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Abstract. Take a one-parameter family of self-adjoint Fredholm operators
{A(t)}t∈R on a Hilbert space H, joining endpoints A±. There is a long history
of work on the question of whether the spectral flow along this path is given
by the index of the operator D

A
= (d/dt) + A acting in L2(R;H), where A

denotes the multiplication operator (Af)(t) = A(t)f(t) for f ∈ dom(A). Most
results are about the case where the operators A(·) have compact resolvent. In
this article we review what is known when these operators have some essential
spectrum and describe some new results.

Using the operators H1 = D
∗
A
D

A
, H2 = D

A
D

∗
A
, an abstract trace

formula for Fredholm operators with essential spectrum was proved in [23],
extending a result of Pushnitski [35], although, still under strong hypotheses
on A(·):

trL2(R;H)

(

(H2 − z I)−1 − (H1 − z I)−1
)

=
1

2z
trL2(H)(gz(A+)− gz(A−)),

where gz(x) = x(x2 − z)−1/2, x ∈ R, z ∈ C\[0,∞). Associated to the pairs
(H2,H1) and (A+, A−) are Krein spectral shift functions ξ( · ;H2,H1) and
ξ( · ;A+, A−) respectively. From the trace formula it was shown that there is
a second, Pushnitski-type, formula:

ξ(λ;H2,H1) =
1

π

ˆ λ1/2

−λ1/2

ξ(ν;A+, A−) dν

(λ − ν2)1/2
for a.e. λ > 0.

This can be employed to establish the desired equality,

Fredholm index = ξ(0;A+, A−) = spectralflow

This equality was generalized to non-Fredholm operators in [14] in the form

Witten index = [ξR(0;A+, A−) + ξL(0;A+, A−)]/2,

replacing the Fredholm index on the LHS by the Witten index of DA and
ξ(0;A+, A−) on the RHS by an appropriate arithmetic mean (assuming 0 is
a right and left Lebesgue point for ξ( · ;A+, A−) denoted by ξR(0;A+, A−)
and ξL(0;A+, A−), respectively). But this applies only under the restrictive
assumption that the endpoint A+ is a relatively trace class perturbation of
A− (ruling out general differential operators).

In addition to reviewing this previous work we describe in this article some
extensions using a (1 + 1)-dimensional setup, where A± are non-Fredholm
differential operators. By a careful analysis we prove, for a class of examples,
that the preceding trace formula still holds in this more general situation.
Then we prove that the Pushnitski-type formula for spectral shift functions
also holds and this then gives the equality of spectral shift functions in the

form

ξ(λ;H2,H1) = ξ(ν;A+, A−) for a.e. λ > 0 and a.e. ν ∈ R,

for the (1+1)-dimensional model operator at hand. This shows that neither the
relatively trace class perturbation assumption nor the Fredholm assumption
are required if one works with spectral shift functions. The results support the
view that the spectral shift function should be a replacement for the spectral
flow in certain non-Fredholm situations and also point the way to the study of
higher-dimensional cases. We discuss the connection with summability ques-
tions in Fredholm modules in an appendix.
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1. Introduction and Review

The issue of the relationship between the spectral flow and the Fredholm index
was first raised in the work of Atiyah–Patodi–Singer [3] and settled in the most
definitive fashion for certain self-adjoint differential operators with compact resol-
vent in a paper of Robbin–Salamon, [37]. For differential operators on noncompact
manifolds it is typically the case that they possess some essential spectrum. An ex-
tension of the result of [37] to this situation and its relationship to scattering theory
was initiated in [23] following [35]. However, the key assumption in [23] is that one
considers the spectral flow between self-adjoint operators that differ by a relatively
trace class perturbation. This latter assumption is violated in general for differ-
ential operators (although, not necessarily for certain classes of pseudo-differential
operators). Indeed, as the bulk of the available literature focuses on systems with
purely discrete spectra, there is relatively little work available in the way of index
formulas for operators with essential spectrum except for [7], [8] and previous work
by the present authors. Motivation for this study stems, for example, from the
fact that the spectral flow is a useful tool in condensed matter theory where the
operators that arise do have some essential spectrum [41].

In the first two sections of this article we review previous work and also initiate
our main objective of explaining extensions of previous efforts (in particular, [23])
so as to apply to differential operators in higher dimensions. We will focus on
examples of the non-Fredholm case motivated by recent progress in [10]–[14].

Remark 1.1. The critical fact in connection with partial differential operators is
the relative Schatten–von Neumann class constraint. To describe this, suppose for
example that we have the flat space Dirac-type operator A− acting in L2(Rn)⊗Cm

and a smooth, m×m matrix-valued bounded function F : Rn →Mm×m(L∞(Rn)∩
C∞(Rn)), m ∈ N. Then F acts as a bounded m×m matrix-valued multiplication
operator on L2(Rn) ⊗ Cm. Under suitable decay conditions at infinity for F , the
product F (1 + A2

−)
−s/2 is trace class for s > n and no smaller value of s (see [39,

Remark 4.3]). ⋄
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Thus, in differential operator terms, [14, 23] considered the zero-dimensional
case because, if we write in the notation of the remark, A+ = A− + F , then
F (1+A2

−)
−1/2 = (A+−A−)(1+A

2
−)

−1/2 which is trace class only if n = 0. In this
article, following the ideas in [11], we consider the situation when (A+ − A−)(1 +
A2

−)
−1/2 is Hilbert–Schmidt and show how this allows some general one-dimensional

examples. We note that our results point the way to an attack on the problem of
partial differential operators in higher dimensions.

1.1. The Model Operator. To make the discussion precise we start by intro-
ducing the model operators that form the basis of study in later sections. In this
instance A−, acting in the Hilbert space L2(R) ⊗ Cm, m ∈ N, is the self-adjoint
“chiral Dirac operator”

A− = −i
d

dx
⊗ Im, dom(A−) =W 1,2(R)⊗ C

m. (1.1)

For a matrix potential Φ ∈ Mm×m (L∞(R)) with essentially bounded entries we
will also use the abbreviation Φ for the associated bounded operator acting by
multiplication on L2(R)⊗ Cm.

Under certain assumptions on a bounded real-valued function θ on R and a self-
adjoint m×m matrix-valued function Φ on R we consider the family of operators

A(t) = A− + θ(t)Φ, dom(A(t)) =W 1,2(R)⊗ C
m, t ∈ R, (1.2)

and the associated operatorA on the Hilbert space L2(R; dt;L2(R; dx))⊗Cm, which
we will identify with L2(R2; dtdx) ⊗ Cm (in short, with L2(R2)⊗ Cm), defined by

(Af)(t) = A(t)f(t) for a.e. t ∈ R,

f ∈ dom(A) =
{
g ∈ L2(R2)⊗ C

m
∣∣ g(t) ∈W 1,2(R)⊗ C

m for a.e. t ∈ R, (1.3)

t 7→ A(t)g(t) is (weakly) measurable,

ˆ

R

‖A(t)g(t)‖2L2(R)⊗Cm dt <∞
}
.

Our hypothesis ensures the existence of the asymptote

A+ = A− +Φ, dom(A+) =W 1,2(R)⊗ C
m, (1.4)

as a norm resolvent limit of A(t) as t→ ∞. (Similarly, A(t) converges in the norm
resolvent sense to A− as t → −∞.) We will show later that the operators A+ and
A− are unitarily equivalent and thus both have, as continuous spectrum, the whole
real line. In particular, A± are not Fredholm.

Next, we introduce the densely defined, closed operator D
A

acting in L2(R2)⊗
Cm by setting

DA =
d

dt
⊗ Im +A, dom(DA) =W 1,2(R2)⊗ C

m, (1.5)

with Im the identity operator in C
m. We also define self-adjoint operators H1 and

H2 acting in L2(R2) ⊗ Cm, by H1 = D
∗
A
D

A
, H2 = D

A
D

∗
A
. Clearly A± are

one-dimensional differential operators and H1,H2 are two-dimensional, hence our
terminology: this situation describes the (1 + 1)-dimensional case.

It should be noted that the family of bounded operators {B(t) = θ(t)Φ}t∈R on
L2(R)⊗ Cm do not satisfy the assumptions in [35].

Next, we review previous work starting with [35].
The Pushnitski Assumptions. Let H be a complex, separable Hilbert space.

(i) Assume A− ∈ B(H) is self-adjoint in H.
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(ii) Suppose there exists a family of bounded self-adjoint operators {B(t)}t∈R (the
allowed perturbations of A−) in H with B(·) weakly locally absolutely continuous on
R, implying the existence of a family of bounded self-adjoint operators {B′(t)}t∈R

in H such that for a.e. t ∈ R,

d

dt
(g,B(t)h)H = (g,B′(t)h)H, g, h ∈ H. (1.6)

(iii) Assume that B′(t) ∈ B1(H), t ∈ R (cf. our choice of notation for trace ideals
described in Subsection 1.5), and

ˆ

R

∥∥B′(t)
∥∥
B1(H)

dt <∞. (1.7)

Using these assumptions the trace formula and the Pushnitski-type formula
stated in the abstract are proved. These results motivated the paper [23] which
sought to prove analogous results under weaker (i.e., relative trace class) condi-
tions. For comparison we state the key assumption of [23] on these perturbations
that replaces item (iii) of the Pushnitski assumptions.

The GLMST assumptions. (iii′) Assume the relatively trace class perturba-
tion assumption

∥∥B′(t)(A2
− + IH)−1/2

∥∥
B1(H)

<∞ and

ˆ

R

∥∥B′(t)(A2
− + IH)−1/2

∥∥
B1(H)

dt <∞.

(1.8)

We emphasize that the operators {B(t) = θ(t)Φ}t∈R, though deceptively sim-
ple, satisfy neither (iii) nor (iii′) (see Remarks 1.1 and 2.7). This motivated the
paper [11] which seeks to provide an abstract framework for generalizations of the
Pushnitski results.

However [11] alone is not enough to establish a trace formula of the kind stated in
our abstract for the model operator (1.5). Nor can we use [14], where non-Fredholm
operators were studied, as it needs assumption (iii′) as well and so cannot be applied
to our present context.

Remark 1.1 shows that one has, for the examples we study in this paper, a rel-
atively Hilbert–Schmidt perturbation condition. This Hilbert–Schmidt constraint
also appears in [11] in an abstract setting where it is used to obtain a Pushnitski-
type formula.

While this progression, going from the (0 + 1)-dimensional case in [23] to the
(1 + 1)-dimensional case both here and in [11] may appear incremental at first
sight, approximation methods in [11] and [12] to make progress on the general case
of model operators in higher dimensions are in preparation. Hence our interest in
giving here an accessible exposition via a class of models of this new approach.

In the following we will explain further the relevance of previous papers to the
current investigation as well as discuss in more detail the model operator that forms
the main focus of this article.

1.2. The Witten Index. In this subsection we briefly review the notion of a
(resolvent regularized) Witten index following [11] and [14].

We start by recalling the hypotheses used in [11].

Hypothesis 1.2. Suppose H is a complex, separable Hilbert space with A− self-
adjoint on dom(A−) ⊆ H.
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(i) Suppose we have a family of bounded operators A(t) = A− + B(t), t ∈ R,
satisfying {B(t)}t∈R ⊂ B(H), which is continuously differentiable in norm on R

and such that
‖B′(·)‖B(H) ∈ L1(R; dt). (1.9)

(ii) Suppose that |B+|
1/2(A− − z0I)

−1 ∈ B2(H) for some (and hence for all ) z0 ∈
ρ(A−). (Here B+ = n-limt→+∞B(t), and we again refer to our choice of notation
for trace ideals described in Subsection 1.5.)
(iii) Assume that supt∈R ‖B′(t)‖B(H) <∞.

(iv) Acting in the space L2(R;H) we have the operators DA−
= d

dt +A−, H0 =

D
∗
A−

DA−
, DA = d

dt + A, and B, the operator of multiplication by the family

{B(t)}t∈R. Suppose that A−B is bounded with respect to H0 with bound strictly
less than one, that is, there exists 0 ≤ a < 1 and b ∈ (0,∞) such that

‖A−Bf‖L2(R;H) ≤ a‖H0f‖L2(R;H) + b‖f‖L2(R;H), f ∈ dom(H0). (1.10)

(v) Suppose that

|B′(t)|1/2(|A−|+ I)−1 ∈ B2(H), t ∈ R,
∥∥|B′(·)|1/2(|A−|+ I)−1

∥∥
B2(H)

∈ L2(R; dt).
(1.11)

The definition of the Witten index used in the next result is taken from [11] and is
reviewed in the present article in Section 7. The following result also uses the Krein
spectral shift function for the pairs (A+, A−) and (H2,H1), and we previously
reviewed the relevant background on this in our conference proceedings article [13].
For more detailed information we refer the reader to [6], [43, Ch. 8], [44, Sect. 0.9],
here we just mention the following facts on the spectral shift function ξ( · ;A,A0)
corresponding to a pair of self-adjoint operators (A,A0) in some separable, complex
Hilbert space K, under the assumption that for some (and hence for all ) z0 ∈
ρ(A) ∩ ρ(A0), [

(A− z0IK)
−1 − (A0 − z0IK)

−1
]
∈ B1(K). (1.12)

Introduces the modified perturbation determinant,

D̃A/A0
(z; z0) = detK

(
(A− zIK)(A− z0IK)

−1(A0 − z0IK)(A0 − zIK)
−1

)
,

z ∈ ρ(A) ∩ ρ(A0), Im(z0) > 0,
(1.13)

and notes that (cf. [43, p.270])

D̃A/A0
(z; z0) = D̃A/A0

(z; z0)/D̃A/A0
(z0; z0), D̃A/A0

(z0; z0) = 1, (1.14)

and

trK
[
(A− zIK)

−1 − (A0 − zIK)
−1

]
= −

d

dz
ln
(
D̃A/A0

(z; z0)
)
,

z ∈ ρ(A) ∩ ρ(A0), Im(z0) > 0.
(1.15)

In addition,

D̃A/A0
(z; z0)

D̃A/A0
(z; z0)

=
D̃A/A0

(z; z1)

D̃A/A0
(z; z1)

, z ∈ ρ(A)∩ρ(A0), Im(z0) > 0, Im(z1) > 0. (1.16)

Then, defining

ξ(λ;A,A0; z0) = (2π)−1 lim
ε↓0

[
Im

(
ln
(
D̃A/A0

(λ+ iε; z0)
))

− Im
(
ln
(
D̃A/A0

(λ− iε; z0)
))]

for a.e. λ ∈ R,
(1.17)
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one obtains for z ∈ ρ(A) ∩ ρ(A0), Im(z0) > 0, Im(z1) > 0,

ξ( · ;A,A0; z0) ∈ L1
(
R; (λ2 + 1)−1dλ

)
, (1.18)

ln
(
D̃A/A0

(z; z0)
)
=

ˆ

R

ξ(λ;A,A0; z0)dλ
[
(λ− z)−1 − (λ − z0)

−1
]
, (1.19)

ξ(λ;A,A0; z0) = ξ(λ;A,A0; z1) + n(z0, z1) for some n(z0, z1) ∈ Z, (1.20)

trK
[
(A− zIK)

−1 − (A0 − zIK)
−1

]
= −

ˆ

R

ξ(λ;A,A0; z0)dλ

(λ− z)2
, (1.21)

[f(A)− f(A0)] ∈ B1(K), f ∈ C∞
0 (R), (1.22)

trH(f(A)− f(A0)) =

ˆ

R

ξ(λ;A,A0; z0)dλ f
′(λ), f ∈ C∞

0 (R) (1.23)

(the final two assertions can be greatly improved). In this context ξ( · ;A,A0; z0)
is defined up to an integer. The latter can be fixed giving rise to ξ( · ;A,A0) as
discussed in Section 5.

Theorem 1.3. Assume Hypothesis 1.2 and assume that 0 is a right and a left
Lebesgue point of ξ( · ;A+, A−) (denoted by ξR(0;A+, A−) and ξL(0;A+, A−), re-
spectively ). In addition, consider

H1 = D
∗
ADA, H2 = DAD

∗
A. (1.24)

Then 0 is a right Lebesgue point of ξ( · ;H2,H1) (denoted by ξR(0;H2,H1)) and
Wr(DA) exists and equals

Wr(DA) = ξR(0;H2,H1) = [ξR(0;A+, A−) + ξL(0;A+, A−)]/2. (1.25)

In particular, if 0 ∈ ρ(A+) ∩ ρ(A−), then D
A

is Fredholm and

index(DA) =Wr(DA) = ξ(0;A+, A−). (1.26)

1.3. The Principle Trace Formula. We summarize the main result of Sections
3 and 4. The principle trace formula was obtained in [23] and [35]. There is a
generalization in [16] that applies to all space dimensions, that is, it handles Dirac-
type operators in dimensions n ∈ N under certain technical assumptions. However,
in this article we will not follow [16] due to the complexity of the argument given
there and the fact that still further effort is needed to establish the results described
here. In fact, for the case of the examples under discussion, a direct proof is
somewhat more instructive.

