Trace formulae for p-hyponormal operators

by
Muneo Chō (Yokohama) and Tadasi Huruya (Niigata)

Dedicated to Professor W. Żelazko on his 70th birthday with respect

Abstract

The purpose of this paper is to introduce mosaics and principal functions of p-hyponormal operators and give a trace formula. Also we introduce p-nearly normal operators and give trace formulae for them.

1. Introduction. In Carey-Pincus [2] and Pincus-Xia [6], the trace formulae for pairs of operators associated with the polar decomposition are studied. In this paper, in a situation similar to [6] we introduce mosaics and principal functions of p-hyponormal operators for $0<p \leq 1 / 2$ and give trace formulae for p-hyponormal and p-nearly normal operators.

Let \mathcal{H} be a complex separable Hilbert space and $B(\mathcal{H})$ be the algebra of all bounded linear operators on \mathcal{H}. An operator $T \in B(\mathcal{H})$ is said to be p-hyponormal if $\left(T^{*} T\right)^{p}-\left(T T^{*}\right)^{p} \geq 0$ (see [1]). If $p=1, T$ is called hyponormal, and if $p=1 / 2, T$ is called semi-hyponormal. The set of all semi-hyponormal operators in $B(\mathcal{H})$ is denoted by SH . The set of all p hyponormal operators in $B(\mathcal{H})$ is denoted by p - H . Let SHU and p - HU denote the sets of all operators in SH and in $p-\mathrm{H}$ with equal defect and nullity (cf. [7, p. 4]), respectively. Hence we may assume that the operator U in the polar decomposition $T=U|T|$ is unitary if $T \in \mathrm{SHU} \cup p$ - HU . Throughout this paper, p satisfies $0<p \leq 1 / 2$.

Let $\mathbb{T}=\left\{e^{i \theta} \mid 0 \leq \theta<2 \pi\right\}, \Sigma$ be the set of all Borel sets in \mathbb{T}, m be a measure on the measurable space (\mathbb{T}, Σ) such that $d m(\theta)=(2 \pi)^{-1} d \theta$ and \mathcal{D} be a separable Hilbert space. The Hilbert space of all vector-valued, strongly measurable and square-integrable functions with values in \mathcal{D} and

[^0]with inner product
$$
(f, g)=\int_{\mathbb{T}}\left(f\left(e^{i \theta}\right), g\left(e^{i \theta}\right)\right)_{\mathcal{D}} d m(\theta)
$$
is denoted by $L^{2}(\mathcal{D})$; the Hardy space is denoted by $H^{2}(\mathcal{D})$, and the projection from $L^{2}(\mathcal{D})$ to $H^{2}(\mathcal{D})$ by \mathcal{P}. If $f \in L^{2}(\mathcal{D})$, then
$$
(\mathcal{P}(f))\left(e^{i \theta}\right)=\lim _{r \rightarrow 1-0} \frac{1}{2 \pi i} \int_{|z|=1} f(z)\left(z-r e^{i \theta}\right)^{-1} d z
$$

Let ν be a singular measure on (\mathbb{T}, Σ), and $F \in \Sigma$ be a set such that $\nu(\mathbb{T} \backslash F)=0$ and $m(F)=0$. Put $\mu=m+\nu$. Let $R(\cdot)$ be a standard operatorvalued strongly measurable function defined on $\Omega=(\mathbb{T}, \Sigma, \mu)$ whose values are projections in $\mathcal{D}, L^{2}(\Omega, \mathcal{D})$ be the Hilbert space of all \mathcal{D}-valued strongly measurable and square-integrable functions on Ω with inner product $(f, g)=$ $\int_{\mathbb{T}}\left(f\left(e^{i \theta}\right), g\left(e^{i \theta}\right)\right)_{\mathcal{D}} d \mu$, and

$$
\widetilde{H}=\left\{f \mid f \in L^{2}(\Omega, \mathcal{D}), R\left(e^{i \theta}\right) f\left(e^{i \theta}\right)=f\left(e^{i \theta}\right), e^{i \theta} \in \mathbb{T}\right\}
$$

Then \widetilde{H} is a subspace of $L^{2}(\Omega, \mathcal{D})$. The space $L^{2}(\mathcal{D})$ is identified with a subspace of $L^{2}(\Omega, \mathcal{D})$. Hence \mathcal{P} extends to $L^{2}(\Omega, \mathcal{D})$ so that

$$
\mathcal{P} f=0 \quad \text { for } f \in L^{2}(\Omega, \mathcal{D}) \ominus L^{2}(\mathcal{D})
$$

We define an operator \mathcal{P}_{0} from $L^{2}(\Omega, \mathcal{D})$ to \mathcal{D} as follows:

$$
\mathcal{P}_{0}(f)=\int f\left(e^{i \theta}\right) d m(\theta)
$$

Then \mathcal{P}_{0} is the projection from $L^{2}(\Omega, \mathcal{D})$ onto $\mathcal{D}(c f .[7$, p. 50]). Let $\alpha(\cdot)$ and $\beta(\cdot)$ be operator-valued, uniformly bounded, and strongly measurable functions on Ω such that $\alpha\left(e^{i \theta}\right)$ and $\beta\left(e^{i \theta}\right)$ are linear operators in \mathcal{D} satisfying

$$
\begin{aligned}
& R\left(e^{i \theta}\right) \alpha\left(e^{i \theta}\right)=\alpha\left(e^{i \theta}\right) R\left(e^{i \theta}\right)=\alpha\left(e^{i \theta}\right) \\
& R\left(e^{i \theta}\right) \beta\left(e^{i \theta}\right)=\beta\left(e^{i \theta}\right) R\left(e^{i \theta}\right)=\beta\left(e^{i \theta}\right)
\end{aligned}
$$

and $\beta\left(e^{i \theta}\right) \geq 0$.
Furthermore, suppose that $\alpha\left(e^{i \theta}\right)=0$ if $e^{i \theta} \in F$. We write $(\alpha f)\left(e^{i \theta}\right)=$ $\alpha\left(e^{i \theta}\right) f\left(e^{i \theta}\right)$. An operator \widetilde{U} in $\widetilde{\mathcal{H}}$ is defined by

$$
(\widetilde{U} f)\left(e^{i \theta}\right)=e^{i \theta} f\left(e^{i \theta}\right)
$$

Since $\beta\left(e^{i \theta}\right) \geq 0$ and \mathcal{P} is a projection on $L^{2}(\mathcal{D})$, we have

$$
\left(\alpha\left(e^{i \theta}\right)^{*}(\mathcal{P}(\alpha f))\left(e^{i \theta}\right)+\beta\left(e^{i \theta}\right) f\left(e^{i \theta}\right), f\left(e^{i \theta}\right)\right)_{\mathcal{D}} \geq 0
$$

Therefore, we can define the operator $\left(\alpha^{*} \mathcal{P} \alpha+\beta\right)^{1 /(2 p)}$. See the details in [7]. Moreover, the following results hold.

Theorem A (Chō, Huruya and Itoh [3, Th. 1]). With the above notations, let \widetilde{T} be an operator in $\widetilde{\mathcal{H}}$ defined by

$$
(\widetilde{T} f)\left(e^{i \theta}\right)=e^{i \theta}(A f)\left(e^{i \theta}\right),
$$

where $\left(A^{2 p} f\right)\left(e^{i \theta}\right)=\alpha\left(e^{i \theta}\right)^{*}(\mathcal{P}(\alpha f))\left(e^{i \theta}\right)+\beta\left(e^{i \theta}\right) f\left(e^{i \theta}\right)$. Then \widetilde{T} is p-hyponormal and the corresponding polar differential operator $|\widetilde{T}|-\widetilde{U}|\widetilde{T}| \widetilde{U}^{*}$ is

$$
\left(\left(|\widetilde{T}|-\widetilde{U}|\widetilde{T}| \widetilde{U}^{*}\right) f\right)\left(e^{i \theta}\right)=\alpha\left(e^{i \theta}\right)^{*} \mathcal{P}_{0}(\alpha f)
$$

Theorem B (Chō, Huruya and Itoh [3, Th. 3]). Let $T=U|T|$ be a p hyponormal operator in \mathcal{H} such that U is unitary. Then there exist a function space $\widetilde{\mathcal{H}}$, and operators \widetilde{T} and \widetilde{U} in $\widetilde{\mathcal{H}}$ which have the forms in Theorem A such that

$$
W T W^{-1}=\widetilde{T} \quad \text { and } \quad W U W^{-1}=\widetilde{U}
$$

where W is a unitary operator from \mathcal{H} to $\widetilde{\mathcal{H}}$. Moreover $\alpha(\cdot) \geq 0$.
\widetilde{T} is said to be the singular integral model of T.
2. Mosaics of operators $T \in p$ - HU . For the singular integral model of a semi-hyponormal operator $T=U|T|$, the following holds:

