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Trace Inequalities for Carnot-Carathéodory
Spaces and Applications

DONATELLA DANIELLI - NICOLA GAROFALO - DUY-MINH NHIEU

Ann. Scuola Nonn. Sup. Pisa Cl. Sci. (4)
Vol. XXVII (1998), pp. 195-252

In ricordo di Filippo Chiarenza

Abstract. Given a distribution belonging to a sub-elliptic Sobolev space with
respect to a system of locally Lipschitz vector fields, we study the problem of its
membership to sharp trace spaces with respect to a given Borel measure. Various
applications to geometric trace inequalities and to optimal regularity theorems for
solutions of quasilinear sub-elliptic equations are presented.

Mathematics Subject Classification (1991): 49Q15 (primary), 28C, 35H05 (sec-
ondary).

1. - Introduction and statement of the results

In recent years there has been an explosion of interest in the study of
Carnot-Carathéodory spaces. These are metric spaces whose distance is gener-
ated by the sub-unit curves relative to a system of non-commuting vector fields.
They arise naturally in the study of boundary value problems in several complex
variables, in CR geometry, in the study of quasi-conformal mappings between
nilpotent Lie groups and in control theory. For all these aspects we refer the
reader to the recent monographs [53], [97], [59], [6], and also to the bibliog-
raphy of this paper for an extensive account. There exists also a continuously
growing literature in the analysis of the relevant partial differential equations
arising in this context, but in this direction the advances are not, to present
day, as susbstantial as one might desire. This is mainly due on one hand to
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the complexity of the underlying sub-Riemannian geometry, on the other hand
to the considerable difficulties posed by the presence of characteristic points.
As a result many basic questions remain nowadays open.

In the study of boundary value problems for sub-elliptic equations it is

important to know when the a priori integrability requirements on the horizontal
derivatives of the solution guarantee that the latter possess a trace in some LP

space on the boundary of the relevant domain. This question is subtle already in
the classical setting of ordinary Sobolev spaces since the boundary of the domain
is a set of measure zero. In the sub-elliptic context the presence of characteristic
points of the system X on the boundary complicates matters considerably. The
problem of traces also arises naturally in the study of the regularity of minimal
surfaces [57]. For Camot-Carathéodory spaces the existence of such surfaces
has been recently proved in [54]. This paper represents a first step in trying
to understand the trace problem in Carnot-Carathéodory spaces. We focus on
functions which possess integrable generalized derivatives with respect to a

system X - {X 1, ... , Xm { of vector fields in R’, with Xj = ¿=1 
, 

k axk
having real-valued locally Lipschitz coefficients bjk. The interest for working
with minimally smooth vector fields stems from the following considerations:
It includes on one hand the important case of C°° systems of Hormander type,
on the other hand it also incorporates the general subelliptic operators studied
in [84], [35] since by the results in [85] the factorization matrix of a smooth
positive semi-definite matrix has in general at most Lipschitz continuous entries.
A further motivation comes from the fact that there are interesting classes of
operators (such as, e.g., the Baouendi-Grushin ones) which arise from systems
of non-smooth vector fields.

For a given open set Q c R", we consider the space of weak Sobolev
functions

which, endowed with the norm

is a Banach space. Hereafter, the notation Xj f stands for the distributional
derivative of f along the vector field Xj defined by

where aak is the formal adjoint of Xj. We also need toi k k axk 
,

introduce the Sobolev spaces of functions having strong derivatives in LP(Q)
along the vector fields X 1, ... , X m
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and those with zero generalized trace on a S2

A piecewise C 1 curve y : [0, T] -~ R’ is called sub-unit [34] if when-

ever y’ (t) exists one has

We note explicitly that the above inequality forces y’(t) to belong to the
span of IXI(y(t)), ... , The sub-unit length of y is by definition
1, (y) = T. Given x, y E we denote by S (x , y) the collection of all sub-unit
curves joining x to y. Throughout this paper we will make the following basic
assumption: S(x, y) 5~ 0 for any x, y E Such hypothesis implies that if one
lets

then d (x , y)  oo for any x, y E It is then easy to recognize that d defines a
distance on usually known as the control, or Carnot-Carathéodory distance,
associated to the system X.

The main properties of d are discussed in, e.g., [83] or [97]. It is easy to

recognize that when X = then d(x, y) = de (x, y) :_ x - y .
Xl ax

We will denote B(x, R) = f y  R } and Be(x, R) = {y E

 R}, respectively the metric and Euclidean ball centered at x

with radius R. When B = R), we simply write a B for B(x, aR).
Our primary concern is the following
PROBLEM. For which nonnegative Borel measures it and 1  p  q  o0

does the a priori inequality

hold?

In (1.1) we have let U B, fB whereas Xu = (Xlu, ... , Xmu)
’ 

i
denotes the horizontal gradient of u. Clearly, = (i(/M))2. Besides
its obvious relevance as a generalized Sobolev type inequality (with respect to
two different measures), the interest of an estimate such as ( 1.1 ) lies in the fact
it can be thought of as a trace inequality. Indeed, this is easily understood in
the classical situation when which case one has d = de.axi axn
If is a compact C1 1 manifold with volume element dO’, and we let
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then ( 1.1 ) reads

where U B, - this case it is a classical result that the

trace theorem (1.2) holds for any 1  n with q = p£, see, e.g., [71,
Theorem 6.4.1, p. 316].

For a Carnot-Carathéodory space the validity of an inequality such as (1.1)
is a more delicate question. As it will be clear from the proofs, the full thrust
of the elaborate theory developed in [54] will be needed. The case p = 1 has
a special geometric relevance. In this context we note that no improvement
in the exponent of integrability is possible in the example considered in (1.2),
which now reads

In the (geometric) case p = 1 the main motivation for studying the above
problem comes from the study of isoperimetric and Sobolev inequalities in

Carnot-Carathéodory spaces, BV functions, minimal surfaces and their regu-
larity, see [54], [95]. In the nongeometric case p &#x3E; 1, one is naturally led
to trace inequalities such as (1.1) when studying the Dirichlet and Neumann
problems in stratified, nilpotent Lie groups, or more generally in CR geometry.
In either cases, the presence of characteristic points makes surface measure un-
suitable since the latter does not scale correctly with respect to the underlying
anisotropic group dilations and finding the ad hoc replacement for it becomes
a crucial question. The inequality (1.1) is also related to the Fefferman-Phong
trace inequality established by one of us in [28]

where V is a nonnegative function in the generalized Morrey space MS’ps,
and to its various applications to linear and nonlinear subelliptic pde’s. In the
Euclidean setting there exists a large literature on this subject, going back to
some pioneering work of Maz’ya [80], and continuing up to recently, see [33],
[20], [21], [70], [23], [81]. We also refer the reader to the enlightening paper of
F. Chiarenza [22] for various open problems connected with trace inequalities.
It is clear that when dp = V dx, then ( 1.1 ) is related to (1.3) although as we
will see neither inequality implies the other.

To state our main results we need to introduce the relevant assumptions.
Throughout the paper we will use extensively the openness of the Carnot-

Carath6odory balls in the (Euclidean) topology of When the vector fields
are C°° and satisfy the finite rank condition: rankLie[X1, ..., Xm](x) = n for
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every x E R’, then this property can be deduced from the following estimate
obtained in [83]: For every connected Q cc Rn there exist C, E &#x3E; 0 such that

Here, do is the Carnot-Carathéodory distance defined by sub-unit curves
whose trace lies in S2. We note that Chow’s accessibility theorem guarantees
that for any x, y E S2 there exists such a curve connecting x to y, see, e.g., [6].
Since, obviously, d(x, y)  y) for any x, y E Q, we obtain

This implies the (Euclidean) openness of the metric balls. This fact, how-
ever, is not guaranteed in our general framework (see [6, p. 18]), therefore we
will introduce it as a hypothesis:

(H.1 ) is a qualitative assumption (a stronger (localized) quantitative version
of (H. 1) appears in [34]). Interestingly, it implies that the metric topology is
in fact equivalent to the Euclidean one, see Remark 1.3 below. An important
consequence of (H.1 ) is Proposition 2.3 below. We also need to make the

following two basic quantitative assumptions. Given a function u and a Lebesgue
measurable set E, let u E = 

(H.2) For every bounded set U C there exist constants Cl, Ro &#x3E; 0 such that for
Xo E U and 0  R  Ro one has

(H.2) expresses the familiar "doubling condition", which is requested to in
any space of homogeneous type [26]. Along with (H.2), we also assume the
following weak-L 1 Poincare type inequality

(H.3) Given U as in (H.2), there exist constants C2, Ro &#x3E; 0 and a &#x3E; 1 such that

for any xo E U, 0  R  Ro and u E one has

Henceforth, if U C R" is a fixed bounded set the relative quantities
Cl, C2, Ro and a in the above hypothesis will always denote what we call the
characteristic local parameters of U. Of special relevance will be the (positive)
number
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which we call the homogeneous dimension of U. It is easy to see that (H.1 )
implies

REMARK 1.1. It is important to observe that in many situations of interest
the number Ro can be taken to be in (H.1 ), (H.2). This is the case, e.g.,
of all stratified nilpotent Lie groups, where we take as dx a bi-invariant Haar
measure on the group, see [37], [38], or, more in general, of groups of poly-
nomial type [97]. We recall that in this setting a simple proof of a Poincare
inequality stronger than (H.2) can be found in [96]. When X is a system of C°’°
vector fields satisfying the finite rank condition [65]: rankLie[X1, ..., Xn] =- n,
then (H.1), (H.2) respectively follow from the deep works [83] and [67]. Our
results also cover the case of a Riemannian manifold Mn with nonnegative Ricci
tensor. In this context, with dx denoting the Riemannian volume form, (H.2)
follows from Bishop’s comparison theorem [24], whereas (H.3) was proved by
Buser [13] for X = the Riemannian gradient. Finally, we give some inter-
esting examples of non-smooth vector fields to which our results apply. Con-
sider, for instance, the simplest model of Baouendi-Grushin vector fields [5], [60]

The system X = {Xi, X~} is not of Hormander type if f3 ~ 2k, nonethe-
less (H.1 ), (H.2) hold thanks to the works [42], [43], [44]. (H.1 ), (H.2) also
hold in the more general settings of the papers [47], [39], [41].

The general assumptions (H.1 ), (H.2) present some subtle topological issues
that need to be dealt with. We refer the reader to the books [6], [53] for this
aspect, confining ourselves to recall the following elementary, yet useful result
from [54].

PROPOSITION 1.2. Let (R", d) be a Carnot-Carathiodory space as above. The
inclusion i : d) - de) is continuous.

REMARK 1.3. As a consequence of Proposition 1.2 we note that, if we
assume (H.1 ), then the Euclidean topology coincides with that generated by the
Carnot-Caratheodory metric. 

At this point we can state our main results.

