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Abstract

Let T = X + iY be the Cartesian decomposition of an invertible operator T on
a Hilbert space with trace class self-commutator [T ∗, T ]. Carey–Pincus introduced
the principal function g and proved a trace formula associated with the Cartesian
decomposition T = X+iY. Applying the ordered C∞-functional calculus for (X, Y )
to their trace formula, we define the principal function gP and prove a trace formula
associated with the polar decomposition T = U |T |. Using this formula, we show
that g(x, y) = gP (eiθ, r) almost everywhere x + iy = reiθ on C.

1. Introduction

Let B(H) be the set of all bounded linear operators on a complex separable Hilbert
space H, and let C1 be the set of trace-class operators of B(H). In [4], Carey-Pincus
defined the principal function g and proved a trace formula associated with the
Cartesian decomposition T = X + iY with [T ∗, T ] ∈ C1 (see also [12]). It is known
that the principal functions are useful for the operator theory; for example,
relating the size of the principal function to the existence of cyclic vectors, Berger
[3] proved that, for a hyponormal operator T , the operator Tn has a non-trivial
invariant subspace for sufficiently high n (see other examples, [6; 9; 13; 14; 15;
16]. We also have two different trace formulae and the principal functions g and
gP associated with the decomposition T = X + iY and the polar decomposition
T = U |T |, respectively [4; 15; 16]. The relation between g and gP is that if there
exists a trace formula for the polar decomposition, then there exists g by a trans-
formation of variables, and g essentially coincides with gP . An operator T is called
p-hyponormal if (T ∗T )p ≥ (TT ∗)p [1]. If p = 1 and 1

2 , then T is called hyponormal
and semi-hyponormal, respectively. The principal function g has been studied well.
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For example, if T is hyponormal, then g ≥ 0 (see, for example [13; 16]). If T is
semi-hyponormal, then gP ≥ 0. Applying this property for gP , we have that g ≥ 0.

The existences of the trace formulae and g and gP [4] have been shown separately
(see also [15; 16]). In this paper, by the ordered C∞-functional calculus, we give a
trace formula of |T | and U for an invertible operator T = U |T | such that [T ∗, T ] ∈
C1. Using this result, we show a trace formula of a non-invertible semi-hyponormal
operator T = U |T | with unitary U such that [|T |, U ] ∈ C1. Finally, we show a
relation between two principal functions g and gP for such an operator T. We
remark that for an operator T = U |T |, it is easy to see that if [|T |, U ] ∈ C1, then
[T ∗, T ] ∈ C1.

Let S(R2) be the Schwartz space of rapidly decreasing functions at infinity. For
T = X + iY , let E and F be the spectral measures of self-adjoint operators X and
Y, respectively. We define τ on S(R2) by

τ(φ) =
∫ ∫

φ(x, y)dE(x)dF(y) (φ ∈ S(R2)). (∗)
By a standard argument, we have

∫ ∫
eitXeisY φ̂(t, s)dtds =

∫ ∫
φ(x, y)dE(x)dF(y),

where

φ̂(t, s) =
1
2π

∫ ∫
e−i(tx+sy)φ(x, y)dxdy

is the Fourier transform of the function φ (see, for example, [13, p. 237]).
Put ν(E) =

∫ ∫
E

φ̂(t, s)dtds for a measurable set E ⊂ R2. Since φ̂(t, s) ∈ S(R2),
we have ∫ ∫

(1 + |t|)(1 + |s|)|φ̂(t, s)|dtds < ∞.

Following Carey–Pincus [4], put G(x, y) =
∫ ∫

eitx+isydν(t, s) and define

G(X, Y ) =
∫ ∫

G(x, y)dE(x)dF(y).

Then

τ(φ) =
∫ ∫

eitXeisY ν(t, s)dtds = G(X, Y ).

Note here that we have τ(ψ) = τ(φ) for any smooth function ψ(x, y) that coincides
with φ(x, y) on supp(τ).

