
Trace-Level Reuse

Antonio González†, Jordi Tubella��† and Carlos Molina‡

†Dpt. d’Arquitectura de Computadors ‡Dpt. d’Enginyeria Informàtica i Matemàtiques
U. Politècnica de Catalunya, Barcelona, Spain U. Rovira i Virgili, Tarragona, Spain

{antonio,jordit}@ac.upc.es cmolina@etse.urv.es

Abstract

Trace-level reuse is based on the observation that some
traces (dynamic sequences of instructions) are frequently
repeated during the execution of a program, and in many
cases, the instructions that make up such traces have the
same source operand values. The execution of such traces
will obviously produce the same outcome and thus, their
execution can be skipped if the processor records the
outcome of previous executions. This paper presents an
analysis of the performance potential of trace-level reuse
and discusses a preliminary realistic implementation. Like
instruction-level reuse, trace-level reuse can improve
performance by decreasing resource contention and the
latency of some instructions. However, we show that trace-
level reuse is more effective than instruction-level reuse
because the former can avoid fetching the instructions of
reused traces. This has two important benefits: it reduces
the fetch bandwidth requirements, and it increases the
effective instruction window size since these instructions do
not occupy window entries. Moreover, trace-level reuse can
compute all at once the result of a chain of dependent
instructions, which may allow the processor to avoid the
serialization caused by data dependences and thus, to
potentially exceed the dataflow limit.

1. Introduction
Data dependences1 are one of the most important hur-

dles that limit the performance of current microprocessors.
The amount of instruction-level parallelism (ILP) that pro-
cessors may exploit is significantly limited by the serializa-
tion caused by data dependences. This limitation is more
severe for integer codes, in which data dependences are
more abundant. Some studies on the ILP limits of integer
applications have revealed that some of them cannot
achieve more than a few tens of instructions per cycle (IPC)
in an ideal processor with the sole limitation of data depen-
dences [16]. This suggests that techniques to avoid the seri-
alization caused by data dependences are important to boost
ILP, and they will be crucial for future wide-issue micro-
processors.

Two techniques have been proposed so far to avoid the
serial execution of data dependent instructions: data value
speculation and data value reuse. This paper focuses on the
latter technique. Data value reuse is a technique that
exploits the fact that many dynamic instructions or dynamic

1. In this paper, data dependences refer to true dependences
(output and anti-dependences are not included).

sequences of instructions (traces) are repeatedly executed,
and most of these repetitions have the same inputs, and thus
generate the same results. Data value reuse exploits this fact
by buffering previous inputs and their corresponding out-
puts. When an instruction/trace is encountered again and its
current inputs are found in that buffer, its execution can be
avoided by getting the outputs from the buffer. This reduces
the functional units utilization and, more importantly,
reduces the time to compute the results, and thus, shortens
the lengths of critical paths of the execution.

Techniques that try to reuse single instructions will be
referred to as instruction-level reuse, whereas those tech-
niques that handle dynamic sequences of instructions will
be denoted by trace-level reuse. Data value reuse can be
exploited through software or hardware mechanisms. In this
work, we explore hardware techniques for trace-level reuse.
Exploiting reuse at trace-level implies that a single reuse
operation can skip the execution of a potentially large num-
ber of instructions. More importantly, these instructions do
not need to be fetched and thus they do not consume fetch
bandwidth. Finally, since these instructions are not placed
in the reorder buffer2, they do not occupy any slot of the
instruction window and thus, the effective instruction win-
dow size is increased as a side effect. Particularly interest-
ing is the fact that this technique may compute all at once
the results of a chain of dependent instructions (e.g. in a sin-
gle cycle), which allows the processor to exceed the data-
flow limit that is inherent in the program.

In this paper, we first propose and approach to imple-
ment trace-level reuse on a superscalar processor. Then, we
analyze the performance potential of such technique under
different scenarios. We also compare the benefits that may
be achieved by trace-level reuse with respect to instruction-
level reuse. We show that trace-level reuse is more effective
than instruction-level due to the reduction in fetch band-
width and instruction window requirements outlined above.
Moreover, trace-level reuse has lower overhead since a sin-
gle reuse operation can avoid the execution of a long
sequence of instructions.

The rest of this paper is organized as follows. Section 2
reviews the concept of data value reuse and the most rele-
vant work. Section 3 describes a trace-level reuse mecha-
nism. The performance of trace-level reuse and its
comparison versus instruction-level reuse are analyzed in
section 4. Finally, section 5 summarizes the main conclu-
sions of this work.

2. As discussed below, some instructions are placed in the re-
order buffer in order to provide precise exceptions, but in
general they are much less than the number of instructions
in the trace.

2. Related Work
The sources of instruction repetition are investigated in

[13] and a study of the differences between value prediction
and value reuse is presented in [14].

Data value reuse can be implemented by software or
hardware. Software implementation is usually known as
memoization or tabulation [2] [11]. Memoization is a code
transformation technique that takes advantage of the redun-
dant nature of computation by trading execution time for
increased memory storage. The results of frequently exe-
cuted sections of code (e.g. function calls, groups of state-
ments with limited side effects) are stored in a table. Later
invocations of these sections of code are preceded by a
table lookup, and in case of hit, the execution of these sec-
tions of code is avoided.