THEOREM 1.4 (Geometric trace inequality). Suppose (H.1 )-(H.3 ) hold. Fix

a bounded, open set U C and let It be a nonnegative Borel measure on R n
Suppose that for x E U and 0  r  Ro one has
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for some M &#x3E; 0. There exist positive constants C = C(Cl, C2), do = do (U) such
that for any Xo E U, 0  R  do one has for B = B(xo, R), B* = B(xo, 2R):

1. If u E ,C1~ 1 (B*), then there exists a uniquely determined U E L1 (B*, such
that

2. Furthermore, when u E C1 (B*) n ,Cl~ 1 (B*), then u = u in (1.6).
0

3. Finally, if u E S 1 ~ 1 ( B ) then we have

Condition (1.5) is also necessary for ( 1.6), hence for (1.7).
The proof of Theorem 1.4 rests on various delicate facts. A crucial in-

gredient is the following covering theorem which extends to the setting of this
paper a basic result of Federer [32, Section 4.5.4]. Given a measurable set

E c R n and x E R n we let

and call the function D(x, r) the upper density of E at x. We also need to
recall the notion of X-perimeter introduced in [15], see also [54]. We mention
that a slightly different notion of subelliptic perimeter was set forth in [40],
simultaneously to (and independently from) the work [15]. Such two notions
are in fact equivalent, see [48]. Consider an open set Q c R n and define

For a given u E the X-variation of u with respect to Q is defined as

If E C R" is measurable, then the X-perimeter of E relative to Q is defined by

where XE denotes the characteristic function of E. We say that a measurable
set E is a X-Caccioppoli set if Q)  oo for any Q cc 
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THEOREM 1.5. Suppose (H.1)-(H.3) hold. Fix a bounded set U C Rn- There
exists a positive number do = do(U) &#x3E; 0 such that for Xo E U, 0  R  do, and
for any measurable set E c B = B(xo, R) one has: If

for every x E E and for some 1  T  4, then there exist a constant C =
C (C1, C2, T) &#x3E; 0 and a sequence of balls { B (xl , such that

The key to the proof of Theorem 1.5 is the following basic relative isoperi-
metric inequality established in [54, Theorem 1.28]:

THEOREM 1. 6. We assume (H.1 )-(H.3). Let E C JRn be a X-Caccioppoli set.
For any bounded set U C with local homogeneous dimension Q, there exists
C3 = C3 (C1, C2) &#x3E; 0 and Ro &#x3E; 0 such that for B = B(xo, R), with Xo E U and
0  R  Ro, one has

It is worthwile observing that when X = then (H.2) holdsXl ax
with U = R n , Ro = oo, and Ci = 2n. In this case Theorem 1.6 gives
back the classical relative isoperimetric inequality due to De Giorgi, Federer,
Maz’ya et al. It should be mentioned that related isoperimetric and Sobolev
inequalities inequalities have been independently obtained in [8], [45], [78].
The results in these papers, however, do not seem to fully cover the context of
Theorem 1.6. We also mention the note [62], in which the authors announce
interesting generalizations of sharp Sobolev imbeddings to the setting of Sobolev
spaces on metric spaces [61], and the preprint "Sobolev met Poincare", by the
same authors.

I
We stress the crucial presence of the scaling factor R I B Q in the right hand

side of (1.8). Such factor allows to connect in an important way the notion of X-
perimeter to a special Hausdorff measure generated by the Carnot-Carathéodory
metric d (x, y). To make this point precise we introduce a definition. Given an
open set S2 c R’ we say that S2 admits an interior corkscrew at xo E a S2 if for
some K &#x3E; 0 and Ro &#x3E; 0, and any 0  r  Ro, one can find Ar (xo) E Q such
that 

- _,
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If in the above the same K and Ro work for every xo E then we say
that Q has the uniform interior corkscrew condition. Finally, Q is said to satisfy
the uniform corkscrew condition if both Q and S2~ fulfill the uniform interior
corkscrew condition. Next, for s &#x3E; 0 we denote by the s-dimensional Haus-
dorff measure in R n constructed using the Carnot-Caratheodory metric d (x , y),
see, e.g., [32] or [79]. We recall that when X = f axl , -L 1, and thereforeXl axn

d (x, y) = de (x, y), then the following important result holds, see, e.g., [32]
or [31]: Suppose that E c R n is a bounded Lipschitz domain. There exist
constants a, f3 &#x3E; 0, depending on n E N and on the Lipschitz character of E,
such that

Here, P ( E ) denotes the perimeter of E according to De Giorgi. We note,
in passing, that Lipschitz domains possess the uniform corkscrew condition with
respect to the Euclidean metric. More in general, every NTA domain as in [68]
has this property, see also [18] for a study of NTA domains in the context of
Carnot-Carathéodory spaces and for a discussion of various basic examples. In

our setting we have the following
THEOREM 1.7. We suppose that (H.1 )-(H.3) hold. Let U C be a bounded,

open set having homogeneous dimension Q. If E C E C U satisfies the uniform
corkscrew condition with relative parameters K and Ro, then there exists a constant
C = C(U, X, C1, C2, K, n) &#x3E; 0 such that

Influenced by (1.9) one might think that a two-sided inequality in Theo-
rem 1.7 be possible, but this intuition fails miserably. A counter-example is

given after the proof of Theorem 1.7 in Section 3. However, we conjecture
that the opposite inequality should hold for the important class of stratified,
nilpotent Lie groups. Strong evidence in support of this conjecture comes from
the following

THEOREM 1.8. Let IHIn be the Heisenberg group with homogeneous dimension
Q = 2n + 2, see [38], [92]. Suppose that E C IHIn is a bounded open set such that
a E is a C2 compact manifold. There exist a, f3 &#x3E; 0 such that

We warn the unfamiliar reader that Theorems 1.7 and 1.8 rest on a number
of nontrivial results.

After this interlude on the connection between Hausdorff measure and the

X-perimeter we resume the discussion of the trace inequalities. Our objective
now is the (non-geometric) case p &#x3E; 1 of ( 1.1 ). We mention that in the
Euclidean setting results of this type were first proved in a beautiful pioneering
paper of D. Adams [1], see also [2], [3] and the recent monograph [4]. In

opposition to the geometric case p = 1, the assumption on the Borel measure A
is necessarily stronger. However, there is a trade-off in that the exponent q in
the left-hand side of (1.1) is strictly bigger than p.
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THEOREM 1.9 (Trace inequality: The non-geometric case). Suppose that
(H. I)-(H.3) hold, and consider a bounded, open set U C jRn, with local homoge-
neous dimension Q. For 1  p  Q let it be a nonnegative Borel measure on Rn
such that for some M &#x3E; 0 and 0  E  p one has

There exist positive constants C = C (Cl , C2, p, E) and,8 = C2) &#x3E; 1 such
that for any Xo E U, 0  R  Ro, B = B (xo, R), B * = B (xo, the following
holds:

1. If u E ,Cl~p (B*), then

where q = p &#x3E; p.
0

2. If U E S 1 ~ p ( B * ), one has

Finally, ( 1.10) is also necessary for ( 1.11 ), ( 1.12) to hold.

REMARK 1.10. It is important to observe that, in general, when p &#x3E; 1, (1.10)
cannot be improved (as in the case p = 1, see Theorem 1.4) to the following

This obstacle is quite serious indeed and it is ultimately related to a subel-
liptic version, due to Vodop’yanov [98], of an important characterization of
Hedberg and Wolff [64] of those measures which belong to the dual of the
Sobolev space ,C 1’ p .

An important consequence of Theorem 1.9 is the following
THEOREM 1.11 (Poincare type inequality). Under the assumptions in Theo-

rem 1. 9, for any u E ,C 1 ~ p ( B * ) we have

for some C = C (C1, C2, M, p, E ) &#x3E; 0.
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We remark that when dp = dx, then (1.10) holds with M = 1 and E = p.
In such case we respectively recover from Theorems 1.9 and 1.11 Sobolev

embedding and the Poincare inequality in [54], except that in the latter paper
such results did not rely on fractional integration, but were directly deduced
from the geometric case p = 1. This unified geometric approach does not seem
to work for trace inequalities and one has to treat the cases p = 1, and p &#x3E; 1

separately.
From the point of view of the applications it is of interest to extend the

above results to a class of domains which is as large as possible. We have
in mind the class of X-(PS) domains in [54]. To motivate the subsequent
discussion we point out that in situations connected with rectifiability problems,
see [29], [30], the Borel measures it in Theorems 1.4 and 1.9 display a two-sided
control such as

for some d &#x3E; 0. When this happens, then in view of (H.2) we see that the
measure A is doubling, i.e.: There exists C4 = C4 (U) &#x3E; 0 such that for any x E U
and 0  r  Ro

These considerations bring us to study trace inequalities with respect to a
measure JL which in addition to an estimate such as

also satisfies (H.4). To this purpose we introduce the following
DEFINITION 1.12. An open set Q is called a X-(PS) domain if there exist

a covering of Q by metric balls, and numbers 
such that

(i) 
(ii) There exists a (central) ball Bo such that for any B E .~’ one can find

a chain Bo, B1, ... , Bs(B) = B, with Bi f1 Bi for some ball Bi for
which Nfii D Bi 

(iii) For any i = 0, ... , s ( B ) , one has B c v Bi .

We emphasize that the notion of X-(PS) domain is of a purely metrical
nature. (PS) domains are also known in the literature as Boman domains,
see [74], [41]. In the Euclidean setting they were introduced by J. Boman in his
(unfortunately) unpublished manuscript [10]. We would like to thank J. Boman
for kindly discussing with the second named author his results and providing
us with a copy of [10]. The importance of such domains rests in the following
chain of inclusions valid when d (x, y) = de (x, y) and X = 

aXI9*** ax
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Such inclusions (except the former) continue to hold for (R n, d) when d
is the Carnot-Carathéodory metric generated by a system X = {Xl, ... , Xm},
but now matters become much more intricated. We refer the reader to the

papers [54], [55], [18] for a detailed study and for examples. Here, we confine
ourselves to mention that for any complete length-space which is also a space
of homogeneous type according to [26], the latter inclusion in (1.13) is, in fact,
a set theoretical equality, i.e.,

Such theorem was proved in [54] and also, independently and simultane-
ously, in [ 11 ] . The notation John stands for the class of domains introduced

by F. John in his seminal paper [69]. 
’

THEOREM 1.13. Under the assumptions of Theorem 1.4 assume, in addition,
that it satisfy (H.4). Then there exist positive constants C = C (C1, C2, C4, N, y, v),
do = do ( U, X, n) such that for any X - (PS) domain S2 C S2 C U with parameters
N, y, v and diam(Q)  do, one has:

1. For any u E there exists a uniquely detefmined U E L1 (S2, with

üQ,¡L = iidit = 0, for which

2. When u n £1,l(Q), then we can take u = u - uo.,JL in (1.15).
In [40], see also [54], it was proved that in any complete length-space, which
is also of homogeneous type according to [26], the metric balls are X-(PS)
domains. This follows by combining the ideas in [67] with the important
fact that in any locally compact, complete length-space the geodesic segment
property holds. Putting this result together with Theorem 1.13 we see that the
latter now holds with Q replaced by a Carnot-Carathéodory ball. This improves
on Theorem 1.4 by allowing the same ball on both sides of the trace inequality.
Rather than stating again Theorem 1.13 with Q = B, we confine ourselves to
display the ensuing a priori trace inequality on smooth functions

In the non-geometric case p &#x3E; 1 we obtain an analogous global version of
Theorem 1.9 when JL is doubling.