Theorem C (Xia [7, Th. V.2.5]). With the above notations, let $T=$ $U|T|$ be in SHU and $\alpha(\cdot), \beta(\cdot)$ be as in Theorems A and B for the singular integral model of T. Then the following statements hold.
(1) There exists a unique $B(\mathcal{D})$-valued measurable function of two variables, $\mathrm{B}\left(e^{i \theta}, r\right)\left(e^{i \theta} \in \mathbb{T}, r \in[0, \infty)\right)$ satisfying

$$
0 \leq \mathrm{B}\left(e^{i \theta}, r\right) \leq I
$$

such that

$$
I+\alpha\left(e^{i \theta}\right)\left(\beta\left(e^{i \theta}\right)-l\right)^{-1} \alpha\left(e^{i \theta}\right)=\exp \int_{0}^{\infty} \frac{\mathrm{B}\left(e^{i \theta}, r\right)}{r-l} d r .
$$

(2) For any bounded Baire function ψ on $\sigma(|T|)$, the function $\mathrm{B}\left(e^{i \theta}, r\right)$ satisfies

$$
\int \psi(r) \mathrm{B}\left(e^{i \theta}, r\right) d r=\alpha\left(e^{i \theta}\right) \int_{0}^{1} \psi\left(\beta\left(e^{i \theta}\right)+k \cdot \alpha\left(e^{i \theta}\right)^{2}\right) d k \alpha\left(e^{i \theta}\right) .
$$

In particular,

$$
\int \frac{\mathrm{B}\left(e^{i \theta}, r\right)}{r-l} d r=\alpha\left(e^{i \theta}\right) \int_{0}^{1}\left(\beta\left(e^{i \theta}\right)+k \cdot \alpha\left(e^{i \theta}\right)^{2}-l\right)^{-1} d k \alpha\left(e^{i \theta}\right) .
$$

Definition 1. The function $\mathrm{B}(\cdot, \cdot)$ in Theorem C is said to be the mosaic of T. We denote the mosaic of T by $\mathrm{B}_{T}(\cdot, \cdot)$.

For $T \in p$-HU, we define $T_{p}=U|T|^{2 p}$. Since T_{p} is in SHU, the mosaic $\mathrm{B}_{T_{p}}(\cdot, \cdot)$ of T_{p} exists.

Definition 2. For $T=U|T| \in p$ - $\mathrm{HU}(0<p<1 / 2)$, we define

$$
\mathcal{B}_{T}\left(e^{i \theta}, r\right)=\mathrm{B}_{T_{p}}\left(e^{i \theta}, r^{2 p}\right)
$$

We call the function $\mathcal{B}_{T}(\cdot, \cdot)$ appearing in Definition 2 the mosaic of $T \in p$-HU. The essential support of $\mathcal{B}_{T}(\cdot, \cdot)$ is called the determining set of T. We denote this set by $\mathrm{D}(T)$, i.e.,
$\mathrm{D}(T)=\mathbb{C}-\bigcup\left\{\mathrm{G}: \mathrm{G}\right.$ is open in \mathbb{C} and $\mathcal{B}_{T}\left(e^{i \theta}, r\right)=0$ for a.e. $\left.r e^{i \theta} \in \mathrm{G}\right\}$.
Then we have the following
Theorem 1. Let $T=U|T|$ be in $p-\mathrm{HU}$. Then

$$
\mathrm{D}(T) \subset \sigma(T)
$$

Moreover, if T is completely nonnormal, then $\mathrm{D}(T)=\sigma(T)$.
Proof. Since $T_{p}=U|T|^{2 p}$ is semi-hyponormal, Theorem V.3.2 of [7] yields

$$
\mathrm{D}\left(T_{p}\right) \subset \sigma\left(T_{p}\right)
$$

By the definition of $\mathrm{D}(T)$ for a p-hyponormal operator T, we have

$$
r e^{i \theta} \in \mathrm{D}(T) \Leftrightarrow r^{2 p} e^{i \theta} \in \mathrm{D}\left(T_{p}\right)
$$

Since Theorem 3 of [4] implies that $r^{2 p} e^{i \theta} \in \sigma\left(T_{p}\right)$ if and only if $r e^{i \theta} \in \sigma(T)$, we have $\mathrm{D}(T) \subset \sigma(T)$.

If T is completely nonnormal, then Theorem 5 of [5] shows that T_{p} is completely nonnormal. Also $\mathrm{D}\left(T_{p}\right)=\sigma\left(T_{p}\right)$ by Theorem V.3.2 of [7]. Hence $\mathrm{D}(T)=\sigma(T)$.

Theorem 2. Let $T=U|T|$ be in $p-\mathrm{HU}$. Then

$$
\left\||T|^{2 p}-\left|T^{*}\right|^{2 p}\right\| \leq \frac{p}{\pi} \iint_{\mathrm{D}(T)} r^{2 p-1} d r d \theta
$$

Proof. Since $T_{p}=U|T|^{2 p}$ is semi-hyponormal, by Theorem V.3.5 of [7] we have

$$
\left\||T|^{2 p}-\left|T^{*}\right|^{2 p}\right\| \leq \frac{1}{2 \pi} \iint_{\mathrm{D}\left(T_{p}\right)} d \varrho d \theta
$$

By the transformation $\varrho=r^{2 p}$, we have

$$
\left\||T|^{2 p}-\left|T^{*}\right|^{2 p}\right\| \leq \frac{p}{\pi} \iint_{\mathrm{D}(T)} r^{2 p-1} d r d \theta
$$

Hence we have the following corollary.

Corollary 3. Let T be in p-HU. If $\mathrm{m}_{2}(\mathrm{D}(T))=0$, then T is normal, where $\mathrm{m}_{2}(\cdot)$ is the planar Lebesgue measure.
3. Principal functions. In this section, we introduce principal functions of operators T in p-HU. First we prepare some notations. If ψ is analytic in the upper half plane and with range in the closed upper half plane, ψ is called a Pick function ([7, p. 129]). ψ is a Pick function if and only if it has the following unique canonical representation:

$$
\psi(z)=a z+b+\int\left[\frac{1}{x-z}-\frac{x}{x^{2}+1}\right] d \mu(x)
$$

where $a \geq 0, b$ is a real number, and μ is a nonnegative Borel measure on the real line \mathbb{R} which satisfies

$$
\int \frac{1}{1+x^{2}} d \mu(x)<\infty
$$

For a bounded closed set E of the real line \mathbb{R}, let $P(E)$ be the set of all Pick functions with representation measure $\mu\left(\mathrm{E}^{\mathrm{c}}\right)=0$. Moreover, let $\mathrm{PM}(\mathrm{E})$ be the set of all Pick functions ψ in $\mathrm{P}(\mathrm{E})$ such that

$$
\psi^{\prime}(t)=a+\int_{\mathrm{E}} \frac{1}{(t-x)^{2}} d \mu(x)<\infty
$$

([7, pp. 129, 166]). Let $\operatorname{Tr}_{\mathcal{D}}(\cdot)$ be the trace on \mathcal{D}. Subscripts will usually be suppressed when clear from the context.

