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Trace formulae for p-hyponormal operators

by
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Dedicated to Professor W. Żelazko on his 70th birthday with respect

Abstract. The purpose of this paper is to introduce mosaics and principal functions
of p-hyponormal operators and give a trace formula. Also we introduce p-nearly normal
operators and give trace formulae for them.

1. Introduction. In Carey–Pincus [2] and Pincus–Xia [6], the trace
formulae for pairs of operators associated with the polar decomposition are
studied. In this paper, in a situation similar to [6] we introduce mosaics and
principal functions of p-hyponormal operators for 0 < p ≤ 1/2 and give
trace formulae for p-hyponormal and p-nearly normal operators.

Let H be a complex separable Hilbert space and B(H) be the algebra
of all bounded linear operators on H. An operator T ∈ B(H) is said to
be p-hyponormal if (T ∗T )p − (TT ∗)p ≥ 0 (see [1]). If p = 1, T is called
hyponormal , and if p = 1/2, T is called semi-hyponormal. The set of all
semi-hyponormal operators in B(H) is denoted by SH. The set of all p-
hyponormal operators in B(H) is denoted by p-H. Let SHU and p-HU denote
the sets of all operators in SH and in p-H with equal defect and nullity (cf.
[7, p. 4]), respectively. Hence we may assume that the operator U in the
polar decomposition T = U |T | is unitary if T ∈ SHU ∪ p-HU. Throughout
this paper, p satisfies 0 < p ≤ 1/2.

Let T = {eiθ | 0 ≤ θ < 2π}, Σ be the set of all Borel sets in T, m
be a measure on the measurable space (T, Σ) such that dm(θ) = (2π)−1dθ
and D be a separable Hilbert space. The Hilbert space of all vector-valued,
strongly measurable and square-integrable functions with values in D and
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with inner product

(f, g) =
�

T
(f(eiθ), g(eiθ))D dm(θ)

is denoted by L2(D); the Hardy space is denoted by H2(D), and the pro-
jection from L2(D) to H2(D) by P. If f ∈ L2(D), then

(P(f))(eiθ) = lim
r→1−0

1
2πi

�

|z|=1

f(z)(z − reiθ)−1 dz.

Let ν be a singular measure on (T, Σ), and F ∈ Σ be a set such that
ν(T\F ) = 0 and m(F ) = 0. Put µ = m+ν. Let R(·) be a standard operator-
valued strongly measurable function defined on Ω = (T, Σ, µ) whose values
are projections in D, L2(Ω,D) be the Hilbert space of all D-valued strongly
measurable and square-integrable functions onΩ with inner product (f, g) =�
T(f(eiθ), g(eiθ))D dµ, and

H̃ = {f | f ∈ L2(Ω,D), R(eiθ)f(eiθ) = f(eiθ), eiθ ∈ T}.

Then H̃ is a subspace of L2(Ω,D). The space L2(D) is identified with a
subspace of L2(Ω,D). Hence P extends to L2(Ω,D) so that

Pf = 0 for f ∈ L2(Ω,D)	 L2(D).

We define an operator P0 from L2(Ω,D) to D as follows:

P0(f) =
�
f(eiθ) dm(θ).

Then P0 is the projection from L2(Ω,D) onto D (cf. [7, p. 50]). Let α(·) and
β(·) be operator-valued, uniformly bounded, and strongly measurable func-
tions on Ω such that α(eiθ) and β(eiθ) are linear operators in D satisfying

R(eiθ)α(eiθ) = α(eiθ)R(eiθ) = α(eiθ),

R(eiθ)β(eiθ) = β(eiθ)R(eiθ) = β(eiθ)

and β(eiθ) ≥ 0.
Furthermore, suppose that α(eiθ) = 0 if eiθ ∈ F . We write (αf)(eiθ) =

α(eiθ)f(eiθ). An operator Ũ in H̃ is defined by

(Ũf)(eiθ) = eiθf(eiθ).

Since β(eiθ) ≥ 0 and P is a projection on L2(D), we have

(α(eiθ)∗(P(αf))(eiθ) + β(eiθ)f(eiθ), f(eiθ))D ≥ 0.

Therefore, we can define the operator (α∗Pα+β)1/(2p). See the details in [7].
Moreover, the following results hold.
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Theorem A (Chō, Huruya and Itoh [3, Th. 1]). With the above nota-
tions, let T̃ be an operator in H̃ defined by

(T̃ f)(eiθ) = eiθ(Af)(eiθ),

where (A2pf)(eiθ) = α(eiθ)∗(P(αf))(eiθ) + β(eiθ)f(eiθ). Then T̃ is p-hypo-
normal and the corresponding polar differential operator |T̃ | − Ũ |T̃ |Ũ∗ is

((|T̃ | − Ũ |T̃ |Ũ∗)f)(eiθ) = α(eiθ)∗P0(αf).