THEOREM 1.14. Suppose that the assumptions in Theorem 1.9 are fulfilled
and that, in addition, satisfies (H.4). There exists a constant C =_C (C1, C2, C4,
M, p, E, N, y, v) &#x3E; 0 such that for any X-(PS) domain S2 C SZ c U (with
parameters N, y, v), for which diam(Q)  R0, and any u E one has
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REMARK 1.15. It is important to observe that the restriction on diam(Q) in
Theorems 1.13, 1.14 does not subsist in those situations in which Ro in (H.2)
can be taken infinite. This is the case, for instance, of all stratified, nilpotent
Lie groups.

In closing, we briefly describe the plan of the paper. In Section 2 we estab-
lish various basic properties of Carnot-Carathéodory spaces which are needed in
the proofs of the main theorems. Section 3 is devoted to proving Theorems 1.5,
1.4, 1.7 and 1.8. In Section 4 we prove Theorems 1.9 and 1.14. In the study
of Carnot-Carathéodory spaces the question of geometrically significant exam-
ples is of fundamental importance. Without them, the theory would be devoid
of meaning. Providing such examples turns out to be a task of considerable
difficulty, due to the presence of characteristic points. A major effort in this
direction was made in the papers [18], [19], to which we refer the reader. In

Section 5 we prove the existence of measures dit which satisfy the assumptions
of the trace theorems in this paper, see Theorem 5.1. As a by-product of The-
orems 1.4, 1.9 and 5.1, we obtain the existence of traces for Sobolev functions
in the Heisenberg group on compact manifolds of codimension one. Our results
in this direction are motivated by the study of boundary value problems for sub-
Laplacians [19]. We also mention that for the Heisenberg group similar results,
along with a sharp end-point one, are contained in the interesting thesis of M.
Mekias [82]. Finally, in Section 6 we give some applications of trace inequal-
ities to the regularity theory of quasilinear partial differential equations which
arise in geometry. In two famous papers in the sixties Serrin developed the
local regularity of weak solutions and studied the precise asymptotic behavior
of singular solutions to a class of general quasilinear equations whose proto-
type is the p-Laplacian div = 0, see [89], [90]. In [14] and [17]
Capogna and two of us obtained results which generalized Serrin’s cited ones
to equations generated by a system of smooth vector fields satisfying the finite ,

rank condition. Here, the assumptions on the lower order terms are optimal in
the scale of Lebesgue spaces. In the applications, however, one often incurs
the need to work with Morrey-Campanato, rather than LP spaces, see [56]. In

Section 6 we apply the trace Theorem 1.9 to obtain the local boundedness, the
Harnack inequality and the Holder continuity of weak solutions to equations
with structure as in [14], [17], but with lower order terms which belong to
function spaces which are optimal in the scale of Morrey type spaces.

2. - Some preliminaries and basic properties

In this section we develop some basic material which will be needed in
the rest of the paper.

DEFINITION 2.1. A metric space is called a length-space ( [5 8] ) if
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for any x, y E S one has

where yxy : [a, b] - is a continuous, rectifiable curve joining x to y, and
denotes its metric length, i.e., d(y(ti), y (tl+1 )), the

supremum being taken on all finite partitions a = tl  t2  ...  tl  tl+l = b
of the interval [a, b].

PROPOSITION 2.2. Every Carnot-Carathéodory space is a length-space.
PROOF. Let x, y E R n be given and denote with the collection

of all continuous, rectifiable curves joining x to y. Clearly, by the triangle
inequality, we have d(x, y)  infYE’R(x,y) To prove the converse inequality,
we consider y E Sex, y). We claim that

Suppose we have proved the claim... The latter implies

which, together with the above inequality, proves the proposition. Thus, let

y E s(x, y), Y : [0, T] - R’~. Let P = {0 = t1  t2  ...  = Tj }
be a partition of [0, T] and for each i = 1, ... , I + 1, set xi = yi (0). If we
define = y (ti + t) for 0  t  ti+1 - ti, then one easily checks that

Yi E and therefore

This gives

Taking the supremum on all partitions P of [0, T] in (2.1 ) one obtains the
claim. D

PROPOSITION 2.3. We assume (H.1 ). Then, locally compact. Fur-

thermore, for any bounded set U C ffi.n there exists Ro = Ro ( U) &#x3E; 0 such that the
closed balls B (xo, R), with Xo E U and 0  R  Ro, are compact.

We refer the reader to [55] and [53] for the proof of Proposition 2.3.

REMARK 2.4. The number Ro = Ro(U) in (H.2), (H.3) will always be
chosen to accommodate Proposition 2.3. By this we mean that for those balls
involved in assumptions (H.2), (H.3) we can (and will) assume in view of

Proposition 2.3 that they have compact closure.

Using Propositions 2.2, 2.3, a version of the Hopf-Rinow theorem due to
Cohn-Vossen [25], see also [12], together with the important fact that in any
locally compact, complete length-space the geodesic segment property holds,
we obtain the following
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PROPOSITION 2.5 (see [41], [54]). Assume (H.1 ), (H.2) and let U E be
a bounded set, Ro as in Remark 2.4. Then the balls B(x, R) are PS-domains for
X E UandO R  Ro.

PROPOSITION 2.6. Suppose (H.1 ), (H.2). If Q satisfies the uniform interior
corkscrew condition, then = 0. 

,

PROOF. For every q E a S2 and 0  r  ro, the uniform interior corkscrew
condition implies the existence of a ball B (A,. (q ), 4 ) such that B (Ar (q ), 
B(q, r) n Q. We also have then B(q, r) C B(Ar(q), 2r). Thus

Since q E a S2 is arbitrary, we infer a S2 c S where

By the Lebesgue differentiation theorem for spaces of homogeneous type
(see [92]) we conclude that

It is proved in [67], [18] that the Carnot-Carathéodory balls satisfy the
uniform interior corkscrew condition. In view of this and of Proposition 2.6
we obtain the following

COROLLARY 2. 7. Under the hypothesis (H.1 ), (H.2), for any x E Rnandr &#x3E; 0
one has a B (x , R)i ( = 0.

PROPOSITION 2.8. Suppose (H.1 ), (H.2) hold. Then for each fixed x E U and
Lebesgue measurable set E C the function

is continuous.

Although Proposition 2.8 appear natural, its proof rests, via Corollary 2.7,
on some deep consequences of (H.2) such as, for instance, Lebesgue differen-
tiation theorem in a space of homogeneous type.

PROOF. By the absolute continuity of the Lebesgue integral, it suffices to

prove that

is continuous. We will show that
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In any metric space one has

and

By properties of Lebesgue measure, we infer

(by (2.3)) 1 B (x, ro) I (by Corollary 2.7) =~(~,y-o)~, ,
r-+r¡j

and

We will also need the following
PROPOSITION 2.9. We assume (H.1 ) and (H.2). Fix 0  R  Ro. The function

is continuous in d). Therefore, it is also continuous in (R’, de).

PROOF. Let Xo E Rn and E &#x3E; 0 be given. We estimate

Since

we can expand II further as

Now we choose 3 &#x3E; 0 from Proposition 2.8 so that if d (x, xo)  8 then

to reach the conclusion.
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COROLLATY 2.10. Under the same hypothesis of Proposition 2.9, let U C R n
be a connected and bounded set with I U I &#x3E; 0, and let Ro be the relative doubling
parameter in (H.2). For any 0  R  Ro we have

PROOF. We argue by contradiction. Suppose that for some 0  R  Ro, we
have CR = 0. There exist xo, E U such that xk ~ xo and R) I --+ 0.
By the continuity in of the map x H , see Proposition 2.9,
we infer I ~ I B (xo, R) 1, and hence I B (xo , R ) I = 0. Next, we let
S2 = {x E U R) ( = 01. Clearly, Q =I=- 0. By Proposition 2.9, SZ is closed.
To prove that S2 is open, pick i E Q. We want to show that B (X-, ~) C S2 . If

y E B(z, ~), then B(y, ~) c B(x, R). Therefore, I B(y, A)i I = 0. By (H.2) we
infer I B(y, R) I = 0, hence Q is open. By connectedness, S2 = U and we reach
the contradiction I U I = 0. D

PROPOSITION 2.11. Assume (H.1 ), (H.2). For any bounded set U C Ilgn let

f (r ) = SUPX E CJ I B (x , r) 1. One has f (r ) 0 as r - 0+.

PROOF. Arguing by contradiction we assume the existence of E &#x3E; 0 and of
a sequence of positive numbers 0  rk  Ro, with rk - 0 as k ~ oo, such
that f (rk ) &#x3E; e. For each k E N there exists xk E &#x26; such that

Since U is compact, one can find Xo E U and a subsequence still denoted
by such that xk - xo in (hence in (R’~, d) by (H.1 )). Thus, for
large enough k we have by the triangle inequality 
By the proof of Proposition 2.8, I (and hence -~ 0 as
k - oo. This contradicts (2.5) and the proposition is proved. D

3. - Trace inequalities: The geometric case

This section is devoted to proving Theorems 1.4, 1.5, 1.7 and 1.8. We

begin by proving Theorem 1.5. The latter plays a crucial role in the proof of
Theorem 1.4. In preparation for the proof of Theorem 1.5, for every bounded
set U C R’ we fix two constants Cs = C5 (U) and do = do(U) as follows.

First, we let CS = infXEU IB(x, Ro)1 &#x3E; 0 (see Corollary 2.10) where Ro is the
constant in Remark 2.4. Next, by Proposition 2.11, we choose do such that

SUPXEU ( B (x , r) I - 4 for all r  do. We make the following important
REMARK 3.1. Whenever the parameter Ro in (H.2) can be allowed to

be then we can take do = +00. (Since CS in this case can be taken to
be oo). This is the case, e.g., of all stratified nilpotent Lie groups [38]. When
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(M, g) is an n-dimensional complete Riemannian manifold with nonnegative
Ricci tensor, then Bishop’s comparison theorem guarantees that (H.2) holds for
the geodesic balls with Ro = see e.g. [24], and therefore we can take
do = -~oo. In this example Lebesgue measure in (H.2) must be replaced by
the Riemannian volume d vg .

PROOF OF THEOREM 1.5. For each x E E there exists 0 do such that

Otherwise, we would have D(E, x)  1’, against the assumptions. On the
other hand, we have for 0  r  Ro and d ( E ) = diam(E)

Letting r - Ro in the above and using Proposition 2.8 we obtain

by our choice of CS and do. By (3.1) and again by Proposition 2.8 we infer
the existence of rx E (0, Ro) such that

Since, by hypothesis, r  ~, we must have

At this point we use the relative isoperimetric inequality in Theorem 1.6
which gives

From (3.2)-(3.4) one obtains
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hence

The estimate (3.5) plays an important role in the conclusion of the proof
of Theorem 1.5. We now cover E as follows

Theorem 1.2 in [26] allows to extract from sequence of

pairwise disjoint balls such that

for some k &#x3E; 0 depending only on Cl 1 in (H.2). By (3.5) we conclude

(Notice that we have used the fact that the balls B(xi, ri ) are pairwise disjoint).
This completes the proof. 0

Next, we recall an interesting generalization of Federer’s co-area formula.
This result was established in [54] and also, independently, in [48].