Definition 3. (1) For $T \in \mathrm{SHU}$, we define the principal function $g_{T}\left(e^{i \theta}, r\right)$ of T by

$$
g_{T}\left(e^{i \theta}, r\right)=\operatorname{Tr}_{\mathcal{D}}\left(\mathrm{B}_{T}\left(e^{i \theta}, r\right)\right)
$$

where $\mathrm{B}_{T}(\cdot, \cdot)$ is the mosaic of T.
(2) For an operator $T \in p-\mathrm{HU}$, we define the principal function $g_{T}\left(e^{i \theta}, r\right)$ by

$$
g_{T}\left(e^{i \theta}, r\right)=\operatorname{Tr}_{\mathcal{D}}\left(\mathcal{B}_{T}\left(e^{i \theta}, r\right)\right) \quad\left(=\operatorname{Tr}_{\mathcal{D}}\left(\mathrm{B}_{T_{p}}\left(e^{i \theta}, r^{2 p}\right)\right)\right)
$$

where $\mathcal{B}_{T}(\cdot, \cdot)$ is the mosaic of $T \in p$ - $\mathrm{HU}(0<p \leq 1 / 2)$.
Hence, for $0<p \leq 1 / 2$, we have $g_{T}\left(e^{i \theta}, r\right)=g_{T_{p}}\left(e^{i \theta}, r^{2 p}\right)$.
Theorem 4. Let $T=U|T|$ and $S=V|S|$ be in p-HU. If T and S are unitarily equivalent, then

$$
g_{T}\left(e^{i \theta}, r\right)=g_{S}\left(e^{i \theta}, r\right)
$$

Proof. If $p=1 / 2$, the assertion holds by Theorem VII.2.4 of [7]. Hence we need only prove that T_{p} and S_{p} are unitarily equivalent. We assume that $W^{*} T W=S$ for a unitary operator W. Since $W^{*}|T| W=|S|$, we have

$$
W^{*} U W|S|=W^{*} U W W^{*}|T| W=W^{*} T W=S=V|S|
$$

Hence $W^{*} U W x=V x$ for $x \in \operatorname{ran}(|S|)$. Therefore,

$$
\begin{aligned}
W^{*} T_{p} W & =W^{*} U|T|^{2 p} W=W^{*} U W W^{*}|T|^{2 p} W=W^{*} U W|S|^{2 p} \\
& =V|S|^{2 p}=S_{p}
\end{aligned}
$$

So the proof is complete.
Hence, the principal function $g_{T}(\cdot, \cdot)$ of T is independent of the concrete model of T.

Now we would like to give a trace formula for p-hyponormal operators. First we give a trace formula for semi-hyponormal operators. This formula is slightly different from Theorem VII.2.4 of [7]. The proof is based on an idea of the proof of Theorem VII.2.2 of [7] about hyponormal operators.

Theorem 5. Let $T=U|T| \in \mathrm{SHU}$,

$$
\varphi(z)=e^{i \lambda} \frac{z-\bar{a}}{a z-1} \quad \text { with }|a|<1 \text { and } \lambda \in \mathbb{R}
$$

$\psi \in \operatorname{PM}(\sigma(|T|))$ and $g_{T}(\cdot, \cdot)$ be the principal function of T. Then

$$
\operatorname{Tr}\left(\psi(|T|)-\varphi(U) \psi(|T|) \varphi(U)^{*}\right)=\iint\left|\varphi^{\prime}\left(e^{i \theta}\right)\right| \psi^{\prime}(r) g_{T}\left(e^{i \theta}, r\right) d r d m(\theta)
$$

Proof. We may assume that $T=U|T|$ is represented by the singular integral model. We define $|T|_{+}$and $|T|_{-}$by

$$
|T|_{+}=\mathrm{s}-\lim _{n} U^{* n}|T| U^{n}, \quad|T|_{-}=\mathrm{s}-\lim _{n} U^{n}|T| U^{* n}
$$

For $\alpha(\cdot)$ and $\beta(\cdot)$ of the singular integral model of T, by Theorem III.1.3 of [7] we have

$$
|T|_{+}=\beta(\cdot)+\alpha(\cdot)^{2}, \quad|T|_{-}=\beta(\cdot)
$$

Let $S=U \psi(|T|)$. Put $\psi_{1}=\psi+a$ with $a>0$. Since

$$
\begin{aligned}
\psi_{1}(|T|)-\varphi(U) \psi_{1}(|T|) \varphi(U)^{*} & =(\psi(|T|)+a)-\varphi(U)(\psi(|T|)+a) \varphi(U)^{*} \\
& =\psi(|T|)-\varphi(U) \psi(|T|) \varphi(U)^{*}
\end{aligned}
$$

and $\psi_{1}^{\prime}=\psi^{\prime}$, we may assume that $\psi \geq 0$. Since ψ is operator monotone on $\sigma(|T|)$, we have $\psi(|T|) \geq \psi\left(U|T| U^{*}\right)=U \psi(|T|) U^{*} \geq 0$, so that $S \in \mathrm{SHU}$ (cf. [7, Theorem VI.3.2]). Let $\alpha_{1}(\cdot)$ and $\beta_{1}(\cdot)$ come from the singular integral model of S. Since U is unitary, we have

$$
\begin{aligned}
|S|_{+} & =\psi(|T|)_{+}=\mathrm{s}-\lim _{n} U^{* n} \psi(|T|) U^{n}=\psi\left(\mathrm{s}-\lim _{n} U^{* n}|T| U^{n}\right) \\
& =\psi\left(|T|_{+}\right)=\psi\left(\beta(\cdot)+\alpha(\cdot)^{2}\right)
\end{aligned}
$$

and also

Since $\alpha_{1}=\left(\psi(|T|)_{+}-\psi(|T|)_{-}\right)^{1 / 2}$ and $\beta_{1}=\psi(|T|)_{-}$, we have

$$
\begin{equation*}
\alpha_{1}(z)=\left(\psi\left(\beta(z)+\alpha(z)^{2}\right)-\psi(\beta(z))\right)^{1 / 2}, \quad \beta_{1}(z)=\psi(\beta(z)) \tag{1}
\end{equation*}
$$

Since $\varphi(U)(z) \beta_{1}(z) \varphi(U)^{*}(z)=\beta_{1}(z)$, by (1) and Theorem A we have

$$
\begin{aligned}
& \left(\left(\psi(|T|)-\varphi(U) \psi(|T|) \varphi(U)^{*}\right) f\right)(z)=\alpha_{1}(z) \mathcal{P}\left(\alpha_{1} f\right)(z)+\beta_{1}(z) f(z) \\
& \quad-\left(\varphi(U) \alpha_{1}(z) \mathcal{P}\left(\varphi(U)^{*} \alpha_{1} f\right)(z)+\varphi(U)(z) \beta_{1}(z) \varphi(U)^{*}(z) f(z)\right) \\
& =\alpha_{1}(z) \mathcal{P}\left(\alpha_{1} f\right)(z)-\varphi(U)(z) \alpha_{1}(z) \mathcal{P}\left(\varphi(U)^{*} \alpha_{1} f\right)(z) \\
& = \\
& \frac{1}{2 \pi i} \alpha_{1}(z) \lim _{r \rightarrow 1-0} \int_{|\zeta|=1}\left(\frac{1}{\zeta-r z}-\frac{z-\bar{a}}{a z-1} \cdot \frac{1}{\zeta-r z} \cdot \frac{\bar{\zeta}-a}{\bar{a} \bar{\zeta}-1}\right) \alpha_{1}(\zeta) f(\zeta) d \zeta \\
& = \\
& =\frac{1-|a|^{2}}{2 \pi i} \alpha_{1}(z) \int_{|\zeta|=1} \frac{1}{(a z-1)(\bar{a} \bar{\zeta}-1)} \bar{\zeta} \alpha_{1}(\zeta) f(\zeta) d \zeta \\
& = \\
& \left(1-|a|^{2}\right) \alpha_{1}(z) \int \frac{1}{(a z-1)\left(\bar{a} e^{-i \theta}-1\right)} \alpha_{1}\left(e^{i \theta}\right) f\left(e^{i \theta}\right) d m(\theta)
\end{aligned}
$$

where we put $\zeta=e^{i \theta}$. Hence
(2) $\quad\left(\left(\psi(|T|)-\varphi(U) \psi(|T|) \varphi(U)^{*}\right) f, f\right)$

$$
\begin{aligned}
= & \left(1-|a|^{2}\right) \iint \frac{1}{\left(a e^{i \theta_{1}}-1\right)\left(\bar{a} e^{-i \theta}-1\right)} \\
& \times\left(\alpha_{1}\left(e^{i \theta}\right) f\left(e^{i \theta}\right), \alpha_{1}\left(e^{i \theta_{1}}\right) f\left(e^{i \theta_{1}}\right)\right)_{\mathcal{D}} d m(\theta) d m\left(\theta_{1}\right) \\
= & \left(1-|a|^{2}\right)\left\|\int \frac{1}{\bar{a} e^{-i \theta}-1} \alpha_{1}\left(e^{i \theta}\right) f(\zeta) d m(\theta)\right\|_{\mathcal{D}}^{2}
\end{aligned}
$$

Let $\left\{e_{i}\right\}$ and $\left\{h_{j}(\cdot)\right\}$ be orthonormal bases of \mathcal{H} and $L^{2}(\mathbb{T}, \Sigma, m)$. Put

$$
g_{j k}\left(e^{i \theta}\right)=\frac{1}{\bar{a} e^{-i \theta}-1}\left(\alpha_{1}\left(e^{i \theta}\right) e_{j}, e_{k}\right) \in L^{2}(\mathbb{T}, m)
$$

