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Abstract. Manolescu and Piccirillo recently initiated a program to construct an exotic S4 or #nCP2 by

using zero surgery homeomorphisms and Rasmussen’s s-invariant [MP21]. They find five knots that if any

were slice, one could construct an exotic S4 and disprove the Smooth 4-dimensional Poincaré conjecture.
We rule out this exciting possibility and show that these knots are not slice. To do this, we use a zero

surgery homeomorphism to relate slice properties of two knots stably after a connected sum with some 4-

manifold. Furthermore, we show that our techniques will extend to the entire infinite family of zero surgery
homeomorphisms constructed by Manolescu and Piccirillo. However, our methods do not completely rule

out the possibility of constructing an exotic S4 or #nCP2 as Manolescu and Piccirillo proposed. We explain

the limits of these methods hoping this will inform and invite new attempts to construct an exotic S4 or
#nCP2. We also show a family of homotopy spheres constructed by Manolescu and Piccirillo using annulus

twists of a ribbon knot are all standard.

1. Introduction

1.1. Background. The study of 4-manifolds is distinguished by the remarkable difference between smooth
and topological 4-manifolds compared to other dimensions. This manifests in the failure of Smale’s h-
cobordism theorem which Smale used to prove the high dimensional Poincaré conjecture [Sma60]. This left
open the 4-dimensional Poincaré conjecture which asserts that every smooth 4-manifold homotopy equivalent
to S4, i.e. a homotopy S4, is homeomorphic to S4. Freedman resolved the 4-dimensional Poincaré conjecture
and showed that simply connected, smooth 4-manifolds are determined up to homeomorphism by their
intersection forms [Fre82]. Donaldson contrasted this topological simplicity with his Diagonalization Theorem
and showed that 4-manifolds do not smoothly admit such a straightforward classification [Don83]. The
resulting study of 4-manifolds have yielded an abundance of exotic pairs of 4-manifolds: pairs of 4-manifolds
homeomorphic, but not diffeomorphic to each other. Unique to dimension 4 are phenomena such as infinite

families of exotic smooth structures on R4 and small closed 4-manifolds such as CP2#2CP2
[Tau87; AP10].

Remarkably, this exotic behavior has not been shown to occur with the 4-sphere: the most basic example of
a closed 4-manifold. This is the focus of the Smooth 4-dimensional Poincaré conjecture (SPC4).

Smooth 4-Dimensional Poincaré Conjecture (SPC4). Every homotopy 4-sphere is diffeomorphic to
the standard 4-sphere

The various flavors of the Poincaré conjecture motivated and revolutionized 20th century topology with
SPC4 the last low dimensional case that remains unresolved.

Historically, the consensus among experts is that SPC4 is false due to the aforementioned exotica and the
many constructions of homotopy spheres that are not known to be standard. The difficulty with exhibiting
an exotic S4 is that the invariants used to distinguish smooth structures are typically known to vanish on
homotopy 4-spheres. This changed with Rasmussen’s invention of his eponymous s-invariant [Ras10], a slice
obstruction coming from Khovanov Homology [Kho00]. A knot is smoothly slice if it is the boundary of a
smooth properly embedded disk in B4. Rasmussen defined the s-invariant s(K) ∈ 2Z for any knot K and
showed that if s(K) 6= 0, then K is not slice. Unlike prior slice obstructions, it is not clear that the s-invariant
vanishes on knots slice in a homotopy ball other than B4. In theory, one could show that a homotopy sphere
Σ is exotic by finding a knot K slice in the homotopy ball Σ − int(B4) and has s(K) 6= 0. Then K would
not be slice in the standard B4 and sliceness of K smoothly distinguishes Σ from the standard S4.

Freedman, Gompf, Morrison, and Walker (FGMW) attempted this strategy on the intensely studied
family of Cappell-Shaneson spheres Σn. They found knots slice in Σn − int(B4), hoping that one of these
knots would have non-vanishing s-invariant. They were only able to do the calculations for two of their knots
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Figure 1. If any are slice, then an exotic S4 exists. Figure 1 of [MP21].

and got zero for both [FGMW10]. Surprisingly, only six days after FGMW posted their results, Akbulut
showed that all Σn are standard [Akb10]. Indirectly, this shows that all of the knots FGMW considered had
vanishing s-invariant.

Piccirillo’s acclaimed proof that the Conway knot is not slice has renewed interest in the s-invariant.
Piccirillo’s proof takes advantage of and makes apparent the uniqueness of Rasmussen’s s-invariant among
other slice obstructions [Pic20]. It now seems more likely that the s-invariant could be used to distinguish a
homotopy sphere from S4. However, the Cappell-Shaneson spheres Σn were the most promising potentially
exotic homotopy spheres. With Σn now standardized, we are left with a dearth of homotopy spheres.

Recently, Piccirillo worked with Manolescu to revive this idea of FGMW to use the s-invariant to find an
exotic S4. Unlike FGMW, they don’t use knots slice in a known homotopy sphere and in some sense, they
reverse the FGMW approach. They propose a way to build a new homotopy sphere Σ which comes with
such a knot already. To construct an exotic S4, they propose to take a pair of knots (K,K ′) which satisfy
three conditions:

K is slice, s(K ′) 6= 0, φ : S3
0(K)→ S3

0(K ′)

This would allow one to construct a homotopy sphere Σ where K ′ is slice in Σ− int(B4). Then Σ would have
the properties that FGMW wanted and would be an exotic S4. Manolescu and Piccirillo initiated a search
for such a pair of knots, but did not find any that satisfied all three conditions. They did find pairs (K,K ′)
which have homeomorphic zero surgeries, s(K ′) < 0, and could not immediately determine the sliceness of
K. They conclude the following:

Theorem (1.3 of [MP21]). If any of the knots K1, . . . ,K5 of Figure 1 are slice, then an exotic S4 exists.

SPC4 is a difficult, long open problem and disproving it by constructing an exotic S4 is an ambitious
task. Another difficult, long open problem that might be more approachable is to construct an exotic positive
definite 4-manifold. Historically, we have had more and earlier success constructing exotic 4-manifolds closer
to positive definite with larger topology. In particular, it is easier to construct exotic 4-manifolds with larger
b2(X) = rank(H2(X)). We can adapt the above strategy to #nCP2 using an adjunction inequality for the
s-invariant in #nCP2 [MMSW19]. We now want K to be H-slice in #nCP2, that is K should bound a
null-homologous disk D in #nCP2 − int(B4). To obstruct H-sliceness of K ′ in #nCP2, we need s(K ′) < 0.
Manolescu and Piccirillo again found pairs of knots in their search that satisfied all but one of the necessary
conditions.

Theorem (1.4 of [MP21]). If any of the knots K1, . . . ,K23 are H-slice in some #nCP2, then an exotic
#nCP2 exists1.

1See Figure 23 of [MP21] for K6, . . . ,K23
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1.2. Results. The knots K1, . . . ,K5 are good candidates to be slice. They have Alexander polynomial
1 and are topologically slice by Freedman [Fre82], that is they bound topologically, locally flat disks in
B4. Therefore, all obstructions to topological sliceness automatically vanish on these knots. Many smooth
concordance invariants such as Ozsváth-Szabó’s τ -invariant and Rasmussen’s s-invariant also vanish on them.
In addition, the knots K ′1, . . . ,K

′
5 would be slice in a homotopy B4 and many of the necessary invariants

vanish on these knots. At first thought, one would need new slice obstructions that are stronger than those
currently available. Despite all of this we are able to show the following:

Theorem 1.1. The knots K1, . . . ,K23 are not slice. Furthermore, these knots are not H-slice in any #nCP2.