The map τ : S(R2) → B(H) has the following properties [13, chapter X, §2];

(1) τ is linear, continuous and supp (τ) ⊆ σ(X)× σ(Y ),
(2) τ(1) = I, τ(p + q) = p(X) + q(Y ) for polynomials p and q of one variable of

x and y, respectively.
(3) τ(φ)τ(ψ)− τ(φψ) ∈ C1 for φ, ψ ∈ S(R2),
(4) τ(φ)∗ − τ(φ̄) ∈ C1.
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By (3) we have an important property [τ(φ), τ(ψ)] ∈ C1 for φ, ψ ∈ S(R2).

Let A be the linear space of all Laurent polynomials P(r, z) with polynomial
coefficients such that P(r, z) =

∑N
k=−N pk(r)zk, where N is a non-negative integer

and each pk(r) is a polynomial. For the polar decomposition T = U |T | of T , let
P(|T |, U) =

∑N
k=−N pk(|T |)Uk. For differentiable functions P,Q of two variables

(x, y), let J(P, Q)(x, y) =
∂P

∂x

∂Q

∂y
− ∂P

∂y

∂Q

∂x
. For a trace-class operator T ∈ C1, we

denote the trace of T by Tr(T ).
In this paper, we prove the following trace formula of an invertible operator

T = X + iY = U |T | with [|T |, U ] ∈ C1 by the above Cartesian functional calculus
of τ with X and Y . For P,Q ∈ A,

Tr([P(|T |, U),Q(|T |, U)]) =
1
2π

∫ ∫
J(P,Q)(r, eiθ)eiθgP (eiθ, r)drdθ.

The function gP in the above formula is called the principal function associated
with the polar decomposition of T. As a corollary of this result, we show that the
same formula holds for a non-invertible semi-hyponormal operator T = U |T | with
unitary U and [|T |, U ] ∈ C1. For an operator T , let σ(T ) be the spectrum of T . The
following theorem [4, theorem 5.1] is a basis of this paper (see [12] also):

Theorem 1 (Carey–Pincus). Let T = X + iY be an operator with [T ∗, T ] ∈ C1.
Let E ,F be the spectral measures of X and Y , respectively, and τ be given by (∗).
Then there exists a summable function g such that, for φ, ψ ∈ S(R2),

Tr([τ(φ), τ(ψ)]) =
1

2πi

∫ ∫
J(φ, ψ)(x, y)g(x, y)dxdy.

Moreover, if T is hyponormal, then g ≥ 0 and g(x, y) = 0 for x + iy 6∈ σ(T ).

The function g in Theorem 1 is called the principal function associated with the
Cartesian decomposition of T.

2. Function calculus and trace

Let ||A||1 = Tr(|A|) for A ∈ C1, that is, ||A||1 is the trace norm of A. Let A ∈ C1

and B be an operator. Then it holds that

|Tr(A)| ≤ ||A||1,Tr(AB) = Tr(BA), ||AB||1 ≤ ||A||1||B|| and ||BA||1 ≤ ||B||||A||1.

We use an elementary property that if operators A,B and C satisfy [A,C], [B, C] ∈
C1 and A−B ∈ C1, then [AB, C], [BA, C] ∈ C1 and

Tr([AB, C]) = Tr([BA, C]).

Our standard reference on trace is [11].
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We begin with two lemmas that are key tools in this paper.

Lemma 2. Let A be a positive invertible operator and operators D, E, F satisfying
[A,D], [E, D], [F,D] ∈ C1. Then for any real number α, we have

[EAαF, D] ∈ C1.

Proof. We use the following expansion known as the binomial series: For |z| < 1,
it holds

(1 + z)α =
∞∑

m=0

(
α
m

)
zm,

where
(

α
m

)
=

α(α− 1) · · · (α−m + 1)
m!

. Considering ||βA|| < 1 with some pos-

itive number β, we may assume that ||A|| < 1. Since A is an invertible positive
operator and ‖A‖ < 1, we have ||A− I|| < 1 and

Aα = (I +(A−I))α = lim
n→∞

n∑
m=0

(
α
m

)
(A−I)m. (1)

Let An =
[∑n

m=0

(
α
m

)
(A− I)m, D

]
for n = 1, 2, 3, · · · . Then lim

n→∞
An = [Aα, D]

with respect to the operator norm. By [12, p. 158 (3.3)], for a positive integer m,
it holds that

||[(A− I)m, D]||1 ≤ m||A− I||m−1||[A,D]||1,
so that

||An||1 ≤
(

n∑
m=1

∣∣∣∣
(

α
m

)∣∣∣∣ m||A− I||m−1

)
||[A,D]||1.

