is not only optimal in trace complexity, but, asiihs
out, it is also computationally efficient.

We start by showing that First-Edge is able to reconstruefuh
graph with maximum degred using ©(nA log n) traces, under
the cascade model we consider.

THEOREM 4.1. Suppose that the soureec V' is chosen uni-
formly at random. Letz = (V, E) be a graph with maximum de-

greeA < n — 1. With® (% log n) traces, First-Edge correctly

returns the graphG with probability at leastl — m

PROOF. Lete = {u,v} be any edge irf. The probability that
a trace starts with, and continues witlr can be lower bounded by

The cascade model we consider is defined as follows. It starts 7.5 thatis, by the product of the probabilities thais selected as

with one activated node, henceforth called Hwairceof the epi-
demic, which is considered to be activated, without losserfeg-
ality, at timet = 0.

As soon as a node gets activated, for each neighbar, « flips
an independent coin: with probabiliyit will start a countdown
on the edg€g{u, v; }. The length of the countdown will be a ran-
dom variable distributed according fxp(\) (exponentiﬁ with
parameter\). When the countdown reachés that edge idra-
versed— that is, that epidemic reachesvia u.

The “trace” produced by the model will be a sequence of tuples
(nodew, t(v)) wheret(v) is the first time at which the epidemics
reaches.

In [13], the source of the epidemics is chosen uniformly at ra
dom from the nodes of the network. In general, though, thecgou
can be chosen arbitrarlﬂy

the source, that the edde, v} is not removed from the graph, and

thatw is the first neighbor of, that gets infected. Therefore, if we

run ¢22 In n traces, the probability that none of them starts with
P . . .

the ordered couple of neighboring node® is at most:

(- 7a

Therefore, the assertion is proved for any constant2.

c

%clnn -
) <exp(—clnn)=n""°.

O

We notice that a more careful analysis leads to a proof that
(C] ((A +p71) nlogn)

traces are enough to reconstruct the whole graph with highagar
bility. To prove this stronger assertion, it is sufficientsioow the

The cascade process considered here admits a number of equivprobability that a specific edge will be the first one to be éraed

alent descriptions. The following happens to be quite hariay
dependently for each edge Gf remove the edge with probability

is at least2 - (1 —e~') - min (A™",p). In fact one can even
show that, for eacld < A, if the First-Edge algorithm has access

1 — p and otherwise assign a random edge length sampled fromto O ((d +p~") nlogn) traces, then it will recover all the edges

Exp(\). Run Dijkstra’s single-source shortest path algorithm on
the subgraph formed by the edges that remain, using sauae
the sampled edge lengths. Output vertices in the order they a

3 [7,[12,13] consider other random timer distributions; wel wi
mainly be interested in exponential variables as thisrepis al-
ready rich enough to make for an interesting and extensiaé/an
sis.

4Choosing sources in a realistic way is an open problem — ttze da
that could offer a solution to this problem seems to be extigm
scarce at this time.

having at least one endpoint of degi@éd). As we will see in our
experimental section, this allows us to reconstruct a |&agion
of the edges using a number of traces that is significantlylema
than the maximum degree times the number of nodes.

Finally, we note that the above proof also entails that Frdge
performs as stated for any waiting time distribution (tlsaniot just
for the exponential one). In fact, the only property that veeadh
for the above bounds to hold, is that the first node, and the firs
neighbor of the first node, are chosen independently andumiy
at random by the process.



4.2 Lower Bounds The preceding Lemma can be used to prove the following result

Here, we discuss a number of lower bounds for network infer-
ence. Due to limited space, we omit proofs in this seftidtere

we discuss the main ideas underlying these results. LEMMA 4.3. If we disregard timestamps, we cannot distinguish

. . ) Go and G with probability more thant + o(1) using onlym =
We start by observing that if the source node is chosen aalvers
ially — and, say if the graph is disconnected —no algorithm ca (
reconstruct the graph (traces are trapped in one connectegcs
nent and, therefore, do not contain any information abauteist of
the graph.) Moreover, even if the graph is forced to be camaec
by choosingy = 3 (that is, edges are traversed with probabifjly
an algorithm will require at least(™ traces even if the graph is
known to be a path. Indeed, if we select one endpoint as threeou
it will take 22" trials for a trace to reach the other end of the path,
since at each node, the trace flips an unbiased coin and dies ou
with probability ;.

This is the reason why we need the assumption that the egidemi  \ne now complement the above lower bound (that holds only if
selectss € V' uniformly at random — we recall that this is also an ;¢ disregard the timestamps), with a full-fledged lower lbufo

7L2
Toe3 n) traces.
To prove this Lemma, we bound the KL-divergences of the twe di
tributions generated b, andG; from all their weighted geomet-
ric means, thus obtaining a bound on the Chernoff infornngé).

Then we can use the latter bound to show ma<tlo’g1—fn) traces
are necessary.

The KL-divergence bounds are obtained by leveraging on the
strong approximation bounds for the likelihoods of (mostcés
given by Lemm&a4j2.

assumption in[I3]. Whenever possible, we will consider ener do so, we show that under a conditioning having high prokgbil
alistic assumptions, and determine how this changes tbe t@m- the probability that a set of traces has higher likelihoodrinthan
plexity of the reconstruction problem. in G is L £ o(1)

s .