THEOREM 3.2. Let u E B VX (S2) and for t E R denote Et = {x E Q ( u(x) &#x3E; t }.
Then

We also recall the following basic result about the existence of cut-off
functions which fit the sub-Riemannian geometry of the geodesic balls, see [55]
and also [49].

THEOREM 3. 3. Assume (H.1 ). Let B (xo, R) be a bounded metric ball. Then, for
every 0  s  t  Rthereexistsad-Lipschitzcontinuousjunction4J: Rn -- [0, cxJ).3
such that q5 E for every 1:S p  oo. Furthermore, we have

(i) 4J == 1 on B(xo, s) and q5 --_ 0 outside B(xo, t),
IX4J1  for a. e. x E R n

where C &#x3E; 0 is a constant which depends only on Cl in (H.1 ).
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With these results in hand we turn to the

PROOF OF THEOREM 1.4. The proof is accomplished in several steps.

STEP 1. We start by considering a nonnegative Lipschitz continuous function
u having compact support in B*. Let 0  t and set Et = {x E B* I u(x) &#x3E; t).
Then Et is open in B*, when the latter is endowed with the metric induced by de,
and therefore, thanks to (H.1 ), it is also open in By Proposition 1.2,
Et is then open in d). This implies that for every x E Et

Applying Theorem 1.5 we find a sequence of balls satisfying
properties (i)-(iii) in the statement of the theorem with E = Et. This gives

Observing that u E ,C 1’ 1 ( B * ) (hence u E and =

IB* see [54]), we can apply (ii) of Theorem 3.2 to obtain

STEP 2. We now remove the assumption u &#x3E; 0. Let then u be Lipschitz
continuous with compact support in B*. We write u = u+ - u - and note that
we can apply step 1 to u+, u-. We thus infer

0

STEP 3. u E S 1~ 1 (B*). Let Uk E Cü(B*), Uk ~ U in as k - 00.

By Step 2 we have for h, k - o0
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We infer that is a Cauchy sequence in L1(B*,dJL)’ Hence, there
exists u E dJL) such that Uk - U in L1 (B*, as k - oo. Passing to
the limit as k ~ oo in

we obtain

o

STEP 4. The map u H u is well-defined. Let u E S ’,I (B *). We show that
the function M in (3.6) is uniquely determined. To this purpose, let uk, vk E

Lipo(B*) such that u k - M, vk - u in as k ~ oo. We have for

If M = limk_m Uk, V = liMk,,,,, Vk in L 1 (B *, we infer

This shows that u = v (it-almost everywhere in B*).
STEP 5. Poincare type inequality. This step relies on the previous ones as

well as on the delicate existence result for cut-off functions of Theorem 3.3.

According to the latter we can find a d-Lipschitz continuous function ~ with
compact support in B* such that We

now consider u E Ll,’(B*). By the Meyers-Serrin type approximation theorem
0

(see [54, Theorem 1.29]) we know that u E But then Øu E 
and it is easy to recognize that Øu = ~M. By (3.6) in Step 3 we infer

Using the control on IXf/J1 I we conclude

Before proceeding we recall a result from [54, Theorem 1.15] which was
proved under the hypothesis (H.1 )-(H.3)
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The Poincare inequality in (3.8) plays a crucial role in the subsequent
arguments. Returning to (3.7), we see that the latter now holds for any u E
~1,1 (B*). Next, consider u E ,C1~1 (B*) and apply (3.7) to u - uB. Since

u - u B = U - UB we obtain

We have thus proved for any u E ,C 1 ~ 1 ( B * )

Finally, one has

This completes the proof. D

We now turn to the

PROOF OF THEOREM 1.7. We make the following considerations. First,
observe that the uniform corkscrew condition on E implies that for x E a E and

for some constant C = C (M) &#x3E; 0. Next, by Corollary 2.10 and (1.4) we have

for 0  R  Ro, x E U. Now, fix 3 &#x3E; 0 and let E 8E) be a
covering of a E by a sequence of countable balls such that = 0



217

if i ~ j , see [26]. We can take .~ to be a finite set since a E is compact. Then
we have with Bi = B (xi , 8 ) , Bt = B (xi , k8 )

since the balls Bi E .~ are pairwise disjoint. Passing to the infimum on all

coverings of a E by balls whose radius does not exceed 3 and letting 8 ~ 0,
we conclude that

where C = C(M, Ro, C1, C3, CS) &#x3E; 0. This proves the theorem. 0

REMARK 3.4. It is easy to see that the reverse inequality in Theorem 1.7
is false by the following example. We consider the Baouendi-Grushin vector
fields on R2 given by X = {Xi, X2) where

Let d be the Carnot-Carathéodory metric associated to the system X,
U = B((O, 0), 1) and E be a square centered at (1, 0) and having side-length
equal to 16. We recall that the Carnot-Carathéodory metric is equivalent to the
following pseudo-metric found in [66],

Now for (x, y), (x’, y’) in a small neighborhood of E, which stays away
from the y-axis, d((x, y), (x’, y’)) is essentially the Euclidean distance. Since
E c U satisfies the uniform corkscrew condition with respect to the Euclidean
metric, we conclude that E also satisfies the uniform corkscrew condition with,
say, Ro = ~ with respect to d. It is known that in this case the homogeneous
dimension Q of the set U is Q = 3, hence
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Nevertheless, if we consider the smooth portion of 9E, Ei = ( ( 2 - 
~2 I - k :s y  and 17 denotes the unit normal to E 1, then an easy
calculation gives

This proves that the inequality

cannot hold in general.

We now present the

PROOF OF THEOREM 1.8. We begin by recalling the following result from
the statement of Theorem 2.24 in [18]: Let 0 C IHIn be a domain of class 
then Q satisfies the uniform corkscrew condition. Thanks to this theorem we can
apply Theorem 1.7 to the set E and obtain for it the inequality

To show the opposite inequality, we can, without loss of generality (since
the problem is local in nature), assume that E is given by the set ((z, t) p (z, t)
 0} for some function p E If Xj, j = 1,..., 2n indicate the 2n
left invariant horizontal vector fields on IHIn which generate the Lie algebra, and
q = °’° denotes the outer unit normal to 9E, then we have (see (3.2) in [15])lvpl

with da denoting the Lebesgue surface measure on 8E.
To continue we exploit a delicate result due to Mekias [82] which states

that if B((z, t), r) is a metric ball corresponding to the Carnot-Carathéodory
metric associated to the system X = {Xi,... , X2,1, and if (z, t ) E 8E, then

Since Mekias’s thesis is not available in print, in Section 5 we provide
complete details of the proof of that direction in (3.12) which is needed in the
subsequent argument. Returning to (3.11) we observe that by the compactness
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of 8E we can assume that lvpl &#x3E; C &#x3E; 0. For any ball B with center in 8E
and radius r we therefore have

Fix 6 &#x3E; 0 and let now  E, i = 1, 2, ... } be a covering of a E
by metric balls. Then for each B (pi, 8i ) in the covering, and qi E B ( pi , 
B ( pi , 8i ) c holds. Hence, we have

where C in the above is independent of the number of balls in the covering,
and of ~i’s. Since

the result follows.

4. - Trace inequality: The nongeometric case p &#x3E; 1

This section is devoted to proving Theorems 1.9 and 1.14. Our first step
will be to establish a delicate generalization of the Hardy-Littlewood-Sobolev
theorem of fractional integration in a space of homogeneous type proved in-
dependently in [27], and [73], see also [14]. In the Euclidean setting such
generalization was first established in two beautiful papers by D. Adams [1],
[2], and subsequently extended to weighted spaces. Our approach is based on
D. Adams’ one, but incorporates some modifications, inspired by a paper of
Hedberg [63], see also the recent monograph [4]. Such modifications of Adam’s
arguments are necessary to handle our general setting and, at the same time,
slightly simplify the proofs.

Henceforth, we assume that U c R’ is a given bounded set and let Ci , Ro
be the relative parameters in (H.2). Let Q denote the homogeneous dimension
of U. For 0  a  Q, we recall the definition of the fractional integration
operator of order a [27]

where B = B(xo, R), xo E U, 0  R  Ro. Then we have the following
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THEOREM 4.1. Assume (H.1 ), (H.2). Let 1  p  ~ and suppose that it is a
nonnegative Borel measure on satisfying

for some M &#x3E; 0 and 0  E  p. Then, lex : : LP(B, dx) - Lq,oo(B, with

q = p &#x3E; p. Furthermore, there exists C = C(C1, a, p, E) &#x3E; 0 such that
Q-ap

for any f E L P (B, dx).

REMARK 4.2. 1) When 1  p  ~ one can actually prove that Ia : 1
LP (B, dx) ~ Lq(B, and that in (4.2) the weak Lq norm can be replaced
by the strong one. This requires proving a strong version of Corollary 4.1
below. For the latter we refer to [28]. Since the weak continuity result in
Theorem 4.1 is enough to prove the strong trace inequality in Theorem 1.9, we
will not prove the stronger version of (4.2).

2) It is interesting to observe that when dit = dx, Lebesgue measure
in then (4.1) holds with M = 1 and E = p. In such case q = Q , i.e.,
p q 2013 and Theorem 4.1 is nothing but the weak version of the fractional
integration theorem in [27], [14], [73].

Before proving Theorem 4.1 we establish a generalization of a result in [36].
For 0  y  Q we introduce the fractional maximal operator of order y of a
nonnegative measure tt

When dJL = fdx, for f E then we will write My f instead
of My it. We have the following

LEMMA 4.3. Let f E L1(B), where B = B(xo, R), Xo E U, 0  R  Ro,
and JL be a nonnegative Borel measure. Then, for 0  y  Q one has

for some constant C = C (C 1, y ) &#x3E; 0.
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PROOF. If the right-hand side of (4.3) is infinite there is nothing to prove,
therefore it suffices to assume that it be finite. In what follows we think of f
as defined in R’ by letting f = 0 in B’. Set Et = {x E B My f (x ) &#x3E; t { . If
x E Et t there exists rx &#x3E; 0 such that

Since Et c by the Vitali type covering Theorem 1.2 on

p. 69 of [26] we can find sequences xi E Et, ri = r (xi ) &#x3E; 0, i E N, such that
B (xi , ri ) satisfies (4.4)

and are pairwise disjoint. We have

Now for each y E B (xi , ri ) we obtain from (H.2)

Substitution of this estimate in the right-hand side of (4.5) yields

since the balls B(xi, ri) are pairwise disjoint. This completes the proof. 11

COROLLARY 4.4. Let 0  y  Q, 1  p  -2. Suppose that f E LP(B), and
that JL is a nonnegative Borel measure on Then, for every t &#x3E; 0 one has

for some C = C (C1, y, p) &#x3E; 0.
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PROOF. We note the estimate for g &#x3E; 0, g E 

Taking the supremum in r &#x3E; 0 in the left-hand side gives

The latter inequality implies

If now f E then applying (4.6) with g = we reach the
conclusion. 0

PROOF oF THEOREM 4.1. We adopt an idea of Hedberg [63] which has
already been exploited in [27], see also [14] for complete details. For any
0  5  R write for x E B = B (xo , R )

where we assume that f has been extended with zero outside B. As in [14,
formula (2.11)] we estimate

Since by (H.2) we have

we obtain

Next, we use the fractional maximal operator of order y, 0  y  1, My f,
to estimate Ia f as follows
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for some C = C(Ci , a, y ) &#x3E; 0. From (4.7), (4.8) we infer

for 0  8  R. Minimizing the right-hand side with respect to 8 yields

for some constant C = C(C1, p, a, y ) &#x3E; 0.
At this point we use Corollary 4.4 to estimate the distribution function

_

of with respect to JL. . We choose y = 9  1 so that the

exponent q in the statement of Theorem 4.1 is given by q = For

t &#x3E; 0 one has

In terms of the fractional maximal function of the measure it we see
that (4.1) can be reformulated as follows

But then, (4.11) gives

The latter estimate implies

Finally, (4.10) and (4.12) imply (note that

It is now enough to observe that
to reach the conclusion.
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We are now ready to give the proof of Theorem 1.9. The latter will be

obtained from Theorem 4.1 and from the following important result.