A hardware implementation of data value reuse was pro-
posed by Harbison for the Tree Machine [5]. The Tree
Machine has a stack-oriented ISA and the main novelty of
its architecture was that the hardware assumed a number of
compiler’s traditional optimizations, like common subex-
pression elimination and invariant removal. This is
achieved by means of a value cache, which stores the
results of dynamic sequences of code (called phrases). For
each phrase, the value cache keeps its result as well as an
identifier of its input variables. For the sake of simplicity,
input variables are represented by a bit vector (called
dependence set), such that multiple variables share the
same codification. Every time that the value of a variable
changes, all the value cache entries that may have this vari-
able as an entry are invalidated.

Another hardware implementation of data value reuse is
the result cache proposed by Richardson [10] [11]. The
objective was to speed-up some long latency operations,
like multiplications, divisions and square roots, by caching
the results of recently executed operations. The result cache
is indexed by hashing the source operand values, and for
each pair of operands it contains the operation code and the
corresponding result.

Result caching is further investigated by Oberman and
Flynn [9]. They evaluate division caches, square root
caches and reciprocal caches, which are similar to Richard-
son’s result cache, but for just one type of operation: divi-
sion, square root and reciprocal respectively. They also
investigate a shared cache for reciprocals and square roots.

Sodani and Sohi propose the reuse buffer [12], which is
a hardware implementation of data value reuse (or dynamic
instruction reuse, as it is called in that paper). The reuse
buffer is indexed by the instruction address. They propose
three different reuse schemes. In the first scheme, for each
instruction in the reuse buffer, it holds the source operand
values and the result of the last execution of this instruction.
In the second scheme, instead of the source operand values,
the buffer holds the source operand names (architectural
register identifiers). In the third scheme, in addition to the
information of the second scheme, the buffer stores the
identifiers of the producer instructions of the source oper-
ands. In this scheme, dependent instructions that are fetched
simultaneously can be reused by chaining their individual
reuses. However, the reuse of each individual instruction is
still a sequential process since it must wait until the reuse of
all previous instructions has been checked.

Jourdan et al. propose a renaming scheme that exploits
the phenomenon of instruction-level reuse in order to
reduce the register pressure. The basic idea is that several

dynamic instructions that produce the same result share the
same physical register [7].

Another application of data value reuse has been pre-
sented in [17]. Weinberg and Nagel describe a technique
that reuses high-level language pointer-expressions with the
aid of compiler inserted hints. Basically, once the input
operand set of an expression matches a previously executed
instance of the same expression, the result is obtained from
a table instead of recomputing it.

Molina, González and Tubella presented a reused
scheme referred to as Redundant Computation Buffer [8].
The underlying concept is the removal of redundant compu-
tations, and in particular, the run-time elimination of quasi-
common subexpressions and quasi-invariants.

Finally, Huang and Lilja have recently proposed a
scheme to reuse basic blocks [6]. Basic block reuse is a par-
ticular case of trace-level reuse in which traces are limited
to basic blocks. Trace-level reuse is more general and can
exploit reuse in larger sequences of instructions, such as
subroutines, loops, etc.

3. Trace-Level Reuse
This section describes an approach to integrating a trace-

level reuse scheme in a superscalar processor.
A trace refers to any dynamic sequence of instructions.

The objective of trace-level reuse is to avoid the individual
execution of the instructions in a trace. All changes in the
processor state that would be produced by these instructions
are done by applying again the changes that were produced
in a past execution of the same trace, provided that both
executions have the same inputs.

Reusing traces requires the processor to include some
type of memory to store previous traces, an approach to
decide which traces are worthwhile to be stored, a mecha-
nism to identify when the forthcoming trace can be reused,
and a final process to update the processor state if the trace
is reusable. These issues are addressed below in more
detail.

3.1. The Reuse Trace Memory
The reuse trace memory (RTM) is a memory that stores

previous traces that are candidate to be reused. From the
point of view of reuse, a trace is identified by its input and
its output (see figure 1). The input of a trace is defined by:
(i) the starting address, i.e. initial program counter (PC),
and (ii) the set of register identifiers and memory locations
that are live, and their contents before the trace is executed.
A register/memory location is live if it is read before being
written.

The output of a trace consists of: (i) the set of registers
and memory locations that the trace writes and their con-
tents after the trace is executed, and (ii) the address of the
next instruction to be executed after the trace.

The RTM can be indexed by different schemes. For

Figure 1: A RTM entry.

initial
PC

input
identifiers
contents

register
&

input
addresses
contents

memory
&

output
identifiers
contents

register
&

output
addresses
contents

memory
&

next
PC

trace outputtrace input

instance, it can be indexed by PC (as considered in this
paper), or by a hashing of the PC and the contents of a
given register, etc.