Then by (2) we have
(3) $\quad \operatorname{Tr}\left(\psi(|T|)-\varphi(U) \psi(|T|) \varphi(U)^{*}\right)$

$$
\begin{aligned}
& =\left(1-|a|^{2}\right) \sum_{i, j}\left\|\int \frac{1}{\bar{a} e^{-i \theta}-1} \alpha_{1}\left(e^{i \theta}\right) e_{i} h_{j}\left(e^{i \theta}\right) d m(\theta)\right\|_{\mathcal{D}}^{2} \\
& =\left(1-|a|^{2}\right) \sum_{i, j, k} \int\left|\left(\frac{1}{\bar{a} e^{-i \theta}-1} \alpha_{1}\left(e^{i \theta}\right) e_{i} h_{j}\left(e^{i \theta}\right) d m(\theta), e_{k}\right)\right|^{2} \\
& =\left(1-|a|^{2}\right) \sum_{i, j, k}\left|\int \frac{1}{\bar{a} e^{-i \theta}-1}\left(\alpha_{1}\left(e^{i \theta}\right) e_{i}, e_{k}\right) h_{j}\left(e^{i \theta}\right) d m(\theta)\right|^{2} \\
& =\left(1-|a|^{2}\right) \sum_{i, j, k}\left|\int g_{j k}\left(e^{i \theta}\right) h_{i}\left(e^{i \theta}\right) d m(\theta)\right|^{2}=\left(1-|a|^{2}\right) \sum_{i, j, k}\left|\left(\bar{g}_{j k}, h_{i}\right)\right|^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(1-|a|^{2}\right) \sum_{j, k}\left\|\bar{g}_{j k}\right\|^{2}=\left(1-|a|^{2}\right) \sum_{j, k} \int\left|\frac{1}{\bar{a} e^{-i \theta}-1}\left(\alpha_{1}\left(e^{\theta}\right) e_{j}, e_{k}\right)\right|^{2} d m(\theta) \\
& =\left(1-|a|^{2}\right) \sum_{j} \int\left\|\frac{1}{\bar{a} e^{-i \theta}-1} \alpha_{1}\left(e^{i \theta}\right) e_{j}\right\|^{2} d m(\theta) \\
& =\left(1-|a|^{2}\right) \sum_{j} \int\left|\frac{1}{\bar{a} e^{-i \theta}-1}\right|^{2}\left\|\alpha_{1}\left(e^{i \theta}\right) e_{j}\right\|^{2} d m(\theta) \\
& =\left(1-|a|^{2}\right) \int\left|\frac{1}{a e^{i \theta}-1}\right|^{2} \operatorname{Tr}_{\mathcal{D}}\left(\alpha_{1}\left(e^{i \theta}\right)^{2}\right) d m(\theta)
\end{aligned}
$$

Putting $\psi(r)=(r-x)^{-2}$ in Theorem C, we have

$$
\begin{aligned}
& \operatorname{Tr}_{\mathcal{D}}\left(\int \frac{\mathrm{B}(z, r)}{(r-x)^{2}} d r\right)=\operatorname{Tr}_{\mathcal{D}}\left(\alpha(z) \int_{0}^{1}\left(\beta(z)+k \alpha(z)^{2}-x\right)^{-2} d k \alpha(z)\right) \\
& \quad=\operatorname{Tr}_{\mathcal{D}}\left(\int_{0}^{1}\left(\beta(z)+k \alpha(z)^{2}-x\right)^{-1} \alpha(z)^{2}\left(\beta(z)+k \alpha(z)^{2}-x\right)^{-1} d k\right) .
\end{aligned}
$$

Considering $\alpha(z)+\varepsilon$ for a small positive number ε, we may assume that $\alpha(z)$ is invertible. We have
$\left(x-\left(\beta(z)+k \alpha(z)^{2}\right)\right)^{-1}=\alpha(z)^{-1}\left(x \alpha(z)^{-2}-\alpha(z)^{-1} \beta(z) \alpha(z)^{-1}-k\right)^{-1} \alpha(z)^{-1}$, so that

$$
\begin{aligned}
\frac{d}{d k}(x-(\beta(z) & \left.\left.+k \alpha(z)^{2}\right)\right)^{-1} \\
= & \alpha(z)^{-1}\left(x \alpha(z)^{-2}-\alpha(z)^{-1} \beta(z) \alpha(z)^{-1}-k\right)^{-2} \alpha(z)^{-1} \\
= & \alpha(z)^{-1}\left(x \alpha(z)^{-2}-\alpha(z)^{-1} \beta(z) \alpha(z)^{-1}-k\right)^{-1} \\
& \times\left(x \alpha(z)^{-2}-\alpha(z)^{-1} \beta(z) \alpha(z)^{-1}-k\right)^{-1} \alpha(z)^{-1} \\
= & \left(x \alpha(z)^{-1}-\alpha(z)^{-1} \beta(z)-k \alpha(z)\right)^{-1} \\
& \times\left(x \alpha(z)^{-1}-\beta(z) \alpha(z)^{-1}-k \alpha(z)\right)^{-1} \\
= & \left(x-\beta(z)-k \alpha(z)^{2}\right)^{-1} \alpha(z) \cdot \alpha(z)\left(x-\beta(z)-k \alpha(z)^{2}\right)^{-1}
\end{aligned}
$$

Therefore we have

$$
\begin{align*}
\int_{0}^{1}\left(\beta(z)+k \alpha(z)^{2}-x\right)^{-1} \alpha & (z)^{2}\left(\beta(z)+k \alpha(z)^{2}-x\right)^{-1} d k \tag{4}\\
& =\left(x-\left(\beta(z)+\alpha(z)^{2}\right)\right)^{-1}-(x-\beta(z))^{-1}
\end{align*}
$$

By Definition 3 and (4) we have

$$
\begin{aligned}
\int \frac{g_{T}(z, r)}{(x-r)^{2}} d r & =\operatorname{Tr}_{\mathcal{D}}\left(\int \frac{\mathrm{B}(z, r)}{(r-x)^{2}} d r\right) \\
& =\operatorname{Tr}_{\mathcal{D}}\left(\left(x-\beta(z)-\alpha(z)^{2}\right)^{-1}-(x-\beta(z))^{-1}\right)
\end{aligned}
$$

Putting $\psi(r) \equiv 1$ in Theorem C, by Definition 3 we have

$$
\begin{equation*}
\int g_{T}(z, r) d r=\operatorname{Tr}_{\mathcal{D}}\left(\alpha(z)^{2}\right) \tag{5}
\end{equation*}
$$

Let $\mathrm{E}=\sigma(|T|)$. Since $\psi \in \operatorname{PM}(\mathrm{E})$, we can put

$$
\psi(t)=c t+d+\int_{\mathrm{E}}\left(\frac{1}{x-t}-\frac{x}{1+x^{2}}\right) d \mu(x)
$$

and hence

$$
\psi^{\prime}(t)=c+\int_{\mathrm{E}} \frac{1}{(x-t)^{2}} d \mu(x)
$$

Therefore

$$
\begin{aligned}
\psi\left(\beta(z)+\alpha(z)^{2}\right)- & \psi(\beta(z)) \\
= & c\left(\beta(z)+\alpha(z)^{2}-\beta(z)\right) \\
& +\int_{\mathrm{E}}\left\{\left(x-\beta(z)-\alpha(z)^{2}\right)^{-1}-(x-\beta(z))^{-1}\right\} d \mu(x) \\
= & c\left(\alpha(z)^{2}\right)+\int_{\mathrm{E}}\left\{\left(x-\beta(z)-\alpha(z)^{2}\right)^{-1}-(x-\beta(z))^{-1}\right\} d \mu(x) .
\end{aligned}
$$