THEOREM 4. 5. Suppose (H.1 )-(H.3) hold. Then, there exists constants P, C &#x3E; 0

depending on Cl, C2 such that for B = B(xo, R), Xo E U, 0  R  Ro, and
u E one has for a.e. x E B

Theorem 4.5 was first proved in [45] for Hormander type operators by an
argument based on the Rothschild-Stein lifting theorem. A more elementary
proof, based on (H.2), (H.3), and estimates of the fundamental solution of sub-
Laplacians, was found in [16]. Subsequently, Franchi, Lu and Wheeden [46]
made the interesting observation that one needs only (H.1 ), (H.2), the Poincare
inequality, and the following size estimate for the metric balls: for any 0  t  1

to obtain (4.13). Franchi and Wheeden [50] have recently made the important
discovery that, even for a system of locally Lipschitz vector fields, (4.14) holds
with infx E v Q(x) = 1, and that moreover such linear growth is enough to deduce
Theorem 4.5 from (H.1 ), (H.2) and the Poincaré inequality.

COROLLARY 4.6. Under the assumption of Theorem 4.5, suppose that u E
0

Then for a.e. x E B we have

where

Another fact about needed in the proof of Theorem 1.9 as well as in
many applications to PDEs is stated in the following

LEMMA 4.7. Let F be a piecewise smooth function on R with F’ E L 00 (R).
Then if u E we have F 0 u E ,C 1 ~ p ( U ). Furthermore, if L denotes the set of
corner points of F, we have

The proof is standard and follows from Lemma 3.5 parts (I) and (II) of [54].
We now give the
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0

PROOF OF THEOREM 1.9. We start with U E S’,P(B*). Corollary 4.6 and
Theorem 4.1 allow to conclude for any t &#x3E; 0

For each k E Z define

Clearly, F is piecewise smooth with corners at :i:2k, :i:2k+ 1 and I  1
0

at the non corner points. Next, take u E and let

0 

By Lemma 4.7 we have Uk and IXukl = ( for

a.e. x E B*. This gives
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We remark that in the above chain of inequalities we have used the fact
0

q &#x3E; p. Summarizing, we have shown that for every u E 

Arguing as in the proof of Theorem 1.4 we establish for any u E 

From the latter and from the Poincare inequality

for functions in L’,P(B*) (see Corollary 1.6, part (II), and Theorem 1.15, part (I),
in [54]) we reach the desired conclusion. 0

We now turn to the proof of Theorem 1.14. But first, we recall a Lemma
from [54].

LEMMA 4.8 (see Lemma 3.1 in [54]). Let 0 c measurable set with

Ro/2. Then there exists a constant C &#x3E; 0, depending only on C1
in (H.2), such that for any ball B C Q, with radius r(B), we have

PROOF OF THEOREM 1.14. Since the computations are similar to the one in
[54, Theorem 1.5], we only highlight the main differences and refer the reader
to the above cited work. Let u E be given and denote f3B by B*. We
estimate
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It is easy to see by using Lemma 4.8 and Theorem 1.9 that

To estimate I I, we consider for each B E F a chain Bo, Bl , ... , Bs(B) = B
as in Definition 1.12. Then

Since the analysis of III and 1 V is the same and, at the end, they are
majorized by the same quantity, we analyze III only.

Now for B fixed, let = {B E I vB ;2 B}. Note that every Bj in
the chain connecting Bo to B is in For any B E T set
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then

Substitute (4.19) in (4.18) and subsequently (4.18) in (4.17), raising to the
q-th power. Using the trivial observation that for every x E B,

we have

Summing over B E ,~’ one obtains

(by (i) in Definition 1.12)
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(by Lemma 4 in

(by (i) in Definition

In the above, we have used the fact that the has at

most N terms that are not zero for each x E S2 and 1 &#x3E; 1. By the estimate of
p

I and II we infer

Finally, Holder’s inequality gives

5. - A geometric application of trace inequalities

The purpose of this section is to present some interesting and useful appli-
cations of Theorems 1.4,1.9 to manifolds of codimension one in the Heisenberg
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group HI. We begin with a known result from Euclidean analysis which serves
as motivation.

Consider R" with the standard basis Xj = -, 1  j  n. In this case one
] 

- -

proves d = de = I . I and Be = Be (x , r) = f y E Ilx - y I  r}. The space
is then the ordinary Sobolev space Wl,’(B,). Take in Theorem 1.4

to be a Lipschitz (n - I)-dimensional manifold. Since our result is local in

nature, we can assume that be bounded. Define an outer measure it on 

by letting 
4

where is the n -1 dimensional Hausdorff measure in R" with respect to the
metric de. It is well-known that for any x E M, ft(B(x, r)) r _ r .
Hence, Theorem 1.4 applies in this case, yielding the conclusion that every
u E W 1 (B,) has a trace in n Be). If, instead, we apply Theorem 1.9,
we infer that membership of u in implies existence of a trace in

n Be), with q = p n- p . In this context, these results are included in a
n-p

theorem of Gagliardo [51], see also [91].
If we abandon the Euclidean setting and turn the attention to the simplest

non-abelian example of a Carnot group, namely the Heisenberg group IHIn, the
situation becomes suddenly more intricated due to the presence of characteristic
points. To clarify this comment we consider a smooth compact manifold C

IHIn, and ask the question of when M supports a Borel measure dp which
fulfills the growth assumptions in Theorems 1.4 and 1.9. The answer to this

question is somewhat delicate, as we will show in what follows. Let us recall
that IHIn is the Lie group whose underlying manifold is x R with group law

where (, ) denotes the ordinary inner product in I~~ . The corresponding Lie alge-
bra of left-invariant vector fields is generated by the system X = {X 1, ... , 
where

A basis for such algebra is given by f X 1, ... , X 2n , T}, where T = -4~.
In the sequel we will need the exponential mapping induced by such basis, see
the Appendix in [83]. For each qo = (xo, yo, to), q = (x, y, t) E M" a simple
calculation gives

We assume that the manifold has codimension one in IHIn, i.e., dim(A)
= 2n, and that it be given by
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where p E Consider the angle function

The characteristic set of the system X on M is given by E = {q E M I
w(q) = 01.

Returning to the question above, a natural candidate for the measure dtt on
M would clearly be surface measure da, but the latter does not scale correctly
across the characteristic set E. Instead, for a set E c IHIn, we define

The measure d~ is supported on M. In order to see whether it is an

appropriate candidate for Theorems 1.4, 1.9, we need to study how it charges the
Carnot-Carathéodory balls. It is known that the Camot-Carathéodory metric d
associated to X is equivalent to the metric dH ( p, q ) = where

is the natural gauge function on JHIn. It thus suffices to consider balls with

respect to dH, B = B ~(q , r) = { p E JHIn I dH (p, q)  r } . The homogeneous
dimension attached to the anisotropic dilations 8x(x, y, t) = is

Q = 2n + 2. One easily sees that B (x, r) ~ r Q . The following result holds.

THEOREM 5.1. There exist positive constants M, Ro, depending on M, such
that, f ’or every q E M, and any 0  r  Ro, one has

We mention that Theorem 5.1 is part of a result, due to Mekias [82],
which states that the reverse inequality also holds. Since, the proof in [82] is
not available in print and also does not contain full details, given the relevance
of the result we provide a detailed proof below.

Taking Theorem 5.1 for granted for a moment, we can use it to implement
Theorems 1.4 and 1.9 and obtain trace inequalities on manifolds of codimension
one in IHIn . If U E IHIn is an open set such that M c U, we thus reach the con-
clusion that functions in the Folland-Stein Sobolev spaces ,C 1 ~ 1 ( U ), or 
1  p  Q, admit a trace respectively in or in Lq (.A4, dJL), with
q = p Q . Moreover, specialized to the present context, (1.6) and ( 1.11 ) pro-
vide a priori control of the relevant norm of the trace. For instance, from ( 1.11 )
we obtain for every u E ,C 1’ p ( B * )
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where M is the constant in Theorem 5.1. The discussion will be complete once
we prove Theorem 5.1, to which task we turn next.

Let p be the defining function of A~. We introduce the quantity

We start with a preliminary result.

LEMMA 5.2. Suppose that the defining function p be at least of class C2. There
exist constants R 1, Cl , C2 &#x3E; 0 such that for all qo E A4 and r  R 1 the following
estimate holds

PROOF. To simplify the notation in the sequel we focus on the three-
dimensional Heisenberg group IHI = H’. From the analysis of the latter the

general case follows with trivial changes. First, we approximate a(MnB(qo, r))
to first order To we use

the exponential mapping based at qo given in (5 .1 ) and the following famous
"Ball-Box" theorem of [83] (see also [59]): There are strictly positive continuous
functions C = C (qo) and R’ = R’ (qo) such that

for all qo E JHIn and r  R’ where

Consider the tangent plane Tqo.A4

We let y respectively denote the numbers ay (qo), ap (qo). Choose
A = a + 2yoy, B = 0 - 2xoy, C = -4y, then from (5.1) one finds that the
plane containing e = (0, 0, 0)

has the property

In view of the fact that Expqo is a one to one mapping, we have
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Thus, it suffices to consider and make the appropriate
adjustment at the end to accomodate the constant C. We now proceed to

determine a coordinate patch for Expqo (H n Box(r)). Consider the cylinder

One sees that the quantities a (H n Box(r)) and are com-

parable. is invariant under rotation around the t-axis, we
make a rotation to map the vector (A, B, C) (the normal vector to ~-~C) to the
vector ( A2 + B2, 0, C). We still use ?-C to denote the rotated plane. It is now

easy to see that the range of x for which the (rotated) plane 7~ lies in Box(r)
is given by -

One can simply rewrite this condition as I x I  r). Weici

distinguish two cases. If C = -4y = 0. We consider the rectangle

and the function q5 : II~2 -~ ~ defined as follows

(Q, q5) and (Q, Expqo o 0) are coordinate patches for ~C n Box(r) and n

respectively. Now

With the above meanings of the quantities one easily
recognizes that A = Xp(qo), B = Yp(qo), and therefore w (qo) - A2 -f- B2 _
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At this point using the definition (5.1) of the function r), one finds from
the above chain of equalities

If we have C = -4y = -4 ap (qo) = 0 instead, we simply let

and

Again, (Q, Ø) and (Q, EXPqo 0 Ø) are coordinate patches for rt n B ox (r ) and
respectively. Carrying out the same computations we

see that indeed, the expression for cr (EXPqo (rt n Box(r)) also includes the case
where C = -4y = ap (qo) = 0.