3.2. Dynamic Trace Collection
The processor dynamically decides which traces of the

dynamic stream are candidates to be reused. Different heu-
ristics can be used to decide the starting and ending points
of a trace. We will show later that a convenient criterion
could be to start a new trace when a reusable instruction is
encountered and to terminate the trace just before the first
non reusable instruction is found. Another possibility that
we also evaluate in this paper is to consider fixed-length
traces which can be dynamically expanded once they are
reused.

Note that traces may have a variable number of instruc-
tions. In fact, the instructions that make up a trace are not
stored in the RTM. Obviously, there may be implementa-
tion parameters that limit the size of a trace such as the
number of input and output values that can be stored in each
RTM entry, but the number of instructions in a trace is not
by itself a limitation.

3.3. Reuse Test and Processor State Update
At some points of the execution (e.g. at the fetch of the

initial trace instruction, or whenever an input trace operand
becomes ready) the processor checks whether the current
trace can be reused. If this is the case, then the processor
uses the information of the trace obtained from the RTM to
update its state in the following way (see figure 2): (i) the
PC is updated with the next PC field so that the fetch unit
proceeds with the instructions that follow the trace. Instruc-
tions that belong to the trace do not need to be fetched; (ii)
the output registers and output memory locations are
updated with the values obtained from the RTM entry.

There are basically two approaches to identify whether a
trace is reusable. One possibility is to read the current val-
ues of all input registers and memory locations and com-
pare them with the values in any RTM entry associated to
the current PC. Another possibility is to add to each RTM
entry a valid bit. When a trace is stored its valid bit is set.
For every register/memory write, all the RTM entries with a
matching register/memory location in its input list are
invalidated. The latter approach requires a much simpler
reuse test (just checking the valid bit).

The final reuse process that updates the processor state
can be implemented by inserting in the instruction window
instructions that write the corresponding values in the trace
output (registers and memory) locations. In this way, pre-
cise exceptions could be guaranteed in an out-of-order pro-
cessor following the conventional mechanism.

PC

Icache

RTM

Reuse test

RT
M

 e
nt

ry

Fetch Decode & Execute CommitRename
Figure 2: Reusing a trace.

4. The Performance Potential of Reuse at
Instruction and Trace Levels
In this work, we are interested in studying the data value

reuse phenomenon, understanding the differences between
trace-level reuse and instruction-level reuse and investigat-
ing the performance potential of these techniques.

We focus on scenarios with a limited instruction window
but infinite number of functional units. In this way, we do
not consider the benefit of reducing functional unit conten-
tion, which due to the continuous increase in transistors per
chip will have a low impact in future high-performance pro-
cessors. Moreover, when the number of functional units is a
bottleneck, increasing the number of functional units is
more cost-effective than implementing a reuse scheme. We
also consider the case of an infinite instruction window as
an indication of the limits of the potential of these tech-
niques.

For the infinite window scenario, the execution time is
only limited by data dependences among instructions, both
through register and memory. For the limited window sce-
nario, the execution order inside each sequence of W
instructions, W being the instruction window size, is only
limited by data dependences, whereas any pair of instruc-
tions at a distance greater than W must be sequentially exe-
cuted.

We compute the IPC for each different scenario as an
extension of the approach proposed in [1]. The IPC for an
infinite window machine is computed by analyzing the
dynamic instruction stream. For each instruction, its com-
pletion time is determined as the maximum of the comple-
tion time of the producers of all its inputs plus its latency.
The inputs of an instruction may be register or memory
operands. Therefore, for each logical register and each
memory location, the completion time of the latest instruc-
tion that has updated such storage location so far is kept in a
table. The latency of the instructions has been borrowed
from the latency of the Alpha 21164 instructions [3]. Once
all the dynamic instruction stream has been processed, the
IPC is computed as the quotient between the number of
dynamic instructions and the maximum completion time of
any instruction.

The process of computing the IPC for the limited
instruction window scenario is an extension of the unlim-
ited window approach. The extension consists of comput-
ing the graduation time of each instruction as the maximum
completion time of any previous instruction, including
itself. Then, the completion time of a given instruction is
computed as the maximum among the completion time of
all the producers of its inputs and the graduation time of the
instruction W locations above in the trace, plus the latency
of the instruction. Note that only the graduation time of the
latest W instructions must be tracked.

For the performance analysis of data value reuse, we
first consider a reuse engine with infinite tables to keep his-
tory of previous instructions/traces and we analyze the
effect of different reuse latencies. The reuse latency corre-
sponds to the time that a reuse operation takes. It usually
involves a table lookup and some comparisons. In the last
part of this section, we measure the amount of trace-level
reusability when finite reuse tables are considered. In this
case, different reuse trace memory sizes and dynamic trace
collection heuristics are considered. The reuse test is based
on an associative search of the traces that start at the same
PC.

4.1. Benchmarks
The benchmark programs are a subset of the SPEC95

benchmark suite, composed of both integer and FP codes:
compress, gcc, go, ijpeg, li, perl and vortex from the integer
suite, and applu, apsi, fpppp, hydro2d, su2cor, tomcatv and
turb3d from the FP suite.