Since ‖A − I‖ < 1, (1) converges absolutely. Hence {An} is a Cauchy sequence
with respect to the norm || · ||1. Let B denote the limit of the sequence {An} in
C1. For any unit vector ξ ∈ H, we define an operator C on H by Cη = (η, ξ)ξ for
η ∈ H. Let {ej} be a complete orthonormal basis of H such that e1 = ξ. Since

Tr(SC) =
∞∑

j=1

(SCej , ej) = (Sξ, ξ), then

(Bξ, ξ) = Tr(BC) = lim
n→∞

Tr(AnC) = lim
n→∞

(Anξ, ξ) = ([Aα, D]ξ, ξ).

Since ξ is an arbitrary vector, it follows that

[Aα, D] = B ∈ C1.
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We have

[EAnF, D] = [E, D]AnF + E[An, D]F + EAn[F,D].

Since limn→∞An = Aα with respect to the operator norm,

lim
n→∞

[E, D]AnF = [E,D]AαF, lim
n→∞

E[An, D]F = E[Aα, D]F,

and lim
n→∞

EAn[F, D] = EAα[F,D],

so that

lim
n→∞

[EAnF, D] = [EAαF,D]

with respect to C1.

The proof of Lemma 2 is based on an idea of [8, theorem 2].

Let T = X + iY be the Cartesian decomposition of T . For the spectral measures
E and F of self-adjoint operators X and Y , respectively, we recall

τ(φ) =
∫ ∫

φ(x, y)dE(x)dF(y) (φ ∈ S(R2)).

Lemma 3. [4, p. 158] Let T = X + iY be an invertible operator such that [T ∗, T ] ∈
C1. Let ψ ∈ S(R2), D = τ(ψ) and operators E, F satisfy [E, D], [F, D] ∈ C1. Then,
for φ(x, y) = (x2 + y2)α with a real number α,

Tr([Eτ(φ)F, D]) = Tr([E|T |2αF, D]).

Proof. We may assume that ||T || < d < 1
2 . Then ||X2+Y 2|| = |||T |2− 1

2 [T ∗, T ]|| <
1. Hence, X2 + Y 2 < I. Since T is invertible, we choose a
positive number c such that 0 < c ≤ X2 + Y 2. Hence, we may assume that f
of τ(f) is a function on {(x, y) | c ≤ x2 + y2 < 1 }. Also we choose ϕ ∈ C∞0 (R2)
and d1 such that d < d1 < 1, ϕ(x, y) = 1 on {(x, y) | c ≤ x2 + y2 ≤ d} and
supp(ϕ) ⊂ {(x, y) |x2 + y2 < d1 }. Then

τ(φϕ) =
∞∑

m=0

(
α
m

) ∫ ∫
((x2+y2)−1)mdE(x)dF(y) =

∞∑
m=0

(
α
m

)
τ
((

(x2+y2)−1
)m)

with respect to the operator norm. Since

τ((x2 + y2)− 1) = X2 + Y 2 − I and |T |2 = X2 + Y 2 + 1
2 [T ∗, T ],

we get

τ((x2 + y2)− 1)− (|T |2 − I) ∈ C1.

Since by property (3) of τ and the above it holds that

τ
((

(x2 + y2)− 1
)m)− τ

(
(x2 + y2)− 1

)m ∈ C1,



62 Mathematical Proceedings of the Royal Irish Academy

we have for m > 0

τ
((

(x2 + y2)− 1
)m)− (|T |2 − I)m

= τ
((

(x2 +y2)−1
)m)−τ

(
(x2 +y2)−1

)m +τ((x2 +y2)−1)m−(|T |2−I)m ∈ C1.