Theorem 1.4. Assume Hypothesis 2.1, let z ∈ C\[0,∞) and gz(x) = x(x2−z)−1/2,
x ∈ R. Then the following assertions hold:

[gz(A+)− gz(A−)] ∈ B1(L
2(R)⊗ C

m), (1.27)
[
(H2 − z I)−1 − (H1 − z I)−1

]
∈ B1

(
L2

(
R

2)⊗ C
m
)
, (1.28)

trL2(R2)⊗Cm

(
(H2 − z I)−1 − (H1 − z I)−1

)

=
1

2z
trL2(R)⊗Cm(gz(A+)− gz(A−)). (1.29)

The inclusion (1.27) is an interesting result on its own; we feel that this rather
strong result (1.27) is somewhat surprising.
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1.4. The Generalized Pushnitski Formula. We summarize the main result of
Section 5. For an exposition of the theory of Krein’s spectral shift function we refer
to [6], [43, Ch. 8], [44, Sect. 0.9]. For those aspects relevant to this article we refer
to the review paper [13].

Given the pairs (H2,H1) and (A+, A−), the corresponding Krein spectral shift
functions (to be introduced in detail in Section 5) are denoted by ξ( · ;H2,H1) and
ξ( · ;A+, A−), respectively. These functions are only determined a.e. in general.
They give formulas for both sides of (1.29). The main application of the trace
formula (1.29) that we make in this paper is to prove the following result:

Theorem 1.5. Assume Hypothesis 2.1. Then for a.e. λ > 0 and a.e. ν ∈ R,

ξ(λ;H2,H1) = ξ(ν;A+, A−) =
1

2π

ˆ

R

trCm(Φ(x)) dx. (1.30)

Relation (1.30) will follow directly from the Pushnitski-type formula (cf. [35,
Theorem 1.1]),

ξ(λ;H2,H1) =
1

π

ˆ λ1/2

−λ1/2

ξ(ν;A+, A−) dν

(λ − ν2)1/2
for a.e. λ > 0. (1.31)

Moreover, employing some classical harmonic analysis, we are able to compute the
actual pointwise value of the spectral shift function for the pair A+, A−.

To complete this circle of ideas we still need to understand in more detail how
the spectral flow enters the picture. Our view at this time is that the results of this
paper support the idea that in the non-Fredholm setting the spectral shift function
may provide information analogous to the spectral flow [2].

Remark 1.6. We note that the inclusion, obtained in (1.27), has an interesting
connection with the theory of Hankel operators. One of the fundamental results
of Peller [30] describes the class of functions ψ on R for which the commutator
[sgn(D), ψ] is in the Schatten–von Neumann class Bp

(
L2(R)

)
. Here, D in L2(R)

denotes the operator D = −id/dx, dom(D) = W 1,2(R). Our result (discussed in
Appendix A) shows that if one takes instead of the function sgn(·) the “smooth”
sign function g−1(·), then the class of functions ψ on R, for which the commutator
[g−1(D), ψ] is trace class, becomes much larger. ⋄

Remark 1.7. We have also studied this class of examples from the viewpoint of scat-
tering theory in [10] (see also [11]) to give an alternative approach to equation (1.30)
and the explicit computation of the spectral shift function for the pair (A+, A−).
However, the methods of these two papers are completely different. Most impor-
tantly [10] does not have the trace formula (1.29), it relies on an approximation
result employing pseudo-differential operators, instead. ⋄

1.5. Notation. We briefly summarize some of the notation used throughout this
paper. Let H be a separable complex Hilbert space, (·, ·)H the scalar product in
H (linear in the second argument), and IH the identity operator in H. If T is a
linear operator mapping (a subspace of) a Hilbert space into another, then dom(T )
and ker(T ) denote the domain and kernel (i.e., null space) of T . The closure of a
closable operator S is denoted by S. The convergence of bounded operators in the
strong operator topology (i.e., pointwise limits) will be denoted by s-lim, similarly,
norm limits of bounded operators are denoted by n-lim.
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The Banach spaces of bounded and compact linear operators on a separable
complex Hilbert space H are denoted by B(H) and B∞(H), respectively; the cor-
responding ℓp-based Schatten–von Neumann ideals are denoted by Bp(H), with
associated norm abbreviated by ‖ · ‖Bp(H), p ≥ 1. Moreover, trH(A) denotes the
trace of a trace class operator A ∈ B1(H).

Linear operators in the Hilbert space L2(R; dt;H), in short, L2(R;H), will be
denoted by calligraphic boldface symbols of the type T , to distinguish them from op-
erators T in H. In particular, operators denoted by T in the Hilbert space L2(R;H)
typically represent operators associated with a family of operators {T (t)}t∈R in H,
defined by

(T f)(t) = T (t)f(t) for a.e. t ∈ R,

f ∈ dom(T ) =
{
g ∈ L2(R;H)

∣∣ g(t) ∈ dom(T (t)) for a.e. t ∈ R; (1.32)

t 7→ T (t)g(t) is (weakly) measurable;

ˆ

R

‖T (t)g(t)‖2H dt <∞

}
.

In the special case, where {T (t)} is a family of bounded operators on H with
supt∈R ‖T (t)‖B(H) < ∞, the associated operator T is a bounded operator on

L2(R;H) with ‖T ‖B(L2(R;H)) = supt∈R ‖T (t)‖B(H).
Capital letters Φ, Ψ, etc. stand for m ×m matrix-valued functions, while f, ψ

are typically real or complex-valued functions. By Lp(R) we denote the classi-
cal Lp-space of complex-valued measurable p-integrable functions on R, employing
Lebesgue measure if no measure is indicated, with associated norm denoted by ‖·‖p,
p ≥ 1, and by W k,p(R), 1 ≤ p < ∞, k ∈ N, the Sobolev space consisting of all

real-valued measurable functions f on R such that ‖f‖k,p :=
∑k
j=0 ‖f

(j)‖p <∞. By

S(R) we denote the test function space of all Schwartz functions on R and by S′(R)
its dual consisting of tempered distributions (i.e., continuous, linear functionals on
S(R)). The bounded continuous functions on R are denoted by Cb(R). The symbol
ACloc(R) represents locally absolutely continuous functions on R.

To simplify notation, we will frequently omit Lebesgue measure whenever possi-
ble and simply use L2(R) instead of L2(R; dx), and L2(R2) instead of L2(R2; dtdx),
etc. If no confusion can arise, the identity operator in L2(R) and L2(R) ⊗ Cm is
simply denoted by I, the identity operator in L2(R2 ) and L2(R2)⊗Cm by I, and
finally, Im represents the identity operator in Cm.

For a space X , Mm×m (X), denotes the space of all m×m matrices with entries
in X . Moreover, the (maximally defined) operator of multiplication by the function
φ in L2(R), respectively, by the m ×m matrix Φ ∈ Mm×m(R) in L2(R) ⊗ Cm, is
simply denoted by φ, respectively, Φ (instead of the more elaborate notation Mφ,
respectively, MΦ).

Finally, we employ the abbreviations

gz(x) = x(x2 − z)−1/2, z ∈ C\[0,∞), g(x) = g−1(x), x ∈ R. (1.33)

2. Preliminaries

We start this section with the main hypothesis used in the statements of The-
orems 1.4 and 1.5. We then provide a complete introduction to the operators
A−, A+,H1, and H2 and describe their simplest properties (noting that we have
deliberately kept our notation consistent with the usage in previous papers to ease
comparisons).
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Hypothesis 2.1. (i) Introduce a self-adjoint matrix-valued function Φ satisfying

Φ ∈Mm×m
(
W 1,1(R) ∩ Cb(R)

)
, Φ′ ∈Mm×m (L∞(R; dx)) . (2.1)

(ii) Let θ ∈ L∞(R; dt), 0 < θ, satisfy θ′ ∈ L∞(R; dt) ∩ L1(R; dt) and

lim
t→−∞

θ(t) = 0, lim
t→+∞

θ(t) = 1. (2.2)

2.1. The Setup. The operator

A− = D ⊗ Im, dom(A−) =W 1,2(R)⊗ C
m, (2.3)

is self-adjoint in L2(R; dx)⊗ Cm, where

D = −i
d

dx
, dom(D) =W 1,2(R). (2.4)

The families of bounded self-adjoint operators {B(t)}t∈R and self-adjoint operators
{A(t)}t∈R acting in L2(R)⊗ Cm are defined by

B(t) = θ(t)Φ, dom(B(t)) = L2(R; dx) ⊗ C
m,

A(t) = A− +B(t), dom(A(t)) =W 1,2(R)⊗ C
m, t ∈ R.

(2.5)

In particular,

B′(t) = θ′(t)Φ, dom(B(t)) = L2(R; dx)⊗ C
m, t ∈ R. (2.6)

From Hypothesis 2.1 one concludes that there exist limits

n-lim
t→−∞

B(t) = n-lim
t→−∞

θ(t)Φ = 0, and n-lim
t→+∞

B(t) = n-lim
t→+∞

θ(t)Φ = Φ. (2.7)

Therefore, setting A+ = A− + Φ, with dom(A+) = W 1,2(R) ⊗ Cm, and using the
standard resolvent identity one obtains

‖(A(t) − zI)−1 − (A− − zI)−1‖B(L2(R)⊗Cm)

= ‖(A(t)− zI)−1θ(t)Φ(A− − zI)−1‖B(L2(R)⊗Cm) ≤ C |θ(t)|‖Φ‖∞,
(2.8)

and similarly

‖(A(t)− zI)−1 − (A+ − zI)−1‖B(L2(R)⊗Cm) (2.9)

= ‖(A(t)− zI)−1(1 − θ(t))Φ(A+ − zI)−1‖B(L2(R)⊗Cm) ≤ C |1− θ(t)|‖Φ‖∞.

That is, the limits n-limt→±∞(A(t) − zI)−1 = (A± − zI)−1 exist.
Subsequently, we will exploit the unitary equivalence of the operators A− and

A+ = A− + Φ. The following lemma establishes this fact (it corresponds to the
well-known possibility of “gauging away” magnetic fields in one dimension).

Lemma 2.2. Assume Hypothesis 2.1 (i) and let x0 ∈ R. Then there exists a unitary
m×m-matrix-valued function Ψ( · , x0) on R such that

Ψ( · , x0)
∗A+Ψ( · , x0) = A−. (2.10)

Proof. We consider the first-order system of differential equations

∂xΨ(x, x0) = −iΦ(x)Ψ(x, x0), Ψ(x0, x0) = Im, (2.11)

and take a fundamental m × m matrix of solutions, Ψ( · , · ) of (2.11). Standard
ODE theory (taking into account that Φ(x) is self-adjoint for all x ∈ R), see, for
instance, [25, Sect. IV.1], then yields the properties,

Ψ(x, x) = Im, x ∈ R, (2.12)
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Ψ(x, x′)∗ = Ψ(x, x′)−1 = Ψ(x′, x), x, x′ ∈ R, (2.13)

Ψ(x, x′)Ψ(x′, x′′) = Ψ(x, x′′), x, x′, x′′ ∈ R, (2.14)

ln(detCm(Ψ(x, x′))) = −i

ˆ x

x′

trCm(Φ(x′′)) dx′′, x, x′ ∈ R. (2.15)

Properties (2.12)–(2.14) of Ψ( · , · ) can also be proved by a (norm-convergent)
iteration (i.e., a Dyson expansion, cf. [36, Theorem X.69]) of

Ψ(x, x′) = Im − i

ˆ x

x′

Φ(x′′)Ψ(x′′, x′) dx′′, x, x′ ∈ R. (2.16)

In particular, because of the L1-assumption made on Φ in Hypothesis 2.1, iterating
(2.16) also permits one to take the limits of Ψ(x, x′) as x and/or x′ tend to ±∞,
that is,

Ψ(∞, x′), Ψ(x,−∞), Ψ(∞,−∞), etc., x, x′ ∈ R, (2.17)

all exist.
Employing (2.11), one verifies that A+ is unitarily equivalent to A−,

Ψ( · , x0)
−1A+Ψ( · , x0) = A− (2.18)

since
(
[−i(d/dx)Im +Φ]Ψ( · , x0)f

)
(x)

= −i[Ψ′(x, x0)f(x) + Ψ(x, x0)f
′(x)] + Φ(x)f(x)

= −iΨ(x, x0)f
′(x), f ∈ C∞

0 (R)⊗ C
m. (2.19)

�

Remark 2.3. (i) Given N ∈ N ∪ {∞}, equality (2.11) yields inductively upon N
that Ψ( · , x0) ∈ Mm×m

(
CN (R)

)
whenever Φ ∈ Mm×m

(
CN−1(R)

)
. (For the first

induction step, N = 1, see, e.g., [25, Lemma IV.1.1].)
(ii) In the scalar case m = 1, the function ψ(x, x0) = exp

(
− i
´ x

x0
φ(y) dy

)
, x ∈ R,

yields the unitary equivalence in (2.10). ⋄

Corollary 2.4. Assume Hypothesis 2.1 (i). Since the operators A− and A+ are
self-adjoint, Lemma 2.2 and the functional calculus imply that

h(A+) = Ψ( · , x0)h(A−)Ψ( · , x0)
∗ (2.20)

for any locally bounded Borel function h : R → C.

Note, that for any Φ ∈Mm×m (L∞(R) ∩ACloc(R)) with Φ′ ∈Mm×m (L∞(R)),
the equality

[A−,Φ] = −iΦ′ (2.21)

holds.

Remark 2.5. The operators A− and the family B(t) do not satisfy [23, Hypoth-
esis 2.1]. Indeed, Hypothesis 2.1 in [23], in particular, requires that the family
B(t) is relative trace class, that is, B′(t)(|A−|+ I)−1 ∈ B1(L

2(R)). In our setting,
B′(t)(|A−| + I)−1 = θ′(t)Φ(|A−| + I)−1 and by [39, Theorem 4.1, Remark 4(a)]
a necessary condition for the operator Φ(|A−| + I)−1 to be trace class is that the
function t 7→ (|t|+ 1)−1 is integrable, which is obviously not the case. ⋄
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Next, we introduce the operator (d/dt) ⊗ Im on L2(R2) ⊗ Cm defined on its
domain W 1,2

(
R;L2(R)

)
⊗ Cm in the obvious way and we make the identifications

L2
(
R; dt;L2(R; dx)

)
⊗ C

m = L2(R2; dtdx)⊗ C
m = L2(R2)⊗ C

m. (2.22)

In addition, we define the operator

DA−
=

d

dt
⊗ Im +A−, dom(DA−

) =W 1,2(R2)⊗ C
m, (2.23)

where A− is the operator acting in L2(R2)⊗ Cm given by

(A−f)(t) = A−f(t), (2.24)

f ∈ dom(A−) =
{
g ∈ L2(R2)⊗ C

m
∣∣ g(t) ∈ W 1,2(R)⊗ C

m for a.e. t ∈ R,

t 7→ A−g(t) is (weakly) measurable,

ˆ

R

‖A−g(t)‖
2
L2(R)⊗Cm dt <∞

}
.

By [23, Lemma 4.2] the operator D
A−

is closed and densely defined with adjoint

D
∗
A−

= −
d

dt
⊗ Im +A−, dom(DA∗

−
) = dom(DA−

) =W 1,2(R2)⊗ C
m. (2.25)

Introduce the operator A in L2(R2)⊗Cm associated with the family {A(t)}t∈R by
equation(1.3), Introducing also the bounded operator B on L2(R2)⊗Cm by setting

(Bf)(t) = B(t)f(t) = θ(t)(Φf)(t), f ∈ L2(R2)⊗ C
m, (2.26)

one obtains A = A− +B. Finally we come to the definition of the model operator
D

A
acting in L2(R2)⊗ Cm.

DA =
d

dt
⊗ Im +A =

d

dt
⊗ Im +A− +B = DA−

+B,

dom(DA) = dom(DA−
) =W 1,2(R2)⊗ C

m.
(2.27)

Since DA−
is a closed densely defined operator and B is a bounded operator on

L2(R2)⊗C
m, it follows that DA is also closed and densely defined in L2(R2)⊗C

m

with adjoint given by

D
∗
A

= D
∗
A−

+B
∗ = −

d

dt
⊗ Im +A− +B = −

d

dt
⊗ Im +A, (2.28)

dom(D∗
A
) = dom(D

A
) =W 1,2(R2)⊗ C

m.

The second order operator H0 in L2(R2)⊗ C
m is now constructed by

H0 = D
∗
A−

D
A−

=
(
−
d2

dt2
−

d2

dx2
)
⊗ Im = −∆⊗ Im,

dom(H0) =W 2,2(R2)⊗ C
m,

(2.29)

and the bounded operatorB′ on L2(R2)⊗Cm associated with the family {B′(t)}t∈R

defined in (2.6) is,

(B′f)(t) = B′(t)f(t) = θ′(t)(Φf)(t), f ∈ L2(R2)⊗ C
m. (2.30)

An application of [36, Theorem VIII.33] shows that the operator H0 is self-adjoint
with dom(H0) ⊂ dom(A−).

Now we come to the operators H1 and H2 acting in L2(R2)⊗ Cm. Set

H1 = D
∗
ADA, H2 = DAD

∗
A. (2.31)
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By (2.27) and (2.28) one can write

Hj = H0 +BA− +A−B +B
2 + (−1)jB′,

dom(Hj) = dom(H0) =W 1,2(R2)⊗ C
m, j = 1, 2.