Theorem B (Chō, Huruya and Itoh [3, Th. 3]). Let T = U |T | be a p-
hyponormal operator in H such that U is unitary. Then there exist a function
space H̃, and operators T̃ and Ũ in H̃ which have the forms in Theorem A
such that

WTW−1 = T̃ and WUW−1 = Ũ ,

where W is a unitary operator from H to H̃. Moreover α(·) ≥ 0.

T̃ is said to be the singular integral model of T .

2. Mosaics of operators T ∈ p-HU. For the singular integral model
of a semi-hyponormal operator T = U |T |, the following holds:

Theorem C (Xia [7, Th. V.2.5]). With the above notations, let T =
U |T | be in SHU and α(·), β(·) be as in Theorems A and B for the singular
integral model of T . Then the following statements hold.

(1) There exists a unique B(D)-valued measurable function of two vari-
ables, B(eiθ, r) (eiθ ∈ T, r ∈ [0,∞)) satisfying

0 ≤ B(eiθ, r) ≤ I
such that

I + α(eiθ)(β(eiθ)− l)−1α(eiθ) = exp
∞�

0

B(eiθ, r)
r − l dr.

(2) For any bounded Baire function ψ on σ(|T |), the function B(eiθ, r)
satisfies

�
ψ(r)B(eiθ, r) dr = α(eiθ)

1�

0

ψ(β(eiθ) + k · α(eiθ)2) dk α(eiθ).

In particular ,

� B(eiθ, r)
r − l dr = α(eiθ)

1�

0

(β(eiθ) + k · α(eiθ)2 − l)−1 dk α(eiθ).

Definition 1. The function B(·, ·) in Theorem C is said to be the mo-
saic of T . We denote the mosaic of T by BT (·, ·).
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For T ∈ p-HU, we define Tp = U |T |2p. Since Tp is in SHU, the mosaic
BTp(·, ·) of Tp exists.

Definition 2. For T = U |T | ∈ p-HU (0 < p < 1/2), we define

BT (eiθ, r) = BTp(eiθ, r2p).

We call the function BT (·, ·) appearing in Definition 2 the mosaic of
T ∈ p-HU. The essential support of BT (·, ·) is called the determining set
of T . We denote this set by D(T ), i.e.,

D(T ) = C−
⋃
{G : G is open in C and BT (eiθ, r) = 0 for a.e. reiθ ∈ G}.

Then we have the following

Theorem 1. Let T = U |T | be in p-HU. Then

D(T ) ⊂ σ(T ).

Moreover , if T is completely nonnormal , then D(T ) = σ(T ).

Proof. Since Tp = U |T |2p is semi-hyponormal, Theorem V.3.2 of [7]
yields

D(Tp) ⊂ σ(Tp).

By the definition of D(T ) for a p-hyponormal operator T , we have

reiθ ∈ D(T ) ⇔ r2peiθ ∈ D(Tp).

Since Theorem 3 of [4] implies that r2peiθ ∈ σ(Tp) if and only if reiθ ∈ σ(T ),
we have D(T ) ⊂ σ(T ).

If T is completely nonnormal, then Theorem 5 of [5] shows that Tp is
completely nonnormal. Also D(Tp) = σ(Tp) by Theorem V.3.2 of [7]. Hence
D(T ) = σ(T ).

Theorem 2. Let T = U |T | be in p-HU. Then
∥∥|T |2p − |T ∗|2p

∥∥ ≤ p

π

� �

D(T )

r2p−1 dr dθ.

Proof. Since Tp = U |T |2p is semi-hyponormal, by Theorem V.3.5 of [7]
we have ∥∥|T |2p − |T ∗|2p

∥∥ ≤ 1
2π

� �

D(Tp)

d% dθ.

By the transformation % = r2p, we have
∥∥|T |2p − |T ∗|2p

∥∥ ≤ p

π

� �

D(T )

r2p−1 dr dθ.

Hence we have the following corollary.
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Corollary 3. Let T be in p-HU. If m2(D(T )) = 0, then T is normal ,
where m2(·) is the planar Lebesgue measure.

3. Principal functions. In this section, we introduce principal func-
tions of operators T in p-HU. First we prepare some notations. If ψ is ana-
lytic in the upper half plane and with range in the closed upper half plane,
ψ is called a Pick function ([7, p. 129]). ψ is a Pick function if and only if it
has the following unique canonical representation:

ψ(z) = az + b+
� [ 1
x− z −

x

x2 + 1

]
dµ(x),

where a ≥ 0, b is a real number, and µ is a nonnegative Borel measure on
the real line R which satisfies

� 1
1 + x2 dµ(x) <∞.

For a bounded closed set E of the real line R, let P(E) be the set of all Pick
functions with representation measure µ(Ec) = 0. Moreover, let PM(E) be
the set of all Pick functions ψ in P(E) such that

ψ′(t) = a+
�

E

1
(t− x)2 dµ(x) <∞

([7, pp. 129, 166]). Let TrD(·) be the trace on D. Subscripts will usually be
suppressed when clear from the context.