To finish the proof of the lemma, we simply observe that is compact
and the constants C (qo ) in the "Ball-Box" theorem stated above depend con-

--1 1
tinuously on qo. Therefore, we can take C1 = min{C ./M} &#x3E; 0,

C2 = E .M } &#x3E; 0, R" = min { R’ (qo ) I qo E &#x3E; 0. Since
is at least C2 and compact, we can approximate n B(qo, r)) by

n B(qo, r)) by requesting r  R 1 for some R’ 1 independent of qo so
that the error term can be absorbed into the principal f1 B (qo, r)).
Letting R1 - min(R", R1) we then reach the conclusion. D

REMARK 5.3. It is important to observe that if q is a characteristic point,
then r) = r, and therefore

We now prove that there exist positive constants M, Ro, depending on M,
such that for every q E and 0  r  Ro we have

PROOF. &#x3E; 0 for all q E M and w (q ) = 0 for q G X,
ap (q ) ~ 0 on E . By the compactness of L, we can find a neighborhood L8
of E on which ap (q ) ? C &#x3E; 0. Hence,
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and

for all points q E b8.
Next, we set L = E M B Since E is compact and w only

vanishes on E, we have L &#x3E; 0. Taking Ro  L we obiously have

and hence

for points q E B E3 and this completes the proof. D

We emphasize that if p &#x3E; 2 we can apply Theorem 1.9 with the choice
dp = da and conclude that a function in has a trace in 

with q = p Q . In the limiting case p = 2, we are not able to directly apply
Theorem 1.9 to the measure da by using (5.6), since our general approach
would require the stronger assumption

which however fails at characteristic points, see (5.5). Nonetheless, interesting
sharp results in this direction have been proved by Mekias [82] in some special
cases. For instance, this author proved that a function u E ,C1’2(B), where B is
the gauge unit ball centered at the identity e E IHIn , admits a trace in L2(M, da),
where 

We are ready to give the

PROOF OF THEOREM 5.1. Again, we only consider the case n = 1 and leave
the trivial modification for the case n &#x3E; 1 to the reader. Let Ro and C be as
in (5.6). We recall from the proof of (5.6) we have ,

If we use first order Taylor expansion, we obtain easily ([82, Lemma 2 a])

for some C &#x3E; 0 and for all q E B(qo, r) n M. Now
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To continue, we distinguish two cases.

CASE 1.

In this case, recalling (5.2) we obtain from (5.9)

CASE 2.

We now find easily from (5.9)

Combining (5.10) and (5.11) we reach the conclusion. D

6. - Optimal regularity for solutions of quasilinear equations

In this section, we present some interesting applications of Theorem 1.9 to
the study of regularity weak solutions of a general class of quasilinear subelliptic
equations whose prototypes arise in CR geometry, or in the theory of quasi-
conformal mappings between Carnot groups. We consider equations of the
type

where A = (Ai,... , A m ) : x R x R’ --* R’", f : RI x R x R’ - R are
measurable functions satisfying the following structural conditions: There exist

and measurable functions fl, f2, f3, g2, g3, h3 on JRn such
that for a.e. x E R", u E R and ~ E R’ we have
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The basic model to keep in mind is the so called subelliptic p-Laplacian.

Given an open set S2 c a function u e is said a (weak) solution
o

of (6.1 ) if for every ~ e with compact support in U, one has

This type of equation with the above structural conditions was first studied
in the Euclidean setting by Serrin in his famous papers [89], [90]. When
the system X = {X } , ... , Xm } satisfies the finite rank condition [65], then
the Harnack inequality and the Holder continuity (with respect to the Carnot-
Carathdodory metric) of solutions of (6.1) were obtained in [14] under structural
assumptions which are optimal in the scale of Lebesgue spaces. The local
behavior of singular solutions was studied in [17]. In the same framework
of [14] earlier non optimal results were obtained by Xu in [99].

The purpose of this section is twofold. On the one hand we show that
the three basic assumptions (H.1)-(H.3) suffice to develop a complete regularity
theory independently from any specific smoothness and geometric hypothesis on
the vector fields (such as, e.g., the finite rank condition). This program is close
in spirit to that first developed by Saloff-Coste for linear subelliptic parabolic
equations in [88]. On the other hand, by means of Theorem 1.9 we extend
the results in [88] to the present setting of a singular Camot-Carathéodory
space. A second novelty consists in the fact that the functions in the structural
conditions (6.2) are allowed to belong to Morrey spaces Mk,À which are optimal.
In the Euclidean setting several authors have used D.Adams’ trace inequality
to study regularity properties of second order elliptic pde’s (both linear and
nonlinear). For quasilinear equations we refer the reader to [87], [86], [72],
[100].

We begin by introducing the relevant Morrey spaces.

DEFINITION 6.1. Given l~~oo,~&#x3E;0 and a d-bounded open set Q,
a function u is said to belong to the Morrey space associated to the

distance d if u E LÎoc(Q) and

where do = min(diam(Q), Ro ) .
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We make the following hypothesis on the functions fi, gi, hi in (6.2). If
1  p  Q, we assume for some 0  E  p and 1  /  -p-c

whereas when p = Q we assume for some 0  c  Q and 1  I  Q

We begin with a basic result about local boundedness of weak solutions.

THEOREM 6. 2. Suppose (H.1 )-(H.3) and (6.4) hold. Let U C R n be a bounded
open set with local homogeneous dimension Q and u E ,Ciop (U), with 1  p  Q,
be a weak solution of (6.1). Then there exist C &#x3E; 0, R1 I &#x3E; 0 depending on p, E,
the structural assumptions (6.2) and (6.4), the parameters in (H.2), (H.3), and the
constants C, P, C3 in Theorems 1.9 and 3.3 such that for any BR - B(xo, R), for
which B(xo, C U and R  R1, we have

where

Before giving the proof of Theorem 6.2, we would like to comment about
the quantity K(R). In the Euclidean setting, Theorem 6.2 was first established
in the scale of LP spaces in [89] for balls of radius R = 1. A rescaling
argument then gives the correct powers in the constant K (R). In our setting
we have no dilation structure and obtaining the correct K (R) involves some
subtler analysis.

PROOF OF THEOREM 6.2. Under the assumptions of Theorems 6.2 and 6.3,
the reader can easily verify that (6.3) is well defined. Fix B* = B(xo, 4PR) c U
and let u be a solution to (6.1 ). For fixed R  Ro and K = we set

u = Jul + K, g2 - 1921 + f2 = lf2l + + Then
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by (II) of Lemma 3.5 in [54] we have = and the assumption (6.2)
can be rewritten as

Here, f2, i2 satisfy

We define for t &#x3E; K 

With we let

By Lemma 4.7 it is easy to verify that F(U-), G(u) E and the

product rule also applies. Since U is (Euclidean) bounded and B* c U, then
B* is also a bounded set and hence Theorem 3.3 yields for every 1  b  f3
a function n E ,C1’p (I~n ) for every 1  p  oo with 17 =- 1 on B (xo, a R) and

t7 ==E 0 outside B (xo , b R ) and We then let  = i7PG(u) and( )
v = F(U-). Proceeding as in [14] we arrive at the following estimate

To control the terms in the right hand side of (6.7) one argues similarly
to [14], except for the third and forth integrals which are now estimated by
means of Theorem 1.9. We thus omit pointless details and concentrate on the
main differences. Fix t so that  t  I and let o = p ( 1- t / l ) &#x3E; 0.p
Holder’s inequality yields
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- p

We let dJL = f2 p-a d y and proceed to verify that it satisfy the assumption
of Theorem 1.9. Since supp 17 C BfiR we can assume that f2 n 0 outside BfiR-
Fix x E U, 0  p  do = min(diam(U), Ro). If x E B(xo, 2f3R) then

where a = &#x3E; 0 by our choice of t. B(xo, then either

B(x, p) n B(xo, fiR) = ø, in this case one has trivially JL(B(x, p)) = 0 
or else there exists z E B(x, p) n B(xo, fiR), and also it must

be p &#x3E; Thus, B(x, p) n B(xo, f3R) C B(z, 2p) c B(x, 4p) and we find

In all cases we conclude

for all x E U and 0  p  Ro with An
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application of Theorem 1.9 gives

In (6.9) we have used the fact that q = hence 1- p/q - Q a +a - 0
and ~~~ - ( p - a ) ( 1 - p /q ) = a. Using (6.9) in (6.8) we obtain

Next, we estimate the term containing f1 in (6.7) using analogous consid-
erations. After applying Holder inequality, we set dp = and verify
easily that

By Theorem 1.9, having simplified the relevant powers, we obtain

We now remark that, contrarily to the case when the coefficients in (6.2)
are assumed to belong to the appropriate LP spaces, the power &#x3E;
in the right hand side of (6.11 ) is p rather than 1 - E . Therefore, we must
choose R1 such that for all R  R1 we have

In this way the term
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can be absorbed in the left hand side of (6.7). These considerations allow to
conclude with p* = -Q-p

We thus come to another point where the analysis departs from that relative
to LP integrability assumptions. We cannot simply use Young’s inequality to

Q

bound from above the in the last term of
#R #j , ,

(6.12) by the + · If we did so, then in view of

the estimate of after (6.6), the term
x (~

would possibly tend to 0o as /? -~ 0. Instead, we use the estimate 
in (6.12),coupled with the observation that

This leads to the estimate

Finally, letting h ~ oo in the definition of F and implementing the Moser
iteration scheme (see [14], [89]) we reach the conclusion of the theorem. We
mention in closing that (H.2) has been repeatedly used in the above computations
without explicit reference.
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THEOREM 6.3. In addition to the hypothesis of Theorem 6.2, suppose also that U
be connected. If u is a nonnegative weak solution to (6.1 ) in U, then there exist
C &#x3E; 0, RI &#x3E; 0 depending on p, E, the structural assumptions in (6.2) and (6.4),
the parameters in (H.2), (H.3) and the constants C, C3 in Theorems 1.9 and 3.3,
such that for any BR = B(xo, R), for which B(xo, 4PR) c U, and R  Rl, we
have 

J ,

Here, K (R) is as in Theorem 6.2.