The difficulty here is the vanishing of invariants that obstruct sliceness or H-sliceness of Ki. This is the
same problem that arises when trying to determine sliceness of the Conway knot. For the Conway knot,
Piccirillo finds a knot K that shares a zero trace with the Conway knot. Since sliceness is determined
by the zero trace, the Conway knot is slice if and only if K is slice. Calculating s(K) shows that K is
not slice and therefore the Conway knot is not slice [Pic20]. One might hope to extend the zero surgery
homeomorphism S3

0(Ki)→ S3
0(K ′i) to a zero trace diffeomorphism. For many of these pairs, the zero surgery

homeomorphisms do not extend and it appears they may never have homeomorphic traces. Without a trace
diffeomorphism, we can’t access the trace embedding lemma to identify sliceness of K and K ′. Instead, we
extend S3

0(Ki) → S3
0(K ′i) to a diffeomorphism of the traces after blowing up. This allows us to relate their

slice properties stably and work with H-sliceness of K ′i instead of the difficult Ki.
Manolescu and Piccirillo considered an infinite six parameter family of zero surgery homeomorphisms.

They found the knots K1, . . . ,K23 by checking 3375 zero surgery homeomorphisms in this family. One
might try to expand the search and consider more pairs from this family. We show that such an effort would
be in vain and prove a stronger version of Theorem 1.1.

Theorem 1.2. Let (K,K ′) be a pair of knots with homeomorphic zero surgeries from the Manolescu-
Piccirillo family.

(1) If K is H-slice in some #nCP2, then s(K ′) ≥ 0.

(2) If K is H-slice in some #nCP2
, then s(K ′) ≤ 0.

(3) If K is slice, then s(K ′) = 0.

This is proved in a more general form in Theorem 3.9. This theorem rules out finding an exotic S4 (or
#nCP2) using the s-invariant and zero surgery homeomorphisms from the Manolescu-Piccirillo family. This
does not show the stronger statement that such (K,K ′) can not be used to construct an exotic S4. In
principal, a (K,K ′) from the Manolescu-Piccirillo family could still have K slice and K ′ not slice. Such
a pair would exhibit an exotic S4, but this theorem shows that the s-invariant s(K ′) would not obstruct
sliceness and detect exoticness.

In Theorem 3.13, we attempt to generalize the above theorem assuming a conjectural inequality for
Rasmussen’s s-invariant. We establish conditions on when these methods apply and would rule out using
the s-invariant with zero surgery homeomorphisms to construct an exotic S4 or #nCP2. These methods are
not special to the s-invariant and might also apply to other obstructions to H-sliceness in #nCP2 or other
4-manifolds. As new and stronger concordance invariants are inevitably constructed, there will surely be
new attempts to construct exotic 4-manifolds using H-sliceness and zero surgery homeomorphisms. Such
hypothetical future attempts will likely need to revisit this work.

Our methods do not apply to all zero surgery homeomorphisms and leaves hope that the s-invariant could
be used to find an exotic S4 or #nCP2. We construct an infinite family of zero surgery homeomorphisms
which are not susceptible to our methods. These zero surgery homeomorphisms are not a serious attempt at
constructing an exotic S4 or #nCP2. Instead they are an illustration of the continued viability of Manolescu
and Piccirillo’s approach and an invitation to the topological community to continue it.

Manolescu and Piccirillo also consider pairs of knots (K,K ′) which have have homeomorphic 0-surgeries,
K is slice, and K ′ has indeterminate sliceness. They give a family of knots {Jn | n ∈ Z} related by annulus
twist homeomorphisms φn : S3

0(J0)→ S3
0(Jn). J0 bounds a ribbon disk and this gives a family of homotopy

spheres Zn = E(D) ∪φn
−X0(Jn).

Theorem 1.3. The homotopy 4-spheres Zn are all diffeomorphic to S4 (and therefore each Jn is slice).

To prove this, we draw these manifolds upside down as X0(Jn) ∪ −E(D). Drawing the exterior upside
down directly with the standard algorithm is difficult and results in a complicated diagram. Instead we will
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describe an algorithm for any ribbon knot K bounding a ribbon disk D, how to draw a Kirby diagram of S4

as X0(K) ∪ −E(D). We can then use this to draw a Kirby diagram of −Zn showing the trace embedding
X0(Jn) ⊂ −Zn. Using this diagram of −Zn, we then show that each Zn is standard.

1.3. Conventions. All manifolds are smooth and oriented. Any embeddings or homeomorphism are orien-
tation preserving. Boundaries are oriented with outward normal first. All homology groups have integral
coefficients.

1.4. Acknowledgments. The author would like to thank Ciprian Manolescu and Lisa Piccirillo for helpful
correspondences as well as for allowing the author to use the images in Figure 1. The author would also like
to thank his advisors Bob Gompf and John Luecke for their help and support. As noted in [MP21], some
cases of the above results were already established by others. Dunfield and Gong showed that K6, . . . ,K21

are not slice using their program to compute twisted Alexander polynomial [DG] and Kyle Hayden showed
that Z1 is standard

2. Preliminaries

2.1. H-slice Knots and Zero Surgery Homeomorphisms. We will need to recall Manolescu and Pic-
cirillo’s proposed construction of an exotic S4 or #nCP2. To simplify the discussion, we combine these cases
into one and define #0CP2 to be S4 via the empty connected sum. Whenever #nCP2 appears it will be

implicit that n ≥ 0 and likewise with #nCP2
.

Let X be a smooth, closed, oriented 4-manifold and let X◦ = X − int(B4).

Definition 2.1. A knot K ⊂ S3 is said to be H-slice in X◦ or X if K is the boundary of a smoothly,
properly embedded disk D in X◦ such that [D] = 0 ∈ H2(X◦, ∂X◦).

H-sliceness is a generalization of sliceness: a knot is slice (in B4) if and only if it is H-slice in S4. Recall
that the k-trace Xk(K) of K is obtained by attaching a 2-handle to B4 along K with framing k. The classical
trace embedding lemma asserts a knot K is slice if and only if the zero trace X0(K) smoothly embeds in S4.
We have an analogous statement for a knot to be H-slice in X.

Lemma 2.2 (H-slice Trace Embedding Lemma, Lemma 3.5 of [MP21]). A knot K is H-slice in X if and
only if −X0(K) smoothly embeds in X by an embedding that induces the zero map on second homology.

Suppose K is H-slice in X with H-slice disk D ⊂ X◦ and there is a zero surgery homeomorphism φ :
S3

0(K)→ S3
0(K ′). Let ν(D) be a tubular neighborhood of D and let the exterior of D be E(D) = X◦−ν(D).

The exterior naturally has boundary S3
0(K) and we can define X ′ = E(D)∪φ −X0(K ′). K ′ is H-slice in X ′

by Lemma 2.2 and if X is simply connected, X ′ is homeomorphic to X (Lemma 3.3 of [MP21]). If K ′ is not
H-slice in X, then H-sliceness of K ′ smoothly distinguishes X ′ from X.

Constructing an exotic #nCP2 with zero surgery homeomorphisms sounds promising, but there are dif-
ficulties with this approach which have only recently been resolved. The first challenge was overcoming the
Akbulut-Kirby conjecture which asserts that knots with homeomorphic zero surgeries are concordant. H-
sliceness is preserved by concordance and therefore this construction would be more difficult than producing
counterexamples to the Akbulut-Kirby conjecture. Fortunately, Yasui disproved the Akbulut-Kirby conjec-
ture in 2015. In doing so, he showed that concordance invariants, such as the Ozsváth-Szabó τ -invariant or
Rasmussen’s s-invariant, could distinguish knots in concordance that share a zero surgery [Yas15].

This brings us to the second difficulty with this strategy. We need to obstruct H-sliceness of K ′ in the
standard #nCP2 without obstructing H-sliceness of K in a homotopy #nCP2. Obstruction from gauge
and Floer theoretic concordance invariants, like the τ -invariant, tend to apply in any homotopy #nCP2

[OS03]. In particular, such invariants always vanish on knots slice in a homotopy S4. However, Rasmussen’s
s-invariant does provide an obstruction to H-sliceness in #nCP2 that may not hold in a homotopy #nCP2.

Lemma 2.3 (Theorem 1.8 of [MMSW19]). If Σ ⊂ #nCP2 − (int(B4) t int(B4)) is a null homologous,
oriented cobordism from a link L1 to L2 with each component of Σ having a boundary component in L1, then
s(L2)− s(L1) ≥ χ(Σ). In particular, if a knot K is H-slice in some #nCP2, then s(K) ≥ 0.