Definition 3. (1) For T ∈ SHU, we define the principal function
gT (eiθ, r) of T by

gT (eiθ, r) = TrD(BT (eiθ, r)),

where BT (·, ·) is the mosaic of T .
(2) For an operator T ∈ p-HU, we define the principal function gT (eiθ, r)

by
gT (eiθ, r) = TrD(BT (eiθ, r)) (= TrD(BTp(eiθ, r2p))),

where BT (·, ·) is the mosaic of T ∈ p-HU (0 < p ≤ 1/2).
Hence, for 0 < p ≤ 1/2, we have gT (eiθ, r) = gTp(eiθ, r2p).

Theorem 4. Let T = U |T | and S = V |S| be in p-HU. If T and S are
unitarily equivalent , then

gT (eiθ, r) = gS(eiθ, r).

Proof. If p = 1/2, the assertion holds by Theorem VII.2.4 of [7]. Hence
we need only prove that Tp and Sp are unitarily equivalent. We assume that
W ∗TW = S for a unitary operator W . Since W ∗|T |W = |S|, we have

W ∗UW |S| = W ∗UWW ∗|T |W = W ∗TW = S = V |S|.
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Hence W ∗UWx = V x for x ∈ ran(|S|). Therefore,

W ∗TpW = W ∗U |T |2pW = W ∗UWW ∗|T |2pW = W ∗UW |S|2p

= V |S|2p = Sp.

So the proof is complete.

Hence, the principal function gT (·, ·) of T is independent of the concrete
model of T .

Now we would like to give a trace formula for p-hyponormal operators.
First we give a trace formula for semi-hyponormal operators. This formula
is slightly different from Theorem VII.2.4 of [7]. The proof is based on an
idea of the proof of Theorem VII.2.2 of [7] about hyponormal operators.

Theorem 5. Let T = U |T | ∈ SHU,

ϕ(z) = eiλ
z − a
az − 1

with |a| < 1 and λ ∈ R,

ψ ∈ PM(σ(|T |)) and gT (·, ·) be the principal function of T . Then

Tr(ψ(|T |)− ϕ(U)ψ(|T |)ϕ(U)∗) =
� �
|ϕ′(eiθ)|ψ′(r)gT (eiθ, r) dr dm(θ).

Proof. We may assume that T = U |T | is represented by the singular
integral model. We define |T |+ and |T |− by

|T |+ = s-lim
n
U∗n|T |Un, |T |− = s-lim

n
Un|T |U∗n.

For α(·) and β(·) of the singular integral model of T, by Theorem III.1.3
of [7] we have

|T |+ = β(·) + α(·)2, |T |− = β(·).
Let S = Uψ(|T |). Put ψ1 = ψ + a with a > 0. Since

ψ1(|T |)− ϕ(U)ψ1(|T |)ϕ(U)∗ = (ψ(|T |) + a)− ϕ(U)(ψ(|T |) + a)ϕ(U)∗

= ψ(|T |)− ϕ(U)ψ(|T |)ϕ(U)∗

and ψ′1 = ψ′, we may assume that ψ ≥ 0. Since ψ is operator monotone on
σ(|T |), we have ψ(|T |) ≥ ψ(U |T |U∗) = Uψ(|T |)U∗ ≥ 0, so that S ∈ SHU
(cf. [7, Theorem VI.3.2]). Let α1(·) and β1(·) come from the singular integral
model of S. Since U is unitary, we have

|S|+ = ψ(|T |)+ = s-lim
n
U∗nψ(|T |)Un = ψ(s-lim

n
U∗n|T |Un)

= ψ(|T |+) = ψ(β(·) + α(·)2)

and also

|S|− = ψ(|T |)− = s-lim
n
Unψ(|T |)U∗n = ψ(|T |−) = ψ(β(·)).

Since α1 = (ψ(|T |)+ − ψ(|T |)−)1/2 and β1 = ψ(|T |)−, we have

(1) α1(z) = (ψ(β(z) + α(z)2)− ψ(β(z)))1/2, β1(z) = ψ(β(z)).
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Since ϕ(U)(z)β1(z)ϕ(U)∗(z) = β1(z), by (1) and Theorem A we have

((ψ(|T |)− ϕ(U)ψ(|T |)ϕ(U)∗)f)(z) = α1(z)P(α1f)(z) + β1(z)f(z)

− (ϕ(U)α1(z)P(ϕ(U)∗α1f)(z) + ϕ(U)(z)β1(z)ϕ(U)∗(z)f(z))

= α1(z)P(α1f)(z)− ϕ(U)(z)α1(z)P(ϕ(U)∗α1f)(z)

=
1

2πi
α1(z) lim

r→1−0

�

|ζ|=1

(
1

ζ − rz −
z − a
az − 1

· 1
ζ − rz ·

ζ − a
aζ − 1

)
α1(ζ)f(ζ) dζ

=
1− |a|2

2πi
α1(z)

�

|ζ|=1

1

(az − 1)(aζ − 1)
ζα1(ζ)f(ζ) dζ

= (1− |a|2)α1(z)
� 1

(az − 1)(ae−iθ − 1)
α1(eiθ)f(eiθ) dm(θ),

where we put ζ = eiθ. Hence

(2) ((ψ(|T |)− ϕ(U)ψ(|T |)ϕ(U)∗)f, f)

= (1− |a|2)
� � 1

(aeiθ1 − 1)(ae−iθ − 1)

× (α1(eiθ)f(eiθ), α1(eiθ1)f(eiθ1))D dm(θ) dm(θ1)

= (1− |a|2)
∥∥∥∥

� 1
ae−iθ − 1

α1(eiθ)f(ζ) dm(θ)
∥∥∥∥

2

D
.