We now turn our attention to our main lower bound result. Ngme
for p = 1, and assuming that the source is chosen uniformly atran-  LEMMA 4.4. Let a set ofn = n?~° traces be given. LétV be

dom, we needs(nA'~“) traces to reconstruct the graph. the waiting times in the traces. There exists an evesuch that,
First, letGo be the clique on the node sét= {1,...,n}, and (i) for both the unknown graplizo and G, the probability of
let G be the clique oV minus the edgé 1, 2}. is 1 — o(1), moreover, (i) conditioning or, the probability that

Suppose that Nature selects the unknown graph uniformgratr Lo (W) > L. (W) is equal tog + o(1).
dom in the sef{Go, G1}. We will show that withO(n?~), the

probability that we are able to guess the unknown graghis(1) ] ]
— that is, flipping a coin is close to being the best one can do fo  Finally, Lemmd 4B and Lemnia 4.4 together allow us to obtain

guessing the existence of the edge2}. the following Theorem:

Before embarking on this task, though, we show that this re-  Theorem 4.5. Suppose that at most = n> ¢ traces are
sult directly entails thaD(nA'~<) traces are not enough for re-  given. Then, no algorithm can correctly guess whether the un

construction even if the graph has maximum degtedor each known graph ig7 or G with probability more than;— +o(1).
1 < A <n— 1. Indeed, let the grapf’, be composed of a clique
on A + 1 nodes, and of: — A — 1 disconnected nodes. L&t; As already noted, the lower bound in the above Theorem can be

be composed of a clique af + 1 nodes, minus an edge, and of  easily transformed in &(nA'~¢) lower bound, for anyl < A <

n — A — 1 disconnected nodes. Then, due to our yet-unproven n — 1.

lower bound, we need at least A?~¢) traces to start in the large . L .

connected component for the reconstruction to succeedprbiva- 4.3 Reconstructing the Degree Distribution

bility that a trace starts in the large connected compor&ﬂﬂt(i%). In this section we study the problem of recovering the degree
Hence, we need at leastnA'~¢) traces. distribution of a hidden network and show that this can beedon
with Q(n) traces while achieving high accuracy, using, again, only
the first edge of a trace.

The degree distribution of a network is a characteristiecstiral
property of networks, which influences their dynamics, fiorg
and evolution[[211]. Accordingly, many networks, includitige
Internet and the world wide web exhibit distinct degreeribist
tions [10]. Thus, recovering this property allows us to méake
ferences about the behavior of processes that take platese t
networks, without knowledge of their actual link structure

Let / traces starting from the same nodée given. For trace,
let¢; be the differences between the time of exposure, @ihd the
the time of exposure of the second node in the trace.

Recall that in the cascade model, the waiting times areiloligéd
according to an exponential random variable with a knowiumar

We now highlight some of the ideas we used to proveithe®—°)
lower bound. First, we show a technical lemma that provesthiga
random ordering of nodes produced by a trac&inis uniform at
random, and that the random ordering produced by a tra€g is
“close” to being uniform at random.

LEMMA 4.2. Letwo be the random ordering of nodes produced
by the random process dfdy, and m; be the random ordering of
nodes produced by the random process(on Then, (i)7o is a
uniform at random permutation ovén]; (ii) for each1 < a <
b < n, the permutationr; conditioned on the vertices, 2 ap-
pearing (in an arbitrary order) in the positions, b, has its other
elements chosen uniformly at random; (iii) the probabifity, that

m hf,is the vertu.:esl, 2 appearing (|r11+3n barblt.rary order) in t.he eter\. If we have/ traces starting at a node we aim to estimate
positionsa < b is equal topq,, = w2 with dg, = —1 if

B) the degree ob the time gaps., ..., t, between the first node and

a=1,b=2 and|dss| < O (22 + 1) otherwise; moreover,  the second node of each trace. _ _
n—1 5 dyy =0 If v has degree in the graph, then; (1 < i < ¢) will be dis-
a=1 fb=at1 "% ) tributed as an exponential random variable with paramexeg].

5The proofs we omitted here will appear in an extended version ~ Furthermore, the suii of thet;’s, T = S>¢_, ts, is distributed as
this paper (in preparation). an Erlang random variable with parametétsd\) [8].




In general, ifX is an Erlang variable with parametefs, ),
andY is a Poisson variable with parameter )\, we have that
Pr[X < z] = Pr[Y > n]. Then, by using the tail bound for the
Poisson distributior [5.17], we have that the probabilitgittl” is
atmost(1 +¢) - 5 is

Pr[Pois (1 +¢) - £) > ] > 1 — ¢ ©(<*),

Similarly, the probability thafl” is at leas(1 — ¢) - =5 is

1 Pr[Pois((1—¢)-6) > ] >1— e ©(0).

We then have:

o]

Let our degree inference algorithm retufr= % as the degree
of v. Also, letd be the actual degree of We have:

Pr [‘J— d’ < ed] >1-— e=O(<*),

i] >1- e 90,

r T dx

<e€

L
X

We have then proved the following theorem:

THEOREM 4.6. Provided thatQ) 1“5—;1 traces start fromw,

the degree algorithm returns B+ ¢ multiplicative approximation
to the degree of with probability at leastl — 6.