By reversing orientation, we see that if K is H-slice in #nCP2
, then s(K) ≤ 0. Furthermore, if K is H-slice

in #nCP2
and #nCP2 for some n, then s(K) = 0. Such knots are called biprojectively H-slice by Manolescu

and Piccirillo. These include all slice knots and some non-slice knots like the figure eight knot.
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(a) (b)

Figure 2. Initial slide used to exhibit KB

Putting this together, we can construct an exotic #nCP2 if we have a pair of knots (K,K ′) such that

K is H-slice in #nCP2, s(K ′) < 0, φ : S3
0(K)→ S3

0(K ′)

For H-sliceness in #0CP2 = S4, i.e. standard sliceness, we could also consider s(K ′) 6= 0 to obstruct sliceness.
However, Manolescu and Piccirillo focus on negative s(K ′) and in their search find no viable examples with
positive s(K ′).

Recall that a framed knot is a knot K in S3 together with a framing k ∈ Z. We will denote a framed
knot by (K, k) and extend this naturally to framed links. To conduct their search, Manolescu and Piccirillo
need a source of zero surgery homeomorphisms and so they define special RBG-links.

Definition 2.4. A special RBG-link L = (R, r)∪ (B, 0)∪ (G, 0) ⊂ S3 is a three component integrally framed
link where R has framing r ∈ Z, B and G have framing b = g = 0. Furthermore, surgery on this framed link
has H1(S3

r,0,0(R,B,G)) = Z and if µR is a meridian of R, there exist link isotopies

R ∪G ∼= R ∪ µR ∼= R ∪B

Given a special RBG-link we can define a pair of knots and a zero surgery homeomorphism between them.
The following proposition and its proof is the first half of Theorem 1.2 of [MP21] for a special RBG-link. We
reproduce it here because understanding the special RBG-link construction will be fundamental to proving
our key lemmas.

Proposition 2.5. For any special RBG-link L, there is an associated pair of knots KB and KG and a
homeomorphism φL : S3

0(KB)→ S3
0(KG).

Proof. The assumption that (G, 0) is zero framed meridian of (R, r) implies there is a slam dunk home-
omorphism ψB : S3

r,0(R,G) → S3. Let KB = ψB(B), the slam dunk homeomorphism takes a framing

on B to a framing on KB that surgers to S3
r,b,g(R,B,G). The assumption on homology implies that this

must be the zero framing. Reusing notation, the slam dunk on (R, r) ∪ (G, 0) induces a homeomorphism
ψB : S3

r,b,g(R,B,G) → S3
0(KB). We can do the same with (G, 0) by slam dunking (R, r) ∪ (B, 0) to get a

homeomorphism ψG : S3
r,b,g(R,B,G) → S3

0(KG) and the desired homeomorphism is then φL = ψB ◦ ψ−1
G :

S3
0(KB)→ S3

0(KG). �

Given a diagram of L, we can perform this construction diagrammatically. We take L to be a surgery
diagram of S3

r,b,g(R,B,G) and slam dunk (R, r) ∪ (G, 0). To do this, first isotope (G, 0) into meridianal

position so (G, 0) bounds a disk ∆G. This disk intersects (B, 0) in some number of points as shown in Figure
2a. Slide (B, 0) over (R, r) so that it no longer intersects ∆G as shown in Figure 2b. To finish the slam
dunk, delete (R, r) and (G, 0) leaving (KB , 0).

2.2. Projective Slice Framings. Let W be a smooth, closed, oriented 4-manifold. If D is a disk properly
embedded in W ◦, then D has a well defined tubular neighborhood ν(D) = D ×R2. Then D = D × {0} has
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a parallel pushoff D∗ = D × {p} ⊂ ν(D) for some nonzero p. K∗ = ∂D∗ is a knot parallel to K and defines
a framing on K.

Definition 2.6. A framed knot (K, k) in S3 is said to be slice in W or W ◦ if K is the boundary of a disk
D smoothly, properly embedded in W which induces the framing k on K.

If we say K is k-slice in W with k ∈ Z, then we mean (K, k) is slice in W . This framing k will be equal
to the negative of the self intersection number of D, i.e. k = −[D] · [D]. The exterior E(D) = W ◦ − ν(D)
of D has boundary ∂E(D) naturally identified with S3

k(K). We can view the deleted ν(D) and int(B4) as
a trace and get a trace embedding lemma.

Lemma 2.7 (Framed Trace Embedding Lemma, Lemma 3.3 of [HP21]). A framed knot (K, k) in S3 is
smoothly slice in W if and only if −Xk(K) smoothly embeds in W .

This will allow us later to construct framed slice disks by finding trace embeddings. We will be working

with framed slice disks in #nCP2
and in this setting, it is often more practical to construct the disks directly.

To construct knots H-slice in some #nCP2
, one can use a full positive twist along algebraically zero strands

as in Lemma 3.2 of [MP21]. This generalizes to framed sliceness, but now we need to keep track of how the
framing changes.

Lemma 2.8. Suppose (K, k) is the framed boundary of a disk D ⊂ W ◦ and ∆ a disk embedded in S3

intersecting K transversely in ` points counted with sign. Let K+ be a knot obtained from K by performing

a positive full twist through ∆, then (K+, k + `2) is slice in W#CP2
.

Proof. Attach a −1 framed 2-handle to W ◦ along ∂∆ to get W ◦ ∪(∂∆,−1) 2h = (W#CP2
)◦. Then D in

W ◦ ∪(∂∆,−1) 2h has boundary (K, k) ⊂ S3
−1(∂∆) and a blowdown of (∂∆,−1) identifies it with (K+, k +

`2). �

The above lemma can be used to show that an arbitrary knot K will be slice in some #nCP2
. First observe

that a crossing change can be realized as a positive twist on two strands. Then a sequence of crossing changes

that unknot K can be used to construct a slice disk D for K with some framing in #nCP2
. Our arguments

require checking that certain framed knots associated to a zero surgery homeomorphism are slice in some

#nCP2
or #nCP2. To quantify this we define the projective slice framings.

Definition 2.9. Let K be a knot in S3. The positive projective slice framing PF+(K) of K is the smallest

framing k such that (K, k) is slice in some #nCP2
. The negative projective slice framing PF−(K) is defined

analogously.

Homological considerations imply that a strictly negative framed knot cannot be slice in a negative definite
4-manifold and therefore PF+(K) ≥ 0. Furthermore, in a negative definite 4-manifold, the only homology
class with self intersection number zero is the zero homology class.

Lemma 2.10. PF+(K) = 0 if and only if K is H-slice in some #nCP2
. PF−(K) = 0 if and only if K is

H-slice in some #nCP2. PF+(K) = PF−(K) = 0 if and only if K is biprojectively H-slice. �

Once we have one of these framings, Lemma 2.8 immediately realizes any framing larger than PF+(K).
Take D a disk realizing PF+(K) and ∆ a meridianal disk of K.

Corollary 2.11. If k ≥ PF+(K), then (K, k) is slice in some #nCP2
. If k ≤ PF−(K), then (K, k) is slice

in some #nCP2. �

We can construct framed slice disks in #nCP2
, but we would also like to have lower bounds on these

framings as well. To do so, we can use the adjunction inequality for the Ozsváth-Szabó τ -invariant.

Lemma 2.12 (Theorem 1.1 of [OS03]). Let W be a smooth 4-manifold with negative definite intersection
form, b1(W ) = 0, and ∂W = S3. Let e1, . . . , en be an orthonormal basis for H2(W ) and if α = s1e1+. . . snen,
then let |α| = |s1|+ · · ·+ |sn|. If Σ is smooth, properly embedded surface in W with boundary ∂W = K, then
we have the following inequality:

2τ(K) + |[Σ]|+ [Σ] · [Σ] ≤ 2g(Σ)
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Corollary 2.13.