Let {ei} and {hj(·)} be orthonormal bases of H and L2(T, Σ,m). Put

gjk(eiθ) =
1

ae−iθ − 1
(α1(eiθ)ej , ek) ∈ L2(T,m).

Then by (2) we have

(3) Tr(ψ(|T |)− ϕ(U)ψ(|T |)ϕ(U)∗)

= (1− |a|2)
∑

i,j

∥∥∥∥
� 1
ae−iθ − 1

α1(eiθ)eihj(eiθ) dm(θ)
∥∥∥∥

2

D

= (1− |a|2)
∑

i,j,k

� ∣∣∣∣
(

1
ae−iθ − 1

α1(eiθ)eihj(eiθ) dm(θ), ek

)∣∣∣∣
2

= (1− |a|2)
∑

i,j,k

∣∣∣∣
� 1
ae−iθ − 1

(α1(eiθ)ei, ek)hj(eiθ) dm(θ)
∣∣∣∣
2

= (1− |a|2)
∑

i,j,k

∣∣∣
�
gjk(eiθ)hi(eiθ) dm(θ)

∣∣∣
2

= (1− |a|2)
∑

i,j,k

|(gjk, hi)|2
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= (1− |a|2)
∑

j,k

‖gjk‖2 = (1− |a|2)
∑

j,k

� ∣∣∣∣
1

ae−iθ − 1
(α1(eθ)ej , ek)

∣∣∣∣
2

dm(θ)

= (1− |a|2)
∑

j

� ∥∥∥∥
1

ae−iθ − 1
α1(eiθ)ej

∥∥∥∥
2

dm(θ)

= (1− |a|2)
∑

j

� ∣∣∣∣
1

ae−iθ − 1

∣∣∣∣
2

‖α1(eiθ)ej‖2 dm(θ)

= (1− |a|2)
� ∣∣∣∣

1
aeiθ − 1

∣∣∣∣
2

TrD(α1(eiθ)2) dm(θ).

Putting ψ(r) = (r − x)−2 in Theorem C, we have

TrD

( � B(z, r)
(r − x)2 dr

)
= TrD

(
α(z)

1�

0

(β(z) + kα(z)2 − x)−2 dk α(z)
)

= TrD
( 1�

0

(β(z) + kα(z)2 − x)−1α(z)2(β(z) + kα(z)2 − x)−1 dk
)
.

Considering α(z) + ε for a small positive number ε, we may assume that
α(z) is invertible. We have

(x−(β(z)+kα(z)2))−1 = α(z)−1(xα(z)−2−α(z)−1β(z)α(z)−1−k)−1α(z)−1,

so that

d

dk
(x− (β(z) + kα(z)2))−1

= α(z)−1(xα(z)−2 − α(z)−1β(z)α(z)−1 − k)−2α(z)−1

= α(z)−1(xα(z)−2 − α(z)−1β(z)α(z)−1 − k)−1

× (xα(z)−2 − α(z)−1β(z)α(z)−1 − k)−1α(z)−1

= (xα(z)−1 − α(z)−1β(z)− kα(z))−1

× (xα(z)−1 − β(z)α(z)−1 − kα(z))−1

= (x− β(z)− kα(z)2)−1α(z) · α(z)(x− β(z)− kα(z)2)−1.

Therefore we have

(4)
1�

0

(β(z) + kα(z)2 − x)−1α(z)2(β(z) + kα(z)2 − x)−1dk

= (x− (β(z) + α(z)2))−1 − (x− β(z))−1.
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By Definition 3 and (4) we have
� gT (z, r)

(x− r)2 dr = TrD

( � B(z, r)
(r − x)2 dr

)

= TrD((x− β(z)− α(z)2)−1 − (x− β(z))−1).

Putting ψ(r) ≡ 1 in Theorem C, by Definition 3 we have

(5)
�
gT (z, r) dr = TrD(α(z)2).

Let E = σ(|T |). Since ψ ∈ PM(E), we can put

ψ(t) = ct+ d+
�

E

(
1

x− t −
x

1 + x2

)
dµ(x)

and hence
ψ′(t) = c+

�

E

1
(x− t)2 dµ(x).

Therefore

ψ(β(z) + α(z)2)− ψ(β(z))

= c(β(z) + α(z)2 − β(z))

+
�

E

{(x− β(z)− α(z)2)−1 − (x− β(z))−1} dµ(x)

= c(α(z)2) +
�

E

{(x− β(z)− α(z)2)−1 − (x− β(z))−1} dµ(x).