5. THETAIL OF THE TRACE

A naive interpretation of the lower bound for perfect re¢ars
tion, Theoreni 415, would conclude that the information i ‘ttail”
of the trace — the list of nodes infected after the first twoemd
and their timestamps — is of negligible use in achieving &s& bf
perfect reconstruction. In this section we will see thatapposite
conclusion holds for important classes of graphs. We sjieeito
two such classes, trees and bounded-degree graphs, indssh c
designing algorithms that rely heavily on information ire ttails
of traces to achieve perfect reconstruction with trace denrily
O(logn), an exponential improvement from the worst-case lower
bound in Theorei 415. The algorithms are quite differenttriees
we essentially perform maximum likelihood estimation (MLdE
the entire edge set all at once, while for bounded-degreghgra
we run MLE separately for each vertex to attempt to find itso$et
neighbors, then we combine those sets while resolving sisten-
cies.

In Section[$ we provide one more example of an algorithm,
which we denote by First-Edge that makes use of information
in the tail of the trace. Unlike the algorithms in this sentiave do
not know of a theoretical performance guarantee for FidgeE
so we have instead analyzed it experimentally.

It is natural to compare the algorithms in this section with t
NETINF algorithm [13], since both are based on MLE. While N
INF is a general-purpose algorithm, and the algorithms deeelop
here are limited to special classes of graphs, we believeapur
proach offers several advantages. First, and most imptytave
offer provable trace complexity guarante€glog n) complete traces
suffice for perfect reconstruction of a tree with high prabgb
andQ(poly(A) log n) traces suffice for perfect reconstruction of a
graph with maximum degreA. Previous work has not provided
rigorous guarantees on the number of traces required toetisat
algorithms achieve specified reconstruction tasks. Seandree
reconstruction algorithm is simple (an easy preprocesstieig fol-
lowed by computing a minimum spanning tree) and has worst-
case running timed(n?¢), wheren is the number of nodes and
¢ = Q(logn) is the number of traces, which compares favorably
with the running time of M TINF.

5.1 Reconstructing Trees

In this section we consider the special case in which themrnde
lying graphG is a tree, and we provide a simple algorithm that
requiresQ)(log n) complete traces and succeeds in perfect recon-
struction with high probability. Intuitively, reconstriiicg trees is
much simpler than reconstructing general graphs for tHeviihg
reason. As noted i [13], the probability that an arbitrarsiai
G generates trac is a sum, over all spanning treésof G, of
the probability thatl” was generated by an epidemic propagating
along the edges of’. Whend itself is a tree, this sum degener-
ates to a single term and this greatly simplifies the procedsing
maximum likelihood estimation. In practical applicatioosthe
network inference problem, it is unlikely that the latentnerk
will be a tree; nevertheless we believe the results in thiteeare
of theoretical interest and that they may provide a roadroapria-
lyzing the trace complexity of other algorithms based on imaxn
likelihood estimation.

Algorithm 1 The tree reconstruction algorithm.

Input: A collection T4, ..., T, of complete traces generated by
repeatedly running the infection process with- 1 on a fixed
tree.
Lett;(v) denote the infection time of nodein traceT;.

Output: An estimate(3, of the tree.

1: for all pairs of nodes:, v do
2. Letc(u, v) be the median of the sétt; (u) — t;(v)|}i—;.
3: if 3 anodep and a pair of trace¥;, T} such that;(p) <
ti(u) < ti(v) andt;(p) < t;(v) < t;(u)then
4. Sete(u, v) = co.
5: Qutput@ = minimum spanning tree with respect to cost ma-

trix c(u, v).

The tree reconstruction algorithm is very simple. It defiaesst
for each edgdw, v} as shown in Figurgl 1, and then it outputs the
minimum spanning tree with respect to those edge costs. Bisé m
time-consuming step is the test in step 3, which checks veheth
there is a nod@ whose infection time precedes the infection times
of bothw andwv in two distinct traceqd;, T; such that the infection
times ofu andv are oppositely ordered ifi; andT}. (If so, thenG
contains a path from to u that does not include, and a path from
p to v that does not include, and consequentlju, v} cannot be
an edge of the tre&’. This justifies setting:(u,v) = oo in step
4.) To save time, one can use lazy evaluation and performekis
only for pairsu, v that are about to be inserted into the tree.

The analysis of the algorithm is based on the following oetli
first, we show that if{u, v} is any edge of7, thenc(u,v) < A~*
with high probability (Lemm&5]1). Second, we show thatif v}
is any edge not irG, thenc(u,v) > A~' with high probability
(LemmdB5.R). The edge pruning in steps 3 and 4 of the algolighm
vital for attaining the latter high-probability guarant&hen both
of these high-probability events occur, it is trivial to déat the
minimum spanning tree coincides with

LEmmA 5.1. If {u,v} is an edge of the tre&, then Algo-
rithm [ setsc(u, v) < A~' with probability at leastl — ¢1*, for
some absolute constaat < 1.