PF−(K) +
√
|PF−(K)| ≤ 2τ(K) ≤ PF+(K)−

√
PF+(K)

Proof. Let Σ be a disk in #nCP2 − int(B4) with framed boundary (K, k) and let x = 2τ(K). We have
[Σ] · [Σ] = −k and so x+ |[Σ]| ≤ k by Lemma 2.12. We see that k = s2

1 + · · ·+s2
n ≤ (|s1|+ · · ·+ |sn|)2 = |[Σ]|2,

therefore
√
k ≤ |[Σ]| and x ≤ k −

√
k. �

There is an analogous adjunction inequality conjectured for the s-invariant.

Conjecture 2.14 (Conjecture 9.8 of [MMSW19]). If Σ is smooth, properly embedded surface in W =

#nCP2 − int(B4) with boundary ∂Σ = K, then we have the following inequality:

s(K) + |[Σ]|+ [Σ] · [Σ] ≤ 2g(Σ)

[MMSW19] proved this in the nullhomologous case and conjectured this in analogy to the adjunction
inequality for τ(K). We replace 2τ(K) with s(K) like their slice genus bounds, but we limit this conjecture

to W = #nCP2 − int(B4). It’s not clear how to approach Conjecture 2.14 for arbitrary negative definite
W or even if it should hold in such W . However, if this conjecture holds, we can replace x = 2τ(K) with
s(K) throughout the proof of Corollary 2.13. When K is (−1)-slice in some #nCP2, we conjecturally get
the same restriction on s(K) as we did when K is H-slice is some #nCP2.

Conjecture 2.15. If K is (−1)-slice in some #nCP2, then s(K) ≥ 0.

3. Construction of Trace Embeddings

3.1. Obstructing H-sliceness of K1, . . . ,K23 in #nCP2. In this subsection, we show that K1, . . . ,K23

are not slice, nor are they H-slice in any #nCP2. To do this, we will relate H-sliceness of Ki in #nCP2

stably with K ′i after a connected sum with some #rCP2. We see this first at the level of traces as a stable
trace diffeomorphism.

Lemma 3.1. Let W be a smooth, closed, oriented 4-manifold and L = (R, r) ∪ (B, 0) ∪ (G, 0) be a special
RBG-link with associated zero surgery homeomorphism φL : S3

0(KB)→ S3
0(KG). If (R, r) is slice in W , then

φL extends to a diffeomorphism ΦL : X0(KB)#W ∼= X0(KG)#W

This is a generalization of techniques [Akb77; Pic19; Pic20] used to construct trace diffeomorphisms. The
(R, r) = (U, 0) slice in B4 case of the lemma is the dualizable link construction and its proof is insightful
here. Construct a Kirby diagram by placing a dot on R and attaching 2-handles to B and G. Cancelling
the dotted R with B or G diagrammatically is a slam dunk resulting in X0(KG) and X0(KB) respectively.
The framed sliceness of (R, r) in W allows us to “dot” (R, r) and proceed in a similar manner.

Proof. Let Z be the 4-manifold obtained from W ◦ by removing a neighborhood ν(D) of a slice disk D for
(R, r) and attaching 2-handles to (B, 0) and (G, 0). This description naturally identifies ∂Z as S3

r,0,0(R,B,G).
The 2-handle attached to (G, 0) fills E(D) because (G, 0) is isotopic to (µR, 0). This is a diffeomorphism
ΨB : E(D) ∪(G,0) 2h→ W ◦ extending the slam dunk homeomorphism ψB : S3

r,0(R,G)→ S3. The 2-handle
that was attached to (B, 0) is now attached to ψB(B, 0) = (KB , 0) and therefore ΨB induces a diffeomor-
phism of Z and W ◦ ∪(KB ,0) 2h . Observe that W ◦ = B4#W and W ◦ ∪(KB ,0) 2h is simply X0(KB)#W .
Reusing notation, we have a diffeomorphism from ΨB : Z → X0(KB)#W extending the homeomorphism
ψB : S3

r,0,0(R,B,G) → S3
0(KB). Repeating this with G instead and composing, we have the desired diffeo-

morphism ΦL = ΨB ◦Ψ−1
G : X0(KB)#W ∼= X0(KG)#W extending the homeomorphism φL = ψB ◦ψ−1

G . �

When a zero surgery homeomorphism extends to a zero trace diffeomorphism, the H-slice trace embedding
lemma identifies the H-sliceness of the two knots. If the zero surgery homeomorphism doesn’t extend, Lemma
3.1 sometimes allows us to extend to a diffeomorphism after a connected sum with −W . This makes the
trace embedding lemma available and allows us to relate H-sliceness of the two knots.

Corollary 3.2. Let X be a smooth, closed, oriented 4-manifold. Suppose KB is H-slice in X and KG is
then H-slice in X ′ = E(D)∪φL

−X0(KG). If (R, r) is slice in W , then X ′#−W is diffeomorphic to X#−W
and therefore KG is H-slice in X#−W . �

Now we are ready to prove our first theorem.
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Theorem 3.3. The knots K1, . . . ,K23 are not slice nor are they H-slice in any #nCP2.

Proof. By looking at Figure 13 and Table 1 of [MP21], we see that each Ki arise from a special RBG-link

where R = U and r = a + b ≥ 0. We have (R, r) = (U, r) is slice in W = #rCP2
and if Ki is H-slice in

#nCP2, then K ′i is H-slice in #(n+r)CP2 by Corollary 3.2. These knots have s(K ′i) = −2 which contradicts

Lemma 2.3 and therefore Ki could not have been H-slice in #nCP2 in the first place. �

Remark 3.4. For the knots in question, the diffeomorphism ΦL : X0(KG)#rCP2 ∼= X0(KB)#rCP2
can

also be seen diagrammatically. Take L and perform negative blow ups to (R, r) turning it into a zero framed
unknot (R, 0) with r meridians (R1,−1), . . . , (Rr,−1). This new framed link still describes the same zero
surgery homeomorphism. Slam dunk (R, 0) with (B, 0) or (G, 0) and blow down (R1,−1), . . . , (Rr,−1) to get
(KG, 0) or (KB , 0) respectively (think of this as an RBG-link generalized to have R be a framed link). Form
a Kirby diagram by putting a dot on R and attaching 2-handles to the other components. Now cancelling

the dotted (R, 0) with (B, 0) or (G, 0) and sliding (R1,−1), . . . , (Rr,−1) away results in X0(KG)#rCP2
or

X0(KB)#rCP2
respectively.

We have dispensed of the main question relatively quickly and have shown that K1, . . . ,K23 are not slice
or H-slice in any #nCP2. However, to prove this we needed that the associated special RBG-links all had
r ≥ 0. If we had negative r < 0 instead, then (R, r) would be slice in #|r|CP2. If K was H-slice in #nCP2,

then K ′ would be H-slice in #nCP2#|r|CP2
by Corollary 3.2. This would not contradict s(K ′) < 0 and

our proof would not work. It seems quite mysterious that we had this necessary condition on r for all 23
pairs of knots. Fortunately, we can explain this and do so in the following subsection. Before we proceed,
we take a short detour to provide a generalization of Corollary 3.2 from special RBG-links to arbitrary zero
surgery homeomorphisms. One can safely skip to the next subsection, but this method may offer some useful
benefits in practice.

Lemma 3.5. Let φ : S3
0(K)→ S3

0(K ′) be a zero surgery homeomorphism and represent φ−1(µK′ , 0) ⊂ S3
0(K)

as some framed knot (m, k) in S3. If K is H-slice in X and (m, k) is slice in some 4-manifold W , then K ′

is H-slice in X#−W .