(2.32)

Hence one concludes that dom(H1) = dom(H2) = dom(H0) and that the opera-
tors Hj , j = 1, 2, are well-defined since B leaves the domain of A− invariant. In
addition, one can write

BA− +A−B = [A−,B] + 2BA− = −[A−,B] + 2A−B, (2.33)

and

([A−,B]f)(t) = (A−Bf)(t)− (BA−f)(t) = A−θ(t)Φf(t)− θ(t)ΦA−f(t)

= θ(t)[A−,Φ]f(t) = i−1θ(t)Φ′f(t), f ∈W 2,2(R2)⊗ C
m. (2.34)

Employing the fact that Φ′ ∈ Mm×m (L∞(R)), θ ∈ L∞(R), one obtains that the
commutator [A−,B] has a bounded closure. For subsequent purposes we denote

C := [A−,B], (2.35)

and write

Hj = H0 + 2BA− +C +B
2 + (−1)jB′

= H0 + 2A−B −C +B
2 + (−1)jB′, j = 1, 2.

(2.36)

Lemma 2.6. Assume Hypothesis 2.1 and let z ∈ C\[0,∞). Then the operators
A−, H0, and Hj, j = 1, 2, defined above satisfy the following properties:

(i) A−(H0 − zI)−1/2 ∈ B
(
L2(R2)⊗ C

m
)
.

(ii) (H0 − zI)(Hj − zI)−1 ∈ B
(
L2(R2)⊗ Cm

)
, j = 1, 2.

Proof. (i) Via the two-dimensional Fourier transform the operatorA−(H0−z)
−1/2

is isometric to the multiplication operator on L2(R2) ⊗ Cm given by the function
(s, p) 7→ pI(s2I + p2I − zI)−1/2 and this is clearly bounded.
(ii) By (2.32) the operatorsHj , j = 1, 2 and H0 have the same domain. Therefore,
the operator (H0−zI)(Hj−zI)

−1, j = 1, 2, is everywhere defined and closed as the
product of a bounded and a closed operator. Hence, by the closed graph theorem,
the operator (H0 − zI)(Hj − zI)−1, j = 1, 2, is bounded. �

2.2. The Approximation Technique. The principal method exploited in [23] to
pass from the Pushnitski assumptions to the weaker ones involving relatively trace
class perturbations was an approximation scheme. Here we illustrate a modified
version of this scheme that enables us (albeit with considerable effort) to handle
relatively Hilbert–Schmidt perturbations.

The idea is that we approximate the operators A− and A+, and hence, H1,H2

in such a fashion that, for the approximants, the relatively trace class perturbation
property of [23] is restored. To this end let Pn = EA−((−n, n)) be the spectral
projection of A− corresponding to the interval (−n, n). We set

Bn(t) = PnB(t)Pn, An(t) = A− +Bn(t), t ∈ R. (2.37)

Therefore,

A−,n = A−, A+,n = A− + PnΦPn, n ∈ N. (2.38)
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Remark 2.7. By the estimate (5.2) below, the operator A− and the family of
bounded operators Bn(t) = PnB(t)Pn, t ∈ R, n ∈ N, satisfy [23, Hypothesis 2.1]
(and even [35, Hypothesis (1.3)]). ⋄

For the projection P n defined by

(P nf)(t) = Pnf(t), f ∈ L2(R2)⊗ C
m, t ∈ R, n ∈ N, (2.39)

one infers that P n = EA−
((−n, n)) is the spectral projection of A− corresponding

to the interval (−n, n); moreover, P n commutes with H0, n ∈ N. In addition, for
the operators Hj,n, j = 1, 2, defined in terms of the family {An(t)}t∈R, one obtains
decompositions similar to (2.36),

Hj,n = H0 + 2BnA− +Cn +B
2
n + (−1)jB′

n

= H0 + 2A−Bn −Cn +B
2
n + (−1)jB′

n, n ∈ N, j = 1, 2,
(2.40)

with

Bn = P nBP n, B
′
n = P nB

′
P n, Cn = P nCP n, n ∈ N. (2.41)

Remark 2.8. Since dom(H0) ⊂ dom(A−), it follows from (2.36) and (2.40) that the
operators Hj and Hj,n, j = 1, 2, have the common core dom(Hj) = dom(H0) =
W 2,2(R)⊗ C

m, j = 1, 2. ⋄

3. The Right-Hand Side of the Trace Formula (1.29)

In the first part of this section we prove the inclusion

[gz(A+)− gz(A−)] ∈ B1

(
L2(R)

)
, z < 0. (3.1)

Later, in Theorem 5.3, we extend this result to the first inclusion in Theorem 1.4,
that is,

[gz(A+)− gz(A−)] ∈ B1

(
L2(R)

)
, z ∈ C\[0,∞). (3.2)

This result is the main advance that we make in the proof of the trace formula over
the approach in [16]. In the second part of this section we prove that the difference
[gz(A+) − gz(A−)], z < 0, can be approximated in B1

(
L2(R) ⊗ Cm

)
-norm by the

operators [gz(A+,n)− gz(A−)] as n→ ∞.

3.1. The Trace Result. For brevity, we introduce the notations R+,λ(z), R−,λ(z)
for appropriate resolvents of the operators A− and A+, respectively, that is,

R+,λ(z) =
(
A+ + i(λ− z)1/2I

)−1
, R−,λ(z) =

(
A− + i(λ− z)1/2I

)−1
, λ > 0. (3.3)

Lemma 3.1. Let z < 0, then,

gz(A+)− gz(A−) = π−1Re

(
ˆ ∞

0

λ−1/2[R+,λ(z)−R−,λ(z)] dλ

)
. (3.4)

Proof. We recall the fact that for any self-adjoint operator T in H,

(
T 2 − zIH

)−1/2
= π−1

ˆ ∞

0

λ−1/2
(
T 2 − (z − λ)IH

)−1
dλ, z < 0, (3.5)

with a norm convergent Bochner integral (see, e.g., [26, p. 282] for a more general
result). Thus,

gz(A+)−gz(A−) =
1

π

ˆ ∞

0

λ1/2
[
A+

(
A2

+−(z−λ)IH
)−1

−A−

(
A2

−−(z−λ)IH
)−1

]
dλ.

(3.6)
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Taking into account the equality

A+

(
A2

+ − (z−λ)IH
)−1

−A−

(
A2

− − (z −λ)IH
)−1

= Re(R+,λ(z)−R−,λ(z)), (3.7)

one concludes the proof. �

Remark 3.2. One observes that Lemma 3.1 holds for arbitrary self-adjoint opera-
tors. ⋄

In what follows, we denote for brevity Uλ(z) = (A+ −A−)R−,λ(z) = ΦR−,λ(z),
frequently suppressing the z-dependence of Uλ and A±,λ in the following. The next
result yields the first claim in Theorem 1.4. In our present setting we do not resort
to the double operator integration technique as in [23], but instead apply more
elementary means.

Proposition 3.3. Suppose that Φ ∈ Mm×m
(
W 1,1(R) ∩ Cb(R)

)
and z < 0. For

the operators A− = D ⊗ Im, A+ = A− +Φ one obtains

gz(A+)− gz(A−) = Φ(A2
− − zI)−3/2 (3.8)

+ π−1Re

(
ˆ ∞

0

[
λ−1/2R+,λ(z)Uλ(z)

2 − λ−1/2[R−,λ(z),Φ]R−,λ(z)
]
dλ

)
,

and each term on the right-hand side of (3.8) lies in B1

(
L2(R)

)
. In addition,

‖gz(A+)− gz(A−)‖B1(L2(R)⊗Cm) ≤ ‖Φ‖1,1. (3.9)

Proof. Using the resolvent identity twice one can write

R+,λ −R−,λ = R+,λΦR−,λ = −R−,λΦ+R+,λΦR−,λΦR−,λ = −R−,λUλ +R+,λU
2
λ

= −ΦR2
−,λ − [R−,λ,Φ]R−,λ +R+,λU

2
λ. (3.10)

Next, we separately treat the three preceding terms.
First, we show that

ˆ ∞

0

λ−1/2R+,λU
2
λ dλ ∈ B1

(
L2(R)⊗ C

m
)
. (3.11)

Employing the noncommutative Hölder inequality (see, e.g., [39, Ch. 2]),
∥∥∥∥
ˆ ∞

0

λ−1/2R+,λU
2
λ dλ

∥∥∥∥
B1(L2(R)⊗Cm)

≤

ˆ ∞

0

λ−1/2
∥∥R+,λU

2
λ

∥∥
B1(L2(R)⊗Cm)

dλ

≤

ˆ ∞

0

λ−1/2‖R+,λ‖B(L2(R)⊗Cm)‖Uλ‖
2
B2(L2(R)⊗Cm) dλ. (3.12)

Thus, applying [39, Theorem 4.1] and Remark B.3,

‖Uλ‖B2(L2(R)⊗Cm) =
∥∥Φ

(
A− + i(λ− z)1/2I

)−1∥∥
B2(L2(R)⊗Cm)

≤ C max
j,k=1,...,m

∥∥Φj,k
(
D + i(1 + λ)1/2I

)−1∥∥
B2(L2(R))

≤ C max
j,k

‖Φj,k‖2‖h1‖2

= C ‖Φ‖2‖h1‖2 ≤ C ‖Φ‖1‖Φ‖∞‖h1‖2, (3.13)

where h1(t) = (t+ i(λ− z)1/2)−1 and C > 0 represents a constant that may well
differ from line to line. Since ‖h1‖2 = C(λ− z)−1/4, one infers that

‖Uλ‖B2(L2(R)⊗Cm) ≤ C ‖Φ‖1‖Φ‖∞(λ− z)−1/4. (3.14)
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In addition, (see (3.3)) one has

‖R+,λ‖B(L2(R)⊗Cm) ≤ sup
t∈R

(|t+ i(λ− z)1/2|)−1 = (λ− z)−1/2, (3.15)

hence, combining this estimate with (3.12) and (3.14), one obtains
∥∥∥∥
ˆ ∞

0

λ−1/2R+,λU
2
λ dλ

∥∥∥∥
B1(L2(R)⊗Cm)

≤ C ‖Φ‖1‖Φ‖∞

ˆ ∞

0

λ−1/2(λ− z)−1 dλ.

(3.16)
Since the integral on the right-hand side converges, the claim (3.11) follows.

Next, we show that
ˆ ∞

0

λ−1/2[R−,λ,Φ]R−,λ dλ ∈ B1

(
L2(R)⊗ C

m
)
. (3.17)

Using the formula [C−1, B] = −C−1[C,B]C−1 and equality (2.21) one gets

[R−,λ,Φ] = −R−,λ[A−,Φ]R−,λ = iR−,λΦ
′R−,λ. (3.18)

Hence, one infers
∥∥∥∥
ˆ ∞

0

λ−1/2[R−,λ,Φ]R−,λ dλ

∥∥∥∥
B1(L2(R)⊗Cm)

≤

ˆ ∞

0

λ−1/2
∥∥R−,λΦ

′R2
−,λ

∥∥
B1(L2(R)⊗Cm)

dλ

≤

ˆ ∞

0

λ−1/2
∥∥R−,λ|Φ

′|1/2
∥∥
B2(L2(R)⊗Cm)

∥∥|Φ′|1/2R2
−,λ

∥∥
B2(L2(R)⊗Cm)

dλ. (3.19)

Since by hypothesis, Φ′ ∈ Mm×m
(
L1(R)

)
, Corollary B.2 implies that the matrix

|Φ′|1/2 =
{
Φ̃′
j,k

}m
j,k=1

belongs to Mm×m
(
L2(R)

)
. Thus, using once more [39,

Theorem 4.1], one concludes that

∥∥R−,λ|Φ
′|1/2

∥∥
B2(L2(R)⊗Cm)

≤ C max
1≤j,k≤m

∥∥∥
(
D + i(1 + λ)1/2I

)−1
Φ̃′
j,k

∥∥∥
B2(L2(R))

≤ C max
1≤j,k≤m

∥∥∥Φ̃′
j,k

∥∥∥
2
‖h1‖2 ≤ C

∥∥|Φ′|1/2
∥∥
2
‖h1‖2. (3.20)

Arguing similarly, one obtains that
∥∥|Φ′|1/2R2

−,λ

∥∥
B2(L2(R)⊗Cm)

≤ C
∥∥|Φ′|1/2

∥∥
2
‖h2‖2, (3.21)

where h2(t) = (t+ i(λ− z)1/2)−2. It is easy to check that ‖h2‖2 = C(λ − z)−3/4.

Appealing to the estimate
∥∥|Φ′|1/2

∥∥2
2
≤ C ‖Φ′‖1 (see Corollary B.2), (3.17) is proved

by estimating the RHS of (3.19) as follows
∥∥∥∥
ˆ ∞

0

λ−1/2[R−,λ,Φ]R−,λ dλ

∥∥∥∥
B1(L2(R)⊗Cm)

≤ C ‖Φ′‖1

ˆ ∞

0

λ−1/2(λ− z)−1 dλ

<∞. (3.22)

Finally, we prove that

Re

(
ˆ ∞

0

λ−1/2ΦR2
−,λ dλ

)
∈ B1

(
L2(R)⊗ C

m

)
. (3.23)



TRACE FORMULAS FOR A CLASS OF NON-FREDHOLM OPERATORS: A REVIEW 17

First we note,

Re

(
ˆ ∞

0

λ−1/2ΦR2
−,λ dλ

)
= Φ

ˆ ∞

0

λ−1/2Re
(
R2

−,λ

)
dλ

= Φ

ˆ ∞

0

λ−1/2
(
A2

− + (z − λ)I
)(
A2

− − (z − λ)I
)−2

dλ,

(3.24)

and also
ˆ ∞

0

λ−1/2
(
A2

− + (z − λ)I
)(
A2

− − (z − λ)I
)−2

dλ = −π−1
(
A2

− − zI
)−3/2

, (3.25)

so one obtains Re
( ´∞

0
λ−1/2ΦA2

0,λ dλ
)
= −πΦ

(
A2

− − zI
)−3/2

. Furthermore, [39,

Theorem 4.5] and Lemma B.4 imply
∥∥Φ

(
A2

− − zI
)−3/2∥∥

B1(L2(R)⊗Cm)
≤ C max

j,k

∥∥Φj,k(D2 − zI)−3/2
∥∥
B1(L2(R))

≤ C max
j,k=1,...,m

‖Φj,k‖ℓ1(L2(R))

∥∥((·)2 − z)−3/2
∥∥
ℓ1(L2(R))

≤ C ‖Φ′‖1,1, (3.26)

and hence (3.23).
Thus, combining equality (3.10) with Lemma 3.1 and the estimates obtained in

(3.16), (3.22) and (3.26) imply (3.8). In addition, the same estimates yield

‖gz(A+)− gz(A−)‖B1(L2(R)⊗Cm) ≤ C [‖Φ‖1‖Φ‖∞ + ‖Φ‖1,1]. (3.27)

Next, for fixed n ∈ N,

‖gz(A+)− gz(A−)‖B1(L2(R)⊗Cm)

=
∥∥
n−1∑

k=0

(
gz
(
A− + n−1(k + 1)Φ

)
− gz

(
A− + n−1(k + 1)Φ

))∥∥
B1(L2(R)⊗Cm)

≤

n−1∑

k=1

∥∥gz
(
A− + n−1(k + 1)Φ

)
− gz

(
A− + n−1kΦ

)∥∥
B1(L2(R)⊗Cm)

. (3.28)

Applying Lemma 2.2 one obtains for fixed k ∈ N the existence of a sequence of
unitary matrices Ψ(k,n) such that A−+ k

nΦ = Ψ(k,n)A−Ψ
∗
(k,n). (We use the notation

Ψ(k,n) to avoid any confusion with the matrix elements Ψk,ℓ, k, ℓ = 1, . . . ,m, of Ψ.)
Hence we have

A− + n−1(k + 1)Φ = Ψ(k,n)A−Ψ
∗
(k,n) + n−1Φ

= Ψ(k,n)

(
A− + n−1Ψ∗

(k,n)ΦΨ(k,n)

)
Ψ∗

(k,n).
(3.29)

And thus,

‖gz(A− + n−1(k + 1)Φ)− gz(A− + n−1kΦ)‖B1(L2(R)⊗Cm)

= ‖gz(A−)− gz(A− + n−1Ψ∗
(k,n)ΦΨ(k,n))‖B1(L2(R)⊗Cm).

(3.30)

Combining this with (3.28) and using that every Ψ(k,n) is a unitary matrix yields

‖gz(A+)− gz(A−)‖B1(L2(R)⊗Cm)

≤

n−1∑

k=0

∥∥gz(A−)− gz
(
A− + n−1Ψ∗

(k,n)ΦΨ(k,n)

)∥∥
B1(L2(R)⊗Cm)
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≤ C

n−1∑

k=0

‖n−1Ψ∗
(k,n)ΦΨ(k,n)‖∞‖n−1Ψ∗

(k,n)ΦΨ(k,n)‖1

+ ‖n−1Ψ∗
(k,n)ΦΨ(k,n)‖1,1

≤ n C[‖n−1Φ‖∞‖n−1Φ‖1 + ‖n−1Φ‖1,1]. (3.31)

Hence,

‖gz(A+)− gz(A−)‖B1(L2(R)⊗Cm)

≤ C lim
n→∞

n[‖n−1Φ‖∞‖n−1Φ‖1 + ‖n−1Φ‖1,1]

≤ C lim
n→∞

n[n−2‖Φ‖∞‖Φ‖1 + n−1‖Φ‖1,1] = C‖Φ‖1,1. (3.32)

�

3.2. The Approximation Argument. In this subsection we explain the key
idea of our approach. We turn to the operators A+,n = A− + PnΦPn, Pn =
EA−((−n, n)), n ∈ N, but first, we represent the difference gz(A+,n) − gz(A−) in
close analogy to our expression for gz(A+)− gz(A−) obtained in Proposition 3.3.