PROOF First, note that the algorithm never sefs, v) = oo.
This is because if one were to delete edgev} from G, it would
disconnect the graph into two connected componéfits,,, con-
tainingu andv, respectively. The infection process cannot spread
from G., to G,, or vice-versa without traversing edge, v}. Con-
sequently, for every node € G, the infection timef; (u) occurs



strictly betweent; (p) and¢;(v) in all traces. Similarly, ifp € G,
then the infection time; (v) occurs strictly between (p) andt; (u)
in all traces.

Therefore, the value af{u, v) is equal to the median of; (u) —
t;(v)| over all the traced1, ..., Ty. In any execution of the infec-
tion process, if the first endpoint of ed§e, v} becomes infected at
timet, then the opposite endpoint receives a timestami where
X ~ Exp()). Consequently the random variabile(u) — t;(v)|
is an independent sample fraExp(\) in each trace. The lemma
now follows by an application of Chernoff’'s bound[]

The proof of the following lemma, while similar to that of the
preceding one, is somewhat more involved. It is omitted farce
reasons.

LEMMA 5.2. If {u,v} is not an edge of7, then Algorithn{L
setsc(u,v) > A\~ with probability at leastl — ¢, - ¢§ for some
absolute constants; < oo andes < 1.

Combining Lemmag5l1 afd$.2, and using the union bound, we

find that with probability at least — (n — 1)ci — (", ') cach, the
set of pairgu, v) such that(u, v) < A~* coincides with the set of
edges of the tre€’. Whenever the, — 1 cheapest edges in a graph
form a spanning tree, it is always the minimum spanning tféleeo

graph. Thus, we have proven the following theorem.

THEOREM 5.3. If G'is a tree, then Algorithfal 1 perfectly recon-
structsG with probability at leastl — (n — 1)ci — (" ') cacs, for
some absolute constants, c3 < 1 andce < oco. This probabil-
ity can be made greater thanh— 1/n°¢, for any specified > 0,
by using? > c4 - ¢ - logn traces, wherezy < oo is an absolute

constant.

5.2 Bounded-Degree Graphs

In this section, we show th&?(poly (A) log n) complete traces
suffice for perfect reconstruction (with high probabilityhen the
graphG has maximum degred. In fact, our proof shows a some-
what stronger result: it shows that for any pair of nodes, there
is an algorithm that predicts whethér, v} is an edge of7 with
failure probability at mostt — 1/n°, for any specified constant
¢ > 0, and the algorithm requires onfy(poly (A) log n) indepen-
dent partial traces in which andv are both infected. However, for
simplicity we will assume complete traces throughout teigtion.

The basic intuition behind our algorithm can be summarized a
follows. To determine ifu, v} is an edge ofZ, we try to recon-
struct the entire set of neighbors @fand then test it» belongs to
this set. We use the following insight to test whether a cdaugi set
S is equal to the seWV (u) of all neighbors ofu. Any such set de-
fines a “forecasting model” that specifies a probabilityrdisttion
for the infection timet(u). To test the validity of the forecast we
use a strictly proper scoring rule[11], specifically theddthmic
scoring rule, which is defined formally in the paragraphdaiing
Equation[(1). Let us say that a s¢tdiffers significantly from the
set of neighbors of, (henceforth denotedv (w)) if the symmet-
ric differenceS @ N (u) contains a vertex that is infected before
u with constant probability. We prove that the expected sesre
signed toN () by the logarithmic scoring rule is at lea@tA~")
greater than the score assigned to any set that differfisaymly
from N (u). Averaging overQQ(A*log Alogn) trials is then suf-
ficient to ensure that all sets differing significantly fras(u) re-
ceive strictly smaller average scores.

The scoring rule algorithm thus succeeds (with high prdbabi
ity) in reconstructing a seR(u) whose difference fromiV(u) is
insignificant, meaning that the elementsifu) & N(u) are usu-
ally infected afteru. To test if edge{u, v} belongs toG, we can

Algorithm 2 Bounded-degree reconstruction algorithm.

Input: An infection rate parametek,
A set of verticesy'.
An upper boundA, on the degrees of vertices.
A collection T1, ..., T, of complete traces generated by re-
peatedly running the infection process on a fixed gr&@phith
vertex sefl” and maximum degreA.
Lett;(v) denote the infection time of nodein traceT;.

Output: An estimate(?, of G.

1: for all nodesu do

2:  for all setsS C V' \ {u} of at mostA verticesdo

3: for all tracesT; do

4: LetSi ={v e S|ti(v) < ti(u)}.

5: if S} = 0 then

6: Letscore;(S,u) = 0if u is the source of;, other-
wisescore; (S, u) = —oo.

7 else

8 score; (S, u) = log |Si'|— A Zvesgb [ti(u) —t; (v)].
9: Letscore(S,u) = £~ -3, score; (S, u).
10:  LetR(u) = argmax{score(S,u)}.