Proof. By turning the handle decomposition of X0(K ′) upside down, one can obtain X ′ from E(D) by
attaching a 2-handle to (m, k) and capping off with a 4-handle. We can regard (X ′)◦ as X ′ with a 4-handle
deleted and (X ′)◦ = E(D) ∪(m,k) 2h. This can be used to build the following sequence of inclusions:

−X0(K ′) ⊂ (X ′)◦ = E(D) ∪(m,k) 2h ⊂ X◦ ∪(m,k) 2h = X#Xk(m) ⊂ X#−W
The first inclusion comes from the H-slice trace embedding lemma and the second inclusion is induced by
E(D) ⊂ X◦. As we observed in the proof of Lemma 3.1, X◦ ∪(m,k) 2h is simply X#Xk(m). The final
inclusion comes from the framed trace embedding lemma with (m, k) slice in W . The composition is a
nullhomologous trace embedding of −X0(K ′) into X#−W and therefore K ′ is H-slice in X#−W . �

For a special RBG-link homeomorphism, one can take (m, k) to be (R, r). This recovers the conclusion
of Corollary 3.2 and gives another proof of Theorem 3.3. However, we do not get a stable diffeomorphism
X ′# −W ∼= X# −W like in Corollary 3.2. The advantage of this is that it does not need a special RBG-
link and has the further benefit that the input data is more malleable. It seems non-trivial to find special
RBG-links representing a given zero surgery homeomorphism with a different (R, r). However, (m, k) was a
choice of diagrammatic representative of φ−1(µK′ , 0) ⊂ S3

0(K) and can be modified via slides over K.

3.2. The Manolescu-Piccirillo Family. This section is devoted to explaining why r was positive for all
of Manolescu and Piccirillo’s knot pairs. We observed after proving Theorem 3.3 that we needed the relevant
special RBG-link to have r ≥ 0 for our proof to work. Having positive r ≥ 0 for all 23 knot pairs seems
unlikely and it would be quite unsatisfactory if a necessary hypothesis in our proof was left unexplained. We
investigate this by widening our view and considering the infinite six parameter family of special RBG-links
L(a, b, c, d, e, f) that these knot pairs arose from. These L(a, b, c, d, e, f) were constructed by Manolescu and
Piccirillo as a source of candidates for their exotic #nCP2 construction. We prove that this would always
occurs for any member L(a, b, c, d, e, f) of the Manolescu-Piccirillo family: if r < 0, then s(K), s(K ′) ≥ 0.
This allows us to prove a strong generalization of Theorem 3.3 from K1, . . . ,K23 to any (K,K ′) coming from
some L(a, b, c, d, e, f).
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(a) (b) (c)

Figure 3. Constructing a slice disk for (KB ,−1) in #|r|CP2

To show that s(K), s(K ′) are non-negative when r < 0, we construct and analyze slice disks for (K,−1)
and (K ′,−1) in #|r|CP2. We build these slice disks by exploiting two properties of the special RBG-links
L(a, b, c, d, e, f). The first was that they had R = U and the second was that they were small.

Definition 3.6. A small RBG-link is a special RBG-link L such that

• B bounds a properly embedded disk ∆B that intersects R in exactly one point, and intersects G in at
most 2 points.

• G bounds a properly embedded disk ∆G that intersects R in exactly one point, and intersects B in at
most 2 points.

Equivalently, one needs at most two slides of B and G over R in the special RBG-link construction for L.

Some small RBG-links with R = U will not to be useful to construct an exotic #nCP2. If either of the
intersection numbers ∆B∩G or ∆G∩B is strictly less than 2, then KB = KG by Proposition 4.11 of [MP21].
If R = U and r ≥ 0, then the proof of Theorem 3.3 can be applied. What remains can be dealt with via the
following lemma.

Lemma 3.7. Suppose L is a small RBG-link with R = U and r < 0. Then both K and K ′ are (−1)-slice in
#|r|CP2 with slice disks D,D′ ⊂ (#|r|CP2)◦ that intersects one of the exceptional spheres CP1 geometrically
in 3 points and the remaining |r| − 1 exceptional spheres CP1 nullhomologously.

Proof. We will prove this in the case that the intersection numbers ∆B ∩G and ∆G ∩B are both precisely
2. Otherwise KB = KG and will not be of interest. The lemma remains true in that case and can be proved
in a similar way. We will prove the lemma by induction on the framing r with base case r = −1 and we
induct by showing the r < −1 case of the lemma follows from the r + 1 case. This is one of those peculiar
induction problems where the base case is the hard part so we will save it for last.

To prove the inductive step, let L be a small RBG-link with R = U and r < −1. According to a linking
matrix calculation at the start of Section 4.1 of [MP21], B and G in a special RBG-link have linking number
` = 0 or have r` = 2. Since ` is just ∆B ∩ G = ∆G ∩ B = 2 counted with sign, we must have ` = 0 when
r < −1. This ` also counts the number of slides in the slam dunk with sign. Therefore the two strands of B
we slid in the slam dunk are running in opposite directions along R and through the r twist box as shown in
Figure 3a. Let L∗ be the special RBG-link obtained from L by increasing r to r + 1. The knot K∗B arising
from L∗ differs from KB by having an r + 1 twist box in Figure 3a. Therefore, KB can be obtained from
K∗B by a negative nullhomologous twist through the two strands running through the twist box. If (K∗B ,−1)

bounds the disk D∗ in #|r + 1|CP2 intersecting a CP1 in 3 points, then we can construct such a disk D for
(KB ,−1) as in Lemma 2.8. The disk D in #|r|CP2 is simply D∗ after attaching a (+1)-framed 2-handle to
(#|r + 1|CP2)◦ along an unknot surrounding the twist box of ∂D∗ = K∗B .

To prove the r = −1 base case, let (R, r) ∪ (KB ,−1) be the framed link depicted in Figure 3b. This link
is obtained from L = (R, r) ∪ (B, 0) ∪ (G, 0) by sliding (B, 0) over (R, r) to get (KB , 0), removing (G, 0),

and decreasing the framing of KB to −1. Identify CP2− int(B4 tB4) as S3× I with a 2-handle attached to

S3×1 along (R, r) = (U,−1). Use this to define the cobordism E in CP2
as KB×I under this identification.

Next we slide E over the 2-handle attached to (R, r) and we will represent this by slides of (KB ,−1) in
(R, r)∪ (KB ,−1). Starting with Figure 3b, reverse the two slides from the slam dunk to get (R, r)∪ (B,−1)
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as in Figure 3c. We can slide (B,−1) off (R, r) turning it into a zero framed unknot (U, 0) disjoint from
(R, r). We turn E upside down and cap off (U, 0) with a disk in B4 to get a slice disk D for (KB ,−1) in
CP2.

It remains to check that D intersects CP1 in three points. Observe that E was slid three times over the
2-handle attached to (R, r) and now E has three intersections with the cocore C of this 2-handle. ∂C = µR
is disjoint from the (U, 0) boundary component of E. After turning E and C upside down, they can be
capped off without adding new intersections. The capped off C is a copy of CP1 that intersects D in three
points. �

We have a (−1)-framed slice disk in #|r|CP2 when r < 0 and Conjecture 2.15 would immediately tell us
that s(K ′) ≥ 0. However, that conjecture is currently unconfirmed and this disk is non-trivial in homology,
so we can’t appeal to Lemma 2.3. Despite this, the approach used in [MMSW19] to prove Lemma 2.3 will

be insightful. Let Σ be a smooth, properly embedded, nullhomologous surface in (#nCP2
)◦ with ∂Σ = K.

First remove neighborhoods ν(CP1
) = (CP2

)◦ tubed together leaving S3×I. By taking these neighborhoods

ν(CP1
) small enough, one can ensure that Σ meets ∂ν(CP1

) in some link Fp,p(1). What remains of Σ is a
cobordism C in S3× I from a disjoint union of Fp,p(1) to K. Now one needs to complete the difficult task of
calculating s(Fp,p(1)) for this infinite family. Once this is done, we apply our understanding of the s-invariant
for a cobordism C in S3 × I and get constraints on s(K). By keeping careful track of the intersection data
in Lemma 3.7, we will be able to proceed in a similar manner.

Corollary 3.8. Suppose L is a small RBG-link with R = U and r < 0. Then s(K), s(K ′) ≥ 0.