Proposition 3.4. Suppose that Φ ∈ Mm×m
(
W 1,1(R) ∩ Cb(R)

)
and z < 0. Let

A+,n = A− + PnΦPn, n ∈ N, be as in (2.38), and

R
(n)
+,λ =

(
A+,n + i(λ− z)1/2I

)−1
, U

(n)
λ = PnUλPn, n ∈ N. (3.33)

Then we have that gz(A+,n)− gz(A−) is the following sum of trace class operators:

gz(A+,n)− gz(A−) = PnΦ(A
2
− − z)−3/2Pn

+ π−1Re

(
ˆ ∞

0

(R
(n)
+,λ(U

(n)
λ )2 − Pn[R−,λ,Φ]R−,λPn)λ

−1/2 dλ

)
.

(3.34)

Proof. One computes,

R
(n)
+,λ −R−,λ = −R

(n)
+,λ(PnΦPn)R−,λ

= −R−,λPnΦPnR−,λ +R
(n)
+,λPnΦPnR−,λPnΦPnR−,λ

= −PnR−,λΦR−,λPn +R
(n)
+,λPnΦR−,λPnΦR−,λPn

= −Pn[R−,λ,Φ]R−,λPn − PnΦR
2
−,λPn +R

(n)
+,λPnΦR−,λPnΦR−,λPn. (3.35)

Arguing as in the proof of Proposition 3.3 yields the claimed assertions. �

The following theorem is the main result of this section; it yields a trace norm
approximation of the operator [gz(A+)− gz(A−)], z ∈ C\[0,∞).

Theorem 3.5. Suppose that Φ ∈ Mm×m
(
W 1,1(R) ∩ Cb(R)

)
and z < 0. Then,

limn→∞

∥∥[gz(A+,n)− gz(A−)]− [gz(A+)− gz(A−)]
∥∥
B1(L2(R)⊗Cm)

= 0.

Proof. For simplicity, we assume z < 0 throughout this proof. By Proposition 3.3
and Proposition 3.4 it suffices to show that we have trace norm convergence:

PnΦ
(
A2

− − zI
)−3/2

Pn −→
n→∞

Φ
(
A2

− − zI
)−3/2

,

Pn

ˆ ∞

0

λ−1/2[R−,λ,Φ]R−,λ dλPn −→
n→∞

ˆ ∞

0

λ−1/2[R−,λ,Φ]R−,λ dλ, (3.36)
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ˆ ∞

0

λ−1/2R
(n)
+,λ(U

(n)
λ )2 dλ −→

n→∞

ˆ ∞

0

λ−1/2R+,λU
2
λ dλ.

By (3.22) and (3.26) the operators Φ(A2
− − z)−3/2 and

´∞

0 λ−1/2[R−,λ,Φ]R−,λ dλ
are trace class. As Pn −→

n→∞
I in the strong operator topology, Lemma B.5 implies

convergence of the first two terms in (3.36). For the third term one obtains
∥∥∥∥
ˆ ∞

0

λ−1/2R
(n)
+,λ(U

(n)
λ )2 dλ−

ˆ ∞

0

λ−1/2R+,λU
2
λ dλ

∥∥∥∥
B1(L2(R)⊗Cm)

≤

ˆ ∞

0

λ−1/2
∥∥R(n)

+,λ(U
(n)
λ )2 −R+,λU

2
λ

∥∥
B1(L2(R)⊗Cm)

dλ,

(3.37)

We start by showing that A+,n −→
n→∞

A+ in the strong resolvent sense. Since A−

is closed and densely defined, the operators A+,n and A+ have the common core
dom(A−). For all f ∈ dom(A−), n ∈ N

‖A+,nf −A+f‖L2(R)⊗Cm = ‖PnA−f + PnΦPnf −A−f − Φf‖L2(R)⊗Cm

≤ ‖PnA−f −A−f‖L2(R)⊗Cm+ ‖PnΦ(1− Pn)f‖L2(R)⊗Cm

+ ‖(1− Pn)Φf‖L2(R)⊗Cm. (3.38)

The first and the last term converges to zero, since s-limn→∞ Pn = I, while the
second term converges to zero since

‖PnΦ(1− Pn)f‖L2(R)⊗Cm ≤ ‖Φ‖∞‖(1− Pn)f‖L2(R)⊗Cm −→
n→∞

0. (3.39)

Thus, [36, Theorem VIII.25] (see also [42, Theorem 9.16]) implies that A+,n con-
verges to A+ in the strong resolvent sense.

Next, we claim that limn→∞

∥∥(U (n)
λ )2−U2

λ

∥∥
B1(L2(R)⊗Cm)

= 0. We first note that

∥∥U2
λ − PnUλPnUλPn

∥∥
B1(L2(R)⊗Cm)

≤
∥∥(1− Pn)U

2
λ

∥∥
B1(L2(R)⊗Cm)

+ ‖Uλ‖B2(L2(R)⊗Cm)

× ‖Uλ(1 − Pn) + (1− Pn)UλPn‖B2(L2(R)⊗Cm). (3.40)

Since Uλ ∈ B2

(
L2(R)

)
(see (3.14)), Lemma B.5 implies that

∥∥U2
λ − PnUλPnUλPn

∥∥
B1(L2(R)⊗Cm)

−→
n→∞

0. (3.41)

Combining strong resolvent convergence of A+,n to A+ as n→ ∞, and trace norm

convergence of (U
(n)
λ )2 to U2

λ as n → ∞, Lemma B.5 implies that the integrands
on the right-hand side of (3.37) converge to zero. In addition, one infers that

∥∥R(n)
+,λ(U

(n)
λ )2 −R+,λU

2
λ

∥∥
B1(L2(R)⊗Cm)

≤
∥∥R(n)

+,λ

∥∥
B(L2(R)⊗Cm)

‖Uλ‖
2
B2(L2(R)⊗Cm)

+ ‖R+,λ‖B(L2(R)⊗Cm)‖Uλ‖
2
B2(L2(R)⊗Cm). (3.42)

For the norms of resolvents one estimates (we recall that z < 0),
∥∥R(n)

+,λ

∥∥
B(L2(R)⊗Cm)

, ‖R+,λ‖B(L2(R)⊗Cm) ≤ (λ− z)−1/2, (3.43)

and

‖Uλ‖
2
B2(L2(R)⊗Cm) ≤ (λ − z)−1/2, (3.44)
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and thus one obtains that λ−1/2
∥∥R(n)

+,λ(U
(n)
λ )2−R+,λU

2
λ

∥∥
B1(L2(R)⊗Cm)

is dominated

by the integrable function λ−1/2(λ − z)−1. Thus, the dominated convergence the-
orem implies that

ˆ ∞

0

λ−1/2
∥∥R(n)

+,λ(U
(n)
λ )2 −R+,λU

2
λ

∥∥
B1(L2(R)⊗Cm)

dλ −→
n→∞

0. (3.45)

�

4. The Left-Hand Side of the Trace Formula (1.29)

Our main objective in this section is to provide the second inclusion of Theorem
1.4 (see (1.28)) and prove the trace norm convergence on the left-hand side of the
trace formula (1.29). First, we state a lemma which collects some properties of the
operators Hj,n, n ∈ N, and Hj , j = 1, 2.

Lemma 4.1. Assume Hypothesis 2.1 and let z ∈ C\[0,∞). Then the following
assertions hold:
(i) The operators Hj,n converge to Hj, j = 1, 2, in the strong resolvent sense,

s-lim
n→∞

(Hj,n − z I)−1 = (Hj − z I)−1, j = 1, 2. (4.1)

(ii) The operators (H1,n − z I)−1(H0 − z I) and (H0−z I)(H1,n−z I)
−1, n ∈ N,

are uniformly bounded with respect to n ∈ N. In addition,

s-lim
n→∞

(H0 − z I)(Hj,n − z I)−1 = (H0 − z I)(Hj − z I)−1, j = 1, 2, (4.2)

s-lim
n→∞

(Hj,n − z I)−1(H0 − z I) = (Hj − z I)−1(H0 − z I), j = 1, 2. (4.3)

Proof. Since the proof for the operators H2,n,H2 is a verbatim repetition of the
proof for H1,n,H1, we exclusively focus on the latter.
(i) By Remark 2.8 the operators H1 and H1,n have the common core dom(H1) =
dom(H0). Since H1,n and H1 are self-adjoint operators with a common core, by
[36, Theorem VIII.25] (see also [42, Theorem 9.16]) it is sufficient to show that

H1,nf −→
n→∞

H1f, f ∈ dom(H0). (4.4)

Equalities (2.36) and (2.40) imply convergence of every term separately. First,
rewriting

B
′ −B

′
n = B

′ − P nB
′
P n = (I − P n)B

′ + P nB
′(I − P n), (4.5)

the convergence
s-lim
n→∞

B
′
n = B

′ (4.6)

follows since the operatorB′, defined by (2.30), is a bounded operator, andP n −→
n→∞

I in the strong operator topology. Arguing similarly, one infers that

s-lim
n→∞

Bn = B, s-lim
n→∞

Cn = C. (4.7)

Next, one notes that

B
2 −B

2
n = B

2 − P nBP nBP n

= (I − P n)B
2 + P nB

(
B(I − P n) + (I − P n)BP n

)
,

(4.8)

implying,
s-lim
n→∞

B
2
n = B

2. (4.9)
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Thus, appealing to (2.36) and (2.40), it remains to show that s-limn→∞ BnA−f =
BA−f for all f ∈ dom(H0). The fact,

BA− −BnA− = BA− − P nBA−P n

= (I − P n)BA− + P nB(I − P n)A−,
(4.10)

implies the required convergence. Consequently,

s-lim
n→∞

H1,nf = H1f, f ∈ dom(H0), (4.11)

completes the proof of item (i).

(ii) Fix z ∈ C\[0,∞). First we prove the uniform boundedness with respect to

n ∈ N of the operators (H1,n − z I)−1(H0 − z I) and (H0 − z I)(H1,n − z I)−1,
n ∈ N. Since the operator (H1,n− z I)

−1(H0− z I) is closable, one concludes (see,
e.g., [36, Theorem VIII.1]) that

(H1,n − z I)−1(H0 − z I) =
[
(H0 − z I)(H1,n − z I)−1

]∗
. (4.12)

Thus, it suffices to show that (H0 − z I)(H1,n− z I)−1 is uniformly bounded with
respect to n ∈ N.

Using the standard resolvent identity one obtains

(H1,n−z I)
−1−(H0−z I)

−1 = −(H1,n−z I)
−1(H1,n−H0)(H0−z I)

−1, (4.13)

and hence employing (2.40) one arrives at

(H0 − z I)(H1,n − z I)−1 = I −
[
(H1,n −H0)(H1,n − z I)−1

]

= I −
[
2BnA− +Cn +B

2
n −B

′
n

]
(H1,n − z I)−1, n ∈ N.

(4.14)

The sequence of bounded operators (H1,n − z I)−1, n ∈ N, is uniformly bounded,
in addition, since the operators B,B′,C are bounded, it follows from (2.41) that
the sequences Bn, B

′
n, and Cn, n ∈ N, are also uniformly bounded with respect

to n ∈ N. Thus, by (4.14) it is sufficient to prove the uniform boundedness of the
sequence A−(H1,n − z I)−1, n ∈ N, which we focus on next.

Again, appealing to the standard resolvent identity one obtains for each n ∈ N,

A−(H1,n − z I)−1

= A−(H0 − z I)−1 −A−(H0 − z I)−1
[
(H1,n −H0)(H1,n − z I)−1

]

= A−(H0 − z I)−1

−A−(H0 − z I)−1
[
2A−Bn −Cn +B

2
n −B

′
n

]
(H1,n − z I)−1. (4.15)

Arguing as above, it is sufficient to show that the operators A−(H0 − z I)−1 and

A−(H0 − z I)−1A− are bounded. The first operator is bounded by Lemma 2.6 (i)
while the second operator is bounded since

A−(H0 + I)−1A− =
[
A−(H0 + I)−1/2

][
A−(H0 + I)−1/2

]∗
, (4.16)

and by Lemma 2.6 (i) the operatorA−(H0+ I)−1/2 is bounded. Thus, the sequence
operators (H0 − z I)(H1,n − z I)−1, is uniformly bounded in n ∈ N.

Next, gathering all terms from (4.14) and (4.15) one arrives at

(H0 − z I)(H1,n − z I)−1 = I −
[
2BnA− +Cn +B

2
n −B

′
n

]
(H1,n − z I)−1

= I −
[
Cn +B

2
n −B

′
n

]
(H1,n − z I)−1 − 2BnA−(H0 − z I)−1

+ 2BnA−(H0 − z I)−1
[
2A−Bn −Cn +B

2
n −B

′
n

]
(H1,n − z I)−1
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= I −
[
Cn +B

2
n −B

′
n

]
(H1,n − z I)−1 − 2Bn

[
A−(H0 − z I)−1

]

+ 2Bn

[
A−(H0 − z I)−1

][
−Cn +B

2
n −B

′
n

]
(H1,n − z I)−1

+ 4Bn

[
A−(H0 − z I)−1A−

]
Bn(H1,n − z I)−1, n ∈ N. (4.17)

Similarly, one rewrites the right-hand side of (4.2) as

(H0 − z I)(H1 − z I)−1 = I −
[
C +B

2 −B
′
]
(H1 − z I)−1

− 2B
[
A−(H0 − z I)−1

]

+ 2B
[
A−(H0 − z I)−1

][
−C +B

2 −B
′
]
(H1 − z I)−1

+ 4B
[
A−(H0 − z I)−1A−

]
B(H1 − z I)−1, n ∈ N. (4.18)

Thus, the strong resolvent convergence in (4.2), (4.6), (4.7), and (4.9) implies strong
convergence in (4.2). Finally, to prove (4.3), we first note that by the strong
resolvent convergence in (4.1),

(H1,n−z I)
−1(H0−z I)f −→

n→∞
(H1−z I)

−1(H0−z I)f, f ∈ dom(H0). (4.19)

Since, in addition, the operators (H1,n − z I)−1(H0 − z I) are uniformly bounded
with respect to n ∈ N, and dom(H0) is dense in L

2(R2)⊗Cm, one infers the strong
operator convergence (4.3). �

Next, we prove the second inclusion of our main result, Theorem 1.4.

Proposition 4.2. Assume Hypothesis 2.1 and let z ∈ C\[0,∞). Then,
[
(H1 − zI)−1 − (H2 − zI)−1

]
∈ B1

(
L2(R2)⊗ C

m
)
. (4.20)

In addition,
[
(H1,n − zI)−1 − (H2,n − zI)−1

]
∈ B1

(
L2(R2)⊗ Cm

)
, n ∈ N.

Proof. The standard resolvent identity and (2.36) imply

(H1 − zI)−1 − (H2 − zI)−1 = 2(H1 − zI)−1θ′Φ(H2 − zI)−1

= 2(H1 − zI)−1(H0 − zI)(H0 − zI)−1θ′Φ(H0 − zI)−1

× (H0 − zI)(H2 − zI)−1. (4.21)

By Lemma 4.1 (ii),

(H1 − z I)−1(H0 − zI) =
[
(H0 − z I)(H1 − z I)−1

]∗
∈ B

(
L2(R2)⊗ C

m
)
,

(H0 − z I)(H2 − z I)−1 ∈ B
(
L2(R2)⊗ C

m
)
, (4.22)

and hence it suffices to show that

(H0 − zI)−1θ′Φ(H0 − zI)−1 ∈ B1(L
2(R2)⊗ C

m). (4.23)

Since Φ ∈ Mm×m
(
L1(R)

)
, Corollary B.2 implies that |Φ|1/2 ∈ Mm×m

(
L2(R)

)
.

In addition, θ′ ∈ L1(R), and hence, |θ′|1/2|Φ|1/2 ∈ Mm×m
(
L2(R2)

)
. Thus, [39,

Theorem 4.1] implies

(H0 − zI)−1|θ′|1/2|Φ|1/2, |θ′|1/2|Φ|1/2(H0 − zI)−1 ∈ B2(L
2(R2)⊗ C

m), (4.24)

and hence (H0−zI)
−1θ′Φ(H0−zI)

−1 ∈ B1(L
2(R2)⊗C

m). The inclusion
[
(H1,n−

z I)−1 − (H2,n − z I)−1
]
∈ B1(L

2(R2)⊗ C
m), n ∈ N, is proved similarly. �

The following result shows that
[
(H1 − zI)−1 − (H2 − zI)−1

]
can be approxi-

mated in trace norm by
[
(H1,n − zI)−1 − (H2,n − zI)−1

]
as n→ ∞.
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Proposition 4.3. Assume Hypothesis 2.1 and let z ∈ C\R. Then

lim
n→∞

∥∥[(H2,n − z I)−1 − (H1,n − z I)−1
]

− [(H2 − z I)−1 − (H1 − z I)−1
]∥∥

B1(L2(R2)⊗Cm)
= 0.