The programs have been compiled with the DEC C and
Fortran compilers with full optimization (“-non_shared
-O5 -tune ev5 -migrate -ifo” for C codes and “-
non_shared -O5 -tune ev5” for Fortran codes). Each
program is run using the reference input for 50 millions of
instructions after skipping the first 25 millions. The study of
the maximum degree of reusability requires to store a huge
amount of data, which prevents from analyzing the whole
program execution. In this way, the results give a flavor of
the overall behavior of the SPEC95 suite.

 The compiled programs have been instrumented with
the Atom tool [15] and their dynamic trace has been pro-
cessed in order to obtain the IPC for each configuration.
Results are shown for individual programs, and in some
cases we show the average for integer programs, FP pro-
grams or the whole set of benchmarks. Average speed-ups
have been computed through harmonic means and average
percentages have been determined through arithmetic
means.

4.2. Limits of Instruction-Level Reusability
This section is focused on measuring the potential of

data value reuse at instruction-level. Hence, we consider
here the maximum instruction-level reuse that can be
exploited.

For each static instruction, all the different input values
of its previous executed instances are stored in a table. For a
given dynamic instruction, if its current inputs are the same
as in a previous execution, the instruction is reusable. The
percentage of reusable instructions will be referred to as the
instruction-level reusability of a program. Note that the
reusability of a program takes into account any kind of
instructions, including memory accesses.

We can observe in figure 3 that instruction-level reus-
ability is very high. For most programs it is higher than
90% of all dynamic instructions and on average it is 88%.
The reusability ranges from 53% to 99%, applu and
hydro2d being the programs with the lowest and highest
reusability respectively. We can also observe that there are
not high differences between integer and FP codes (91%
and 85% of instruction-level reusability respectively). We
can conclude that instruction-level reuse is abundant in all
types of programs.

0.0

20.0

40.0

60.0

80.0

100.0

Figure 3: Instruction-level reusability for a perfect
engine.

re
us

ab
le

 in
st

ru
ct

io
ns

app
luaps

i
fpp

pp

hy
dro

2d
su2

cor

tom
cat

v
tur

b3
d

AVG_F
P

com
pre

ssgcc go
ijp

eg li
per

l
vo

rte
x

AVG_IN
T

AVERAGE

4.3. Performance Improvement of Instruction-
Level Reuse

The ultimate figure in which we are interested is the
effect of instruction-level reuse on execution time. For this
scenario, the IPC is computed by extending the mechanism
described for an unlimited or limited window configuration
respectively. The completion time of a non-reusable
instruction is computed in the same way as in the base
machine, whereas the completion time of a reusable
instruction is computed as the maximum of the completion
time of all the producers of its inputs (an instruction cannot
be reused until all its inputs are available) plus a reuse
latency. In any case, if the completion time of a reused
instruction is higher than the completion time of the normal
execution of that instruction, the latter will be chosen. This
is equivalent to assuming that an oracle determines the best
approach for each instruction.

Figure 4.a shows the speed-up provided by instruction-
level reuse when the reuse latency is assumed to be 1 cycle.
Note that the speed-ups are very dependent on the particular
benchmark. On average, it is around 1.50, and it is slightly
higher for FP than for integer programs. However, there are
some programs that can significantly benefit from instruc-
tion-level reuse, such as turb3d and compress, which show
a speed-up of 4.00 and 2.50 respectively. On the other hand
there are also programs that hardly benefit from instruction-
level reuse, such as fpppp and gcc. In general, this perfor-
mance result may look low if one takes into account the
very high percentage of reusable instructions (figure 3).

Figure 4.b shows the effect of the reuse latency on per-
formance, for a latency varying from 1 to 4 cycles per reuse
(only averages are shown). Note that the benefits of instruc-
tion-level reuse significantly decrease when more than a 1-
cycle latency is assumed. This indicates that the instruc-
tions that are in the critical path are usually low-latency
instructions, and thus, the latency reduction achieved by
instruction reuse is effective only if the reuse latency is very
low. For a configuration with a limited number of functional
units the benefits will be a bit higher due to the reduction in

Figure 4: Speed-up of instruction-level reuse for an
infinite instruction window and: (a) a 1-cycle reuse
latency, (b) a reuse latency varying from 1 to 4

0.0

1.0

2.0

3.0

4.0

sp
ee

d-
up

1 2 3 40.0

0.5

1.0

1.5

2.0

sp
ee

d-
up

(a)

(b)

app
luaps

i
fpp

pp

hy
dro

2d
su2

cor

tom
cat

v
tur

b3
d

AVG_F
P

com
pre

ssgcc go
ijp

eg li
per

l
vo

rte
x

AVG_IN
T

AVERAGE

functional unit contention. However, as pointed out above,
adding functional units is a more cost-effective approach to
reduce contention than including a reuse scheme since the
latter solution is significantly more complex.

Instruction-level reuse in the case of a limited instruction
window (256 entries) behaves almost in the same way as in
the case of an unlimited instruction window. This is shown
in figure 5.a that shows the speed-up for a 1-cycle reuse
latency. On average the speed-up is 1.43, with minor differ-
ence between integer and FP codes (1.44 and 1.42 respec-
tively). Differences among individual programs are smaller
than those observed for an infinite window. The benefits for
those programs that had the highest speed-ups for an unlim-
ited instruction window (turb3d and compress) are now
reduced. Finally, in figure 5.b it is shown that the benefits of
instruction-level reuse when the reuse latency is greater
than 1 cycle is also significantly reduced, like in the infinite
window configuration (see figure 4.b).