Since $c \geq 0$ and $\operatorname{Tr}_{\mathcal{D}}\left(\int_{E}\left\{\left(x-\beta(z)-\alpha(z)^{2}\right)^{-1}-(x-\beta(z))^{-1}\right\} d \mu(x)\right) \geq 0$, we have

$$
\begin{aligned}
& \operatorname{Tr}_{\mathcal{D}}\left(\psi\left(\beta(z)+\alpha(z)^{2}\right)-\psi(\beta(z))\right) \\
&=\operatorname{Tr}_{\mathcal{D}}\left(c \alpha(z)^{2}+\int_{\mathrm{E}}\left\{\left(x-\beta(z)-\alpha(z)^{2}\right)^{-1}-(x-\beta(z))^{-1}\right\} d \mu(x)\right) \\
& \quad=c \operatorname{Tr}_{\mathcal{D}}\left(\alpha(z)^{2}\right)+\operatorname{Tr}_{\mathcal{D}}\left(\int_{\mathrm{E}}\left\{\left(x-\beta(z)-\alpha(z)^{2}\right)^{-1}-(x-\beta(z))^{-1}\right\} d \mu(x)\right) \\
& \quad=c\left(\operatorname{Tr}_{\mathcal{D}}\left(\alpha(z)^{2}\right)\right)+\int_{\mathrm{E}}\left\{\operatorname{Tr}_{\mathcal{D}}\left(\left(x-\beta(z)-\alpha(z)^{2}\right)^{-1}-(x-\beta(z))^{-1}\right)\right\} d \mu(x) \\
& \quad=c \operatorname{Tr}_{\mathcal{D}}\left(\alpha(z)^{2}\right)+\iint_{\mathrm{E}} \frac{g_{T}(z, t)}{(x-t)^{2}} d t d \mu(x) \quad(\text { by }(4)) \\
& \quad=c \int g_{T}(z, t) d t+\iint_{\mathrm{E}} \frac{1}{(x-t)^{2}} d \mu(x) g_{T}(z, t) d t \\
& \quad=\int\left(c+\int_{\mathrm{E}} \frac{1}{(x-t)^{2}} d \mu(x)\right) g_{T}(z, t) d t=\int \psi^{\prime}(t) g_{T}(z, t) d t .
\end{aligned}
$$

Hence
(6) $\operatorname{Tr}_{\mathcal{D}}\left(\alpha_{1}(z)^{2}\right)=\operatorname{Tr}_{\mathcal{D}}\left(\psi\left(\beta(z)+\alpha(z)^{2}\right)-\psi(\beta(z))\right)=\int \psi^{\prime}(r) g_{T}(z, r) d r$.

Since $\varphi\left(e^{i \theta}\right)=e^{i \lambda} \frac{e^{i \theta}-\bar{a}}{a e^{i \theta}-1}$, we have $\varphi^{\prime}\left(e^{i \theta}\right)=e^{i \lambda} \frac{|a|^{2}-1}{\left(a e^{i \theta}-1\right)^{2}}$. Therefore, by (3) and (6),

$$
\begin{aligned}
\operatorname{Tr}\left(\varphi(|T|)-\psi(U) \varphi(|T|) \psi(U)^{*}\right) & =\left(1-|a|^{2}\right) \int\left|\frac{1}{a e^{i \theta}-1}\right|^{2} \operatorname{Tr}_{\mathcal{D}}\left(\alpha_{1}\left(e^{i \theta}\right)^{2}\right) d m(\theta) \\
& =\iint\left|\varphi^{\prime}\left(e^{i \theta}\right)\right| \psi^{\prime}(r) g_{T}\left(e^{i \theta}, r\right) d r d m(\theta)
\end{aligned}
$$

So the proof is complete.
In the case of p-HU operators, we have the following
Theorem 6. Let $T=U|T| \in p-\mathrm{HU}$. For $|a|<1$ and a real number λ, let $\varphi(z)=e^{i \lambda} \frac{z-\bar{a}}{a z-1}, \psi \in \operatorname{PM}\left(\sigma\left(|T|^{2 p}\right)\right)$ and $g_{T}(\cdot, \cdot)$ be the principal function of T. Then

$$
\begin{aligned}
\operatorname{Tr}\left(\psi\left(|T|^{2 p}\right)-\varphi(U) \psi\right. & \left.\left(|T|^{2 p}\right) \varphi(U)^{*}\right) \\
& =2 p \iint r^{2 p-1}\left|\varphi^{\prime}\left(e^{i \theta}\right)\right| \psi^{\prime}\left(r^{2 p}\right) g_{T}\left(e^{i \theta}, r\right) d r d m(\theta)
\end{aligned}
$$

Proof. Let $T_{p}=U|T|^{2 p}$. Then $T_{p} \in \mathrm{SHU}$ and $g_{T}\left(e^{i \theta}, r\right)=g_{T_{p}}\left(e^{i \theta}, r^{2 p}\right)$. Hence, by Theorem 5 and the transformation $\varrho^{2 p}=r$ we have the assertion.
4. Trace formulae for commutators associated with polar decompositions. We denote the trace class of operators by \mathcal{C}_{1}. For operators A and B, the commutator $A B-B A$ is denoted by $[A, B]$. In this section, we give a trace formula for $\left[|T|^{m}, U^{n}\right]$ for a semi-hyponormal operator $T=U|T|$ with unitary U. First we give the following theorem.

Theorem 7. Let $T=U|T| \in$ SHU and $g_{T}(\cdot, \cdot)$ be the principal function of T. Assume that $[|T|, U] \in \mathcal{C}_{1}$. Then, for any integer $n \geq 1$,

$$
\operatorname{Tr}\left(\left[|T|, U^{n}\right]\right)=\iint n e^{i n \theta} g_{T}\left(e^{i \theta}, r\right) d r d m(\theta)
$$

Proof. For $n \geq 1$, since

$$
\left[|T|, U^{n}\right]=[|T|, U] U^{n-1}+U[|T|, U] U^{n-2}+\ldots+U^{n-1}[|T|, U]
$$

we have

$$
\operatorname{Tr}\left(\left[|T|, U^{n}\right]\right)=\operatorname{Tr}\left(n U^{n-1}[|T|, U]\right)
$$

Using the singular integral model of T, we obtain

$$
\begin{aligned}
((|T| U-U|T|) f)(z) & =\alpha(z) \frac{1}{2 \pi i} \int_{|\zeta|=1} \alpha(\zeta) f(\zeta) d \zeta \\
& =\alpha(z) \int \alpha\left(e^{i \theta}\right) e^{i \theta} f\left(e^{i \theta}\right) d m(\theta)
\end{aligned}
$$

Let $\left\{e_{j}\right\}$ and $\left\{h_{k}(\cdot)\right\}$ be the orthonormal bases of \mathcal{H} and $L^{2}(\mathbb{T}, \Sigma, m)$, respectively. By (5), $\alpha(z)$ is Hilbert-Schmidt; put

$$
F\left(e^{i \theta}\right)=\operatorname{Tr}_{\mathcal{D}}\left(\alpha\left(e^{i \omega}\right) e^{i \theta} \alpha\left(e^{i \theta}\right)\right)
$$

Then

$$
\begin{aligned}
\operatorname{Tr} & \left(n U^{n-1}[|T|, U]\right) \\
& =\sum_{j, k} \int\left(n e^{i(n-1) \omega} \alpha\left(e^{i \omega}\right) \int \alpha\left(e^{i \theta}\right) e_{j} h_{k}\left(e^{i \theta}\right) d m(\theta), e_{j} h_{k}\left(e^{i \omega}\right)\right) d m(\omega) \\
& =\sum_{k} \int n e^{i(n-1) \omega} \int \sum_{j}\left(\alpha\left(e^{i \omega}\right) \alpha\left(e^{i \theta}\right) e^{i \theta} e_{j}, e_{j}\right) h_{k}\left(e^{i \theta}\right) d m(\theta) \overline{h_{k}\left(e^{i \omega}\right)} d m(\omega) \\
& =\sum_{k} \int n e^{i(n-1) \omega} \int \operatorname{Tr}_{\mathcal{D}}\left(\alpha\left(e^{i \omega}\right) \alpha\left(e^{i \theta}\right) e^{i \theta}\right) h_{k}\left(e^{i \theta}\right) d m(\theta) \overline{h_{k}\left(e^{i \omega}\right)} d m(\omega) \\
& =\int n e^{i(n-1) \omega}\left(\sum_{k}\left(F, \bar{h}_{k}\right)_{L^{2}(\mathbb{T}, m)} \overline{h_{k}\left(e^{i \omega}\right)}\right) d m(\omega) \\
& =\int n e^{i(n-1) \omega} F\left(e^{i \omega}\right) d m(\omega)=\int n e^{i(n-1) \omega} \operatorname{Tr}_{\mathcal{D}}\left(\alpha\left(e^{i \omega}\right) e^{i \omega} \alpha\left(e^{i \omega}\right)\right) d m(\omega) \\
& =\int n e^{i n \omega} \int g_{T}\left(e^{i \omega}, r\right) d r d m(\omega) \quad(\text { by }(5)) .
\end{aligned}
$$

Therefore,

$$
\operatorname{Tr}\left(\left[|T|, U^{n}\right]\right)=\iint n e^{i n \theta} g_{T}\left(e^{i \theta}, r\right) d r d m(\theta)
$$