(4.25)

Proof. An application of (2.36), (2.40) and the resolvent equation for the difference
of resolvents in (4.25) yields

[
(H2,n − z I)−1 − (H1,n − z I)−1

]
− [(H2 − z I)−1 − (H1 − z I)−1

]

= −2(H2,n − z I)−1
B

′
n(H1,n − z I)−1 + 2(H2 − z I)−1

B
′(H1 − z I)−1

= −2
[
(H2,n − z I)−1(H0 − z I)

]{
P n(H0 − z I)−1

B
′(H0 − z I)−1

P n

}

×
[
(H0 − z I)(H1,n − z I)−1

]
(4.26)

+ 2
[
(H2 − z I)−1(H0 − z I)

]{
(H0 − z I)−1

B
′(H0 − z I)−1

}

×
[
(H0 − z I)(H1 − z I)−1

]
, z ∈ C\[0,∞).

Since s-limn→∞ P n = I, inclusion (4.23) and Lemma B.5 imply that the sequence
P n(H0 − z I)−1B

′(H0 − z I)−1P n converges to (H0 − z I)−1B
′(H0 − z I)−1 in

B1

(
L2(R2) ⊗ Cm

)
-norm as n → ∞. Another application of Lemma B.5 proves

(4.25) since by Lemma 4.1 (ii),

s-lim
n→∞

[
(H0 − z I)(H1,n − z I)−1

]
=

[
(H0 − z I)(H1 − z I)−1

]
, (4.27)

s-lim
n→∞

[
(H2,n − z I)−1(H0 − z I)

]
=

[
(H2 − z I)−1(H0 − z I)

]
, (4.28)

z ∈ C\[0,∞), (4.29)

completing the proof. �

5. Proof of the Trace Formula (1.29) and its Implications for

Relations Between Spectral Shift Functions

It follows from the results in Sections 3 and 4 that both inclusion (1.27) and
(1.28) of Theorem 1.4 hold. In addition, one can approximate the left and right-
hand sides of the principle trace formula (1.29) in their respective trace norms. In
this section, we finally prove the equality (1.29) for the operators A−, A+ and Hj ,
j = 1, 2, thereby extending the result of [23, Theorem 2.2] to the family of operators
{A(t)}t∈R given by (2.5), which do not satisfy [23, Hypothesis 2.1]

We start by stating the principal trace formula for the operators A±,n and Hj,n,
j = 1, 2, n ∈ N, defined by (2.38) and (2.40).

Proposition 5.1. Assume Hypothesis 2.1 and let z ∈ C\[0,∞). For the operators
An(t), A±,n on H and the operators H1,n, H2,n on L2(R2) ⊗ Cm, obtained by
replacing A(t) by An(t) in (2.31), n ∈ N, one obtains,

trL2(R2)⊗Cm

(
(H2,n − z I)−1 − (H1,n − z I)−1

)

=
1

2z
trL2(R)⊗Cm

(
gz(A+,n)− gz(A−)

)
, n ∈ N.

(5.1)

Proof. By [35, Proposition 1.3] it suffices to show that
ˆ

R

‖B′
n(t)‖B1(L2(R)⊗Cm) dt <∞. (5.2)
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It follows from (2.37) that in our case it is sufficient to prove that
ˆ

R

‖Pnθ
′(t)ΦPn‖B1(L2(R)⊗Cm) dt <∞. (5.3)

Appealing to [39, Theorem 4.5] yields

‖Pnθ
′(t)ΦPn‖B1(L2(R)⊗Cm) ≤ |θ′(t)|‖Pn|Φ|

1/2‖B2(L2(R)⊗Cm)‖|Φ|
1/2Pn‖B2(L2(R)⊗Cm)

≤ C |θ′(t)|, (5.4)

completing the proof since θ′ ∈ L1(R) by Hypothesis 2.1. �

By Proposition 3.3, [g(A+) − g(A−)] ∈ B1

(
L2(R) ⊗ Cm

)
, and so by [44, Sec-

tion 8.11] we define the spectral shift function for the pair A−, A+ by setting

ξ(ν;A+, A−) := ξ(g(ν); g(A+), g(A−)), (5.5)

where ξ( · ; g(A+), g(A−)) is the spectral shift function for the pair g(A+), g(A−)
uniquely defined by the requirement ξ( · ; g(A+), g(A−)) ∈ L1(R) (cf., [44, Sec-
tions 9.1, 9.2]). It follows from definition (5.5) that the function ξ( · ;A+, A−) is lo-
cally integrable on R. The Krein–Lifshitz trace formula in its simplest form implies
that trL2(R)⊗Cm(g(A+) − g(A−)) =

´

[−1,1] ξ(s; g(A+), g(A−)) ds. Hence, changing

variables in the integral and using (5.5) results in

trL2(R)⊗Cm(g(A+)− g(A−)) =

ˆ

R

ξ(ν;A+, A−)g
′(ν) dν. (5.6)

For convenience of the reader we now recall the Besov space B1
∞1(R). There are

several equivalent definitions of this space (see, e.g., [29]). Using the difference op-
erator ∆t defined by (∆th)(s) = h(s+ t)−h(t), h ∈ C(R), a convenient definition
for our purposes reads as follows,

B1
∞,1(R) =

{
h′ ∈ Cub(R)

∣∣∣∣ sup
t∈R

|h′(t)|+

ˆ

R

sups∈R ‖(∆2
th)(s)‖

|t|2
dt <∞

}
, (5.7)

Here the notation Cub(R) stands for bounded uniformly continuous functions on R.
For every h : R → R such that h ◦ g−1 ∈ B1

∞1(R) (in particular, if h ◦ g−1 ∈
C2[−1, 1]) it follows from [32, Theorem 4] (see also [44, Lemma 8.11.1]) that
[h(A+)− h(A−)] ∈ B1

(
L2(R)⊗ Cm

)
, and

trL2(R)⊗Cm(h(A+)− h(A−)) = trL2(R)⊗Cm(h ◦ g−1(g(A+))− h ◦ g−1(g(A−)))

=

ˆ

R

ξ(s; g(A+), g(A−)) d(h ◦ g−1(s))

(5.5)
=

ˆ

R

ξ(ν;A+, A−)h
′(ν) dν. (5.8)

We note that the last integral above is finite. Indeed, the definition formula (5.5)
tells us that ξ(·;A+, A−) is integrable with the weight ν−3; on the other hand, since
the derivative (h ◦ g−1)′ is bounded, it also implies that the derivative h′ decays as
ν−3 at ±∞. That is, the last integral in (5.8) is convergent.

The following proposition presents a proof of the fact that the spectral shift
function for the pair (A+, A−) is constant.

Proposition 5.2. Let Φ ∈ Mm×m
(
W 1,1(R) ∩ Cb(R)

)
, A− = D ⊗ Im, A+ =

A− +Φ. Then ξ(ν;A+, A−) = C for a.e. ν ∈ R.
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Proof. Let h be such that h′ is a Schwartz function. Then h ◦ g−1 ∈ C2[−1, 1], and
hence by (5.8), [h(A+)− h(A−)] ∈ B1

(
L2(R)⊗ Cm

)
. We claim that

trL2(R)⊗Cm(h(A+)−h(A−)) = trL2(R)⊗Cm(h(A++α)−h(A−+α)), α ∈ R. (5.9)

As D = −id/dx on dom(D) = W 1,2(R) is the generator of translations in L2(R),
introducing Ψ0(x) = e−iαx ⊗ Im, α ∈ R, yields A− + α = Ψ0A−Ψ0 and hence,

h(A− + α) = Ψ0h(A−)Ψ
∗
0, h(A+ + α) = Ψ0h(A+)Ψ

∗
0. (5.10)

Consequently,

trL2(R)⊗Cm(h(A+ + α)− h(A− + α)) = trL2(R)⊗Cm(Ψ0[h(A+)− h(A−)]Ψ
∗
0)

= trL2(R)⊗Cm(h(A+)− h(A−)), (5.11)

by the unitary invariance of trL2(R)⊗Cm(·), proves (5.9). Since by (5.8) the equality

trL2(R)⊗Cm(h(A+ + α)− h(A− + α)) =

ˆ

R

h′(ν + α)ξ(ν;A+, A−) dν

=

ˆ

R

h′(ν)ξ(ν − α;A+, A−) dν

(5.12)

holds, one obtains
´

R
h′(ν)[ξ(ν − α;A+, A−)− ξ(ν;A+, A−)] dν = 0. Since h′ is an

arbitrary Schwartz function, it follows by the Lemma of Du Bois-Reymond that
ξ(ν − α;A+, A−) − ξ(ν;A+, A−) = 0 for a.e. ν ∈ R. Since α ∈ R was arbitrary,
ξ( · ;A+, A−) is constant a.e. on R. �

Next, we present the main result of this paper. It is an analog of [23, Theorem 2.2]
and [35, Proposition 1.3] for the examples studied here. We remark again that the
hypotheses in these theorems in the cited two papers do not apply to our examples,
nevertheless, we obtain the same conclusion.

Theorem 5.3. Assume Hypothesis 2.1 and let z ∈ C\[0,∞). Then [gz(A+) −
gz(A−)] ∈ B1(L

2(R)⊗ Cm) and the following trace formula holds,

trL2(R2)⊗Cm((H2 − z I)−1 − (H1 − z, I)−1) =
1

2z
trL2(R)⊗Cm(gz(A+)− gz(A−)).

(5.13)

Proof. Using the result of Proposition 3.3 and following the proof of [23, Lemma 7.3],
one can prove that [gz(A+)− gz(A−)] ∈ B1(L

2(R) ⊗ Cm) for all z ∈ C\[0,∞) and
that the function z 7→ 1

2z tr(gz(A+)−gz(A−)) is analytic on C\[0,∞). Writing (see,
e.g., [42, Exercise 7.8])

(
(H2 − z I)−1 − (H1 − z I)−1

)
= (H2 − z0 I)(H2 − z I)−1

×
(
(H2 − z0 I)

−1 − (H1 − z0 I)
−1

)
(H1 − z I)−1(H1 − z0 I)

−1,
(5.14)

one obtains that the function on z 7→ tr
(
(H2 − z I)−1 − (H1 − z I)−1

)
is also

analytic on C\[0,∞). By analytic continuation it is sufficient to prove the principle
trace formula (1.29) for z < 0. For z < 0, Proposition 5.1 implies

trL2(R2)⊗Cm

(
(H2,n − z I)−1 − (H1,n − z I)−1

)

=
1

2z
trL2(R)⊗Cm(gz(A+,n)− gz(A−)), n ∈ N.

(5.15)

An application of Theorem 3.5 then implies that the right-hand side converges to
1
2z trL2(R)⊗Cm

(
gz(A+) − gz(A−)

)
, whereas by Proposition 4.3 the left-hand side

converges to trL2(R2)⊗Cm

(
(H2 − z I)−1 − (H1 − z I)−1

)
, implying (5.13). �
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Proposition 4.2 implies that the spectral shift function ξ( · ;H2,H1) for the pair
(H2,H1) is well-defined and satisfies

ξ( · ;H2,H1) ∈ L1
(
R; (λ2 + 1)−1 dλ

)
. (5.16)

Since Hj ≥ 0, j = 1, 2, one uniquely introduces ξ( · ;H2,H1) by requiring that

ξ(λ;H2,H1) = 0, λ < 0. (5.17)

Having established the principle trace formula (1.29), we now prove that the
spectral shift functions ξ( · ;A+, A−) and ξ( · ;H2,H1) coincide.

Theorem 5.4. Assume Hypothesis 2.1. Then, for (Lebesgue ) a.e. λ > 0 and
a.e. ν ∈ R,

ξ(λ;H2,H1) = ξ(ν;A+, A−) + C, (5.18)

with C the constant in Proposition 5.2.

Proof. Following the arguments in [23, Sections 7, 8] one can obtain the Pushnitski-
type formula

ξ(λ;H2,H1) =
1

π

ˆ λ1/2

−λ1/2

ξ(ν;A+, A−) dν

(λ− ν2)1/2

=
C

π

ˆ λ1/2

−λ1/2

dν

(λ− ν2)1/2
= C for a.e. λ > 0,

(5.19)

employing the a.e. constancy of ξ(ν;A+, A−) established in Proposition 5.2 in the
second line of (5.19). To obtain some degree of completeness we sketch the principal
steps in the derivation of the first equality in (5.19): One starts with

trH
(
gz(A+)− gz(A−)

)
= −z

ˆ

R

ξ(ν;A+, A−) dν

(ν2 − z)3/2
, z ∈ C\[0,∞). (5.20)

The trace identity (5.13) then yields
ˆ

[0,∞)

ξ(λ;H2,H1) dλ

(λ − z)2
=

1

2

ˆ

R

ξ(ν;A+, A−) dν

(ν2 − z)3/2
, z ∈ C\[0,∞), (5.21)

and hence,
ˆ

[0,∞)

ξ(λ;H2,H1)

(
d

dz
(λ− z)−1

)
dλ =

ˆ

R

ξ(ν;A+, A−)

(
d

dz
(ν2 − z)−1/2

)
dν,

z ∈ C\[0,∞). (5.22)

Integrating (5.22) with respect to z from a fixed point z0 ∈ (−∞, 0) to z ∈ C\R
along a straight line connecting z0 and z then results in
ˆ

[0,∞)

ξ(λ;H2,H1)

(
1

λ− z
−

1

λ− z0

)
dλ

=

ˆ

R

ξ(ν;A+, A−)
[
(ν2 − z)−1/2 − (ν2 − z0)

−1/2
]
dν, z ∈ C\[0,∞).

(5.23)

Applying the Stieltjes inversion formula (cf., e.g., [1], [42, Theorem B.3]) to
(5.23) then yields

ξ(λ;H2,H1) = lim
ε↓0

1

π

ˆ

[0,∞)

ξ(λ′;H2,H1)Im
(
(λ′ − λ)− iε)−1

)
dλ′
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= lim
ε↓0

1

π

ˆ

R

ξ(ν;A+, A−)Im
(
(ν2 − λ− iε)−1/2

)
dν

=
1

π

ˆ λ1/2

−λ1/2

ξ(ν;A+, A−) dν

(λ− ν2)1/2

=
C

π

ˆ λ1/2

−λ1/2

dν

(λ − ν2)1/2

= C for a.e. λ > 0. (5.24)

�

6. Computation of the Spectral Shift Function for the Pair (A−, A+)

By Proposition 5.2, the spectral shift function ξ( · ;A+, A−) is constant a.e. on
R. The principal goal in this section is to compute this constant. By Theorem 5.4
this also yields the value of ξ( · ;H2,H1) a.e. on (0,∞).

In order to calculate the precise value of the constant ξ( · ;A+, A−) we consider
the auxiliary function arctan(·). Since arctan(·) ◦ g−1 ∈ C2([−1, 1]), it follows from
the arguments preceding (5.8) that

[arctan(A+)− arctan(A−)] ∈ B1

(
L2(R)⊗ C

m
)
, (6.1)

and that for a.e. ν ∈ R,

trL2(R)⊗Cm(arctan(A+)− arctan(A−)) =

ˆ

R

ξ(ν;A+, A−)

ν2 + 1
dν = πξ(ν;A+, A−).

(6.2)
Thus, our task is computing the value of the right-hand side in (6.2).

We temporarily assume that m = 1. Given φ ∈ W 1,1(R) ∩ Cb(R), our aim is to
represent the operator [arctan(A+)− arctan(A−)] as an integral operator on L2(R)
(cf. (6.26)). The unitary equivalence in (2.10) implies

arctan(A+)− arctan(A−) = ψ arctan(A−)ψ − arctanA−

= ψF−1 arctan(·)Fψ −F−1 arctan(·)F ,
(6.3)

where F denotes the Fourier transform on L2(R),

(Fη)(s) = (2π)−1/2 s-lim
T→∞

ˆ

[−T,T ]

e−isxη(x) dx, η ∈ L2(R). (6.4)

Fix η ∈ L2(R) ∩ L1(R), then

(F−1 arctan(·)Fη)(x) = (2π)−1

ˆ

R2

η(x1) arctan(s0)e
−is0(x1−x) ds0dx1. (6.5)

We would like to identify the quantity on the right-hand side of (6.5) with the
integral

(2π)−1/2

ˆ

R

η(s1)(F arctan)(s1 − s) ds1. (6.6)

However, this identification is not possible due to the fact that

(F arctan)(s) =
1

is
F
( 1

1 + x2
)
(s) =

(π
2

)1/2 1

is
e−|s|, (6.7)
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that is, the function (F arctan)(s1 − s) is discontinuous at the point s1 − s = 0.
Thus, we have to replace (6.6) by the principal value

1

2i
lim
ε→0

ˆ

|s1−s|>ε

e−|s1−s|η(s1)

s1 − s
ds1. (6.8)

The identification of the right-hand sides of (6.5) and (6.8) will be done in Lemma
6.1 below.

The next lemma is crucial for our representation of the operator arctan(A+) −
arctan(A−) as an integral operator.