To summarize, the benefits of instruction-level reuse are
moderate for a 1-cycle reuse latency and very low for
higher latencies, in spite of the fact that the percentage of
reusable instructions is very high. The reason for this is that
instruction reuse cannot be exploited until the source oper-
ands are ready and thus, the reuse of a chain of dependent
instructions is still a sequential process.

4.4. Limits of Trace-Level Reusability
Reuse of traces is an attractive technique since a single

reuse operation may skip the execution of a potentially long
sequence of dynamic instructions, even if they are depen-
dent among them. To evaluate the performance limits of
this technique we should compute the maximum reuse that
can be attained for any possible partition of the dynamic
instruction stream into traces. Since there is not any con-
straint about the contents of each trace, the different ways to
partition a dynamic instruction stream into traces are practi-
cally unlimited, which prevents an exhaustive exploration
of all of them.

Given that each reuse operation has an associated

Figure 5: Speed-up of instruction-level reuse for a
256-entry instruction window and: (a) a 1-cycle reuse
latency, (b) a reuse latency varying from 1 to 4 cycles.

sp
ee

d-
up

sp
ee

d-
up

(a)

(b)

0.0

1.0

2.0

3.0

4.0

1 2 3 40.0

0.5

1.0

1.5

2.0
app

luaps
i
fpp

pp

hy
dro

2d
su2

cor

tom
cat

v
tur

b3
d

AVG_F
P

com
pre

ssgcc go
ijp

eg li
per

l
vo

rte
x

AVG_IN
T

AVERAGE

latency (e.g. table lookup), the most effective schemes will
be those that reuse maximum length traces. That is, given a
dynamic instruction stream that corresponds to the execu-
tion of a program, we are interested in identifying a set of
reusable traces such that: a) the total number of instructions
included in those traces is maximum and b) the number of
traces is minimum. In other words, if a trace is reusable, it
is more effective to reuse the whole trace in a single reuse
operation than to reuse parts of it separately. However, find-
ing maximum length reusable traces would be still a com-
plex problem if all the possible partitions of a program into
traces should be explored.

We can however prove that if we consider just those
traces that are formed by all maximum-length dynamic
sequences of reusable instructions, we have an upper-bound
of the reusability that can be exploited by maximum-length
traces (condition (a) above) and a lower bound of the num-
ber of traces required to exploit it (condition (b) above).
This is supported by the theorems below. The performance
provided by assuming that such traces are reusable will pro-
vide an upper-bound of the performance limits of trace
reuse.

Theorem 1. Let T be a trace composed of the sequence
of dynamic instructions <i1, i2, ..., in>. If T is reusable, then
ik is reusable for every k ![1,n].

Proof. Refer to the enclosed appendix in page 8.
Theorem 2. Let T be a trace composed of the sequence

of dynamic instructions <i1, i2, ..., in>. If ik is reusable for
every k ![1,n], then T is not necessarily reusable.

Proof. Refer to the enclosed appendix in page 8.
Theorem 1 implies that the number of instructions

whose execution can be avoided by any trace reuse scheme
is limited by the amount of individual instructions that are
reusable. Thus, we can compute an upper-bound of the ben-
efits of trace-level reuse by assuming that the amount of
trace-level reusability is equal to the amount of instruction-
level reusability, and the overhead of trace-level reuse is
given by grouping reusable instructions into the minimum
number of traces (i.e. assuming maximum-length traces).
Theorem 2 states that this approach results in an upper-
bound that may not be reached.

4.5. Performance Improvement of Trace-Level
Reuse

The process to compute the IPC for this scenario is the
following. The completion time of every instruction that do
not belong to a reusable trace is computed in the same way
as in the base machine. For a reusable trace, the completion
time of all instructions that produce an output is computed
as the maximum of the completion time of all the producers
of its inputs plus the reuse latency. Moreover, two ways to
consider the reuse latency have been analyzed. In one of
them, the reuse latency is assumed to be a constant time per
reuse operation. In the other, the reuse latency is assumed to
be proportional to the number of inputs plus the number of
outputs of the trace. Note that the former is more appropri-
ate when the reuse test just requires to check a valid bit,
whereas the latter models the fact that reusing a trace
requires the processor to read all its inputs and check that
they are the same as in a previous execution. In any case, if
the completion time of an instruction in a reusable trace is
higher than the completion time of the normal execution of
that instruction, the latter will be chosen.

Performance figures of trace-level reuse are shown in
figure 6. Figure 6.a corresponds to an infinite window sce-
nario while figure 6.b is associated to a 256-entry instruc-
tion window. In both cases, a 1-cycle reuse latency has been
considered. First of all, note that the average speed-up is
much higher than the obtained for instruction-level reuse.

For the infinite window scenario, speed-up has increased
from 1.43 to 3.03. The highest benefit is experienced by
ijpeg (11.57). Nonetheless, there are also programs with a
negligible speed-up in this scenario (perl with 1.01).