The proof of Theorem 6.3 follows from the ideas already exposed in the
proof of Theorem 6.2 and of the Harnack inequality in [14], thereby we omit
it. We simply mention that at some point one needs to use the estimates

and

which follow from Corollary 2.10 and from (1.4). 0

The above results leave out the case p = Q. The latter differs from that
1  p  Q in the fact that one cannot use directly Theorem 1.9.

THEOREM 6.4. Assume (H.1)-(H.3), and that p = Q and (6.5) hold. Let U C
Rn be a bounded open set with local homogeneous dimension Q and u E L 1, Q (U)
be a weak solution of (6.1). There exist C &#x3E; 0, R1 I &#x3E; 0, depending on Q, E, the
structural conditions (6.2) and (6.5), the parameters in (H.2), (H.3), and constants
C, 0, C3 in Theorems 1.9 and 3.3, such that for any BR = B(xo, R), for which

C U and R  RI, one has

where

PROOF OF THEOREM 6.4. We note that up to (6.7) the computations are
similar to those in the proof of Theorem 6.2. The only difference occurs in the
estimates of the terms involving f 1. One has
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Letting dtt = we can verify as in the computations of (6.10) that

for all x e U and 0  Ro. Here M = M(R) = . 
. However,

in order to apply Theorem 1.9 we need to rewrite (6.15) as follows. We fix
y with 0  y  and let p = Q - y  Q, 6 = E - y &#x3E; 0. Then (6.15)
becomes

Note also that with this choice of y and if q - then 4 &#x3E; Q.Q P
Now with the help of Theorem 1.9 we continue as follows.

From this point on, we argue as before to reach the conclusion. D

When p = Q we also have the following Harnack’s inequality whose proof
we omit altogether.

THEOREM 6.5. In the same hypothesis of Theorem 6.4 let u be a nonnegative
solution to (6.1). Then, there exist C &#x3E; 0, R1 i &#x3E; 0 depending on p, E, the structural
conditions (6.2) and (6.5), the parameters in (H.2), (H.3), and the constants C, P, C3
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in Theorems 1.9 and 3.3, such that for any BR = B(xo, R), for which C

U, and R  Ri, one has

Here, K (R) is as in Theorem 6.4

Theorems 6.3 and 6.5 imply that weak solutions are locally Hölder con-
tinuous with respect to the Carnot-Carathéodory metric d(x, y).

THEOREM 6.6. Let u E ,C 1’ p (U) with 1  p  Q be a weak solution to (6.1 ),
with ess supu I u I = L  oo. There exist C &#x3E; 0, a &#x3E; 0 depending on U, L, and
all parameters involved in the structural and integrability assumptions (6.2), (6.4),
(6.5), such that

The proof of Theorem 6.6 is by now classical, except for one important
point. One needs to control the quantities I~ (R), K (R) in Theorems 6.3 and 6.5,
with a power of R. This point is crucial to establish a Holder modulus of

continuity. To, achieve this goal we exploit the following important estimate
established in [50].

LEMMA 6.7. Suppose (H.1)-(H.2) hold. There exists C* &#x3E; 0 such that for all
x E U, 0  R  Ro and 0  t  1 one has

Using Lemma 6.7 we infer for all x E U and 0  R  Ro

where

in view of Proposition 2.9. We conclude
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where y = min(~2013~., ~). This estimate is the sought for power like behavior
needed to complete the proof of Theorem 6.6.

We close this section with the following

REMARK 6.8. The regularity results of this section properly include those
in [14]. In the work [28], one of us established a Fefferman-Phong type
inequality for Camot-Carathéodory spaces, and used it to study the regularity
of solutions to (6.1). It is interesting to compare the results obtained in [28]
with the ones here. It is assumed in [28] that for 1  p  Q and for some

One easily recognizes that the spaces to which g2, g3 are requested to belong
to in the work [28] are larger than the ones used in this paper, while the

space to which f1 belongs to in the work [28] is smaller than the one used
here. However, combining both results, we obtain the following theorems which
simultaneously give the optimal results for the present paper and for [28].

THEOREM 6.9. Let U C be a bounded open set with local homogeneous
dimension Q and let u E with 1  p  Q be a weak solution of (6.1 ).
Suppose (H.1 )-(H.3) hold and that for some 0  E  p one has

There exist C &#x3E; 0, R 1 &#x3E; 0 (depending on p, E, the structural conditions (6.2)
and the above assumptions on fl, f2, f3, g2, g3, h3, on the parameters in (H.2),
(H.3) and on the constants C, C3 in Theorems 1.9 and 3.3) such that, for any
BR = B(xo, R) for which B(xo, 4f3 R) C U, and every R  R1, we have
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where

THEOREM 6.10. In addition to the same hypothesis as in Theorem 6.9 we also
assume that U be connected. If u is a nonnegative solution to (6.1 ), then as in
Theorem 6.9 we can find C &#x3E; 0, Rl I &#x3E; 0 such that for any BR = B(xo, R) for which
B (xo , 4PR) C U and R  R we have

REFERENCES

[1] D. ADAMS, Traces ofpotentials arising from translation invariant operators, Ann. Scuola
Norm. Sup. Pisa Cl. Sci. 25 (1971), 203-217.

[2] D. ADAMS, A trace inequality for generalized potentials, Studia Math. 48 (1973), 99-105.

[3] D. ADAMS, Weighted nonlinear potential theory, Trans. Amer. Math. Soc. 297 (1986),
73-94.

[4] D. ADAMS - L. HEDBERG, "Function Spaces and Potential Theory", Springer-Verlag,
1996.

[5] M. S. BAOUENDI, Sur une classe d’opérateurs elliptiques dégénérés, Bull. Soc. Math
France 195 ( 1967), 45-87.

[6] A. BELLAÏCHE, "Sub-Riemannian Geometry", Birkhäuser, 1996.

[7] M. BIROLI - U. Mosco, A Saint- Venant type principle for Dirichlet forms on discontinuous
media, Ann. Mat. Pura Appl. (IV) 169 (1995), 125-181.

[8] M. BIROLI - U. Mosco, Sobolev and isoperimetric inequalities for Dirichlet forms on

homogeneous spaces, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9)
Mat. Appl. 6 (1995), 37-44.

[9] M. BIROLI - U. Mosco, Sobolev inequalities on homogeneous spaces, Potential Anal.
4 (1995), 311-324.

[10] J. BOMAN, Lp estimates for very strongly elliptic systems, unpublished manuscript.
[11] S. BUCKLEY - P. KOSKELA - G. Lu (eds.), Boman equals John, In: "Proc. of the 16th

Nevanlinna Coll." (Joensuu, 1995), de Gruyter, Berlin, 1996.

[12] H. BUSEMANN, "Recent Synthetic Differential Geometry", Springer-Verlag, 1970.

[13] P. BUSER, A note on the isoperimetric constant, Ann. Sci. École Norm. Sup. 4 (1982),
213-230.



248

[14] L. CAPOGNA - D. DANIELLI - N. GAROFALO, An embedding theorem and the Har-
nack inequality for nonlinear subelliptic equations, Comm. Partial Differential Equations
18 (1993), 1765-1794.

[15] L. CAPOGNA - D. DANIELLI - N. GAROFALO, An isoperimetric inequality and the geo-
metric Sobolev embedding for vector fields, Comm. Anal. Geom. 2 (1994), 203-215.

[16] L. CAPOGNA - D. DANIELLI - N. GAROFALO, Subelliptic mollifiers and a basic pointwise
estimate of Poincaré type, Math. Z. 226 (1997), 147-154.

[17] L. CAPOGNA - D. DANIELLI - N. GAROFALO, Capacitary estimates and the local behavior

of solutions of nonlinear subelliptic equations, Amer. J. Math. 118 (1997), 1153-1196.

[18] L. CAPOGNA - N. GAROFALO, Boundary behavior of nonegative solutions of subelliptic
equations in NTA domains for Carnot-Carathéodory metrics, J. Fourier Anal. Appl. 4

(1998), to appear.
[19] L. CAPOGNA - N. GAROFALO - D. M. NHIEU, The Dirichlet problem for sub-Laplacians,

preprint (1997).
[20] S. Y. A. CHANG - J. M. WILSON - T. H. WOLFF, Some weighted norm inequalities

concerning the Schrödinger operators, Comment. Math. Helv. 60 (1985), 217-246.

[21] S. CHANILLO - R. L. WHEEDEN, Lp estimatesforfractional integrals and Sobolev inequal-
ities with applications to Schrödinger operators, Comm. Partial Differential Equations 10
(1985), 1077-1166.

[22] F. CHIARENZA, Regularity for solutions of quasilinear elliptic equations under minimal

assumptions, Potential Anal. 4 (1995), 325-334.

[23] F. CHIARENZA - M. FRASCA, A remark on a paper by C. Fefferman, Proc. Amer. Math.
Soc. 108 (1990), 407-409.

[24] I. CHAVEL, "Eigenvalues in Riemannian Geometry", Academic Press, Orlando, 1984.
[25] S. COHN-VOSSEN, Existenz kürzester Wege, Dokl. Akad. Nauk SSSR 3 (1935), 339-342.

[26] R. COIFMAN - G. WEISS, "Analyse harmonique non-commutative sur certains espaces
homogenes", Springer-Verlag, 1971.

[27] D. DANIELLI, Formules de représentation et théoreèmes d’inclusion pour des opérateurs
sous-elliptiques, C.R. Acad. Sci.Paris Sér. I 314 (1992), 987-990.

[28] D. DANIELLI, A Fefferman-Phong type inequality and applications to quasilinear subel-

liptic equations, Potential Analysis, to appear.
[29] G. DAVID - S. SEMMES, Analysis of and on uniformly rectifiable sets, Mathematical

Surveys and Monographs n. 38, American Mathematical Society, Providence, RI 1993.
[30] G. DAVID - S. SEMMES, Uniform rectifiability and singular sets, Ann. Inst. H. Poincaré

Anal. Non Linéaire 13 (1996), 383-443.

[31] L. C. EVANS - R. F. GARIEPY, "Measure Theory and Fine Properties of Functions", CRC

press, 1992.

[32] H. FEDERER, "Geometric Measure Theory", Springer-Verlag, 1969.
[33] C. FEFFERMAN, The uncertainty principle, Bull. Amer. Math. Soc. 9 (1983), 129-206.

[34] C. FEFFERMAN - D. H. PHONG (eds.), Subelliptic eigenvalue problems, In: "Proceedings
of the Conference in Harmonic Analysis in Honor of A. Zygmund", Wadsworth Math.
Ser., Belmont, CA, 1981, pp. 530-606.

[35] C. FEFFERMAN - A. SANCHEZ-CALLE, Fundamental solutions for second order subelliptic
operators, Ann. of Math. 124 (1986), 247-272.

[36] C. FEFFERMAN - E. STEIN, Some maximal inequalities, Amer. J. Math. 93 (1971), 107-115.



249

[37] G. B. FOLLAND, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark.
Mat. 13 (1975), 161-207 .

[38] G. B. FOLLAND - E. M. STEIN, "Hardy Spaces on Homogeneous Groups", Princeton
Univ. Press., 1982.