Since c ≥ 0 and TrD(
�
E{(x − β(z) − α(z)2)−1 − (x − β(z))−1} dµ(x)) ≥ 0,

we have

TrD(ψ(β(z) + α(z)2)− ψ(β(z)))

= TrD
(
cα(z)2 +

�

E

{(x− β(z)− α(z)2)−1 − (x− β(z))−1} dµ(x)
)

= cTrD(α(z)2) + TrD
( �

E

{(x− β(z)− α(z)2)−1 − (x− β(z))−1} dµ(x)
)

= c(TrD(α(z)2)) +
�

E

{TrD((x− β(z)− α(z)2)−1 − (x− β(z))−1)} dµ(x)

= cTrD(α(z)2) +
� �

E

gT (z, t)
(x− t)2 dt dµ(x) (by (4))

= c
�
gT (z, t) dt+

� �

E

1
(x− t)2 dµ(x)gT (z, t) dt

=
� (
c+

�

E

1
(x− t)2 dµ(x)

)
gT (z, t) dt =

�
ψ′(t)gT (z, t) dt.
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Hence

(6) TrD(α1(z)2) = TrD(ψ(β(z) + α(z)2)− ψ(β(z))) =
�
ψ′(r)gT (z, r) dr.

Since ϕ(eiθ) = eiλ eiθ−a
aeiθ−1 , we have ϕ′(eiθ) = eiλ |a|2−1

(aeiθ−1)2 . Therefore, by (3)
and (6),

Tr(ϕ(|T |)− ψ(U)ϕ(|T |)ψ(U)∗) = (1−|a|2)
� ∣∣∣∣

1
aeiθ−1

∣∣∣∣
2

TrD(α1(eiθ)2) dm(θ)

=
� �
|ϕ′(eiθ)|ψ′(r)gT (eiθ, r) dr dm(θ).

So the proof is complete.

In the case of p-HU operators, we have the following

Theorem 6. Let T = U |T | ∈ p-HU. For |a| < 1 and a real number λ,
let ϕ(z) = eiλ z−a

az−1 , ψ ∈ PM(σ(|T |2p)) and gT (·, ·) be the principal function
of T . Then

Tr(ψ(|T |2p)− ϕ(U)ψ(|T |2p)ϕ(U)∗)

= 2p
� �
r2p−1|ϕ′(eiθ)|ψ′(r2p)gT (eiθ, r) dr dm(θ).

Proof. Let Tp = U |T |2p. Then Tp ∈ SHU and gT (eiθ, r) = gTp(eiθ, r2p).
Hence, by Theorem 5 and the transformation %2p = r we have the assertion.

4. Trace formulae for commutators associated with polar de-
compositions. We denote the trace class of operators by C1. For operators
A and B, the commutator AB−BA is denoted by [A,B]. In this section, we
give a trace formula for [|T |m, Un] for a semi-hyponormal operator T = U |T |
with unitary U . First we give the following theorem.

Theorem 7. Let T = U |T | ∈ SHU and gT (·, ·) be the principal function
of T . Assume that [|T |, U ] ∈ C1. Then, for any integer n ≥ 1,

Tr([|T |, Un]) =
� �
neinθgT (eiθ, r) dr dm(θ).

Proof. For n ≥ 1, since

[|T |, Un] = [|T |, U ]Un−1 + U [|T |, U ]Un−2 + . . .+ Un−1[|T |, U ],

we have
Tr([|T |, Un]) = Tr(nUn−1[|T |, U ]).

Using the singular integral model of T , we obtain

((|T |U − U |T |)f)(z) = α(z)
1

2πi

�

|ζ|=1

α(ζ)f(ζ) dζ

= α(z)
�
α(eiθ)eiθf(eiθ) dm(θ).
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Let {ej} and {hk(·)} be the orthonormal bases of H and L2(T, Σ,m), re-
spectively. By (5), α(z) is Hilbert–Schmidt; put

F (eiθ) = TrD(α(eiω)eiθα(eiθ)).

Then

Tr(nUn−1[|T |, U ])

=
∑

j,k

� (
nei(n−1)ωα(eiω)

�
α(eiθ)ejhk(eiθ) dm(θ), ejhk(eiω)

)
dm(ω)

=
∑

k

�
nei(n−1)ω

� ∑

j

(α(eiω)α(eiθ)eiθej , ej)hk(eiθ) dm(θ)hk(eiω) dm(ω)

=
∑

k

�
nei(n−1)ω

�
TrD(α(eiω)α(eiθ)eiθ)hk(eiθ) dm(θ)hk(eiω) dm(ω)

=
�
nei(n−1)ω

(∑

k

(F, hk)L2(T,m)hk(eiω)
)
dm(ω)

=
�
nei(n−1)ωF (eiω) dm(ω) =

�
nei(n−1)ω TrD(α(eiω)eiωα(eiω)) dm(ω)

=
�
neinω

�
gT (eiω, r) dr dm(ω) (by (5)).