The difference between trace-level and instruction-level
reuse is even higher for the limited window scenario. In this
case, trace-level reuse may provide a very important addi-
tional advantage: it may avoid fetching instructions in
reused traces and may increase the effective instruction
window. If a trace is determined to be reusable (using any
of the approaches described in section 3.3), the whole trace
can be reused without fetching nor executing the remaining
instructions of the trace. As a consequence, the speed-up of
trace-level reuse for a limited instruction window is even
higher than for an unlimited window (3.63 vs. 3.03),
whereas for instruction-level reuse we observed the oppo-
site trend.

It is also interesting to observe figure 7, which shows the
average trace size, and correlate it with figure 6.b. Note that
in general, larger traces imply higher speed-ups, which can
be attributed to their higher potential to artificially increase
the effective instruction window size. Integer programs
have a quite uniform trace size, ranging from 14.5 to 36.7
instructions, and they also exhibit a quite homogeneous
speed-up. On the other hand, some FP programs have very
short traces, such as applu, apsi and fpppp, and they exhibit
very low speed-up, whereas the others have large traces (up
to 203 instructions for hydro2d) and they also have higher
speed-ups.

It is also remarkable the fact that trace-level reuse,
unlike instruction-level reuse, provides significant speed-

Figure 6: Speed-up of trace-level reuse when
considering a 1-cycle reuse latency for a) an infinite
instruction window, b) a 256-entry instruction window.

sp
ee

d-
up

sp
ee

d-
up

(a)

(b)

0.0

5.0

10.0

15.0

20.0

0.0

5.0

10.0

15.0

20.0
app

luaps
i
fpp

pp

hy
dro

2d
su2

cor

tom
cat

v
tur

b3
d

AVG_F
P

com
pre

ssgcc go
ijp

eg li
per

l
vo

rte
x

AVG_IN
T

AVERAGE

app
luaps

i
fpp

pp

hy
dro

2d
su2

cor

tom
cat

v
tur

b3
d

AVG_F
P

com
pre

ssgcc go
ijp

eg li
per

l
vo

rte
x

AVG_IN
T

AVERAGE

ups even if the reuse latency is higher than 1. This is shown
in figure 8.a, where it can be observed that the average
speed-up for a reuse latency ranging from 1 to 4 cycles is
not much degraded.

Note that a trace is reused provided that all input values
are the same as in a previous execution. Therefore, a trace
reuse operation may imply a check of as many values as
inputs the trace has. Moreover, as a consequence of a trace
reuse, all the output values of the trace must be updated.
Hence, it may be more realistic to assume that the reuse
latency is proportional to the number of input and output
values. That is, it is equal to a constant K multiplied by the
number of input/output values. K is the inverse of the read/
write bandwidth of the reuse engine; for instance, K=1/16
implies that the reuse engine can read or write 16 values per
cycle. Under this scenario, the speed-up of trace-level reuse
is shown in figure 8.b, where the X axis represents different
values of K. It can be observed that the speed-up of value
reuse is still high, although it is significantly affected by the
reuse latency. Note that it is reasonable to assume that
future microprocessors may have the capability to perform
around 16 reads+writes per cycle, including register and
memory values. In fact, current microprocessors such as the
Alpha 21264 [4] can perform 14 reads+writes per cycle (8
register reads, 4 register writes and 2 memory references).
Thus, looking at the bar corresponding to K=1/16 in figure
8.b, we can conclude that a speed-up around 2.7 is reason-
able to be expected from trace-level reuse. This also sug-
gests that even the slowest approach to checking reusability
that is based on comparing all inputs (see section 3.3) can
significantly improve performance.

On average, we have measured that the number of input
values per trace is 6.5 (2.7 register values and 3.8 memory

Figure 7: Average trace size.

tr
ac

e
siz

e

app
luaps

i
fpp

pp

hy
dro

2d
su2

cor

tom
cat

v
tur

b3
d

AVG_F
P

com
pre

ssgcc go
ijp

eg li
per

l
vo

rte
x

AVG_IN
T

AVERAGE
1.0

10.0

100.0

Figure 8: Speed-up of trace-level reuse for a 256-entry
instruction window and a reuse latency that a) varies
from 1 to 4 cycles, b) is proportional to the number
of inputs plus outputs of the trace.

sp
ee

d-
up

sp
ee

d-
up

(a) (b)
1 2 3 40.0

1.0

2.0

3.0

4.0

1/3
2

1/1
6 1/8 1/4 1/2 1

0.0

1.0

2.0

3.0

4.0

values), and the number of output values is 5.0 (3.3 register
values and 1.7 memory values). Since the average number
of instructions per trace is 15.0, this means that each reused
instruction requires 0.43 reads and 0.33 writes, which is
significantly lower than the number of reads and writes
required by the execution of an instruction. We can thus
conclude that trace-level reuse also provides a significant
reduction in the data bandwidth requirements, and thereby
it can reduce the pressure on the memory and register file
ports.