1: for all ordered pairs of vertices, v do

2: ifti(v) < ti(u) in atleast//3 traces and € R(u) then
13: Insert edgdu, v} into G.
14: Outputd.

now use the following procedure: if the evetiv) < t(u) occurs
in a constant fraction of the traces containing batandv, then
we predict that edgdu, v} is present ifv € R(u); this predic-
tion must be correct with high probability, as otherwise¢lement
v € R(u) ® N(u) would constitute a significant difference. Sym-
metrically, ift(u) < t(v) occurs in a constant fraction of the traces
containing both: andv, then we predict that edde:, v} is present
if ue R(v).

KL-divergence. For distributiong, ¢ onR having density func-
tions f andg, respectively, their KL-divergence is defined by

Diplla) = [ f(o)tog (43) da. ®

One interpretation of the KL-divergence is that it is the ected
difference betweeiog(f(z)) andlog(g(z)) whenz is randomly
sampled using distributiop. If one thinks ofp andq as two fore-
casts of the distribution af, and one samplesusingp and applies

the logarithmic scoring rule which outputs a score equal to the
log-density of the forecast distribution at the samplechpdhen
D(p|| q) is the difference in the expected scores of the correct and
the incorrect forecast. A useful lower bound on this differe is
supplied by Pinsker’s Inequality:

D(pllg) > 2|p - allFv,
where|| - ||tv denotes the total variation distance.

Quasi-timestamps and conditional distributionsFrom now on
in this section, we assume= 1. This assumption is without loss
of generality, since the algorithm’s behavior in unchangede
modify its input by setting\ = 1 and multiplying the timestamps
in all traces by\; after modifying the input in this way, the input
distribution is the same as if the traces had originally ssenpled
using the infection process with parameket 1.

Our analysis of Algorithni]2 hinges on understanding the con-
ditional distribution of the infection time(w), given the infection
times of its neighbors. Directly analyzing this conditibdéstri-
bution is surprisingly tricky, however. The reason is thatself

@)



may infect some of its neighbors, so conditioning on the etheat
a neighbor ofu was infected at time, influences the probability
density oft(u) in a straightforward way at timels > ¢, butin a
much less straightforward way at times< ¢o. We can avoid this
“backward conditioning” by applying the following artifice

Recall the description of the infection process in terms ijik-D
stra’s algorithm in Sectiof] 3: edges sample i.i.d. edgettengnd
the timestamps(v) are equal to the distance labels assigned by
Dijkstra’s algorithm when computing single-source shetrigaths
from sources. Now consider the sample space defined by the tu-
ple of independent random edge lengifis, w). For any vertices
u # v, define a random variabl&v) to be the distance label as-
signed tov when wedeleteu and its incident edges fror¥ to
obtain a subgrapliy — u, and then we run Dijkstra’s algorithm on
this subgraph. One can think éfv) as the time whem would
have been infected if did not exist. We will calli(v) the quasi-
timestamp ofv (with respect tou). If N(u) = {vi,...,vx} IS
the set of neighbors af, and if we sample a trace originating at a
sources # u, then the executions of Dijkstra’s algorithmdhand
G —wu will coincide until the step in whichy is discovered and is as-
signed the distance labh.) = min; {i(v;)+y(v;, w)}. From this
equation, it is easy to deduce a formula for the conditiorstidu-
tion of ¢(u) given thek-tuple of quasi-timestamps= (£(v;))%_,.
Using the standard notation” to denotemax{z,0} for any real
numberz, we have

X
> - f(vm*) N )

j=1

Pr(t(u) >t | t) = exp <—

The conditional probability density is easy to calculatelifferen-
tiating the right side of[(;3) with respect to For any vertex sef
not containing, letS(t) denote the set of verticesc S such that
t(v) < t, and letp(t, S) = |S(t)|. Then the conditional probabil-
ity density function oft(u) satisfies

f(t) = p(t, N(u)) exp (— >t f(vj))+> 4)

=1

log f(t) = log(p(t, N(w)) = > (t—t())*.  (5)

vEN (u)

It is worth pausing here to note an important and subtle pdihe
information contained in a tracg is insufficient to determine the
vector of quasi-timestampls since quasi-timestamps are defined
by running the infection process in the graph— u, whereas the
trace represents the outcome of running the same proceSs in
Consequently, our algorithm does not have sufficient infdrom

to evaluatdog f(¢) at arbitrary values of. Luckily, the equation

(t(u) = t(v)) " = (t(u) — i(v)) "

holds for allv # w, sincei(v) differs from¢(v) only when both
quantities are greater thaiu). Thus, our algorithm has suffi-
cient information to evaluatéog f(¢(w)), and in fact the value
score; (S, u) defined in Algorithni2, coincides with the formula for
log f(t(u)) on the right side of{5), whef = N (u) andX = 1.

Analysis of the reconstruction algorithm. The foregoing dis-
cussion prompts the following definitions. Fix a vector ofgu
timestamps = (£(v))»., and for any set of verticeS not con-
taining u, let p° be the probability distribution of® with density
function

> ot- i’(v»*) : (6)

veS

FE() = plt, ) exp (—

One can think of® as the distribution of the infection timgu)
that would be predicted by a forecaster who knows the val(1es
for v € S and who believes that is the set of neighbors ai.
Letting N = N(u), each timestamfy (u) is a random sample from
the distributionp™, andscore; (S, u) is the result of applying the
logarithmic scoring rule to the distributiof (¢) and the random
samplet(u). Therefore

E[score; (N, u) — score; (S, u)] = D(p" || p°)
>2p" - p°7v.