Therefore,
Tr([|T |, Un]) =

� �
neinθgT (eiθ, r) dr dm(θ).

So the proof is complete.

Next we give a trace formula for [|T |k, Un].

Theorem 8. Let T = U |T | ∈ SHU and gT (·, ·) be the principal function
of T . If [|T |, U ] ∈ C1, then for k = 1, 2, . . . and n = ±1,±2, . . . ,

Tr([|T |k, Un]) =
� �

kneinθrk−1gT (eiθ, r) dr dm(θ).

Proof. If k, n ≥ 1, then (Tr([|T |k, Un]))∗ = −Tr([|T |k, U−n]) and
( � �

kneinθrk−1gT (eiθ, r) dr dm(θ)
)∗

= −
� �

k(−n)ei(−n)θrk−1gT (eiθ, r) dr dm(θ).

Hence it is sufficient to prove the equalities for k, n ≥ 1. By Theorem 5,
we have

Tr(|T | − U |T |U∗) =
� �

gT (eiθ, r) dr dm(θ) <∞.
For |λ| > ‖T‖, let ψ(r) = 1/(λ− r). By Theorem 5, we have

Tr(ψ(|T |)− Uψ(|T |)U∗) =
� � 1

(λ− r)2 gT (eiθ, r) dr dm(θ),
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so that ψ(|T |) − Uψ(|T |)U∗ ∈ C1. Hence ψ(|T |)U − Uψ(|T |) ∈ C1. Let
S = Uψ(|T |). Applying Theorem 7 to S, for n ≥ 1 we obtain

Tr(ψ(|T |)Un − Unψ(|T |)) =
�
neinθ

�
gS(eiθ, r) dr dm(θ).

Since in the proof of Theorem 5 we have ψ(|T |)+ = ψ(|T |+) and ψ(|T |)− =
ψ(|T |−), by (1), (2) and (6) we obtain

�
gS(eiθ, r) dr = Tr(ψ(|T |)+ − ψ(|T |)−) = Tr(ψ(|T |+)− ψ(|T |−))

=
�
ψ′(r)gT (eiθ, r) dr =

� 1
(λ− r)2 gT (eiθ, r) dr.

By Theorem 1, if r > ‖T‖, then gT (eiθ, r) = 0. Hence

Tr(ψ(|T |)Un−Unψ(|T |)) =
�
neinθ

� 1
(λ− r)2 gT (eiθ, r) dr dm(θ)

=
∞∑

k=0

�
neinθ

� (k + 1)rk

λk+2 gT (eiθ, r) dr dm(θ)

=
∞∑

k=0

1
λk+2

� �
n(k+1)einθrkgT (eiθ, r) dr dm(θ).

On the other hand, we have

ψ(|T |)Un − Unψ(|T |) = (λ− |T |)−1Un − Un(λ− |T |)−1

= (λ− |T |)−1[|T |, Un](λ− |T |)−1.

Since [|T |, U ] ∈ C1, we have [|T |, Un] ∈ C1. Hence Tr((·)[|T |, Un]) is a
bounded linear functional on the bounded linear operators on the Hilbert
space. By the same argument of the first part of the proof of Theorem 7,

Tr((k + 1)|T |k[|T |, Un]) = Tr([|T |k+1, Un]).

Then

Tr(ψ(|T |)Un − Unψ(|T |)) = Tr((λ− |T |)−2[|T |, Un])

=
∞∑

k=0

1
λk+2 Tr((k + 1)|T |k[|T |, Un]) =

∞∑

k=0

1
λk+2 Tr([|T |k+1, Un]).

Therefore, by comparing the coefficients of λk+1 we have

Tr([|T |k, Un]) =
� �

kneinθrk−1gT (eiθ, r) dr dm(θ).

So the proof is complete.

5. Trace formulae for p-nearly normal operators. In this section,
we give trace formulae for p-nearly normal operators. Let A1 be the set
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of all polynomials of one variable. By A2 we denote the set of all Laurent
polynomials of two variables r and z which have the form

p(r, z) =
N∑

j=0

N∑

k=−N
ajkr

jzk,

where N is a positive integer and ajk are constant coefficients. If h ∈ A1

and p ∈ A2, we define

(h ◦ p)(r, z) = h(p(r, z)).

For a bilinear form (·, ·) on A2, we consider the following property:

(∗) (p ◦ r, q ◦ r) = 0

for all p, q ∈ A1 and r ∈ A2. Condition (∗) is called the collapsing property
([7, p. 171]). Let X be an operator and Y be an invertible operator. For
p(r, z) =

∑N
j=0

∑N
k=−N ajkr

jzk, we define

p(X,Y ) =
N∑

j=0

N∑

k=−N
ajkX

jY k.

We denote the Jacobian for p, q ∈ A2 by J(p, q), that is,

J(p, q)(r, eiθ) =
∂p

∂r
(r, eiθ) · ∂q

∂z
(r, eiθ)− ∂p

∂z
(r, eiθ) · ∂q

∂r
(r, eiθ).