Proof. Let D ⊂ (#|r|CP2)◦ be the slice disk for (K,−1) from Lemma 3.7 that intersects an exceptional
sphere CP1 in three points. Delete a suitably small neighborhood ν(CP1) of this CP1 such that D meets
∂ν(CP1) in the link −F2,1(1). The link F2,1(1) is obtained by adding a positive twist through three parallel
unknots with one oriented in the opposite direction of the other two (see section 9.2 of [MMSW19] for
details). What remains of D is a nullhomologous cobordism C in #(|r| − 1)CP2 from −F2,1(1) to K and we
can apply Lemma 2.3.

s(K)− s(−F2,1(1)) ≥ χ(C) = −2

Tucked away before Proposition 9.9 of [MMSW19], they note s(F2,1(1)) = −2 and therefore s(K) ≥ 0. �

This guarantees the proof of Theorem 3.3 will be viable for every special RBG-link L(a, b, c, d, e, f) and
allows us to prove the following theorem.

Theorem 3.9. Let L be a small RBG-link with R = U and associated zero surgery homeomorphism φ :
S3

0(K)→ S3
0(K ′).

(1) If K is H-slice in some #nCP2, then s(K ′) ≥ 0.

(2) If K is H-slice in some #nCP2
, then s(K ′) ≤ 0.

(3) If K is slice (or more generally, biprojectively H-slice), then s(K ′) = 0.

In particular, this applies to any special RBG-link L(a, b, c, d, e, f) from the Manolescu-Piccirillo family.

Proof. It suffices to prove the first statement because the first two statements are equivalent and combining
them gives the last statement. If r < 0, then s(K ′) ≥ 0 by Corollary 3.8 and for the remaining r ≥ 0, we
proceed as in the proof of Theorem 3.3. �

This means that Manolescu and Piccirillo’s L(a, b, c, d, e, f) are not suitable for finding an exotic #nCP2

using the s-invariant. Let us emphasize that this still leaves open that some L(a, b, c, d, e, f) could be used
to construct an exotic #nCP2. We could still have K H-slice in some #nCP2 while K ′ is not. The above
theorem shows that s(K ′) can not obstruct H-sliceness of K ′ in #nCP2 and detect exoticness. It would be
interesting if one could show that this does not occur and generalize Theorem 3.9 on the level H-sliceness
in #nCP2 without reference to a particular concordance invariant.

Problem 3.10. Let φ : S3
0(K)→ S3

0(K ′) be a zero surgery homeomorphism arising from some L(a, b, c, d, e, f).
Show that K is H-slice in some #nCP2 if and only if K ′ is H-slice in some (ideally the same) #nCP2.
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3.3. Generalizing to Other Special RBG-links. Now that we’ve ruled out using L(a, b, c, d, e, f) with
the s-invariant to construct an exotic #nCP2, we are naturally led to consider other zero surgery home-
omorphisms. One would not want to run into the same issues as L(a, b, c, d, e, f), so we will explain how
Theorem 3.9 can be generalized to other special RBG-links. We hope that in doing so that future attempts
to construct an exotic #nCP2 can avoid having our techniques be applicable. For the remainder of this
subsection, let (K,K ′) be a pair of knots coming from a special RBG-link L = (R, r) ∪ (B, 0) ∪ (G, 0). Our
goal is to find conditions on (R, r) that allow us to use H-sliceness of K in #nCP2 to infer properties of
s(K ′).

Key to Theorem 3.9 was to prove Corollary 3.8 to get control over s(K ′) when r < 0. This was done
by analyzing particular slice disks in #|r|CP2 constructed in Lemma 3.7. Corollary 3.2 and Lemma 3.5 of
Subsection 3.1 produce nullhomologous trace embeddings using a zero surgery homeomorphism given a slice
condition on (R, r). The following is in the same spirit, but now we construct a framed trace embedding.

Lemma 3.11. If (R, r+ 1) is slice in some closed 4-manifold W , then K and K ′ are (−1)-slice in W#CP2

Proof. Let (R, r) ∪ (KB ,−1) be the framed link obtained from L = (R, r) ∪ (B, 0) ∪ (G, 0) by sliding (B, 0)
over (R, r) to turn it into (KB , 0), removing (G, 0), and decreasing the framing of KB to −1. Take this
link to be a Kirby diagram of a 4-manifold Z and note that X−1(KB) clearly embeds in Z. Reverse the
slides of the slam dunk turns (R, r) ∪ (KB ,−1) into (R, r) ∪ (B,−1). Then slide (R, r) off (B,−1) to get

(R, r + 1) t (U,−1). These slides induce a diffeomorphism of Z with Xr+1(R)#CP2
. If (R, r + 1) is slice in

W , then −Xr+1(R) embeds in W by the framed trace embedding lemma. Then −Z = (−Xr+1(R))#CP2

embeds in W#CP2 and so does −X−1(KB) ⊂ −Z, hence (KB ,−1) is slice in W#CP2. �

Observe that these are roughly the same slides used in the r = −1 case of Lemma 3.7 and these two
proofs should be thought of as essentially the same. The above proof is much simpler because we used trace
embeddings instead of directly constructing the slice disk. That was necessary in Lemma 3.7 because we
had to keep careful track of intersection data to avoid Conjecture 2.15. That conjecture asserted that if a
knot K is (−1)-slice in some #nCP2, then s(K) ≥ 0. Now we will just assume Conjecture 2.15 and apply it
to the (−1)-slicing of K in #(n+ 1)CP2 given by the above lemma with W = #nCP2. Here we’ll state this
in terms of the projective slice framing PF−(R) from Subsection 2.2. If r < PF−(R), then r + 1 ≤ PF−(R)
and (R, r + 1) is slice in some #nCP2 according to Corollary 2.11.

Corollary 3.12. If r < PF−(R), then K and K ′ are both (−1)-slice in some #nCP2. If Conjecture 2.15 is
true, then s(K), s(K ′) ≥ 0. �

We apply this Corollary 3.12 with an arbitrary special RBG-link in the same way we used Corollary 3.8 for
the Manolescu-Piccirillo L(a, b, c, d, e, f). This proves the following which characterizes when our methods
can be applied to a zero surgery homeomorphism.

Theorem 3.13. Let φ : S3
0(K)→ S3

0(K ′) be a zero surgery homeomorphism arising from a special RBG-link
L = (R, r) ∪ (B, 0) ∪ (G, 0) and assume Conjecture 2.15 is true.

(1) Suppose r < PF−(R) or r ≥ PF+(R). If K is H-slice in some #nCP2, then s(K ′) ≥ 0.

(2) Suppose r ≤ PF−(R) or r > PF+(R). If K is H-slice in some #nCP2
, then s(K ′) ≤ 0.

(3) Suppose r < PF−(R), r > PF+(R), or R is biprojectively H-slice with any r ∈ Z. If K is slice (or
biprojectively H-slice), then s(K ′) = 0.

Moreover, if R is biprojectively H-slice, then the conditions on (R, r) automatically hold.

Proof. The r < PF−(R) part of the first statement is Corollary 3.12. If r ≥ PF+(R), then (R, r) is slice in

some #kCP2
by Corollary 2.11. If we also have K is H-slice in some #nCP2, then we can conclude K ′ is

H-slice in #(n+ k)CP2 by Corollary 3.2 and s(K ′) ≥ 0 by Lemma 2.3. For the final statement, the first two
statements simultaneously apply when r < PF−(R) and r > PF+(R). If R is biprojectively H-slice, then
PF+(R) = PF−(R) = 0 by Lemma 2.10 and the first two statements simultaneously apply for any r ∈ Z. �

The special RBG-links L(a, b, c, d, e, f) all have biprojectively H-slice R = U and this might explain
why Manolescu and Piccirillo were unsuccessful in their search. The appeal of the s-invariant for detecting
an exotic #nCP2 was that it was not clear if the obstruction should apply in an exotic #nCP2. This
theorem sometime recovers this obstruction if we only understand the s-invariant in the standard #nCP2.
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Furthermore, this theorem could apply to other concordance invariants that shares the properties of the
s-invariant we used (e.g. any that satisfies an adjunction inequality in #nCP2). This is troubling for the
prospect of constructing an exotic #nCP2 from zero surgery homeomorphisms. Once we understand a
concordance invariant in the standard #nCP2, it can often be enough to rule out using it to construct an
exotic #nCP2 with zero surgery homeomorphisms.