Hence, it holds that

Tr([τ
((

(x2 + y2)− 1
)m)

, D]) = Tr([(|T |2 − I)m, D])

and [ n∑
m=0

(
α
m

)
τ
((

(x2 + y2)− 1
)m)

, D

]
∈ C1.

Therefore, we see

Tr
([ n∑

m=0

(
α
m

)
τ
((

(x2+y2)−1
)m)

, D

])
= Tr

([ n∑
m=0

(
α
m

)
((X2+Y 2)−I)m, D

])
.

Let

ϕ∞(r) = rα =
∞∑

m=0

(
α
m

)
(r − 1)m (0 < |r| < 1),

ϕn(r) =
n∑

m=0

(
α
m

)
(r − 1)m,

φn(x, y) = ϕn(x2 + y2) =
n∑

m=0

(
α
m

)
((x2 + y2)− 1)m.

Put φ̃n = φnϕ and φ̃ = φϕ. Then for some fk ∈ C∞ with supp(fk) ⊂ {(x, y) |x2+
y2 < 1 } (k = 0, · · · ,m), we have

∂m

∂xj∂ym−j
(φ̃n − φ̃)(x, y)

= (ϕ(m)
n (r2)− ϕ

(m)
∞ (r2))fm(x, y) + (ϕ(m−1)

n (r2)− ϕ
(m−1)
∞ (r2))fm−1(x, y)

+ · · ·+ (ϕn(r2)− ϕ∞(r2))f0(x, y),

where r2 = x2 + y2. We remark that each fk depends on
∂m

∂xj∂ym−j
and is

independent of φ̃n. Hence we obtain φ̃n → φ̃ in S(R2). By [13, chapter X, corol-
lary 2.3], it holds that

[τ(φ̃n), D] → [τ(φ̃), D] in C1.

Since
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[Eτ(φ̃n)F, D] = [E, D]τ(φ̃n)F + E[τ(φ̃n), D]F + Eτ(φ̃n)[F, D]

and limn→∞ τ(φ̃n) = τ(φ̃) with respect to the operator norm, in C1 it holds that

lim
n→∞

[E, D]τ(φ̃n)F = [E, D]τ(φ̃)F,

lim
n→∞

E[τ(φ̃n), D]F = E[τ(φ̃), D]F,

lim
n→∞

Eτ(φ̃n)[F,D] = Eτ(φ̃)[F, D].

Hence in C1 we obtain

lim
n→∞

[Eτ(φ̃n)F,D] = [Eτ(φ̃)F, D].

Since T → Tr(T ) is continuous in C1, we have

Tr([Eτ(φ̃)F,D]) = lim
n→∞

Tr(E[τ(φ̃n)F,D])

= lim
n→∞

Tr(E
n∑

m=0

(
α
m

)
[(|T |2 − I)mF, D])

= Tr([E|T |2αF, D]).

3. Main theorem

First we show the following:

Theorem 4. Let T = U |T | be an invertible operator with [T ∗, T ] ∈ C1 and let g be
the principal function associated with the Cartesian decomposition of T = X + iY .
Then there exists a summable function gP such that, for P,Q ∈ A,

Tr([P(|T |, U),Q(|T |, U)]) =
1
2π

∫ ∫
J(P,Q)(r, eiθ)eiθgP (eiθ, r)drdθ,

and gP (eiθ, r) = g(x, y) almost everywhere x + iy = reiθ on C.

Proof. Since T is invertible, there exists a number c > 0 such that c ≤ X2 + Y 2.
Then c

2 ≤ X2 or c
2 ≤ Y 2, so that, if ζ ∈ S(R2) satisfies ζ(x, y) = 0 for c

2 > |x|2
or c

2 > |y|2, then τ(ζ) = 0. With g(x, y) in Theorem 1, we know that g(x, y) =
0 for x + iy with x2 + y2 < c

2 . Let w(x, y) and h(x, y) be in S(R2) such that
w(x, y) = (x + iy)(x2 + y2)−

1
2 and h(x, y) = (x2 + y2)