So the proof is complete.
Next we give a trace formula for $\left[|T|^{k}, U^{n}\right]$.
Theorem 8. Let $T=U|T| \in$ SHU and $g_{T}(\cdot, \cdot)$ be the principal function of T. If $[|T|, U] \in \mathcal{C}_{1}$, then for $k=1,2, \ldots$ and $n= \pm 1, \pm 2, \ldots$,

$$
\operatorname{Tr}\left(\left[|T|^{k}, U^{n}\right]\right)=\iint k n e^{i n \theta} r^{k-1} g_{T}\left(e^{i \theta}, r\right) d r d m(\theta)
$$

Proof. If $k, n \geq 1$, then $\left(\operatorname{Tr}\left(\left[|T|^{k}, U^{n}\right]\right)\right)^{*}=-\operatorname{Tr}\left(\left[|T|^{k}, U^{-n}\right]\right)$ and

$$
\begin{aligned}
\left(\iint k n e^{i n \theta} r^{k-1} g_{T}\left(e^{i \theta}, r\right)\right. & d r d m(\theta))^{*} \\
& =-\iint k(-n) e^{i(-n) \theta} r^{k-1} g_{T}\left(e^{i \theta}, r\right) d r d m(\theta)
\end{aligned}
$$

Hence it is sufficient to prove the equalities for $k, n \geq 1$. By Theorem 5 , we have

$$
\operatorname{Tr}\left(|T|-U|T| U^{*}\right)=\iint g_{T}\left(e^{i \theta}, r\right) d r d m(\theta)<\infty
$$

For $|\lambda|>\|T\|$, let $\psi(r)=1 /(\lambda-r)$. By Theorem 5, we have

$$
\operatorname{Tr}\left(\psi(|T|)-U \psi(|T|) U^{*}\right)=\iint \frac{1}{(\lambda-r)^{2}} g_{T}\left(e^{i \theta}, r\right) d r d m(\theta)
$$

so that $\psi(|T|)-U \psi(|T|) U^{*} \in \mathcal{C}_{1}$. Hence $\psi(|T|) U-U \psi(|T|) \in \mathcal{C}_{1}$. Let $S=U \psi(|T|)$. Applying Theorem 7 to S, for $n \geq 1$ we obtain

$$
\operatorname{Tr}\left(\psi(|T|) U^{n}-U^{n} \psi(|T|)\right)=\int n e^{i n \theta} \int g_{S}\left(e^{i \theta}, r\right) d r d m(\theta)
$$

Since in the proof of Theorem 5 we have $\psi(|T|)_{+}=\psi\left(|T|_{+}\right)$and $\psi(|T|)_{-}=$ $\psi\left(|T|_{-}\right)$, by (1), (2) and (6) we obtain

$$
\begin{aligned}
\int g_{S}\left(e^{i \theta}, r\right) d r & =\operatorname{Tr}\left(\psi(|T|)_{+}-\psi(|T|)_{-}\right)=\operatorname{Tr}\left(\psi\left(|T|_{+}\right)-\psi\left(|T|_{-}\right)\right) \\
& =\int \psi^{\prime}(r) g_{T}\left(e^{i \theta}, r\right) d r=\int \frac{1}{(\lambda-r)^{2}} g_{T}\left(e^{i \theta}, r\right) d r
\end{aligned}
$$

By Theorem 1, if $r>\|T\|$, then $g_{T}\left(e^{i \theta}, r\right)=0$. Hence

$$
\begin{aligned}
\operatorname{Tr}\left(\psi(|T|) U^{n}-U^{n} \psi(|T|)\right) & =\int n e^{i n \theta} \int \frac{1}{(\lambda-r)^{2}} g_{T}\left(e^{i \theta}, r\right) d r d m(\theta) \\
& =\sum_{k=0}^{\infty} \int n e^{i n \theta} \int \frac{(k+1) r^{k}}{\lambda^{k+2}} g_{T}\left(e^{i \theta}, r\right) d r d m(\theta) \\
& =\sum_{k=0}^{\infty} \frac{1}{\lambda^{k+2}} \iint n(k+1) e^{i n \theta} r^{k} g_{T}\left(e^{i \theta}, r\right) d r d m(\theta)
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
\psi(|T|) U^{n}-U^{n} \psi(|T|) & =(\lambda-|T|)^{-1} U^{n}-U^{n}(\lambda-|T|)^{-1} \\
& =(\lambda-|T|)^{-1}\left[|T|, U^{n}\right](\lambda-|T|)^{-1}
\end{aligned}
$$

Since $[|T|, U] \in \mathcal{C}_{1}$, we have $\left[|T|, U^{n}\right] \in \mathcal{C}_{1}$. Hence $\operatorname{Tr}\left((\cdot)\left[|T|, U^{n}\right]\right)$ is a bounded linear functional on the bounded linear operators on the Hilbert space. By the same argument of the first part of the proof of Theorem 7,

$$
\operatorname{Tr}\left((k+1)|T|^{k}\left[|T|, U^{n}\right]\right)=\operatorname{Tr}\left(\left[|T|^{k+1}, U^{n}\right]\right)
$$

Then

$$
\begin{aligned}
& \operatorname{Tr}\left(\psi(|T|) U^{n}-U^{n} \psi(|T|)\right)=\operatorname{Tr}\left((\lambda-|T|)^{-2}\left[|T|, U^{n}\right]\right) \\
& \quad=\sum_{k=0}^{\infty} \frac{1}{\lambda^{k+2}} \operatorname{Tr}\left((k+1)|T|^{k}\left[|T|, U^{n}\right]\right)=\sum_{k=0}^{\infty} \frac{1}{\lambda^{k+2}} \operatorname{Tr}\left(\left[|T|^{k+1}, U^{n}\right]\right)
\end{aligned}
$$

Therefore, by comparing the coefficients of λ^{k+1} we have

$$
\operatorname{Tr}\left(\left[|T|^{k}, U^{n}\right]\right)=\iint k n e^{i n \theta} r^{k-1} g_{T}\left(e^{i \theta}, r\right) d r d m(\theta)
$$

So the proof is complete.
5. Trace formulae for p-nearly normal operators. In this section, we give trace formulae for p-nearly normal operators. Let \mathcal{A}_{1} be the set
of all polynomials of one variable. By \mathcal{A}_{2} we denote the set of all Laurent polynomials of two variables r and z which have the form

$$
p(r, z)=\sum_{j=0}^{N} \sum_{k=-N}^{N} a_{j k} r^{j} z^{k}
$$

where N is a positive integer and $a_{j k}$ are constant coefficients. If $h \in \mathcal{A}_{1}$ and $p \in \mathcal{A}_{2}$, we define

$$
(h \circ p)(r, z)=h(p(r, z)) .
$$

For a bilinear form (\cdot, \cdot) on \mathcal{A}_{2}, we consider the following property:

$$
\begin{equation*}
(p \circ r, q \circ r)=0 \tag{*}
\end{equation*}
$$

for all $p, q \in \mathcal{A}_{1}$ and $r \in \mathcal{A}_{2}$. Condition $(*)$ is called the collapsing property ([7, p. 171]). Let X be an operator and Y be an invertible operator. For $p(r, z)=\sum_{j=0}^{N} \sum_{k=-N}^{N} a_{j k} r^{j} z^{k}$, we define

$$
p(X, Y)=\sum_{j=0}^{N} \sum_{k=-N}^{N} a_{j k} X^{j} Y^{k}
$$

We denote the Jacobian for $p, q \in \mathcal{A}_{2}$ by $J(p, q)$, that is,

$$
J(p, q)\left(r, e^{i \theta}\right)=\frac{\partial p}{\partial r}\left(r, e^{i \theta}\right) \cdot \frac{\partial q}{\partial z}\left(r, e^{i \theta}\right)-\frac{\partial p}{\partial z}\left(r, e^{i \theta}\right) \cdot \frac{\partial q}{\partial r}\left(r, e^{i \theta}\right)
$$

Definition 4. For $T=U|T|$ with U unitary, T is called p-nearly normal if $\left[|T|^{2 p}, U\right] \in \mathcal{C}_{1}$ (cf. [7, p. 170]).

It is easy to see that if $T=U|T|$ is p-nearly normal, then, for $p, q \in \mathcal{A}_{2}$, $\left[p\left(|T|^{2 p}, U\right), q\left(|T|^{2 p}, U\right)\right] \in \mathcal{C}_{1}$ and $\operatorname{Tr}\left(\left[p\left(|T|^{2 p}, U\right), q\left(|T|^{2 p}, U\right)\right]\right)$ is independent of the order of multiplication of the factors $|T|^{2 p}$ and U (see [7, p. 174]). First we give a proof of Theorem VII.3.3 of [7] for a trace formula for a $\frac{1}{2}$-nearly normal operator.