However, this theorem does not immediately apply to all zero surgery homeomorphisms. This leaves open
the possibility that some zero surgery homeomorphism could be used to construct an exotic #nCP2. We will
construct an infinite family of special RBG-links for which our methods do not apply. Our special RBG-links
will come in the form of a special RBG-link L with a local connected sum by some knot J to R. Call this
new special RBG-link L[J ] and the resulting knots KB [J ],KG[J ].

Dunfield and Gong used topological slice obstructions to show that K6, . . . ,K21 are not slice. By viewing
KB [J ],KG[J ] as satellites knots, we get some control over the topological sliceness of the resulting knots.
Examining Figure 2, we see that KB [J ] and KG[J ] are both satellites PB(J) and PG(J) of J . These will be
patterns PB and PG such that KB = PB(U) and KG = PG(U). These patterns have winding number equal
to the linking number ` of B and G. We will take L to be one of the special RBG-links Li associated to the
five pairs {(Ki,K

′
i)}i=1,...,5. Denote the knots resulting from Li[J ] by Ki[J ] and K ′i[J ]. These Li all have

` = 0 and so the associated satellite patterns have winding number zero. Ki[J ] and K ′i[J ] will then have the
same Alexander polynomials as Ki and K ′i by Seifert’s formula for the Alexander polynomial of a satellite
[Sei50]. In particular, Ki[J ] and K ′i[J ] will have trivial Alexander polynomial and will be topologically slice
by Freedman [Fre82].

Let ri denote the framing of R in Li which will be equal to 1, 2, or 3. To construct an exotic #nCP2 from
Li[J ], Theorem 3.13 suggests we should have J not biprojectively H-slice and have PF−(J) ≤ ri < PF+(J).
Note that the condition PF−(J) ≤ ri holds automatically so we only need to check that PF+(J) > ri. Such
J are in abundance as any J with τ(J) ≥ 1, such as the right hand trefoil, will suffice due to Corollary 2.13.

These Li[J ] give an infinite family of special RBG-links which are not susceptible to topological slice
obstructions or the methods of this paper. One could potentially apply the methodology of Manolescu and
Piccirillo to these families. We do not propose these as a serious attempt at constructing an exotic #nCP2. It
seems that going from (K,K ′) to (K[J ],K ′[J ]) would increase slice genus since the resulting knots are more
complicated. Instead, we propose these as a setting to study how to relate the s-invariants and H-sliceness
of knots with homeomorphic zero surgeries.

Problem 3.14. Let ri < PF+(J), relate H-sliceness of Ki[J ],K ′i[J ] in #nCP2 and their s-invariants to

each other. In particular, show that if one of these knots is H-slice in some #nCP2, then the other has
non-negative s-invariant.

4. Annulus Twist Homotopy Spheres

Manolescu and Piccirillo constructed homotopy 4-spheres Zn = E(D)∪φn−X0(Jn) from annulus twisting
a ribbon knot J0. In this section, we show that these Zn are all standard by drawing them upside down
as −Zn = X0(Jn) ∪φn

−E(D). This proof was motivated by a desire to understand and visualize the trace
embedding of X0(Jn) in −Zn as a Kirby diagram. We will first need to explain how this works for a ribbon
knot and its associated trace embedding into S4.

4.1. A Kirby Diagram of the Trace Embedding Lemma. A ribbon disk is a smoothly, properly
embedded disk D in B4 such that the height function on B4 restricted to D has no index two critical points.
A knot K is called a ribbon knot if it bounds a ribbon disk. Similarly, an n component link L is called
a ribbon link if it bounds a collection D = D1 ∪ · · · ∪ Dn of n disjoint ribbon disks called a ribbon disk
link. A ribbon disk is typically described by a ribbon diagram. This is an n component unlink U together
with a collection of n− 1 ribbon bands. A ribbon band is an embedded I × I attached to U along (∂I)× I
(respecting orientations). These ribbon bands I × I must intersect the disks that bound U as some a × I.
The knot 61 is ribbon and can be described by the ribbon diagram in Figure 4a.

Such a ribbon diagram for a knot K defines a ribbon disk D bounding K. Each component of the unlink
U becomes an index zero critical point of D and each ribbon band becomes an index one critical point of D.
We can draw a Kirby diagram of the exterior E(D) = B4 − ν(D) of D from its Ribbon diagram with the
algorithm presented in Section 6.2 of [GS99]. Using Figure 4a, we draw a Kirby diagram for the exterior of
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(a) (b)

Figure 4. A ribbon diagram for 61 and a Kirby diagram of the corresponding the ribbon
disk exterior

a ribbon disk of 61 in Figure 4b. The index zero critical points of D become 1-handles which we draw by
putting a dot on each component of U . The index one critical points of D become zero framed 2-handles
which follow the boundary of the corresponding ribbon like in Figure 4b.

To fill in E(D) in this diagram, we attach a zero framed 2-handle to a meridian of a dotted circle. We
can then cancel this pair, the rest of the diagram “unravels”, and the remaining handles cancel. This leaves
B4 and capping off with a 4-handle gives S4. This gives a decomposition of S4 as E(D) with a 2-handle
and 4-handle attached. These additional handles represent an embedded −X0(K) and this is the same
embedding as the classical trace embedding lemma.

Lemma 4.1 (Trace Embedding Lemma). K is slice if and only if X0(K) (equivalently −X0(K)) embeds in
S4.

While such a diagram gives the same embedding of −X0(K), we don’t clearly see the embedded trace. It
is represented as a 2-handle attached to a meridian of a dotted circle and a 4-handle. We would rather see the
trace embedding as a 2-handle attached to K in our diagram. To do this, we turn this decomposition upside
down as X0(K) ∪ −E(D) and draw the corresponding Kirby diagram. One could try to use the standard
method to turn a Kirby diagram upside down as in Section 5.5 of [GS99]. The difficulty with that method is
that turning E(D) upside down directly can result in a messy Kirby diagram. The method we will describe
will result in simpler diagrams that can be read off directly from a ribbon diagram of D. To do this, we will
upgrade K and D to a ribbon link L = K ∪ L1 ∪ · · · ∪ Ln−1 and ribbon disk link D = D ∪D1 ∪ · · · ∪Dn−1.
This ribbon disk link will have exterior E(D) consisting of only a 0-handle and n 1-handles which can be
turned upside down immediately. We will give pictures of how to do this for K = 61 and D its standard
ribbon disk shown in Figure 4a.

Draw a ribbon diagram of D and add a small unknot Li encircling each ribbon band to get a link
L = K ∪ L1 ∪ · · · ∪ Ln−1. Since each Li bounds a disk Di in S3 that intersect K in ribbon singularities,
there is a ribbon disk link D = D ∪ D1 ∪ · · · ∪ Dn−1 for L where each Di has a unique index zero critical
point. To draw a Kirby diagram for E(D), add a red dotted circle to each Li in the diagram of E(D) as in
Figure 5a. To simplify, change the red dotted circles into a pair of balls to represent 1-handles as in Figure
5b. Think of this change in notation as doing ribbon moves on K and each of these balls as a pair of arcs
on the banding of K. We can pull each of the red balls along the band to get Figure 5c. What is left is n
black dotted circles with n−1 2-handles each running through a pair of balls connecting them in consecutive
pairs. Change the balls back to dotted notation as in Figure 5d and then move the red dotted circles off the
rest of the diagram. Cancel the 2-handles leaving a single black dotted circle and n − 1 red dotted circles.
We conclude that E(D) admits a handle decomposition with one 0-handle with n 1-handles attached.

Let X0(L) be obtained by attaching zero framed 2-handles to B4 along each component of L. We attach
−E(D) to X0(L) to get a Kirby diagram of S4. The handles of E(D) turn upside down to become 3 and
4-handles which attach uniquely. To summarize, we attach zero framed 2-handles to a ribbon knot K and
unknots encircling the n− 1 ribbon bands of D, then cap off with n 3-handles and a 4-handle. For K = 61,
we get the Kirby diagram in Figure 6.