4.6. Trace-Level Reusability with Finite Tables
In the previous section we have demonstrated the high

potential of trace-level reuse. In the final part of this work
we evaluate a realistic approach that implements this con-
cept. The objective is to measure the percentage of reusabil-
ity and the average trace size that this technique can provide
when a finite reuse memory and a particular heuristic for
trace collection are considered.

We have evaluated different capacities for the Reuse
Trace Memory (RTM):

• 512 entries: A 4-way set-associative memory (5-bit
index) with 4 entries per initial PC. This means that up
to 4 different traces starting at the same PC can be
stored.

• 4K entries: A 4-way set-associative memory (7-bit
index) with 8 entries per initial PC.

• 32K entries: A 8-way set-associative memory (8-bit
index) with 16 entries per initial PC.

• 256K entries: A 8-way set-associative memory (11-bit
index) with 16 entries per initial PC.

In all cases, the memory is indexed by the least-signifi-
cant bits of the PC register. Replacement policy is LRU,
that is, the older trace with the same PC that has been
reused is the one that is being replaced when a new trace is
collected. For each trace, the number of inputs and outputs
have been limited to 8 registers and 4 memory values.

Three different heuristics for dynamic trace collection
have been considered:

• ILR NE: A trace consists of a sequence of dynamic
instructions that are reusable at instruction-level. In
this case, a different reuse memory used for testing
instruction-level reusability is also needed. This mem-
ory has as many entries as the RTM.

• ILR EXP: The same as before with the difference that
traces can be dynamically expanded when two consec-
utive traces are reused or instructions following a
reused trace become reusable.

• I(n) EXP: A trace is formed by a fixed number of n
instructions. When a trace is reused, it is expanded
with n new instructions.

The reuse test is performed for every fetch operation.
When a trace beginning at a given PC contains the same
values in its input locations as the current ones, the trace is
reusable. Figure 9 shows the percentage of reusable instruc-
tions and the average trace size for each scheme. First, we
can observe that dynamic trace expansion is an important
issue to increase the granularity of reusable traces while the
total amount of reusability remains almost constant (see
heuristics ILR NE and ILR EXP). Note also that heuristic
I(n) outperforms ILR, that is, a policy to collect traces
should consider any kind of instructions rather than those
reusable at instruction level.

Another important figure is the relation between the

RTM size and the achieved reusability. For instance, a 4K-
entry RTM can reuse 25% of the dynamic instructions with
an average trace size of 6 instructions. The percentage of
reused instructions significantly grows with the RTM
capacity. Finally, note the trade-off between percentage of
reused instructions and trace size. Increasing the trace size
reduces the number of reused instructions. However, to
achieve a given degree of reuse, the reuse overhead is
reduced when the trace size increases.

5. Conclusions
We have presented a trace-level reuse mechanism and

analyzed its performance. We have shown that trace-level
reuse can reuse a lower percentage of instructions than
instruction-level reuse. However, the former is more effec-
tive because of several reasons: a) it reduces the fetch band-
width requirement by avoiding fetching instructions of
reused traces; b) it increases the effective instruction win-
dow size by avoiding storing instructions of reused traces in
the instruction window; c) it has a lower overhead since it
requires a lower number of operations per reused instruc-
tion.

For a 256-entry instruction window and infinite history
tables, trace-level reuse provides a speed-up of 3.6 in aver-
age, which ranges from 1.7 to 19.4 for individual programs,
when the reuse latency is 1 cycle. Similar results are
obtained when the reuse latency is considered proportional
to the number of inputs and outputs of a trace.

Finally, we have evaluated the impact of a limited-
capacity history table. For instance, for a 4K-entry Reuse
Trace Memory we have observed that the percentage of
reusability is around 25% of all dynamic instructions while
the average trace size is around 6 instructions. For a 256K-
entry Reuse Trace Memory, around 60% of instructions can
be reused.

0.0

20.0

40.0

60.0

512 traces
4K traces
32K traces
256K traces

ILR N
E

ILR EXP
I1

EXP

I2
EXP

I3
EXP

I4
EXP

I5
EXP

I6
EXP

I7
EXP

I8
EXP

0.0

2.0

4.0

6.0

8.0

Figure 9: Trace-level reusability with a realistic
implementation. a) Percentage of reusable
instructions. b) Average trace size.

re
us

ab
le

 in
st

ru
ct

io
ns

tr
ac

e
siz

e

(a)

(b)

ILR N
E

ILR EXP
I1

EXP

I2
EXP

I3
EXP

I4
EXP

I5
EXP

I6
EXP

I7
EXP

I8
EXP

Acknowledgements
This work has been supported by grants CICYT TIC

511/98 and ESPRIT 24942. The research described in this
paper has been developed using the resources of the Euro-
pean Center for Parallelism of Barcelona (CEPBA).