Theorem 9. Let $T=U|T| \in$ SHU and $g_{T}(\cdot, \cdot)$ be the principal function of T. If T is $\frac{1}{2}$-nearly normal, then, for $p, q \in \mathcal{A}_{2}$,

$$
\operatorname{Tr}([p(|T|, U), q(|T|, U)])=\iint J(p, q)\left(r, e^{i \theta}\right) e^{i \theta} g_{T}\left(e^{i \theta}, r\right) d r d m(\theta)
$$

Proof. We define a bilinear form on \mathcal{A}_{2} by

$$
(p, q)=\operatorname{Tr}([p(|T|, U), q(|T|, U)])
$$

for $p, q \in \mathcal{A}_{2}$. Then it is easy to see that (\cdot, \cdot) has the collapsing property. For $q \in \mathcal{A}_{2}$, we choose $q_{1}, q_{2} \in \mathcal{A}_{2}$ such that $\partial q_{1} / \partial r=q=\partial q_{2} / \partial r$. Then $q_{1}-q_{2}$ is a Laurent polynomial of variable z. Let $h(r, z)=z$. By definition of (\cdot, \cdot) we have $\left(h, q_{1}-q_{2}\right)=0$. Hence we can define a linear functional ℓ on \mathcal{A}_{2} by

$$
\ell(q)=\left(h, q_{1}\right)
$$

where $\partial q_{1} / \partial r=q$. From now on, if $p(r, z)=r^{j} z^{k}$, then we simply denote (p, q) by $\left(r^{j} z^{k}, q\right)$ and so on. Hence $\ell(\partial q / \partial r)=(z, q)$. We define an auxiliary bilinear form $(\cdot, \cdot)_{1}$ on \mathcal{A}_{2} by

$$
(\cdot, \cdot)_{1}=(\cdot, \cdot)+\ell(J(\cdot, \cdot))
$$

Since $J(p \circ s, q \circ s)=0$ for any $p, q \in \mathcal{A}_{1}$ and $s \in \mathcal{A}_{2}$, the bilinear form $(\cdot, \cdot)_{1}$ has the collapsing property.

We show that $(\cdot, \cdot)_{1} \equiv 0$. For each $q \in \mathcal{A}_{2}$, we have

$$
\begin{align*}
(z, q)_{1} & =(z, q)+\ell(J(z, q))=(z, q)+\ell\left(-\frac{\partial q}{\partial r}\right)=(z, q)-(z, q)=0 \tag{7}\\
\left(z^{-1}, q\right)_{1} & =0
\end{align*}
$$

In fact, since $J\left(z^{-1}, q\right)=z^{-2} \partial q / \partial r$, we have

$$
\begin{aligned}
\ell\left(z^{-2} \frac{\partial q}{\partial r}\right) & =\left(z, z^{-2} q\right)=\operatorname{Tr}\left(U U^{-2} q(|T|, U)-U^{-2} q(|T|, U) U\right) \\
& =\operatorname{Tr}\left(U^{-1} q(|T|, U)-U^{-2} q(|T|, U) U\right) \\
& =\operatorname{Tr}\left(U^{-1}\left(q(|T|, U) U^{-1}-U^{-1} q(|T|, U)\right) U\right) \\
& =\operatorname{Tr}\left(\left[q(|T|, U), U^{-1}\right]\right)=\left(q, z^{-1}\right)=-\left(z^{-1}, q\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left(z^{-1}, q\right)_{1} & =\left(z^{-1}, q\right)+\ell\left(J\left(z^{-1}, q\right)\right) \\
& =\left(z^{-1}, q\right)+\ell\left(z^{-2} \frac{\partial q}{\partial r}\right)=\left(z^{-1}, q\right)-\left(z^{-1}, q\right)=0
\end{aligned}
$$

Now, for $\alpha \in \mathbb{C}$ and $n \geq 1$, using (7) we have

$$
0=\left((r+\alpha z),(r+\alpha z)^{n}\right)_{1}=\left(r,(r+\alpha z)^{n}\right)_{1}=\sum_{j=1}^{n}{ }_{n} \mathrm{C}_{j} \alpha^{j}\left(r, r^{n-j} z^{j}\right)_{1}
$$

so that

$$
\left(r, r^{n-j} z^{j}\right)_{1}=0 \quad(j=1, \ldots, n)
$$

Therefore, we have

$$
\left(r, r^{j} z^{k}\right)_{1}=0 \quad(j, k=1,2, \ldots)
$$

Since (8) holds, we have $\left(r, r^{j} z^{-k}\right)_{1}=0 \quad(j, k=1,2, \ldots)$. Hence for all $q \in \mathcal{A}_{2}$ we have

$$
\begin{equation*}
(r, q)_{1}=0 \tag{9}
\end{equation*}
$$

Next, we prove that if $s, t \in \mathcal{A}_{2}$ satisfy $(s, q)_{1}=(t, q)_{1}=0$ for all $q \in \mathcal{A}_{2}$, then

$$
\begin{equation*}
(s t, q)_{1}=0 \tag{10}
\end{equation*}
$$

In fact, let $q \in \mathcal{A}_{2}$ and $\alpha, \beta \in \mathbb{C}$. By the collapsing property we have

$$
\left((\alpha s+\beta t+q)^{2},(\alpha s+\beta t+q)\right)_{1}=0 .
$$

Since $\left(u^{2}, u\right)_{1}=0$ for $u \in \mathcal{A}_{2}$, we have

$$
\alpha^{2}\left(s^{2}, q\right)_{1}+\beta^{2}\left(t^{2}, q\right)_{1}+2 \alpha \beta(s t, q)_{1}+2 \alpha(s q, q)_{1}+2 \beta(t q, q)_{1}=0 .
$$

Since α and β are arbitrary, the coefficient of $\alpha \beta$ must vanish: i.e.,

$$
(s t, q)_{1}=0 .
$$

By (7)-(10), we have

$$
(r z, q)_{1}=\left(r z^{-1}, q\right)_{1}=0,
$$

so that

$$
\left(r^{2} z, q\right)_{1}=\left(r^{2} z^{-1}, q\right)_{1}=\left(r z^{2}, q\right)_{1}=\left(r z^{-2}, q\right)_{1}=0 .
$$

Repeating this procedure, we have

$$
(\cdot, \cdot)_{1} \equiv 0
$$

Therefore, for $p, q \in \mathcal{A}_{2}$ we have

$$
\begin{equation*}
(p, q)=-\ell(J(p, q)) . \tag{11}
\end{equation*}
$$

Since $g_{T}\left(e^{i \theta}, r\right) \geq 0, \iint g_{T}\left(e^{i \theta}, r\right) d r d m(\theta)=\operatorname{Tr}\left(|T|-U|T| U^{-1}\right)<\infty$ and $g_{T}\left(e^{i \theta}, r\right)=0$ for $r>\|T\|$, we can define a linear functional ℓ_{0} on \mathcal{A}_{2} by

$$
\ell_{0}(p)=\iint p\left(r, e^{i \theta}\right) e^{i \theta} g_{T}\left(e^{i \theta}, r\right) d r d m(\theta) .
$$

Since

$$
\begin{aligned}
\left(r^{m}, z^{n}\right) & =\operatorname{Tr}\left(|T|^{m} U^{n}-U^{n}|T|^{m}\right) \quad(\text { by Theorem } 8) \\
& =m n \iint\left(e^{i \theta}\right)^{n-1} r^{m-1} e^{i \theta} g_{T}\left(e^{i \theta}, r\right) d r d m(\theta) \\
& =m n \ell_{0}\left(z^{n-1} r^{m-1}\right),
\end{aligned}
$$

it follows from (11) that

$$
-\ell\left(r^{m-1} z^{n-1}\right)=\ell_{0}\left(r^{m-1} z^{n-1}\right) \quad(m \geq 1, n \neq 0)
$$

For $|\lambda|>\|T\|$, let $\psi(r)=1 /(\lambda-r)$. By Theorem 5 ,

$$
\operatorname{Tr}\left(\psi(|T|)-U \psi(|T|) U^{-1}\right)=\iint \frac{1}{(\lambda-r)^{2}} g_{T}\left(e^{i \theta}, r\right) d r d m(\theta) .
$$