@)
®)

The key to analyzing Algorithri]2 lies in proving a lower bound
on the expected total variation distance betwg&nandp®. The
following lemma supplies the lower bound. Its proof is ommitfor
space reasons.

LEMMA 5.4. Fix a vertexu, let N = N(u) be its neighbor set,
and fix someS C V' \ {u} distinct fromN. Lettingw(S & N, u)
denote the probability that at least one element of theSsetN is
infected before:, we have

B (Ip™ = »° ) ©)

Combining Pinsker’s Inequality with Lemnia 5.4 we immedi-
ately obtain the following corollary.

> %A727T(S€B N, u).

COROLLARY 55.If N = N(u) and S is any set such that
m(S @ N,u) > 1/4, then for each tracd; the expected value of
score;(N) — score; (S) is Q(A™).

Using this corollary, we are ready to prove our main theorem.

THEOREM 5.6. For any constant: > 0, the probability that
Algorithm[2 fails to perfectly reconstruct, when given

¢ =Q(A%log? Alogn)
complete traces, is at mosfn°.

PROOF Letus say that a sét differs significantlyfrom N (u) if
m(S @ N(u),u) > 1/4. Let us say that an ordered pair of vertices
(u, v) violates theempirical frequency propertythe empirical fre-
quency of the event;(v) < t;(u) among the trace%1,...,T;
differs by more than; from the probability that(v) < ¢(u) in
a random trace. Exponential tail inequalities for sumsidaf.iran-
dom variables establish that whérs as specified in the theorem
statement, with probability at least— 1/n°, there is no vertex:
such thatR(u) differs significantly from/N (u) and no ordered pair
(u, v) that violates the empirical frequency property. The pradfs
these high-probability guarantees are omitted for spaasores.

Assuming that no seR(w) differs significantly fromN («) and
that no pair(u, v) violates the empirical frequency property, we
now prove that the algorithm’s outpu, is equal toG. If {u,v}
is an edge of7, assume without loss of generality that the event
t(v) < t(u) has probability at least 1/2. By the empirical frequency
property, at least/3 traces satisfy;(v) < t;(u). Furthermore,

v must belong toR(u), since if it belonged taR(u) & N(u) it
would imply thatr (R(u) @& N(u),u) > Pr(t(v) < t(u)) > 1/2,
violating our assumption thdt(«) doesn't differ significantly from
N(u). Thereforev € R(u) and the algorithm addéu, v} to G.
Now supposgu, v} is an edge of7, and assume without loss of
generality that this edge was inserted when processingrtierexl
pair (u, v). Thus, at least/3 traces satisfy; (v) < t;(u), andv €
R(u). By the empirical frequency property, we know that a random
trace satisfies(v) < ¢(u) with probability at least /4. As before,

if v belonged toR(u) @ N (u) this would violate our assumption
that R(u) does not differ significantly fromV(u). Hencev €

N (u), which means thafu, v} is an edge o7 as well. [
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Figure1l: Complementary cumulative density function (CCDF) of degreereconstruction using Q(n) tracesfor (a) a synthetic network
with 1,024 nodes gener ated using the Barabasi-Albert algorithm, and two real social networks: two subsets of the Facebook network
comprising 503 graduate students (a) and 1220 under graduate students(c), respectively, from Rice University.

6. EXPERIMENTAL ANALYSIS

In the preceding sections we have established trace coifyplex
results for various network inference tasks. In this sectiar goal
is to assess our predictions on real and synthetic sociahéomha-
tion networks whose type, number of nodes, and maximum degre
(A) we now describe.

We use two real social networks, namely two Facebook subnet-
works comprising 5034 = 48) graduate and 122QY = 287)
undergraduate students, respectivEly [18]. We also gendreee
synthetic networks, each possessing 1024 vertices, wherseray
tive models frequently arise in practice in the analysiseifuvorks.
We generated Barabasi-Albert Networf4] (A = 174), which is
a preferential attachment model(&, ,,, Network[9] (A = 253)
with p = 0.2, and aPower-Law Tregwhose node degree distribu-
tion follows a power-law distribution with exponedt(A = 94).

First, we evaluate the performance of the algorithm to recon
struct the degree distribution of networks without infegithe net-
work itself (Sectiof 413). Figulel 1 shows the reconstrurctibthe
degree distribution usinf(n) traces of the Barabasi-Albert Net-
work and the two Facebook subnetworks. We us@dtraces, and
the plots show that the CCDF curves for the real degrees and fo
the reconstructed distribution have almost perfect operla

Turning our attention back to network inference, fhgA' )
lower-bound established in Sectibh 3 tells us that the EHokje
algorithm is nearly optimal for perfect network inferencethe
general case. Thus, we assess the performance of our higsrit
against this limit. The performance of First-Edge is natosly
predictable: if we usé traces wheré is less than the total number
of edges in the network, then it returns nearlydges which are all
true positives, and it never returns false positives.