Lemma 6.1. Define D as in (2.4) and write p.v. e
−|x|

x for the principle value inte-
gral as a tempered distribution (see appendix B). Then,

(arctanD)(η) = −
1

2i
p.v.

e−|x|

x
∗ η, η ∈ S(R). (6.9)

Proof. For every t > 0, consider the function Qt : R → R defined by

Qt(x) =
x

t2 + x2
e−|x|, x ∈ R. (6.10)

It is clear that Qt ∈ L2(R), t > 0, and hence the Fourier transform of Qt, t > 0, is
also square-integrable. One can consider the function Qt as a tempered distribution

[40, Section 3.3]. Next, we claim that limt↓0Qt = p.v. e
−|x|

x in the sense of tempered

distributions, that is, limt↓0Qt(η) = p.v. e
−|x|

x (η), η ∈ S(R) (see also a similar,
but slightly different result in [19, Proposition 3.1]). Indeed, one can write Qt =
1
2

(
1

x+it+
1

x−it

)
e−|x|, and by the Sokhotski–Plemelj formulas (see, e.g., [22, p. 33–34])

obtain for every η ∈ S(R),

lim
t↓0

ˆ

R

1

x+ it
e−|x|η(x) dx = −iπη(0) + p.v.

ˆ

R

e−|x|η(x)

x
dx, (6.11)

and

lim
t↓0

ˆ

R

1

x− it
e−|x|η(x) dx = +iπη(0) + p.v.

ˆ

R

e−|x|η(x)

x
dx, (6.12)

that is,

lim
t↓0

Qt(η) = lim
t↓0

ˆ

R

1

x+ it
e−|x|η(x) dx + lim

t↓0

ˆ

R

1

x− it
e−|x|η(x) dx

= p.v.
e−|x|

x
(η), η ∈ S(R).

(6.13)

Next, standard properties of the Fourier transform imply

F(Qt)(s) = F

(
x

t2 + x2
e−|x|

)
(s) =

1

(2π)1/2

(
F

(
x

t2 + x2

)
∗ F(e−|x|)

)
(s)

= i
1

(2π)1/2

((
F(

1

t2 + x2
)

)′

∗ F(e−|x|)

)
(s)

= −i
1

(2π)1/2

(
(e−t|x| sgn(x)) ∗

1

1 + x2

)
(s). (6.14)

Lebesgue’s dominated convergence theorem implies

lim
t↓0

F(Qt)(s) = −i
1

(2π)1/2
lim
t↓0

ˆ

R

e−t|x| sgn(x)
1

1 + (x− s)2
dx (6.15)
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= −i
1

(2π)1/2

ˆ

R

sgn(x)
1

1 + (x − s)2
dx = −

2i

(2π)1/2
arctan (s).

In addition, since the Fourier transform is a continuous map of S′(R) onto itself

(see, e.g., [38, Theorem 7.15]), F
(
p.v. e

−|x|

x

)
= F(limt↓0Qt) = limt→0 F(Qt), in

S′(R), or equivalently,

F

(
p.v.

e−|x|

x

)
(η) =

1

(2πi)1/2

ˆ

R

(
(e−t|x| sgn(x)) ∗ (1 + x2)−1

)
(s)η(s) ds, η ∈ S(R).

(6.16)
Since

∥∥(e−t|·| sgn(·)) ∗ (1 + | · |2)−1
∥∥
∞

≤
∥∥(1 + | · |2)−1

∥∥
1

∥∥e−t|·| sgn(·)
∥∥
∞

≤ π (6.17)

(see, e.g., [40, Section 1.1, Theorem 1.3]), and η ∈ S(R), one infers that the inte-
grand ((e−t|x| sgn(x)) ∗ (1 + x2)−1)(·)η(·) is dominated by the integrable function
πη(·). Hence, by (6.15), applying once again Lebesgue’s dominated convergence
theorem, one arrives at

F

(
p.v.

e−|x|

x

)
(η) = −

2i

(2π)1/2

ˆ

R

arctan(s)η(s) ds, (6.18)

that is, the distribution F
(
p.v. e

−|x|

x

)
is, in fact, the function − 2i

(2π)1/2
arctan(·).

Thus,

F−1 arctan(·) = −
(2π)1/2

2i
p.v.

e−|x|

x
. (6.19)

Finally, for an arbitrary η ∈ S(R) by [38, Theorem 7.19] one obtains

(arctan(D)η)(s) = (F−1 arctan(·)Fη)(s) = F−1(arctan ·Fη)(s) (6.20)

=
1

(2π)1/2
(
η ∗ F−1 arctan

)
(s)

(6.19)
= −

1

2i

(
η ∗ p.v.

e−|x|

x

)
(s),

completing the proof. �

For the special case where the operator D is perturbed by a Schwartz function
φ ∈ S(R), we also state the following result:

Corollary 6.2. Let φ ∈ S(R). Then the operator A+ = D + φ, dom(A+) =
dom(D) =W 1,2(R), in L2(R) satisfies

(arctanA+)η = −
1

2i
ψ p.v.

e−|x|

x
∗ (ψη), η ∈ S(R). (6.21)

Proof. Since φ is a Schwartz test function, ψ(x) = exp(−i
´ x

0
φ(x′) dx′) is infinitely

differentiable and ψη ∈ S(R) for every η ∈ S(R). Hence, one can write

(arctanA+)η = ψ arctan(D)ψ η = ψ arctan(D)(ψη), (6.22)

and Lemma 6.1 completes the proof. �

Proposition 6.3. Let φ ∈ S(R) and introduce A− = D, A+ = A−+φ, dom(A±) =
W 1,2(R), in L2(R). Then,

[arctan(A+)− arctan(A−)] ∈ B1

(
L2(R)⊗ C

m
)
, (6.23)

and

trL2(R)⊗Cm(arctan(A+)− arctan(A−)) =
1

2

ˆ

R

φ(x) dx. (6.24)
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Proof. The claim (6.23) has been discussed already in the context of (6.1). To
prove (6.24), let η ∈ S(R). Combining Lemma 6.1 and Corollary 6.2 one infers,

((arctan(A+)− arctan(A−))η)(y)

= −
1

2i

(
ψ p.v.

e−|x|

x
∗ (ψη)(y)− p.v.

e−|x|

x
∗ (η)(y)

)

= −
1

2i
lim
ε↓0

ˆ

|x|>ε

(
ψ(y)ψ(y − x) − 1

)e−|x|

x
η(y − x) dx

= −
1

2i
lim
ε↓0

ˆ

|y−x|>ε

(
ψ(y)− ψ(x)

)
ψ(x)

e−|y−x|

y − x
η(x) dx

= −
1

2i

ˆ

R

ψ(x)
ψ(y)− ψ(x)

y − x
e−|y−x|η(x) dx, (6.25)

where the last equality is due to continuity of ψ(x) ψ(y)−ψ(x)y−x e−|y−x|η(x) for all

x ∈ R (given y ∈ R).
Next, we will show that the preceding equality can be extended to arbitrary

η ∈ L2(R) and thus

(
(arctan(A+)− arctan(A−))η

)
(y) = −

1

2i

ˆ

R

ψ(x)
ψ(y)− ψ(x)

y − x
e−|y−x|η(x) dx

(6.26)
holds. Since S(R) is dense in L2(R), for every η ∈ L2(R) there exists a sequence
{ηn}

∞
n=1 ⊂ S(R), such that ‖ηn − η‖2 −→

n→∞
0. On one hand,

‖(arctan(A+)− arctan(A−))(ηn − η)‖2 −→
n→∞

0, (6.27)

since [arctan(A+) − arctan(A−)] ∈ B
(
L2(R)

)
. On the other hand, we claim that

the integral operator K in L2(R) with integral kernel

K(x, y) = −
1

2i
ψ(x)

ψ(y)− ψ(x)

y − x
e−|x−y| (6.28)

is a bounded operator on L2(R). By [5, Equation (2.2)] this will follow from the
estimates

‖K( · , · )‖L∞(R;dx;L1(R;dy)) <∞, ‖K( · , · )‖L∞(R;dy,L1(R;dx)) <∞ (6.29)

(Bochner norms are used in this context). Since |K(x, y)| = 1
2

∣∣ψ(y)−ψ(x)
y−x

∣∣e−|y−x|, it

is sufficient to estimate one of the two norms in (6.29). We estimate the norm of
‖K( · , · )‖L∞(R;dx;L1(R;dy)) next:

‖K( · , · )‖L∞(R;dx;L1(R;dy)) =
1

2
sup
x∈R

(
ˆ

R

∣∣∣∣
ψ(y)− ψ(x)

y − x

∣∣∣∣e
−|y−x| dy

)

≤
1

2
sup
x∈R

(
ˆ

R

sup
(x,y)∈R2

∣∣∣∣
ψ(y)− ψ(x)

y − x

∣∣∣∣e
−|y−x| dy

)

≤
1

2
‖ψ′‖∞ sup

x∈R

(
ˆ

R

e−|y−x| dy

)
≤ ‖ψ′‖∞ <∞. (6.30)

Hence indeed, K ∈ B
(
L2(R)

)
and Kηn −→

n→∞
Kη in L2(R). Thus, equality (6.26)

holds for all η ∈ L2(R). Moreover, since the integral kernel K( · , · ) is continuous,
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invoking (6.23) implies

trL2(R)⊗Cm(arctan(A+)− arctan(A−)) =

ˆ

R

K(x, x) dx

= −
1

2i

ˆ

R

ψ′(x)ψ(x) dx =
1

2

ˆ

R

φ(x) dx,

(6.31)

completing the proof. �

Next, we proceed to the case of arbitrary m ∈ N.

Proposition 6.4. Let Φ ∈ Mm×m (S(R)) and consider A− = D ⊗ Im, A+ =
A− +Φ, dom(A±) =W 1,2(R)⊗ C

m, in L2(R)⊗ C
m, m ∈ N. Then,

trL2(R)⊗Cm(arctan(A+)− arctan(A−)) =
1

2

ˆ

R

trCm(Φ(x)) dx. (6.32)

Proof. Employing the unitary equivalence in (2.20), one writes

Ψ( · , x0) arctan(A−)Ψ( · , x0)
∗

=
m∑

j,k=1

Pj,k ⊗Ψj,k( · , x0) arctan(D)
m∑

ℓ,r=1

Pℓ,r ⊗Ψr,ℓ( · , x0)

=

m∑

j,k,ℓ,r=1

Pj,kPℓ,r ⊗Ψj,k( · , x0) arctan(D)Ψr,ℓ( · , x0)

=

m∑

j,ℓ,r=1

Pj,r ⊗Ψj,ℓ( · , x0) arctan(D)Ψr,ℓ( · , x0), (6.33)

utilizing Pj,kPℓ,r = Pj,rδk,ℓ, j, k, ℓ, r = 1, . . . ,m (cf. (B.2)). Thus,

Ψ(, · , x0) arctan(A−)Ψ( · , x0) =

m∑

k,ℓ=1

Pk,ℓ ⊗

m∑

j=1

Ψk,j( · , x0) arctan(D)Ψℓ,j( · , x0).

(6.34)
Hence, the operator [Ψ( · , x0) arctan(A−)Ψ( · , x0)

∗ − arctan(A−)] is an operator-
valued block matrix with (k, k)-th entry given by

m∑

j=1

Ψk,j( · , x0) arctan(D)Ψk,j( · , x0)− arctan(D)

=

m∑

j=1

Ψk,j( · , x0)F
−1 arctan(·)FΨk,j( · , x0)−F−1 arctan(·)F .

(6.35)

Thus,

trL2(R)⊗Cm(arctan(A+)− arctan(A−)) (6.36)

=

m∑

k=1

trL2(R)

( m∑

j=1

Ψk,j( · , x0)F
−1 arctan(·)FΨk,j( · , x0)−F−1 arctan(·)F

)
.

Fix k = 1, . . . ,m. Since Ψ( · , x0) is infinitely differentiable (cf. Remark 2.3 (i)), it
follows that Ψj,k( · , x0)η ∈ S(R) for every η ∈ S(R), j, k = 1, . . . ,m, and hence by
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Lemma 6.1 and Corollary 6.2,
( m∑

j=1

Ψk,j( · , x0)F arctan(·)F−1Ψk,j( · , x0)−F arctan(·)F−1

)
η(x)

= lim
ε↓0

( m∑

j=1

(−1)

2i

ˆ

|x−x1|>ε

Ψk,j(x, x0)Ψk,j(x1, x0)η(x1)(x − x1)
−1e−|x−x1| dx1

+
1

2i

ˆ

|x−x1|>ε

(x − x1)
−1e−|x−x1|η(x1) dx1

)
, η ∈ S(R). (6.37)

Since the matrix Ψ is unitary,
∑m

j=1 Ψk,j( · , x0)Ψℓ,j( · , x0) = δk,ℓ, and hence
( m∑

j=1

Ψk,j( · , x0)F arctan(·)F−1Ψk,j( · , x0)−F arctan(·)F−1

)
η(x)

= lim
ε↓0

( m∑

j=1

(−1)

2i

ˆ

|x−x1|>ε

Ψk,j(x, x0)Ψk,j(x1, x0)η(x1)(x− x1)
−1e−|x−x1| dx1

+

m∑

j=1

1

2i

ˆ

|x−x1|>ε

Ψk,j(x1, x0)Ψk,j(x1, x0)(x− x1)
−1e−|x−x1|η(x1) dx1

)

= −
m∑

j=1

1

2i

ˆ

R

Ψk,j(x, x0)−Ψk,j(x1, x0)

x− x1
Ψk,j(x1, x0)η(x1)e

−|x−x1| dx1. (6.38)

Arguing as in the proof of equality (6.26) one concludes
( m∑

j=1

Ψk,j( · , x0)F arctan(·)F−1Ψk,j( · , x0)−F arctan(·)F−1

)
η(x)

= −

m∑

j=1

1

2i

ˆ

R

Ψk,j(x, x0)−Ψk,j(x1, x0)

x− x1
Ψk,j(x1, x0)η(x1)e

−|x−x1| dx1

(6.39)

for arbitrary η ∈ L2(R). Since the function Ψj,k( · , x0) ∈ C∞(R), it follows that
the integral kernel

Kk(x, x1) =
1

2i

m∑

j=1

Ψk,j(x, x0)−Ψk,j(x1, x0)

x− x1
Ψk,j(x1, x0)e

−|x−x1| (6.40)

is continuous and Kk(x, x) =
1
2i

∑m
j=1 Ψ

′
k,j(x, x0)Ψk,j(x, x0). Hence,

trL2(R)

( m∑

j=1

Ψk,j( · , x0)F arctan(·)F−1Ψk,j( · , x0)−F arctan(·)F−1

)
(6.41)

=

ˆ

R

Kk(x, x) dx = −
1

2i

m∑

j=1

ˆ

R

Ψ′
k,j(x, x0)Ψk,j(x, x0) dx

(2.11)
=

1

2

ˆ

R

Φk,k(x) dx.

Finally, by (6.36) one obtains

trL2(R)⊗Cm(arctan(A+)− arctan(A−)) =
1

2

m∑

k=1

ˆ

R

Φk,k(x)dx =
1

2

ˆ

R

trCm(Φ(x))dx.

(6.42)
�
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By Proposition 6.4 and equality (6.2),

ξ(ν;A+, A−) =
1

2π

ˆ

R

trCm(Φ(x)) dx for a.e. ν ∈ R, (6.43)

as soon as Φ ∈ Mm×m (S(R)). The following theorem extends this result to an
arbitrary Φ ∈Mm×m

(
W 1,1(R) ∩ Cb(R)

)
.

Theorem 6.5. Assume that Φ ∈Mm×m
(
W 1,1(R) ∩ Cb(R)

)
, m ∈ N. Then,

ξ(ν;A+, A−) =
1

2π

ˆ

R

trCm(Φ(x)) dx for a.e. ν ∈ R. (6.44)

Proof. Since Φ ∈ Mm×m
(
W 1,1(R)

)
, one concludes the existence of a sequence

{Φn}
∞
n=1 ⊂Mm×m (S(R)) such that ‖Φn−Φ‖1,1 −→

n→∞
0. By Lemma 2.2, A−+Φn =

Ψn( · , x0)A−Ψn( · , x0)
∗, and

A− +Φ = A− +Φn + (Φ− Φn)

= Ψn( · , x0)
(
A− +Ψn( · , x0)

∗(Φ− Φn)Ψn( · , x0)
)
Ψn( · , x0)

∗,
(6.45)

that is, A−+Φ is unitarily equivalent to A−+Ψn( · , x0)
∗(Φ−Φn)Ψn( · , x0). Hence,

applying Proposition 3.3,

|trL2(R)⊗Cm

(
g(A− +Φ)− g(A−)

)
− trL2(R)⊗Cm

(
g(A− +Φn)− g(A−)

)
|

≤ ‖g(A− +Φ)− g(A− +Φn)‖B1(L2(R)⊗Cm)

= ‖g(A− +Ψn( · , x0)
∗(Φ− Φn)Ψn( · , x0))− g(A−)‖B1(L2(R)⊗Cm)

≤ C ‖Ψn( · , x0)
∗(Φ− Φn)Ψn( · , x0)‖

≤ C ‖Φ− Φn‖1,1 −→
n→∞

0, (6.46)

that is,

trL2(R)⊗Cm

(
g(A− +Φ)− g(A−)

)
= lim

n→∞
trL2(R)⊗Cm

(
g(A− +Φn)− g(A−)

)
. (6.47)

Since Φn ∈Mm×m (S(R)), n ∈ N, equalities (5.6) and (6.43) imply that

trL2(R)⊗Cm

(
g(A− +Φ)− g(A−)

)
= lim

n→∞
ξ( · ;A+, A−)

(
g(+∞)− g(−∞)

)

= lim
n→∞

1

π

ˆ

R

trCm(Φn(x)) dx, (6.48)

Moreover, the convergence ‖Φn−Φ‖1,1 −→
n→∞

0 implies that ‖Φn−Φ‖1 −→
n→∞

0, and

thus,
´

R
trCm(Φn(x)) dx −→

n→∞

´

R
trCm(Φ(x)) dx, that is,

trL2(R)⊗Cm

(
g(A− +Φ)− g(A−)

)
=

1

π

ˆ

R

trCm(Φ(x)) dx. (6.49)

Using once more equality (5.6), one concludes

ξ(ν;A+, A−) =
1

2π

ˆ

R

trCm(Φ(x)) dx for a.e. ν ∈ R, (6.50)

finishing the proof. �

Combining Theorems 6.5 and 5.4, one arrives at the following fact.
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Corollary 6.6. Assume that Φ ∈Mm×m
(
W 1,1(R) ∩ Cb(R)

)
, m ∈ N. Then,

ξ(λ;H2,H1) =
1

2π

ˆ

R

trCm(Φ(x)) dx for a.e. λ > 0. (6.51)

In addition Theorem 6.5 and equality (5.8) implies the following result.