1
2 on the support of g. For

ψ, φl, φr ∈ S(R2), let D = τ(ψ), E = τ(φl) and F = τ(φr). By property (3) of τ
and Lemma 3, for a positive integer k we obtain

Tr([EUkF, D]) = Tr([E(T |T |−1)kF, D]) = Tr([E(Tτ(h−1))kF, D])
= Tr

(
[E

(
τ(x + iy)τ(h−1)

)k
F,D]

)

= Tr
(
[Eτ

((
(x + iy)(x2 + y2)−

1
2
)k)

F, D]
)

= Tr
(
[Eτ(wk)F, D]

)
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and

Tr
(
[EU−kF,D]

)
= Tr

(
[E(|T |T−1)kF, D]

)
= Tr

(
[E

(
τ(h)τ

(
1/(x + iy)

))k
F, D]

)

= Tr
(
[Eτ

((
(x− iy)(x2 + y2)−

1
2
)k)

F, D]
)

= Tr
(
[Eτ(w−k)F,D]

)
.

Then for integers m, s and non-negative integers n, t, we have

Tr([Um|T |n, Us|T |t]) = Tr([τ(wm)τ(hn), τ(ws)τ(ht)])
= Tr([τ(wmhn), τ(wsht)]).

By Theorem 1, there exists a summable function g such that

Tr([τ(wmhn), τ(wsht)]) =
1

2πi

∫ ∫
J(wmhn, wsht)(x, y)g(x, y)dxdy.

By the transformation x = r cos θ and y = r sin θ,

1
2πi

∫ ∫
J(wmhn, wsht)(x, y)g(x, y)dxdy

=
1

2πi

∫ ∫
J(wmhn, wsht)(r cos θ, r sin θ)g(r cos θ, r sin θ)rdrdθ.

Hence we have, for Laurent polynomials P and Q,

Tr([P(|T |, U),Q(|T |, U)])

=
1

2πi

∫ ∫
J(P(h, w),Q(h, w))(r cos θ, r sin θ)rg(r cos θ, r sin θ)drdθ.

For x+iy ∈ σ(T ), let x = r cos θ and y = r sin θ. Since w(x, y) = (x+iy)(x2+y2)−
1
2

and h(x, y) = (x2 + y2)
1
2 , then w(r cos θ, r sin θ) = eiθ, h(r cos θ, r sin θ) = r,

∂(h,w)
∂(r, θ)

=
∂(r, eiθ)
∂(r, θ)

= ieiθ and
∂(x, y)
∂(r, θ)

=
∂(r cos θ, r sin θ)

∂(r, θ)
= r.

Also, it holds that

∂
(P(r, eiθ),Q(r, eiθ)

)

∂(r, θ)
=

∂
(P(h,w),Q(h,w)

)

∂(h,w)
(r, eiθ) · ∂(h,w)

∂(r, θ)

= ieiθ · ∂
(P(h, w),Q(h,w)

)

∂(h,w)
(r, eiθ) = ieiθ · J(P,Q)

(r, eiθ)
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and

∂
(P(

h(r cos θ, r sin θ), w(r cos θ, r sin θ)
)
,Q(

h(r cos θ, r sin θ), w(r cos θ, r sin θ)
))

∂(r, θ)

=
∂
(P(h(x, y), w(x, y)),Q(h(x, y), w(x, y))

)

∂(x, y)
·∂(x, y)
∂(r, θ)

= r · ∂
(P(h(x, y), w(x, y)),Q(h(x, y), w(x, y))

)

∂(x, y)

= r · J(P(h,w),Q(h,w)
)
(r cos θ, r sin θ).

Hence we have

Tr([P(|T |, U),Q(|T |, U)]) =
1

2πi

∫ ∫
i
∂(P(h, w),Q(h, w))

∂(h,w)
(r, eiθ)eiθg(r cos θ, r sin θ)drdθ.

Put gP (eiθ, r) = g(r cos θ, r sin θ). Then

Tr([P(|T |, U),Q(|T |, U)]) =
1
2π

∫ ∫
J(P,Q)(r, eiθ)eiθgP (eiθ, r)drdθ.