If we allow false positives, we can use heuristics to imprihe
First-Edge’s recall. To this end, we propose the followimgitis-
tic that uses the degree distribution reconstruction #lyor(Sec-
tion[4.3) in a pre-processing phase, and places an edge in-the
ferred network provided the edge has probability at Ipastbeing
in the graph. We call this heuristkirst-Edget-.

In First-Edger, we use the memoryless property of the expo-
nential distribution to establish the probabilityof an edge per-
taining to a networkG. The algorithm works as follows. Consider
a nodeu that appears as the root of a trace at time= 0. When
u spreads the epidemic, some nadés going to be the next in-
fected at timet;, which was sampled from an exponential distri-
bution with parameteh. At time ¢, notice that there are exactly
d., — 1 nodes waiting to be infected hy and exactlyd,, — 1 wait-
ing to be infected by, whered,, andd, are the degrees af and
v respectively. At time; any of these nodes is equally likely to
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Figure 2: F1 score of the First-Edge, First-Edge+, and NET-
INF algorithms applied to different real and synthetic networks
against a varying number of traces. (best viewed in color)

be infected, due to the memoryless property. Moreover, &x¢ n
nodew that appears in a trace after timheis going to be infected
by u with probability p(,, .., = % and bywv with proba-
bility Pow) = dudT We can approximdtihis reasoning for
larger prefixes of the trace: given a sequemge: - - , uy of in-
fected nodes starting at the source of the epidemic, theabrhﬂy

that ug4, is a neighbor ofu; is roughly p,,,

uppr) = Z du
Therefore, for every segment of a trace that starts at %ha:ﬂepu
we infer an edg€u, v) if p, ) > p, computed using the recon-
structed degrees, whegeis a tunable parameter. In our experi-
ments we arbitrarily chose = 0.5.

Note that First-Edge+ may not terminate as soon as we have in-
ferred enough edges, even in the event that all true positiage
been found, an effect that degrades its precision perfarenamo
prevent this, we keep a variabile which can be thought of as the
temperatureof the inference process. L&t be a counter of the
edges inferred at any given time during the inference psycasd

5The exact probability depends on the number of edges between
each of the nodes,, . . ., u;, and the rest of the graph.



E be an estimate of the total number of edges, computed using th inference, or more generally, the inference of network proes

degree reconstruction algorithm in the pre-processing@haVe
defineT = 2 and run the algorithm as long @< 1.0. In addi-
tion, whenever we infer a new edge, we flip a coin and remow, wi
probability T", a previously inferred edge with the lowest estimated
probability of existence. Thus, while the network is “cald’e.,
many undiscovered edges, edges are rapidly added and aefegy ar
moved, which boosts the recall. When the network is “warng’, i
the number of inferred edges approach®s, we carefully select
edges by exchanging previously inferred ones with betteicels,
thereby contributing to the precision.

Figure[2 contrasts the performance of First-Edge, Firge&d
and an existing network algorithm,ENINF [13], with respect to
the F1 measure. ITINF requires the number of edges in the net-

work as input, and thus we give it an advantage, by setting the 2]

number of edges to the true cardinality of edges for eachar&tw
In Figureq 2(d) anfl 2(p), we observe that, as First-Bdgad

NETINF are less conservative, their F1 performances have an ad-

vantage over First-Edge for small numbers of traces, witstFi
Edge+ approaching the performance tamiNF. Interestingly, in
Figure[2(c), we see that First-Edge and First-Edge+ acheve
fect tree inference with roughly, 000 traces, which reflects a trace
complexity in 2(n) rather than inQ(logn), which is the trace
complexity of Algorithmljﬂ This result illustrates the relevance
of the algorithms for special cases we developed in Selctihas,
in proving lower-bounds for trace complexity, we frequgnike
random graphs as the worst-case examples. This is showig4in Fi
ure[2(d), where neither our algorithms noENNF can achieve
high inference performance, even for large numbers of srace

In accordance with our discussion in Section] 4.1, we confirm
that, in practice, we need significantly fewer than\ traces for in-
ferring most of the edges. It is perhaps surprising thatfHdgye+,
which is extremely simple, achieves comparable performanc
the more elaborate counterparte NNF. In addition, while NeT-
INF reaches a plateau that limits its performance, First-Edge a
First-Edge+ approach perfect inference as the number oédra
goes to2(nA). In the cases in which KTINF achieves higher
performance than First-Edge+, the latter is never much evibran
the former. This presents a practitioner with a trade-aoffieen the
two algorithms. For large networks, while First-Edge+ isemely
easy to implement and makes network inferences (in a préampt
fashion) in a matter of secondseENINF takes a couple of hours to
run to completion and requires the implementation of anckte
algorithm.

7. CONCLUSION

Our goal is to provide the building blocks for a rigorous feun
dation to the rapidly-expanding network inference topiaevr
ous works have validated claims through experiments otivela
small graphs as compared to the large number of tracesedtjliz
whereas the relation that binds these two quantities resvasuf-
ficiently understood. Accordingly, we believe that a solodif-
dation for the network inference problem remains a fundaaien
open question, and that works like20], as well as ours, igdeothe
initial contributions toward that goal.