Corollary 6.7. Assume that Φ ∈Mm×m
(
W 1,1(R) ∩ Cb(R)

)
, m ∈ N. Then,

trL2(R)⊗Cm(gz(A+)− gz(A−)) =
1

π

ˆ

R

trCm(Φ(x)) dx, z ∈ C\[0,∞). (6.52)

Remark 6.8. By unitary equivalence (see Lemma 2.2) and unitary invariance of the
trace trL2(R)⊗Cm(·), one concludes

trL2(R)⊗Cm([Ψ( · , x0), g(A−)]) =
1

π

ˆ

R

trCm(Φ(x)) dx. (6.53)

So, if the matrix Φ ∈Mm×m
(
W 1,1(R) ∩Cb(R)

)
is such that

´

R
trCm(Φ(x)) dx 6= 0,

[Ψ( · , x0), g(A−)] represents an explicit example of a commutator with nonzero
trace. ⋄

7. The Witten Index

In this section we briefly discuss the Witten index for the model operator DA

introduced in (2.27) following the detailed treatment in [14].
Firstly we recall the definition of the resolvent regularized Witten index (see [7])

Definition 7.1. Let T be a closed, linear, densely defined operator in H and suppose
that for some (and hence for all ) z ∈ C\[0,∞),

[
(T ∗T − zIH)−1 − (TT ∗ − zIH)−1

]
∈ B1(H). (7.1)

Then introducing the resolvent regularization

∆r(T, λ) = (−λ) trH
(
(T ∗T − λIH)−1 − (TT ∗ − λIH)−1

)
, λ < 0, (7.2)

the resolvent regularized Witten index Wr(T ) of T is defined by

Wr(T ) = lim
λ↑0

∆r(T, λ), (7.3)

whenever this limit exists.

Here, in obvious notation, the subscript “r” indicates the use of the resolvent
regularization (for a semigroup or heat kernel regularization we refer to [14]). Before
proceeding to compute the Witten index for the model operator DA, we recall
the known consistency between the Fredholm and Witten index whenever T is
Fredholm:

Theorem 7.2. ([7], [24].) Suppose that T is a Fredholm operator in H. If (7.1)
holds, then the resolvent regularized Witten index Wr(T ) exists, equals the Fredholm
index, index(T ), of T , and

Wr(T ) = index(T ) = ξ(0+;TT
∗, T ∗T ). (7.4)

Remark 7.3. Following the proof of [14, Theorem 2.6] one can show that the op-
erator D

A
is Fredholm if and only if the operators A± are boundedly invertible.

Therefore, the fact that σ(A−) = σ(A+) = R implies that the operator DA is not
Fredholm. Furthermore, σess(DA) = C (cf. [14, Corollary 2.8]). ⋄
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Although D
A

is not a Fredholm operator in L2(R2), we can determine the
resolvent regularized Witten index of DA (generalizing [10]) as follows:

Theorem 7.4. Assume Hypothesis 2.1. Then Wr(DA
) exists and equals

Wr(DA) = ξ(0+;H2,H1) = ξ(0;A+, A−) =
1

2π

ˆ

R

trCm(Φ(x)) dx (7.5)

Proof. The equality ξ(0+;H2,H1) = ξ(0;A+, A−) follows immediately from Theo-
rem 5.4. By Theorem 6.5 we know that ξ(·;A+, A−) is constant and for a.e. ν ∈ R,

ξ(ν;A+, A−) =
1

2π

ˆ

R

trCm(Φ(x)) dx. (7.6)

Thus, combining the trace formula (1.29) and (5.8) one obtains the equality

z trL2(R2)⊗Cm

(
(H2 − z I)−1 − (H1 − z I)−1

)

=
1

2
trL2(R)⊗Cm(gz(A+)− gz(A−)) = −

z

2

ˆ

R

ξ(ν;A+, A−)

(ν2 − z)3/2
dν

= ξ(0;A+, A−). (7.7)

Hence, by definition of the regularized Witten index one infers that

Wr(DA) = lim
λ↑0

z trL2(R2)⊗Cm

(
(H2 − z I)−1 − (H1 − z I)−1

)

= ξ(0;A+, A−) =
1

2π

ˆ

R

trCm(Φ(x)) dx, (7.8)

finishing the proof. �

Appendix A. Connections to the Theory of Fredholm Modules

In this appendix we use the terminology of [15]. For the function ψ on R the
study of the commutator [sgn(D), ψ] acting in the Hilbert space L2(R), where

D = −id/dx, dom(D) =W 1,2(R), (A.1)

is relevant to the discussion of Fredholm modules in [18]. The function g(t) =
t(1 + t2)−1/2 is a “smoothed” sign function and it is shown in [15, Section 2.7]
that the operators sgn(D) and g(D) define Fredholm modules for the spectral triple
(C∞

0 (R), L2(R), D), which lie in the same Kasparov class. However, our results show
that the trace class properties of the commutator [sgn(D), ψ] differ dramatically
from the trace class properties of the commutator [g(D), ψ], that is, the following
result holds:

Proposition A.1. Let f ∈ W 1,1(R) ∩Cb(R) and assume that
(
ˆ ∞

0

f(x) dx −

ˆ −∞

0

f(x) dx

)
/∈ 2πZ. (A.2)

Then for the function ψ(x) = exp(−i
´ x

0 f(y) dy), the commutator of ψ and g(D) is

trace class, [ψ, g(D)] ∈ B1

(
L2(R)

)
, while that of ψ and sgn(D) is not, [ψ, sgn(D)] /∈

B1

(
L2(R)

)
.

Our proof is based on Peller’s theorem [30] (see also [18, Theorem IV.3.4]). The
required results in [30] and [18, Theorem IV.3.4] are stated for the circle, and so a
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preparatory lemma, connecting the commutators [sgn(D), ψ] and [sgn(D0), ψ◦γ
−1],

is required. Here D0 in L2(T) is defined by

D0 = −id/dx, dom(D0) =
{
g ∈ L2(T)

∣∣ g ∈ AC([0, 2π]); g(0+) = g(2π−)
}
,

(A.3)
and γ denotes the Cayley transform γ(x) = (x− i)(x+ i)−1, x ∈ R.

Lemma A.2. The commutator [ψ, sgn(D)] belongs to a symmetric ideal E (not
necessarily proper) in B(L2(R)) if and only if [ψ ◦ γ−1, sgn(D0)] belongs to the
symmetric ideal E in B(L2(T)). In particular, the operator [ψ, sgn(D)] is bounded
in L2(R) if and only if [ψ ◦ γ−1, sgn(D0)] is bounded in L2(T).

Proof. Following [27, p. 252], one considers the operator U : L2(T) → L2(R) defined
by setting (Uf)(x) = π−1/2(x+ i)−1f(γ(x)), x ∈ R. This operator is an isometry
from L2(T) onto L2(R). It follows from the “Lemma about the image of H2”in [27,
p. 253] and the Paley–Wiener Theorem in [27, p. 254] that the isometry U maps
the Hardy space H2(T) onto the set H2

Π, where H
2
Π = F−1(χ[0,∞)L

2(R)). For the

operator D0 in L2(T) one notes the equality sgn(D0) = 2PH2(T) − 1 [18, p. 317].
In addition, sgn(D) = 2PH2

Π
− 1 (see [17, Lemma 3.1]), where PH2(T) and PH2

Π
are

orthogonal projections on H2(T) and H2
Π respectively. Thus, one obtains

Usgn(D0) = U(2PH2(T) − 1) = (2PH2
Π
− 1)U = sgn(D)U. (A.4)

It follows directly from the definition of U that

(U ◦ (ψ ◦ γ−1)f)(x) = (U(ψ ◦ γ−1(·)f)(x))

= π−1/2(x+ i)−1ψ(x)f(γ(x)) = ψ(Uf)(x), f ∈ L2(R),
(A.5)

and hence, U−1ψU = ψ ◦ γ−1. Consequently,

[ψ, sgn(D)] = UU−1ψ sgn(D)UU−1 − sgn(D)UU−1ψUU−1

(A.4)
= U [U−1ψU, sgn(D0)]U

−1 = U−1[ψ ◦ γ−1, sgn(D0)]U.
(A.6)

Since U is an isometry from L2(R) onto L2(R), the claim follows. �

We note that ψ ◦ γ−1 ∈ BMO(T), or, equivalently, ψ ∈ BMO(R) (see, e.g., [21,
Ch. 6, Corollary 1.3]) is a sufficient and necessary condition for [ψ ◦γ−1, sgn(D0)] ∈
B
(
L2(T)

)
and [ψ, sgn(D)] ∈ B

(
L2(R)

)
(see, e.g., [31], [34, Theorem 1.1.10]).

Before proceeding to the proof of Proposition A.1, we recall the definition of the
Besov space B1

1(T) (see e.g. [33]),

B1
1(T) =

{
h ∈ L1(T)

∣∣
ˆ

T

‖h(τt)− h(t)‖1
|1− τ |2

dm(τ) <∞

}
, (A.7)

where m denotes the (normalized) Lebesgue measure on T.

Proof of Proposition A.1. By Proposition 3.3, [g(A+)− g(A−)] ∈ B1

(
L2(R)

)
. Uni-

tary equivalence of the operator D + φ and D (see Remark 2.3 (ii)) implies that
g(A+)− g(A−) = [ψ, g(D)]ψ, and hence [ψ, g(D)] ∈ B1

(
L2(R)

)
.

On the other hand, by Peller’s theorem, [30], [ψ ◦ γ−1, sgn(D0)] ∈ B1

(
L2(T)

)
if

and only if ψ ◦ γ−1 ∈ B1
1(T). However, since

ψ(+∞) = exp

(
− i

ˆ ∞

0

φ(x) dx

)
6= exp

(
− i

ˆ −∞

0

φ(x) dx

)
= ψ(−∞), (A.8)
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and since the Cayley transform maps ±∞ to the same point 1 ∈ T, the function
ψ◦γ−1 is discontinuous at the point 1 ∈ T. Since functions in the Besov class B1

1(T)
are necessarily continuous, one concludes that [ψ ◦ γ−1, sgn(D0)] /∈ B1

(
L2(T)

)
. �

Appendix B. Some Useful Technicalities

The following lemma states a well-known fact, for which we have not been able to
find a convenient reference. The symbol Bp((a, b),M

m×m (R)) denotes the Bochner
Lp-space of all Mm×m (C)-valued functions on (a, b) ⊆ R, that is,

Bp((a, b),M
m×m(C)) (B.1)

=

{
F : (a, b) →Mm×m(C)measurable

∣∣∣∣
ˆ

(a,b)

‖F (x)‖pMm×m(C) dx <∞

}
.

In the following we denote by Pj,k, j, k = 1, . . . ,m, the projection onto the j, k-th
element in a (block) matrix, such that

Pj,kPℓ,r = δk,ℓPj,r, j, k, ℓ, r = 1, . . . ,m. (B.2)

Lemma B.1. Let m ∈ N, p ∈ [1,∞) ∪ {∞}, (a, b) ⊆ R, and suppose that F is an
m×m matrix-valued function with complex-valued entries. Then,

F ∈ Bp((a, b),M
m×m (C)) if and only if F ∈Mm×m (Lp(a, b)) . (B.3)

In this case, the corresponding norms are equivalent.

Proof. We note that F is a Bochner measurable Mm×m (C)-valued function if and
only if each entry Fj,k, j, k = 1, . . . ,m, of the matrix F is a measurable function on
(a, b). Indeed, since by the definition each Bochner measurable function F can be
approximated (in Mm×m (C)-norm) by step functions, the inequality |Fj,k(x)| ≤
‖F (x)‖Mm×m(R) for a.e. x ∈ (a, b), shows that Bochner measurability of F : (a, b) →

Mm×m ((a, b)) implies measurability of each function Fj,k(·), j, k = 1, . . . ,m. On
the other hand, by the fact F =

∑m
j,k,ℓ,r=1 Pk,ℓFℓ,jPj,r, with Pj,k the projections

introduced in (B.2), one concludes Bochner measurability of F from measurability
of all Fj,k, j, k = 1, . . . ,m.

Next, let F ∈Mm×m (Lp(a, b)). Then
ˆ

(a,b)

|Fj,k(x)|
p dx ≤

ˆ

(a,b)

‖F (x)‖pMm×m(C) dx <∞, (B.4)

that is, Fj,k ∈ Lp(a, b) for all j, k = 1, . . . ,m. Conversely,

(
ˆ

(a,b)

‖F (x)‖pMm×m(C) dx

)1/p

=

(
ˆ

(a,b)

∥∥∥∥
m∑

j,k,ℓ,r=1

Pk,ℓFℓ,j(x)Pj,r

∥∥∥∥
p

Mm×m(C)

dx

)1/p

≤

m∑

j,k,ℓ,r=1

(
ˆ

(a,b)

|Fℓ,j(x)|
p dx

)1/p

<∞. (B.5)

�
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The next result guarantees that F ∈ Mm×m
(
L1(R)

)
is equivalent to |F |1/2 ∈

Mm×m
(
L2(R)

)
. Here, as usual, we write |F | = (F ∗F )1/2 for matrices and bounded

operators. The following result immediately follows from Lemma B.2 and standard
properties of Bochner Lp-spaces.

Corollary B.2. Let m ∈ N, p ∈ [1,∞) ∪ {∞}, (a, b) ⊆ R. F ∈ Mm×m (Lp(R)) if

and only if |F |1/2 ∈Mm×m
(
L2p(R)

)
. In addition,

∥∥F 1/2
∥∥2
2
≤ C ‖F‖1.

Both Lemma B.1 and Corollary B.2 extend to arbitrary measure spaces.

Remark B.3. We recall that any bounded operator A on L2(R) ⊗ Cm can be rep-
resented as a matrix {Aj,k}

m
j,k=1, where the entries Aj,k are bounded operators on

L2(R). In particular, for arbitrary p ≥ 1,

‖A‖Bp(L2(R)⊗Cm) =

∥∥∥∥
m∑

j,k,ℓ,r=1

Pk,lAljPj,r

∥∥∥∥
Bp(L2(R)⊗Cm)

≤

m∑

ℓ,j=1

‖Aℓ,j‖Bp(L2(R))

≤ C max
ℓ,j=1,...,m

‖Aℓ,j‖Bp(L2(R)). (B.6)

⋄

For various trace class estimates we need a simple sufficient condition for a
function on R to be contained in the space ℓp(L2(R)), 1 ≤ p ≤ 2, introduced in [4].
We recall that the space ℓp(L2(R)), 1 ≤ p ≤ 2, consists of all functions such that

‖f‖ℓp(L2(R)) =

(∑

n∈Z

‖fχ[n−1,n]‖
p
2

)1/p

<∞. (B.7)

Lemma B.4. If f ∈ W 1,p(R) ∩Cb(R), 1 ≤ p <∞, then f ∈ ℓp(L2(R)) and

‖f‖ℓp(L2(R)) ≤ C ‖f‖1,p. (B.8)

Proof. Since f is continuous, for every n ∈ Z, there exists xn ∈ [n, n+1], such that

|f(xn)| =

(
ˆ n+1

n

|f(x)|p dx

)1/p

. (B.9)

For every x ∈ [n, n+ 1], one has

|f(x)| =

∣∣∣∣f(xn) +
ˆ x

xn

f ′(s) ds

∣∣∣∣ ≤ |f(xn)|+

ˆ x

xn

|f ′(s)| ds

≤

(
ˆ n+1

n

|f(s)|p ds

)1/p

+

ˆ n+1

n

|f ′(s)| ds

≤

(
ˆ n+1

n

|f(s)|p ds

)1/p

+

(
ˆ n+1

n

|f ′(s)|p ds

)1/p

≤ 21−1/p

(
ˆ n+1

n

|f(s)|p ds+

ˆ n+1

n

|f ′(s)|p ds

)1/p

. (B.10)

Thus,

‖f‖ℓp(L2(R)) ≤ ‖f‖ℓp(L∞(R)) =
∑

n∈Z

sup
x∈[n,n+1)

|f(x)|p

≤ C
∑

n∈Z

(
ˆ n+1

n

|f(x)|p dx +

ˆ n+1

n

|f ′(x)|p dx

)1/p

(B.11)
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≤ C (‖f‖p + ‖f ′‖p). �

We will also recall the following lemma, which, together with pertinent hints to
the literature, can be found in [23].