Definition 4. For T = U |T | with U unitary, T is called p-nearly normal
if [|T |2p, U ] ∈ C1 (cf. [7, p. 170]).

It is easy to see that if T = U |T | is p-nearly normal, then, for p, q ∈ A2,
[p(|T |2p, U), q(|T |2p, U)] ∈ C1 and Tr([p(|T |2p, U), q(|T |2p, U)]) is indepen-
dent of the order of multiplication of the factors |T |2p and U (see [7, p. 174]).
First we give a proof of Theorem VII.3.3 of [7] for a trace formula for a
1
2 -nearly normal operator.

Theorem 9. Let T = U |T | ∈ SHU and gT (·, ·) be the principal function
of T . If T is 1

2 -nearly normal , then, for p, q ∈ A2,

Tr([p(|T |, U), q(|T |, U)]) =
� �

J(p, q)(r, eiθ)eiθgT (eiθ, r) dr dm(θ).

Proof. We define a bilinear form on A2 by

(p, q) = Tr([p(|T |, U), q(|T |, U)])

for p, q ∈ A2. Then it is easy to see that (·, ·) has the collapsing property.
For q ∈ A2, we choose q1, q2 ∈ A2 such that ∂q1/∂r = q = ∂q2/∂r. Then
q1 − q2 is a Laurent polynomial of variable z. Let h(r, z) = z. By definition
of (·, ·) we have (h, q1 − q2) = 0. Hence we can define a linear functional `
on A2 by

`(q) = (h, q1)
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where ∂q1/∂r = q. From now on, if p(r, z) = rjzk, then we simply denote
(p, q) by (rjzk, q) and so on. Hence `(∂q/∂r) = (z, q). We define an auxiliary
bilinear form (·, ·)1 on A2 by

(·, ·)1 = (·, ·) + `(J(·, ·)).
Since J(p◦ s, q ◦ s) = 0 for any p, q ∈ A1 and s ∈ A2, the bilinear form (·, ·)1

has the collapsing property.
We show that (·, ·)1 ≡ 0. For each q ∈ A2, we have

(z, q)1 = (z, q) + `(J(z, q)) = (z, q) + `

(
−∂q
∂r

)
= (z, q)− (z, q) = 0,(7)

(z−1, q)1 = 0.(8)

In fact, since J(z−1, q) = z−2∂q/∂r, we have

`

(
z−2 ∂q

∂r

)
= (z, z−2q) = Tr(UU−2q(|T |, U)− U−2q(|T |, U)U)

= Tr(U−1q(|T |, U)− U−2q(|T |, U)U)

= Tr(U−1(q(|T |, U)U−1 − U−1q(|T |, U))U)

= Tr([q(|T |, U), U−1]) = (q, z−1) = −(z−1, q).

Hence

(z−1, q)1 = (z−1, q) + `(J(z−1, q))

= (z−1, q) + `

(
z−2 ∂q

∂r

)
= (z−1, q)− (z−1, q) = 0.

Now, for α ∈ C and n ≥ 1, using (7) we have

0 = ((r + αz), (r + αz)n)1 = (r, (r + αz)n)1 =
n∑

j=1

nCj αj(r, rn−jzj)1,

so that
(r, rn−jzj)1 = 0 (j = 1, . . . , n).

Therefore, we have

(r, rjzk)1 = 0 (j, k = 1, 2, . . .).

Since (8) holds, we have (r, rjz−k)1 = 0 (j, k = 1, 2, . . .). Hence for all
q ∈ A2 we have

(9) (r, q)1 = 0.

Next, we prove that if s, t ∈ A2 satisfy (s, q)1 = (t, q)1 = 0 for all q ∈ A2,
then

(10) (st, q)1 = 0.
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In fact, let q ∈ A2 and α, β ∈ C. By the collapsing property we have

((αs+ βt+ q)2, (αs+ βt+ q))1 = 0.

Since (u2, u)1 = 0 for u ∈ A2, we have

α2(s2, q)1 + β2(t2, q)1 + 2αβ(st, q)1 + 2α(sq, q)1 + 2β(tq, q)1 = 0.

Since α and β are arbitrary, the coefficient of αβ must vanish: i.e.,

(st, q)1 = 0.

By (7)–(10), we have

(rz, q)1 = (rz−1, q)1 = 0,

so that
(r2z, q)1 = (r2z−1, q)1 = (rz2, q)1 = (rz−2, q)1 = 0.

Repeating this procedure, we have

(·, ·)1 ≡ 0.

Therefore, for p, q ∈ A2 we have

(11) (p, q) = −`(J(p, q)).

Since gT (eiθ, r) ≥ 0 ,
� �
gT (eiθ, r) dr dm(θ) = Tr(|T | − U |T |U−1) < ∞ and

gT (eiθ, r) = 0 for r > ‖T‖, we can define a linear functional `0 on A2 by

`0(p) =
� �

p(r, eiθ)eiθgT (eiθ, r) dr dm(θ).