Our results have direct applicability in the design of netnio-
ference algorithms. More specifically, we rigorously studyw
much useful information can be extracted from a trace fovogk

In our experiments Algorithnil1 consistently returned theetr
edge set without false positives with(logn) traces for various
networks of various sizes. Therefore, in the interest otepae
omit the data from these experiments.

without reconstructing the network, such as the node dedjstie-

bution. We first show that, to perfectly reconstruct gengraphs,
nothing better than looking at the first pair of infected rodea
trace can really be done. We additionally show that the redei
of a trace contains rich information that can reduce theetcan-
plexity of the task for special case graphs. Finally, wedaih the
previous results to develop extremely simple and efficieabn-
struction algorithms that exhibit competitive inferenegfprmance
with the more elaborate and computationally costly ones.

%1] &%5!1? EnldQFAN gc’ér%c. Tracking information epidemics

blogspace. IProc. of the 2005 IEEE/WIC/ACM Int'| Conf. on Web
Intelligence 2005.

N. Bailey. The Mathematical Theory of Infectious Diseases and its
Applications Griffin, London, 1975.

E. Bakshy, J. M. Hofman, W. A. Mason, and D. J. Watts. Eoee/s
an influencer: quantifying influence on twitter. Broc. of the 4th
ACM Int'l Conf. on Web search and Data Mining011.

[4] A.-L. Barabasi and R. Albert. Emergence of Scaling in &am
Networks.Science 286(5439):509-512, Oct. 1999.

S. G. Bobkov and M. Ledoux. On modified logarithmic solvole
inequalities for bernoulli and poisson measudesirnal of
Functional Analysis156(2):347 — 365, 1998.

[6] T. M. Cover and J. A. Thomag&lements of information theary
Wiley-Interscience, New York, NY, USA, 1991.

N. DU, L. Song, A. Smola, and M. Yuan. Learning networks of
heterogeneous influence. Advances in Neural Information
Processing Systems 3iages 2789-2797. 2012.

R. Durrett. Probability: Theory and example€ambridge Series in
Statistical and Probabilistic Mathematics, 2011.

P. Erdos and A. Rényi. On the evolution of random graph$&ub. of
the Mathematical Institute of the Hungarian Academy of IBme
pages 1761, 1960.

M. Faloutsos, P. Faloutsos, and C. Faloutsos. On ptaver-
relationships of the internet topologglGCOMM Comput. Commun.
Rev, 29(4):251-262, Aug. 1999.

T. Gneiting and A. E. Raftery. Strictly proper scoringes,
prediction, and estimatiod. Amer. Stat. Assqcl02:359-378, 2007.
M. Gomez-Rodriguez, D. Balduzzi, and B. Schélkopf. bwering
the temporal dynamics of diffusion networks.Rnoc. of the 28th

Int'l Conf. on Machine Learning2011.

M. Gomez-Rodriguez, J. Leskovec, and A. Krause. lirigrr
networks of diffusion and influence. Froc. of the 16th ACM
SIGKDD Int'l Conf. on Knowledge Discovery and Data Minjng
2010.

V. Gripon and M. Rabbat. Reconstructing a graph fronf pegices.
CoRR abs/1301.6916, 2013.

D. Gruhl, R. Guha, D. Liben-Nowell, and A. Tomkins. Infoation
diffusion through blogspace. Proc. of the 13th Int'l Conf. on World
Wide Web2004.

D. Kempe, J. Kleinberg, and E. Tardos. Maximizing theesyl of
influence through a social network. Rroc. of the 9th ACM SIGKDD
Int'l Conf. on Knowledge Discovery and Data Minin2003.

I. Kontoyiannis and M. Madiman. Measure concentrafion
compound poisson distributionglectron. Commun. Probghl1:no.
5, 45-57, 2006.

A. Mislove, B. Viswanath, K. Gummadi, and P. DruschebuYare
who you know: Inferring user profiles in online social netk&rin
Proc. 3rd ACM Int'l. Conf. on Web Search and Data Minjr&§10.

S. Myers and J. Leskovec. On the convexity of latentaawtwork
inference. InAdvances in Neural Information Processing Systems 23
pages 1741-1749. 2010.

P. Netrapalli and S. Sanghavi. Learning the graph adepic
cascades. ISIGMETRICSpages 211-222, 2012.

M. E. J. Newman. The structure and function of complexvoeks.
SIAM REVIEW45:167-256, 2003.

E. M. Rogers and E. RogerBiffusion of InnovationsFree Press, 5th
edition, Aug. 2003.

(31

(5]

(7]

[10]

[11]

[12]

(23]

[14]

[15]

[16]

[17]

(18]

[19]

[20]
[21]

[22]



	Introduction
	Related Work
	Cascade Model
	The Head of a Trace
	The First-Edge Algorithm
	Lower Bounds
	Reconstructing the Degree Distribution

	The Tail of the Trace
	Reconstructing Trees
	Bounded-Degree Graphs

	Experimental Analysis
	Conclusion
	References