The function gP in Theorem 4 is called the principal function associated with
the polar decomposition T = U |T | of T . An invertible operator T is said to be
log-hyponormal if log T ∗T ≥ log TT ∗ [10]. Lemma 2 and Theorem 4 give another
proof of a trace formula of log-hyponormal operators in [5].

For the proof of the next result, we need the following two lemmas. For an
operator T , let σap(T ) and σp(T ) be the approximate point spectrum and the point
spectrum of T , respectively.

Lemma 5. Let T = U |T | be an invertible semi-hyponormal operator with [|T |, U ] ∈
C1. Then the principal function gP associated with the polar decomposition T = U |T |
of T satisfies gP (eiθ, r) = 0 for reiθ 6∈ σ(T ).

Proof. Put S = U |T | 12 . Then S is hyponormal and [S∗, S] = [|T |, U ]U∗ ∈ C1. Let
gP

S be the principal function associated with the polar decomposition of S = U |T | 12 .
Then by Theorems 1 and 4 it holds that gP

S (eiθ, r) = 0 for reiθ 6∈ σ(S). By [16,
lemma VI 3.6] and S = U |T | 12 , we also have

σ(T ) = {r2eiθ : reiθ ∈ σ(S)} and gP (eiθ, r) = gP
S (eiθ, r2).

Hence, gP has the desired property.
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Lemma 6. Let T = U |T | be an operator with unitary U and put S = U(|T | + I).
If z ∈ ∂σ(S), then |z| ≥ 1. Therefore, if z ∈ σ(S), then |z| ≥ 1.

Proof. Since U and |T |+ I are invertible, so is S. Since z ∈ ∂σ(S) and ∂σ(S) ⊆
σap(S), we have z ∈ σap(S). Hence, let π : B(H) → B(K) denote the Berberian
representation [2]. Since σap(S) = σp(π(S)), there exists x ∈ K such that

zx = π(S)x = π(U)π(|T |+ I)x.

Since π(U) is unitary, there exists y ∈ K such that π(U)∗y = x. Hence

||y||2 = (y,y) ≤ (π(U)π(|T |+ I)π(U)∗y, y) = (zx, y) ≤ |z| ||x|| ||y|| = |z| ||y||2,

so that 1 ≤ |z|. Let z0 ∈ σ(S) such that |z0| = inf{|µ| : µ ∈ σ(S)}. Since S is
invertible, we have

z0 ∈ ∂σ(S).

By the above argument, we obtain 1 ≤ |z0|.

Now we give another proof of [7, theorem 9].

Theorem 7. Let T = U |T | be a semi-hyponormal operator with unitary U and
[|T |, U ] ∈ C1. Then there exists a summable function gP such that, for P,Q ∈ A,

Tr([P(|T |, U),Q(|T |, U)]) =
1
2π

∫ ∫
J(P,Q)(r, eiθ)eiθgP (eiθ, r)drdθ.

Proof. Since by the assumption [|T |, U ] ∈ C1 it holds that [T ∗, T ] ∈ C1, by
Theorem 4 we may only prove the theorem when T is not invertible. Put |T̃ | = |T |+I
and T̃ = U |T̃ |. Then T̃ is semi-hyponormal. For Laurent polynomials P and Q, put
P̃(r, z) = P(r − 1, z) and Q̃(r, z) = Q(r − 1, z). Then

Tr([P(|T |, U),Q(|T |, U)]) = Tr([P(|T̃ | − I, U),Q(|T̃ | − I, U)])
= Tr([P̃(|T̃ |, U), Q̃(|T̃ |, U)]).

Since T̃ is invertible and [|T̃ |, U ] = [|T |, U ] ∈ C1, by Theorem 4 there exists a
summable function g̃P such that

Tr([P̃(|T̃ |, U), Q̃(|T̃ |, U)]) =
1
2π

∫ ∫
J(P̃, Q̃)(r, eiθ)eiθg̃P (eiθ, r)drdθ.