Since
(rm, zn) = Tr(|T |mUn − Un|T |m) (by Theorem 8)

= mn
� �

(eiθ)n−1rm−1eiθgT (eiθ, r) dr dm(θ)

= mn`0(zn−1rm−1),

it follows from (11) that

−`(rm−1zn−1) = `0(rm−1zn−1) (m ≥ 1, n 6= 0).

For |λ| > ‖T‖, let ψ(r) = 1/(λ− r). By Theorem 5,

Tr(ψ(|T |)− Uψ(|T |)U−1) =
� � 1

(λ− r)2 gT (eiθ, r) dr dm(θ).

Since

ψ(|T |)− Uψ(|T |)U−1 = ((λ− |T |)−1[|T |, U ](λ− |T |)−1)U−1

and [|T |, U ] ∈ C1, we have
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Tr(ψ(|T |)− Uψ(|T |)U−1) = Tr((λ− |T |)−1[|T |, U ](λ− |T |)−1U−1)

= Tr([|T |, U ]((λ− |T |)−1U−1(λ− |T |)−1))

=
∞∑

s=0

∞∑

t=0

1
λ2+s+t Tr([|T |, U ] |T |sU−1|T |t)

=
∞∑

s=0

∞∑

t=0

1
λ2+s+t Tr((|T |t[|T |, U ]|T |s)U−1)

=
∞∑

m=0

1
λ2+m Tr([|T |m+1, U ]U−1)

=
∞∑

m=0

1
λm+2 Tr(|T |m+1 − U |T |m+1U−1),

because
[|T |n, U ] = |T |n−1[|T |, U ] + |T |n−2[|T |, U ]|T |

+ . . .+ |T |[|T |, U ]|T |n−2 + [|T |, U ]|T |n−1.

Therefore,

Tr(ψ(|T |)− Uψ(|T |)U−1) =
∞∑

m=0

1
λm+2 Tr(|T |m+1 − U |T |m+1U−1).

Since
� � 1

(λ− r)2 gT (eiθ, r) dr dm(θ)

=
∞∑

m=0

1
λm+2

� �
(m+ 1)rmgT (eiθ, r) dr dm(θ),

comparing the coefficients of λm+1, we have

Tr(|T |m − U |T |mU−1) =
� �

mrm−1gT (eiθ, r) dr dm(θ) (m ≥ 1).

We also have

−`(rmz−1) = − 1
m+ 1

(z, rm+1z−1)

= − 1
m+ 1

Tr(U |T |m+1U−1 − |T |m+1U−1U)

= − 1
m+ 1

Tr(U |T |m+1U−1 − |T |m+1)

=
1

m+ 1
Tr(|T |m+1 − U |T |m+1U−1)

=
1

m+ 1

� �
(m+ 1)rmgT (eiθ, r) dr dm(θ)
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=
� �

rmgT (eiθ, r) dr dm(θ)

=
� �

rme−iθeiθgT (eiθ, r) dr dm(θ) = `0(rmz−1),

so that `0 = −`. Consequently, we obtain

Tr([p(|T |, U), q(|T |, U)]) = (p, q) = `0(J(p, q))

=
� �

J(p, q)(r, eiθ)eiθgT (eiθ, r) dr dm(θ).

So the proof is complete.

Finally, we have

Theorem 10. Let m be a positive integer. Let T = U |T | ∈ 1
2m -HU. If

T is 1
2m -nearly normal , then

Tr([p(|T |, U), q(|T |, U)]) =
� �

J(p, q)(r, eiθ)eiθgT (eiθ, r) dr dm(θ)

for p, q ∈ A2.

Proof. Put p̃(r, z) = p(rm, z), q̃(r, z) = q(rm, z) ∈ A2 and S = U |T |1/m.
Since S is in SHU and 1

2 -nearly normal, by Theorem 9 we have

Tr([p(|T |1/m, U), q(|T |1/m, U)]) =
� �

J(p, q)(r, eiθ)eiθgS(eiθ, r) dr dm(θ)

and

Tr([p(|T |, U), q(|T |, U)]) = Tr([p((|T |1/m)m, U), q((|T |1/m)m, U)])

=
� �

J(p̃, q̃)(r, eiθ)eiθgS(eiθ, r) dr dm(θ).

Since gT (eiθ, r) = gS(eiθ, r1/m), from the translation r = %1/m we have
� �

J(p̃, q̃)(r, eiθ)eiθgS(eiθ, r) dr dm(θ)

=
� �

J(p, q)(%, eiθ)eiθgT (eiθ, %) d% dm(θ).

So the proof is complete.

Acknowledgements. The authors would like to thank the referee for
helpful comments that clarified an earlier version of this paper.

References

[1] A. Aluthge, On p-hyponormal operators for 0 < p < 1, Integral Equations Oper.
Theory 13 (1990), 307–315.

[2] R. W. Carey and J. D. Pincus, Mosaics, principal functions, and mean motion in
von Neumann algebras, Acta Math. 138 (1977), 153–218.
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18 M. Chō and T. Huruya
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