Since

$$
\psi(|T|)-U \psi(|T|) U^{-1}=\left((\lambda-|T|)^{-1}[|T|, U](\lambda-|T|)^{-1}\right) U^{-1}
$$

and $[|T|, U] \in \mathcal{C}_{1}$, we have

$$
\begin{aligned}
\operatorname{Tr}\left(\psi(|T|)-U \psi(|T|) U^{-1}\right) & =\operatorname{Tr}\left((\lambda-|T|)^{-1}[|T|, U](\lambda-|T|)^{-1} U^{-1}\right) \\
& =\operatorname{Tr}\left([|T|, U]\left((\lambda-|T|)^{-1} U^{-1}(\lambda-|T|)^{-1}\right)\right) \\
& =\sum_{s=0}^{\infty} \sum_{t=0}^{\infty} \frac{1}{\lambda^{2+s+t}} \operatorname{Tr}\left([|T|, U]|T|^{s} U^{-1}|T|^{t}\right) \\
& =\sum_{s=0}^{\infty} \sum_{t=0}^{\infty} \frac{1}{\lambda^{2+s+t}} \operatorname{Tr}\left(\left(|T|^{t}[|T|, U]|T|^{s}\right) U^{-1}\right) \\
& =\sum_{m=0}^{\infty} \frac{1}{\lambda^{2+m}} \operatorname{Tr}\left(\left[|T|^{m+1}, U\right] U^{-1}\right) \\
& =\sum_{m=0}^{\infty} \frac{1}{\lambda^{m+2}} \operatorname{Tr}\left(|T|^{m+1}-U|T|^{m+1} U^{-1}\right)
\end{aligned}
$$

because

$$
\begin{aligned}
{\left[|T|^{n}, U\right]=} & |T|^{n-1}[|T|, U]+|T|^{n-2}[|T|, U]|T| \\
& +\ldots+|T|[|T|, U]|T|^{n-2}+[|T|, U]|T|^{n-1}
\end{aligned}
$$

Therefore,

$$
\operatorname{Tr}\left(\psi(|T|)-U \psi(|T|) U^{-1}\right)=\sum_{m=0}^{\infty} \frac{1}{\lambda^{m+2}} \operatorname{Tr}\left(|T|^{m+1}-U|T|^{m+1} U^{-1}\right)
$$

Since

$$
\begin{aligned}
\iint \frac{1}{(\lambda-r)^{2}} g_{T}\left(e^{i \theta}, r\right) d r & d m(\theta) \\
& =\sum_{m=0}^{\infty} \frac{1}{\lambda^{m+2}} \iint(m+1) r^{m} g_{T}\left(e^{i \theta}, r\right) d r d m(\theta)
\end{aligned}
$$

comparing the coefficients of λ^{m+1}, we have

$$
\operatorname{Tr}\left(|T|^{m}-U|T|^{m} U^{-1}\right)=\iint m r^{m-1} g_{T}\left(e^{i \theta}, r\right) d r d m(\theta) \quad(m \geq 1)
$$

We also have

$$
\begin{aligned}
-\ell\left(r^{m} z^{-1}\right) & =-\frac{1}{m+1}\left(z, r^{m+1} z^{-1}\right) \\
& =-\frac{1}{m+1} \operatorname{Tr}\left(U|T|^{m+1} U^{-1}-|T|^{m+1} U^{-1} U\right) \\
& =-\frac{1}{m+1} \operatorname{Tr}\left(U|T|^{m+1} U^{-1}-|T|^{m+1}\right) \\
& =\frac{1}{m+1} \operatorname{Tr}\left(|T|^{m+1}-U|T|^{m+1} U^{-1}\right) \\
& =\frac{1}{m+1} \iint(m+1) r^{m} g_{T}\left(e^{i \theta}, r\right) d r d m(\theta)
\end{aligned}
$$

$$
\begin{aligned}
& =\iint r^{m} g_{T}\left(e^{i \theta}, r\right) d r d m(\theta) \\
& =\iint r^{m} e^{-i \theta} e^{i \theta} g_{T}\left(e^{i \theta}, r\right) d r d m(\theta)=\ell_{0}\left(r^{m} z^{-1}\right)
\end{aligned}
$$

so that $\ell_{0}=-\ell$. Consequently, we obtain

$$
\begin{aligned}
\operatorname{Tr}([p(|T|, U), q(|T|, U)]) & =(p, q)=\ell_{0}(J(p, q)) \\
& =\iint J(p, q)\left(r, e^{i \theta}\right) e^{i \theta} g_{T}\left(e^{i \theta}, r\right) d r d m(\theta)
\end{aligned}
$$

So the proof is complete.
Finally, we have
Theorem 10. Let m be a positive integer. Let $T=U|T| \in \frac{1}{2 m}$-HU. If T is $\frac{1}{2 m}$-nearly normal, then

$$
\operatorname{Tr}([p(|T|, U), q(|T|, U)])=\iint J(p, q)\left(r, e^{i \theta}\right) e^{i \theta} g_{T}\left(e^{i \theta}, r\right) d r d m(\theta)
$$

for $p, q \in \mathcal{A}_{2}$.
Proof. Put $\widetilde{p}(r, z)=p\left(r^{m}, z\right), \widetilde{q}(r, z)=q\left(r^{m}, z\right) \in \mathcal{A}_{2}$ and $S=U|T|^{1 / m}$. Since S is in SHU and $\frac{1}{2}$-nearly normal, by Theorem 9 we have

$$
\operatorname{Tr}\left(\left[p\left(|T|^{1 / m}, U\right), q\left(|T|^{1 / m}, U\right)\right]\right)=\iint J(p, q)\left(r, e^{i \theta}\right) e^{i \theta} g_{S}\left(e^{i \theta}, r\right) d r d m(\theta)
$$

and

$$
\begin{aligned}
\operatorname{Tr}([p(|T|, U), q(|T|, U)]) & =\operatorname{Tr}\left(\left[p\left(\left(|T|^{1 / m}\right)^{m}, U\right), q\left(\left(|T|^{1 / m}\right)^{m}, U\right)\right]\right) \\
& =\iint J(\widetilde{p}, \widetilde{q})\left(r, e^{i \theta}\right) e^{i \theta} g_{S}\left(e^{i \theta}, r\right) d r d m(\theta)
\end{aligned}
$$

Since $g_{T}\left(e^{i \theta}, r\right)=g_{S}\left(e^{i \theta}, r^{1 / m}\right)$, from the translation $r=\varrho^{1 / m}$ we have

$$
\begin{aligned}
\iint J(\widetilde{p}, \widetilde{q})\left(r, e^{i \theta}\right) e^{i \theta} g_{S}\left(e^{i \theta}, r\right) & d r d m(\theta) \\
& =\iint J(p, q)\left(\varrho, e^{i \theta}\right) e^{i \theta} g_{T}\left(e^{i \theta}, \varrho\right) d \varrho d m(\theta)
\end{aligned}
$$

So the proof is complete.
Acknowledgements. The authors would like to thank the referee for helpful comments that clarified an earlier version of this paper.

References

[1] A. Aluthge, On p-hyponormal operators for $0<p<1$, Integral Equations Oper. Theory 13 (1990), 307-315.
[2] R. W. Carey and J. D. Pincus, Mosaics, principal functions, and mean motion in von Neumann algebras, Acta Math. 138 (1977), 153-218.
[3] M. Chō, T. Huruya and M. Itoh, Singular integral models for p-hyponormal operators and the Riemann-Hilbert problem, Studia Math. 130 (1998), 213-221.
[4] M. Chō and M. Itoh, Putnam's inequality for p-hyponormal operators, Proc. Amer. Math. Soc. 123 (1995), 2435-2440.
[5] -, 一, On the angular cutting for p-hyponormal operators, Acta Sci. Math. (Szeged) 59 (1994), 411-420.
[6] J. D. Pincus and D. Xia, Mosaic and principal function of hyponormal and semihyponormal operators, Integral Equations Oper. Theory 4 (1981), 134-150.
[7] D. Xia, Spectral Theory of Hyponormal Operators, Birkhäuser, Basel, 1983.

Department of Mathematics
Kanagawa University
Yokohama 221-8686, Japan
E-mail: chiyom01@kanagawa-u.ac.jp

Faculty of Education and Human Sciences
Niigata University
Niigata 950-2181, Japan
E-mail: huruya@ed.niigata-u.ac.jp

[^0]: 2000 Mathematics Subject Classification: Primary 47B20; Secondary 47A10, 47B10.
 Key words and phrases: Hilbert space, trace, mosaic, principal function, p-hyponormal operator.

 This research is partially supported by Grant-in-Aid Scientific Research No. 14540190.