Remark 4.2. Some of the more adept practitioners of Kirby Calculus may have applied the standard method
to turn a Kirby Diagram upside down and got the same diagram as Figure 6. However, this is an artifact
of the simplicity of 61 and you will not get the same diagram for a more complicated ribbon knot. One can
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(a) (b)

(c) (d)

Figure 5. Simplifying E(D)

see what goes wrong if one tries this with the ribbon knot shown in Figure 7 used in the following subsection.
If one uses that method to draw the homotopy spheres of interest, one gets diagrams that do not seem as
amenable to simplification.

Figure 6. Kirby diagram of S4 as X0(61) ∪ −E(D)

4.2. Standardzing Zn. Manolescu and Piccirillo constructed and drew diagrams of a family of homotopy
spheres that we will call Zn. These Zn arise from a family of knots {Jn}n∈Z which are annulus twists on the
ribbon knot J0 = 88. The annulus presentation and ribbon diagram of J0 are depicted in Figure 7. The half
fractional box notation in that figure represents half twists on the two strands passing through that box.

Figure 7. Annulus presentation and ribbon diagram of J0
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(a) Diagram of −Z0 (b) Diagram of −Zn with an arrow in-
dicating the upcoming slide

(c) Result of slide, then isotope band
into blue

(d) Result of spinning the band around
the annulus

Figure 8. Standardizing Zn

Annulus twisting was introduced by Osoinach in his construction of infinite collections of knots that share
a zero surgery [Oso06]. The annulus presentation of J0 defines a family of homeomorphisms φn : S3

0(J0)→
S3

0(Jn). In Figure 7, we see that `1∪ `2 are the boundary of an annulus A. This annulus induces orientations
and framings on `1 and `2. J0 was obtained by banding `1 ∪ `2 and so all three cobound a pair of pants.
Let A′ ⊂ S3

0(J0) be an annulus formed by the union of the surgery disk and the pair of pants. Twisting
along ν(A′) gives a homeomorphism S3

0(J0)→ S3
0,1/n,−1/n(J0, `1, `2) (where framings on `1 ∪ `2 are relative

to their annulus framings). Then a twist on ν(A) ⊂ S3 gives a homeomorphism S3
1/n,−1/n(`1, `2)→ S3 and

identifies S3
0,1/n,−1/n(J0, `1, `2) with zero surgery on some knot Jn ⊂ S3. The annulus twist homeomorphisms

φn : S3
0(J0)→ S3

0(Jn) is the composition of these homeomorphisms.
J0 is ribbon and bounds a disk D described by the ribbon move in Figure 7. We can use the annulus

twist homeomorphisms to construct the homotopy spheres Zn = E(D) ∪φn
−X0(Jn). This decomposition

as E(D) ∪φn −X0(Jn) is the one used to draw the diagrams of Zn in Figure 20 of [MP21]. We will use the
technique from the previous subsection to draw diagrams of these Zn upside down as X0(Jn) ∪φn −E(D)
and then show that each Zn is standard.

Theorem 4.3. All Zn are diffeomorphic to S4.

Proof. By definition, Z0 = E(D)∪−X0(J0) is standard and we can draw −Z0 = X0(J0)∪−E(D) as shown
in Figure 8a. This diagram has no 1-handles and two 2-handles attached with zero framing to J0 and the
knot L that surrounds the ribbon band of J0. To draw −Zn = X0(Jn) ∪φn −E(D), we attach the handles
of −E(D) using the map φn. The 3 and 4-handles attach uniquely so we only need to keep track of L. The
annulus twist homeomorphism is supported in a neighborhood of A′ and A disjoint from L. Therefore, L is
unaffected by φn and we can draw a diagram of −Zn as in Figure 8b.
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With the desired diagrams of −Zn now in hand, we can now proceed to show that each Zn is standard.
First slide the band of Jn over L as shown by the blue arrow in Figure 8b to get Figure 8c. This brings
the band under the annulus with a twist which we absorb into the twist box on the left. Drag this band
under the annulus via the dashed blue arrow to the position shown in solid blue in Figure 8c. Spin the band
around the annulus to undo the twists and get Figure 8d. We get the same diagram for all n, therefore all
Zn must be diffeomorphic to each other and in particular Z0 = S4. �

Corollary 4.4. Jn is slice for all n ∈ Z. �

This proof bears similarities to work of Akbulut and Gompf on the family {Σn}n∈Z Cappell-Shaneson
spheres [Akb10; Gom10]. The resemblance is most immediate when compared to Akbulut’s diagrammatic
proof that each Σn is standard. Akbulut added a cancelling 2 and 3-handle pair to a Kirby diagram of Σn
and identified all Σn with each other. In particular, every Σn is diffeomorphic to Σ0 which was known to be
standard by earlier work of Gompf [Gom91]. There seems to be a more opaque connection to Gompf’s work
following up on Akbulut. There Gompf showed that certain torus twists don’t affect the Cappell-Shaneson
construction to give a mostly Kirby calculus free proof. It would be interesting if one could think of these
annulus twists in a way that recasts this proof in a similar manner.

Meier and Zupan recently gave a new proof that the Cappell-Shaneson spheres Σn are standard using
ideas from the theory of Generalized Property R [MZ19]. We can give another proof that Zn is standard in
a similar manner once we have the diagram shown in Figure 8b.

Proof. The diagram of −Zn has no 1-handles and 2-handles attached to the link Jn∪L where L is an unknot.
To be able to attach the two 3-handles and the 4-handle, zero surgery on Jn ∪ L must be #2S1 × S2. We
can now appeal to Property 2R for the unknot.

Lemma 4.5 (Proposition 3.2 of [GST10]). The unknot has Property 2R. Namely, if L is a 2 component
framed link with an unknotted component that surgers to #2S1×S2, then there is a sequence of handle slides
turning L into a zero framed 2 component unlink.

We can do these handle slides to −Zn and then cancel the 2-handles with the 3-handles to get S4. �

This only gives existence of handle slides that standardize Zn. We prefer the first proof where we directly
see how to standardize these diagrams of −Zn. While using Property 2R may seem to be much slicker, it
also relies on deep work of Gabai and Scharlemann [Sch90; Gab87]. The Property 2R approach has more and
much harder technical prerequisites than the diagrammatic proof. Despite the moralizing about Property
2R, it does offer the serious benefit of being easy to implement in practice. Note that using Property 2R in
this manner required that D was a ribbon disk with a single index one critical point. Otherwise the Kirby
diagram of −Σ would have had more than two 2-handles. Fortunately, the Property 2R approach can be
generalized to any ribbon disk. According to Theorem 5.1 of [MSZ16], surgery on #(n − 1)S1 × S2 that
results in #nS1 × S2 must be on a zero framed unknot2. We rephrase this in terms of Property nR as a
direct generalization of Lemma 4.5.

Lemma 4.6 (Theorem 5.1 of [MSZ16]). The n− 1 component unlink Un−1 has Property nR. In particular,
let L = Un−1∪K be an n component framed link that contains an n−1 component unlink Un−1. If L surgers
to #nS1 × S2, then there is a sequence of handle slides turning L into a zero framed n component unlink.

We can use this to check if the homotopy sphere Σ = E(D) ∪φ −X0(K ′) is standard when D is ribbon.
Draw a Kirby diagram of S4 = X0(K)∪−E(D) with 2-handle attaching link L = K ∪L as described in the
previous section. Draw a diagram of −Σ as in the proof of Theorem 4.3, the attaching link for the 2-handles
in this diagram is L′ = K ′ ∪ φ(L). L was originally an unlink and if φ(L) is still an unlink in this diagram,
then Σ is standard by Property nR for Un−1. Somehow this is saying something unsurprising: L represent
some aspect of the ribbon structure of D and if φ leaves it unperturbed, then Σ is standard.

2Note that [MSZ16] cite it as a special case in expository work of Gordon [Gor97] who ascribes it to Gabai and Scharlemann

[Sch90; Gab87]
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