By Lemma 5, it holds that g̃P (eiθ, r) = 0 for reiθ 6∈ σ(T̃ ). We have

1
2π

∫ ∫
J(P̃, Q̃)(r, eiθ)eiθg̃P (eiθ, r)drdθ

=
1
2π

∫ ∫

σ(T̃ )

J(P̃, Q̃)(r, eiθ)eiθg̃P (eiθ, r)drdθ
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=
1
2π

∫ ∫

σ(T̃ )

J(P,Q)(r − 1, eiθ)eiθg̃P (eiθ, r)drdθ

=
1
2π

∫ ∫

A

J(P,Q)(ρ, eiθ)eiθg̃P (eiθ, ρ + 1)dρdθ (by the transformation ρ = r − 1),

where A = {(r − 1)eiθ : reiθ ∈ σ(T̃ )}. We remark that, by Lemma 6, r − 1 ≥ 0 for
reiθ ∈ σ(T̃ ). We define gP by gP (eiθ, r) = g̃P (eiθ, r + 1). Then gP is the desired
function.

Finally, we show a relation between g and gP .

Theorem 8. Let T = X + iY = U |T | be a semi-hyponormal operator with
unitary U and [|T |, U ] ∈ C1. If g and gP are the principal function associated
with the Cartesian decomposition of T and the summable function in Theorem 7,
respectively, then

g(x, y) = gP (eiθ, r)

almost everywhere x + iy = reiθ on C.

Proof. Since [|T |, U ] ∈ C1, by Lemma 2 we have [|T |2, U ] ∈ C1. Hence

2i[X,Y ] = T ∗T − TT ∗ = |T |2 − U |T |2U∗ = [|T |2, U ]U∗ ∈ C1.

Let Q0(x, y) = y. For the polynomial Q0(x, y) = y and an arbitrary polynomial
P(x, y), by Theorem 1 and [4, theorem 5.2] we have

Tr([P(X, Y ),Q0(X,Y )]) =
1

2πi

∫ ∫

σ(T )

J(P,Q0)g(x, y)dxdy

=
1

2πi

∫ ∫

σ(T )

Px(x, y)g(x, y)dxdy

=
1

2πi

∫ ∫

M
Px(r cos θ, r sin θ)g(r cos θ, r sin θ)rdrdθ, (2)

where M = {(r, θ) : reiθ ∈ σ(T ), 0 ≤ θ < 2π}. Let

P̃(r, z) = P
(

zr + rz−1

2
,
zr − rz−1

2i

)
and Q̃0(r, z) =

zr − rz−1

2i
.

Then

J
(P̃, Q̃0

)
=

(
Px · z + z−1

2
+ Py · z − z−1

2i

)(
r

2i
(1 +

1
z2

)
)

− r

2

{
Px · (1− 1

z2
) +

1
i
Py · (1 +

1
z2

)
}

z − z−1

2i
.
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Hence

J
(P̃, Q̃0

)
(r, eiθ) · eiθ = (Px · cos θ + Py · sin θ)(−ir cos θ)− r(iPx · sin θ − iPy · cos θ) sin θ

= −irPx.

Theorem 7 implies

Tr
([
P(U |T |+ |T |U−1

2
,
U |T | − |T |U−1

2i

)
,
U |T | − |T |U−1

2i

])

=
1
2π

∫ ∫

M
J
(P̃, Q̃0

)
(r, eiθ)eiθgP (eiθ, r)drdθ

=
1
2π

∫ ∫

M
−irPx(r cos θ, r sin θ)gP (eiθ, r)drdθ

=
1

2πi

∫ ∫

M
Px(r cos θ, r sin θ)gP (eiθ, r)rdrdθ. (3)

Since

Tr
(
[P(X, Y ),Q0(X, Y )]

)
= Tr

([
P(U |T |+ |T |U−1

2
,
U |T | − |T |U−1

2i

)
,
U |T | − |T |U−1

2i

])
,

we have (2) = (3) and
∫ ∫

M
Px(r cos θ, r sin θ)g(r cos θ, r sin θ)rdrdθ

=
∫ ∫

M
Px(r cos θ, r sin θ)gP (eiθ, r)rdrdθ.

Since P is an arbitrary polynomial, we obtain the desired relation between g and
gP .
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