Lemma B.5. Let p ∈ [1,∞) and assume that R,Rn, T, Tn ∈ B(H), n ∈ N, satisfy
s-limn→∞Rn = R and s-limn→∞ Tn = T and that S, Sn ∈ Bp(H), n ∈ N, satisfy
limn→∞ ‖Sn − S‖Bp(H) = 0. Then limn→∞ ‖RnSnT

∗
n −RST ∗‖Bp(H) = 0.

Finally we note the following (known) fact. The principle value of e
−|x|

x (in the

sense of distributions), abbreviated by p.v. e
−|x|

x , is a tempered distribution, and
hence the convolution on right-hand side of the equality in Lemma 6.1 is well-
defined. The result follows from using the fact that arctan(·) is bounded, so we
may regard it as a tempered distribution (see, e.g., [40, Section I.3]). We consider

the principle value of e
−|x|

x introduced by the equality

p.v.
e−|x|

x
(η) = lim

ε↓0

ˆ

|x|>ε

e−|x|η(x)

x
dx, η ∈ S(R). (B.12)

This is a tempered distribution since for arbitrary η ∈ S(R),

p.v.
e−|x|

x
(η) = lim

ε↓0

ˆ

ε<|x|<1

e−|x|η(x)

x
dx+

ˆ

|x|>1

e−|x|η(x)

x
dx

= lim
ε↓0

ˆ

ε<|x|<1

e−|x|(η(x) − η(0))

x
dx + η(0) lim

ε↓0

ˆ

ε<|x|<1

e−|x|

x
dx

+

ˆ

|x|>1

e−|x|η(x)

x
dx, (B.13)

and since the next to last integral equals zero,
∣∣∣∣p.v.

e−|x|

x
(η)

∣∣∣∣ ≤ C
[
‖η′‖∞ + ‖η‖∞

]
. (B.14)

Thus, by [40, Section 1.3, Theorem 3.11], p.v. e
−|x|

x is a tempered distribution.

Appendix C. The Gaiotto–Moore–Witten Model: A Counterexample

We briefly review a Dirac-type operator that arose recently in [20] in connection
with Ginzburg–Landau models. We will consider the very simplest instance of
the general theory developed in [20] and show that it represents a model that
violates even the most basic of our trace class hypotheses and hence we dubbed it
a “counterexample”.

First, consider a family of model operators of the form

Ã(t) = i
d

dx
σ3 + V (t, · )

(
0 0
1 0

)
+ V (t, · )

(
0 1
0 0

)
, t ∈ R, (C.1)

acting in L2(R) ⊗ C2. (Here σ3 =
(
1 0
0 −1

)
denotes a standard Pauli matrix.) Pro-

vided the complex-valued function V on R2 is chosen so that the asymptotes Ã±

exist in norm resolvent sense as t→ ±∞ then the theory in [11] applies. Examples
of operators of this form appear in studies of Andreev reflection in superconduc-
tivity [41]. While this class is quite interesting in its own right we will not further

pursue the study of this general family
{
Ã(t)

}
t∈R

, but rather focus on a far simpler



40 CAREY, F. GESZTESY, GROSSE, LEVITINA, POTAPOV, SUKOCHEV, AND ZANIN

situation that illustrates why strong assumptions of the kind described earlier in
this paper are needed.

Returning to [20], we show by using an explicit particular case of the general
situation from [20] that the hypotheses of [11] cannot hold for the examples consid-
ered there. The simplest form of the Ginzburg–Landau equation in one dimension
is,

ξ2ψ′′ = ψ3 − ψ, (C.2)

where ξ is a constant and we seek real-valued solutions on R. A summary with
references to further literature is in [9]. The solutions are given by elliptic functions,
specifically,

ψ(x) =
[
2k2(1 + k2)−1

]1/2
sn
(
(x− x0)(ξ(1 + k2)1/2)−1; k

)
, x ∈ R, (C.3)

where x0 ∈ R, k ∈ [0, 1], are integration constants with k being the elliptic modulus
of the Jacobi elliptic function sn( · ; · ), see [28, Ch. 22].

In [20] only solutions with well defined asymptotic values at ±∞ are considered.
As sn is periodic, it does not have well-defined asymptotics at ±∞, except in the
limiting case k = 1, when the solution (C.3) degenerates into (cf. [28, p. 555]),

ψ(x) = tanh
(
(x− x0)/

(
21/2ξ

))
, x ∈ R. (C.4)

We will only consider this special case in the following discussion and for simplicity
employ the normalization x0 = 0 and ξ = 2−1/2.

In [20] the solutions to the Ginzburg–Landau equation are used to define an
associated Dirac-type operator. Following [20] for this very simple situation, intro-
duce a polynomial W in one variable (termed the ‘super-potential’). One also has
a ‘boosted soliton’ φ, constructed as a function on R2 from a function ψ on R that
is a solution of the Ginzburg–Landau equation, by defining φ on R2 by

φ(t, x) = ψ(x cos(θ) + t sin(θ)), (t, x) ∈ R
2, (C.5)

where θ ∈ (0, π)\{π/2} is a parameter (called the ‘boost variable’ in [20]). (We
chose θ 6= π/2 to avoid the case that φ(t, x) becomes x-independent.) Next we
form the composition W ′′ ◦ φ ≡W ′′(φ).

The existence of well-defined pointwise limits ψ± for the solution (C.4) at spatial
infinity and the definition of φ in (C.5) imply that as t → ±∞, pointwise limits
φ±, exist and that these are independent of the variable x. In turn these fix
W± =W (φ±).

In [20] the notation ζ is used for the additional parameter which is the product
of eiθ with the phase of W+ − W− and the authors study a special case of the
operator (C.1) by introducing the family of Dirac-type operators

A(t) = i
d

dx
σ3 + 2−1ζW ′′(φ(t, · ))

(
0 0
1 0

)
+ 2−1ζW ′′(φ(t, · ))

(
0 1
0 0

)
,

dom(A(t)) =W 1,2(R)⊗ C
2, t ∈ R,

(C.6)

is self-adjoint in L2(R)⊗ C
2.

We emphasize that we specialise here to the φ-constructed from the solution ψ
in (C.4) in order to illustrate the general case.

If one treats t ∈ R as a flow parameter (for the spectral flow for example) then
for fixed (x, θ) ∈ R× [(0, π)\{π/2}], one infers the pointwise limits

lim
t→±∞

φ(t, x) = lim
t→±∞

ψ(x cos(θ) + t sin(θ)) = ±1. (C.7)



TRACE FORMULAS FOR A CLASS OF NON-FREDHOLM OPERATORS: A REVIEW 41

These limits are not uniform in (x, θ) ∈ R × [(0, π)\{π/2}] (e.g., choose x =
− tanh(θ)t).

The next step is, following [11], to introduce the model operatorDA = (d/dt)+A

acting in L2(R;L2(R) ⊗ C2): If one chooses the function W to be a cubic (say,
W (x) = x3/3) then for this example the parameter ζ = eiθ and the operator A(t),
t ∈ R, in L2(R)⊗ C2 becomes (for ψ as in (C.4)),

A(t) = i
d

dx
σ3 + φ(t, · )

(
0 eiθ

e−iθ 0

)
, dom(A(t)) =W 1,2(R)⊗ C

2, t ∈ R. (C.8)

The asymptotic operators A± in L2(R)⊗ C2 are then given by

A± = i
d

dx
σ3 ±

(
0 eiθ

e−iθ 0

)
, dom(A±) =W 1,2(R)⊗ C

2. (C.9)

They are unitarily equivalent as A− = σ3A+σ3. Employing the identity,

(A(t)− zI)−1 − (A± − zI)−1 (C.10)

= −(A(t)− zI)−1[φ(t, · )∓ 1]

(
0 eiθ

e−iθ 0

)
(A± − zI)−1, t ∈ R, z ∈ C\R,

and the elementary estimate
∥∥(S − zI)−1

∥∥
B(H)

≤ |Im(z)|−1, z ∈ C\R, for any

self-adjoint operator S in H, proves strong resolvent convergence of A(t) to A± as
t → ±∞. (However, since sup(x,t)∈R2 |φ(t, x) − 1| = 1, one does not obtain norm

resolvent convergence in this example as t→ ±∞.)
Since,

A2
± =

(
−

d2

dx2
+ I

)
I2, dom

(
A2

±

)
=W 2,2(R)⊗ C

2, (C.11)

one concludes that

A−1
± ∈ B

(
L2(R)⊗ C

2
)
, (C.12)

and hence A± are Fredholm in L2(R)⊗ C
2. Moreover, the fact,

(A+ − zI)−1 − (A− − zI)−1 = −2(A+ − zI)−1

(
0 eiθ

e−iθ 0

)
(A− − zI)−1,

z ∈ C\R,

(C.13)

and differentiating this identity with respect to z implies that
[
(A+ − zI)−r − (A− − zI)−r

]
/∈ B∞

(
L2(R)⊗ C

2
)
, r ∈ N, z ∈ C\R. (C.14)

Noticing that

A(t)2 =

(
−
d2

dx2
+I

)
I2+

[
φ(t, · )2−1

]
I2+iφx(t, · )

(
0 eiθ

−e−iθ 0

)
, t ∈ R, (C.15)

and using the fact that the functions in the zeroth-order terms of A(t)2 vanish
rapidly at spatial infinity, one concludes that

(
−

d2

dx2
+ I

)−1

I2

[[
φ(t, · )2 − 1

]
I2 + iφx(t, · )

(
0 eiθ

−e−iθ 0

)]

∈ B∞

(
L2(R)⊗ C

2
)
, t ∈ R, θ ∈ (0, π)\{π/2},

(C.16)

is compact. Hence,
(
− d2

dx2 + I
)−1

I2 is a parametrix for A(t)2, t ∈ R. It follows

that both A(t)2 and hence A(t), t ∈ R, are Fredholm, and hence, the spectral flow
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along the path {A(t)}t∈R is well-defined. (We emphasize that θ ∈ (0, π)\{π/2}
throughout this appendix.)

Relation (C.15) and the asymptotic behavior (C.7) of φ(t, x) as |x| → ∞ also
proves that

σess
(
A(t)2

)
= [1,∞), t ∈ R, (C.17)

and hence

σess(A(t)) = (−∞,−1] ∪ [1,∞), t ∈ R. (C.18)

Next we prove that A(t) has a one dimensional kernel for any real t ∈ R. Indeed,

A(t)ψ = 0, ψ(t, · ) = (ψ1(t, · ), ψ2(t, · ))
⊤ ∈ W 1,2(R)⊗ C

2, t ∈ R, (C.19)

is equivalent to

iψ1,x(t, x) + eiθ tanh(x cos θ + t sin θ)ψ2(t, x) = 0,

−iψ2,x(t, x) + e−iθ tanh(x cos θ + t sin θ)ψ1(t, x) = 0.
(C.20)

This yields

ψ1(t, x) =

{
[cosh(x cos(θ) + t sin(θ))]−1/ cos(θ), θ ∈ (0, π/2),

[cosh(x cos(θ) + t sin(θ))]1/ cos(θ), θ ∈ (π/2, π),
(C.21)

ψ2(t, x) =

{
ie−iθψ1(t, x), θ ∈ (0, π/2),

−ie−iθψ1(t, x), θ ∈ (π/2, π),
(t, x) ∈ R

2. (C.22)

Since A(t), t ∈ R is in the limit point case at x = ±∞, there can be no second,
linearly independent L2(R) ⊗ C2-solution of A(t)ψ = 0, and hence 0 is a simple
eigenvalue of A(t) for all t ∈ R. In particular, the kernel of A(t) is given by

ker(A(t)) = lin.span
{
ψ(t, · ) = (ψ1(t, · ), ψ2(t, · ))

⊤
}
, t ∈ R, (C.23)

with ψj given by (C.19), (C.20).
Since by (C.18), A(t) has the essential spectral gap (−1, 1) and an isolated

eigenvalue 0 for all t ∈ R, the spectral flow for the family {A(t)}t∈R is actually
zero.

One observes that the existence of an eigenvalue zero of A(t) for all t ∈ R, yet
the fact that ker(A±) = {0} by (C.12), underscores that A(t) cannot converge to
A± in norm resolvent case as t→ ±∞.

It is straightforward to check that

Hj = H0 + 2BA− + [A−,B] +B
2 + (−1)jB′,

dom(Hj) =W 2,2(R2)⊗ C
2, j = 1, 2,

(C.24)

is self-adjoint in L2(R2)⊗ C
2, where

H0 = −

(
∂2

∂t2
+

∂2

∂x2
+ I

)
I2, dom(H0) =W 2,2(R2)⊗ C

2, (C.25)

B(t) = [φ(t, · ) + 1]

(
0 eiθ

e−iθ 0

)
, t ∈ R, (C.26)

B(t)2 = [φ(t, · ) + 1]2I2, B′(t) = φt(t, · )

(
0 eiθ

e−iθ 0

)
, t ∈ R, (C.27)

[A−, B(t)] = iφx(t, · )

(
0 −eiθ

e−iθ 0

)
+ 2i[φ(t, · ) + 1]

(
0 −eiθ

e−iθ 0

)
∂

∂x
. (C.28)
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Thus,

‖B′(t)‖B(L2(R)⊗C2) = ‖φt(t, · )]‖L∞(R;dx)

= ess.supx∈R

∣∣ sin(θ)[cosh(x cos(θ) + t sin(θ))]−2
∣∣

= sin(θ), θ ∈ (0, π/2) ∪ (π/2, π), (C.29)

is independent of t ∈ R, and hence hypothesis (1.9) is clearly violated. In addition,
since B+ is the operator of multiplication by a constant matrix, Hypothesis 1.2 (ii)
cannot hold as well.

However, strictly speaking, in order to test the applicability of [14, Theorem 2.6]
(or [23, Corollary 8.4]) to decide the Fredholm property of D

A
, we should compare

with the relative trace class hypotheses employed in [14] and [23] which reads,
∥∥B′(·)(|A−|+ I)−1

∥∥
B1(L2(R)⊗C2)

∈ L1(R; dt). (C.30)

From the outset it is clear from [39, Remark (a) on p. 39] that

B′(t)(|A−|+ I)−1 /∈ B1

(
L2(R)⊗ C

2
)
, t ∈ R, (C.31)

since (| · | + 1)−1 /∈ L1(R), rendering condition (C.30) a moot point. (Here we
ignored the 2 × 2 matrix structure in B′(·)(|A−| + I)−1 as the latter represents
a unitary matrix in C2.) Actually, (C.30) does not work in the Hilbert–Schmidt
context either as an application of the Fourier transform and Plancherel’s identity
yield

‖f(X)g(−i∇)‖B(L2(Rn) = (2π)−n/2‖f‖L2(Rn)‖g‖L2(Rn), f, g ∈ L2(Rn), (C.32)

where f(X) denotes the operator of multiplication by f(·) in L2(Rn). Thus, one
obtains

∥∥B′(·)(|A−|+ I)−1
∥∥2
B2(L2(R)⊗C2)

= (2π)−1‖φt(t, · )‖
2
L2(R)

∥∥(| · |+ 1)−1
∥∥2
L2(R)

= π−1[sin(θ)]2
ˆ

R

dx [cosh(x cos(θ) + t sin(θ))]−4

=
4

3π

[sin(θ)]2

| cos(θ)|
, θ ∈ (0, π/2) ∪ (π/2, π), (C.33)

is again independent of t ∈ R. Thus, we cannot decide at this point in time whether
or not DA is a Fredholm operator. (If DA were Fredholm, a simple application of
the homotopy invariance of the Fredholm index would prove that its index equals
zero. Indeeed, upon replacing B(·) by sB(·) with s ∈ (0, 1], observing that the
index is clearly zero for 0 < s sufficiently small, would prove this claim.)

Next, one notes that

(H2 − zI)−1 − (H1 − zI)−1 = (H2 − zI)−12B′(H1 − zI)−1, z ∈ C\R, (C.34)

with B
′ the operator of multiplication operator on L2(R2) ⊗ C2 by a 2 × 2 ma-

trix whose off-diagonal entries are essentially equal to the function φt(t, · ) (cf.
(C.27)). However, since the latter is a function of (t, x) only via the combination
x cos(θ) + t sin(θ), where θ ∈ (0, π)\{π/2}, this means that the resolvent difference
(C.34) cannot be trace class. In fact, choosing |z| > 0 sufficiently large, applying a
Neumann series of (Hj−zI)

−1, j = 1, 2, in terms of (H0−zI)
−1, and investigating

the integral kernel of (H0 − zI)−12B′(H0 − zI)−1, readily proves that the latter
is not even compact. Once more differentiation with respect to z then implies

[
(H2 − zI)−r − (H1 − zI)−r

]
/∈ B∞

(
L2(R2)⊗ C

2
)
, r ∈ N, z ∈ C\R. (C.35)
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So the Witten index of Section 7 is not defined, and neither are the spectral shift
functions for the pairs (A+, A−) and (H2,H1). This demonstrates the existence
of an elementary example which is not amenable to the techniques discussed in the
bulk of this paper. Of course, this is not really surprising as no single technique
based on scattering theoretic concepts can be expected to handle all Fredholm, let
alone, non-Fredholm, situations.
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