[39] B. FRANCHI, Weighted Sobolev-Poincaré inequalities and pointwise estimates for a class

of degenerate elliptic equations, Trans. Amer. Math. Soc. 327 (1991), 125-158.

[40] B. FRANCHI - S. GALLOT - R. WHEEDEN, Sobolev and isoperimetric inequalities for
degenerate metrics, Math. Ann. 300 (1994), 557-571.

[41] B. FRANCHI - C. GUTIÉRREZ - R. WHEEDEN, Weighted Sobolev-Poincare inequalities for
Grushin type operators, Comm. Partial Differential Equations, 19 3-4 (1994), 523-604.

[42] B. FRANCHI - E. LANCONELLI, Une metrique associeé à une classe d’operateurs elliptiques
degénérés, Proceedings of the meeting "Linear Partial and Pseudo Differential Operators",
Rend. Sem. Mat. Torino (1984), 105-114.

[43] B. FRANCHI - E. LANCONELLI, Hölder regularity theorem for a class of linear non uniform
elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
10 (1983), 523-451.

[44] B. FRANCHI - E. LANCONELLI, Une condition géométrique pour l’inégalité de Harnack,
J. Math. Pures Appl. 64 (1985), 237-256.

[45] B. FRANCHI - G. Lu - R. L. WHEEDEN, Representation formulas and weighted Poincaré
inequalities for Hörmander vector fields, Ann. Inst. Fourier (Grenoble) 45 (1995), 577-
604.

[46] B. FRANCHI - G. Lu - R. L. WHEEDEN, A relationship between Poincaré type inequalities
and representation formulas in spaces of homogeneous type, Internat Math. Res. Notices
1 (1996), 1-14.

[47] B. FRANCHI - R. SERAPIONI, Pointwise estimates for a class ofstrongly degenerate elliptic
operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987), 527-568.

[48] B. FRANCHI - R. SERAPIONI - F. SERRA CASSANO, Meyers-Serrin type theorems and
relaxation of variational integrals depending on vector fields, preprint.

[49] B. FRANCHI - R. SERAPIONI - F. SERRA CASSANO, Approximation and imbedding theo-

rems for weighted Sobolev spaces associaed with Lipschitz continuous vector fields, Boll.
Un. Mat. Ital. to appear.

[50] B. FRANCHI - R. WHEEDEN, Some remarks about Poincaré type inequalities and repre-
sentation formulas in metric spaces of homogeneous type, preprint.

[51] E. GAGLIARDO, Caratterizzazione delle tracce sula frontiera relative ad alcune classi di

funzioni in n variabili, Rend. Sem. Mat. Univ. Padova 27 (1957), 284-305.

[52] J. GARCIA CUERVA - J. L. RUBIO DE FRANCIA, "Weighted Norm Inequalities and Related

Topics", North-Holland Mat. Stud. n. 116, 1985.

[53] N. GAROFALO, "Recent Developments in the Theory of Subelliptic Equations and Its
Geometric Aspects", Birkhäuser, to appear.

[54] N. GAROFALO - D. M. NHIEU, Isoperimetric and Sobolev inequalities for Carnot-Cara-

théodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math. 49 (1996),
1081-1144.

[55] N. GAROFALO - D. M. NHIEU, Lipschitz continuity, global smooth approximations and
extension theorems for Sobolev functions in Carnot-Carathéodory spaces, J. Analyse Math.
74 (1998), 67-97.



250

[56] M. GIAQUINTA, "Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic
Systems", Ann. of Math. Studies 105, Princeton Univ. Press, Princeton, N. J., 1983.

[57] E. GIUSTI, "Minimal Surfaces and Functions of Bounded Variation", Birkhäuser, 1984.

[58] M. GROMOV, "Structures métriques pour les variétés Riemanniennes" (rédigé par J. La-
fontaine et P. Pansu), CEDIC ED., Paris, 1981.

[59] M. GROMOV, Carnot-Carathéodory spaces seen from within, Inst. Hautes Études Sci. Publ.
Math. (1994).

[60] V. V. GRUSHIN, On a class of hypoelliptic operators, Math USSR-Sb., 12 3 (1970), 458-
476.

[61] P. HAJLASZ, Sobolev spaces on an arbitrary metric space, Potential Anal. 5 (1996), 403-
415.

[62] P. HAJLASZ - P. KOSKELA, Sobolev meets Poincaré, C. R. Acad. Sci. Paris Sér. I 320

(1995), 1211-1215.

[63] L. HEDBERG, On certain convolution inequalities, Proc. Amer. Math. Soc. 36 (1972),
505-510.

[64] L. HEDBERG - T. WOLFF, Thin sets in nonlinear potential theory, Ann. Inst. Fourier
(Grenoble) 23 (1983), 161-187.

[65] H. HÖRMANDER, Hypoelliptic second-order differential equations, Acta Math. 119 (1967),
147-171.

[66] D. JERISON, The Dirichlet problem for the Kohn Laplacian on the Heisenberg group, II, J.
Funct. Anal. 43 (1981), 224-257.

[67] D. JERISON, The Poincaré inequality for vector fields satisfying Hörmander’s condition,
Duke Math. J. 53 (1986), 503-523.

[68] D. JERISON - C. E. KENIG, Boundary behavior of harmonic functions in non-tangentially
accessible domains, Adv. Math. 46 (1982), 80-147.

[69] F. JOHN, Rotation and strain, Comm. Pure Appl. Math. 14 (1961), 391-413.

[70] R. KERMAN - E. T. SAWYER, The trace inequality and eigenvalue estimates for Schrö-

dinger operators, Ann. Inst. Fourier (Grenoble) 36 (1986), 207-228.

[71] A. KUFNER - O. JOHN - S. FUCIK, "Function Spaces", Prague: Academia Pub. House of
the Czechoslovak Academy of Sciences, 1977. 

[72] G. LIEBERMAN, Sharp form of estimates for subsolutions and supersolutions of quasilinear
elliptic equations involving measures, Comm. Partial Differential Equations 18 (1993),
1191-1212.

[73] G. LU, Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander’s
condition and applications, Rev. Mat. Iberoamericana 8 (1992), 367-439.

[74] G. LU, The sharp Poincaré inequality for free vector fields : an endpoint result, Rev. Mat.
Iberoamericana 18 (1994), 453-466.

[75] G. Lu, Embedding theorems on Campanato-Morrey spaces for vector fields and applica-
tions, C. R. Acad. Sci. Paris Sér. I 320 (1995), 429-434.

[76] G. Lu, Embedding theorems on Campanato-Morrey spaces for vector fields of Hörmander
type, Approx. Theory Appl., to appear.

[77] G. Lu, Embedding theorems into Lipschitz and BMO spaces and applications to quasi-
linear subelliptic differential equations, Publ. Mat. 40 (1996), 301-329.



251

[78] P. MAHEUX - L. SALOFF-COSTE, Analyse sur les boules d’un op’erateur sous-elliptique,
Math. Ann. 303 (1995), 713-740.

[79] P. MATTILA, "Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifi-
ability", Cambridg studies in advanced Mathematics n. 44, Cambridge University Press,
1995.

[80] V. G. MAZÝA, "Sobolev Spaces", Springer-Verlag, 1985.
[81] V. G. MAZÝA - I. E. VERBITSKY, Capacitary inequalities for fractional integrals, with

applications to partial differential equations and Sobolev multiplier, Ark. Mat. 33 (1995),
81-115.

[82] M. MEKIAS, "Restriction to Hypersurfaces of Non-isotropic Sobolev Spaces", M.I.T. Ph.D
Thesis, 1993.

[83] A. NAGEL - E. M. STEIN - S. WAINGER, Balls and metrics defined by vector fields I:
basic properties, Acta Math. 155 (1985), 103-147.

[84] O. A. OLEINIK - E. V. RADKEVICH, "Second Order Equations with Non-negative Char-
acteristic Form", (Mathematical Analysis 1969), Moscow: Itogi Nauki, 1971 (Russian),
English translation: Providence, R.I., Amer. Math. Soc., 1973.

[85] R. S. PHILLIPS - L. SARASON, Elliptic-parabolic equations of the second order, J. Math.
Mech. 17 (1967/8), 891-917.

[86] J. M. RAKOTOSON, Quasilinear equations and spaces of Campanato-Morrey type, Comm.
Partial Differential Equations 16 (1991), 1155-1182.

[87] J. M. RAKOTOSON - W. P. ZIEMER, Local behavior of solutions of quasilinear elliptic
equations with general structure, Trans. Amer. Math. Soc. 319 (1990), 747-764.

[88] L. SALOFF-COSTE, Parabolic Harnack inequality for divergence-form second-order differ-
ential operators, Potential Anal. 4 (1995), 429-467.

[89] J. SERRIN, Local behavior of solutions of quasilinear equations, Acta Math. 111 (1964),
243-302.

[90] J. SERRIN, Isolated singularities of solutions of quasilinear equations, Acta Math. 113
(1965), 219-240.

[91] G. STAMPACCHIA, Problemi al contorno per equazioni di tipo ellittico a derivate parziali
e questioni di calcolo delle variazioni connesse, Ann. Mat. Pura Appl. (4) 33 (1952),
211-238.

[92] E. M. STEIN, "Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory
Integrals", Princeton Univ. Press., 1993.

[93] ROBERT S. STRICHARTZ, Sub-Riemannian geometry, J. Differential Geom. 24 (1986), 221-
263.

[94] J. STRÖMBERG - A. TORCHINSKY, "Weights, Sharp Maximal Functions and Hardy Spaces",
Lecture Notes in Mathematics 1381, Springer-Verlag, 1989.

[95] P. TOMTER, Consant mean curvature surfaces in the Heisenberg group, Proc. Symp. Pure
Math. 54 (1993), Part I, 485-495.

[96] N. TH. VAROPOULOS, Fonctions harmoniques sure les groupes de Lie, C.R. Acad. Sci.
Paris Sér. I 304 (1987), 519-521.

[97] N. TH. VAROPOULOS - L. SALOFF-COSTE - T. COULHON, Analysis and geometry on groups,
Cambridge Tracts in Mathematics 100, Cambridge University press, 1992.

[98] S. K. VODOP’YANOV, Weighted Lp-potential theory on homogeneous groups, Sibirsk., Mat.
Zh. 33 (1992), 29-48.



252

[99] C. J. XU, Subelliptic variational problems, Bull. Soc. Math. France 118 (1990), 147-169.
[100] P. ZAMBONI, Local behavior of solutions of quasilinear elliptic equations with coefficients

in Morrey spaces, Rend. Mat. Appl. 15 (1995), 251-262.
[101] W. P. ZIEMER, "Weakly Differentiable Functions", Springer-Verlag, 1989.

Department of Mathematics
Purdue University
West Lafayette, IN 47907
dxd @ math.purdue.edu

Dipartimento di Metodi e Modelli Matematici
Universita di Padova, Italy
and Department of Mathematics
Purdue University
West Lafayette, IN 47907
garofalo@ulam.dmsa.unipd.it
garofalo@math.purdue.edu

Institute of Mathematics
Academia Sinica

Nankang, Taipei 11529
Taiwan, R.O.C.
dmnhieu@math.sinica.edu.tw