References
[1] T.M. Austin and G.S. Sohi, “Dynamic Dependence Analy-
sis of Ordinary Programs”, in Proc. of Int. Symp. on Computer
Architecture, pp. 342-351, 1992
[2] H. Abelson and G.J. Sussman, Structure and Interpretation
of Computer Programs, McGraw Hill, New York, 1985
[3] Digital Equipment Corporation, Alpha 21164 Microproces-
sor. Hardware Reference Manual. 1995
[4] L. Gwennap, “Digital 21264 Sets New Standard”, Micro-
processor Report, vol. 10, no. 14, Oct. 1996.
[5] S.H. Harbison, “An Architectural Alternative to Optimi-
zing Compilers”, in Proc. of Int. Conf. on Architectural Support
for Programming Languages and Operating Systems, 1982
[6] J. Huang and D. Lilja, “Exploiting Basic Block Value
Locality with Block Reuse”, in Proc. of 5th. Int. Symp. on High-
Performance Computer Architecture, 1999
[7] S. Jourdan, R. Ronen, M. Kekerman, B. Shormar and A.
Yoaz, “A Novel Renaming Scheme to Exploit Value Temporal
Locality through Physical Register Reuse and Unification” in
Proc. of 31st. Ann. Int. Symp. on Microarchitecture, 1998
[8] C. Molina, A. González and J. Tubella, “Dynamic Remo-
val of Redundant Computations” in Proc. of the ACM Int. Conf.
on Supercomputing, Rhodes (Greece), June 1999
[9] S.F. Oberman and M.J. Flynn, “On Division and Recipro-
cal Caches”, Technical Report CSL-TR-95-666, Stanford Uni-
versity, 1995
[10] S. E. Richardson, “Exploiting Trivial and Redundant Com-
putations”, in Proc. of Symp. on Computer Arithmetic, pp. 220-
227, 1993
[11] S. E. Richardson, “Caching Function Results: Faster Ari-
thmetic by Avoiding Unnecessary Computation”, Technical
Report SMLI TR-92-1, Sun Microsystems Laboratories, 1992
[12] A. Sodani and G.S. Sohi, “Dynamic Instruction Reuse”,
in Proc. of Int. Symp. on Computer Architecture, 1997
[13] A. Sodani and G.S. Sohi, “An Empirical Analysis of Ins-
truction Repetition” in Proc. of Int. Conf. on Architectural
Support for Programming Languages and Operating Systems”,
1998
[14] A. Sodani and G.S. Sohi, “Understanding the Differences
Between Value Prediction and Instruction Reuse”, in Proc. of
31st. Ann. Int. Symp. on Microarchitecture, 1998
[15] A. Srivastava and A. Eustace, “ATOM: A system for buil-
ding customized program analysis tools” , in Proc of the 1994
Conf. on Programming Languages Design and Implementation,
1994.
[16] D.W. Wall, “Limits of Instruction-Level Parallelism”,
Technical Report WRL 93/6, Digital Western Research Labora-
tory, 1993.
[17] N. Weinberg and D. Nagle, “Dynamic Elimination of Poin-
ter-Expressions”, in Proc. Int. Conf. on Parallel Architectures
and Compilation Techniques, pp. 142-147, 1998.

A. Appendix
In this appendix we present the proof of theorems 1 and

2. In fact, we will prove a more general formulation of the-
orem 1 and 2, in which, a trace is considered to be a
sequence of consecutive traces of a smaller size. Theorem 1
and 2 are the particular case in which the size of every
smaller trace is one instruction.

Definitions. An input of a trace T is a register, condition
code or memory location that is read and has not been writ-
ten before in such trace. An output of a trace T is a register,
condition code or memory location that is written in such
trace. Let IL(T) be the sequence of input storage locations
of trace T. Notice that IL(T) is a sequence and not a set. The
order of the sequence is given by the order in which the
inputs are read. Let OL(T) be the sequence of output storage
locations of trace T. The order of the sequence is given by
the order in which the outputs are written. Let IV(T) be the
sequence of input values of trace T, in the order in which
they are read. Let OV(T) be the sequence of output values
of trace T, in the order in which they are written.

If A and B are two sequences, we will say that A " B if A
is a subsequence of B. Moreover, A # B will refer to any
sequence that is composed of the elements of A and B, no
matter the order of the elements. Different dynamic
instances of the same trace will be denoted by using the
same symbol to refer to the trace, with a superscript that
corresponds to the dynamic execution order. Notice that
different instances of the same trace will always have the
same input/output registers but may have different input/
output memory locations.

If a trace T is reusable, it must happen that IL(Ti) = IL(Tj)
and IV(Ti) = IV(Tj) for some j < i. This obviously implies
that OL(Ti) = OL(Tj) and OV(Ti) = OV(Tj). That is, if the
inputs are the same and have the same value, then the out-
puts will also be the same and will have the same values.

Theorem 3 (generalization of theorem 1). Let T be a
trace composed of a sequence of traces <t1, t2, ..., tn>. If T is
reusable, then tk is reusable for every k ![1,n].

Proof. If Ti is reusable, then IL(Ti) = IL(Tj) and IV(Ti) =
IV(Tj) for some j < i. Notice that IL(t1i) " IL(Ti) = IL(Tj),
which implies that IL(t1i) = IL(t1j) and IV(t1i) = IV(t1j).
Therefore, OL(t1i) = OL(t1j) and OV(t1i) = OV(t1j). Thus, t1
is reusable.

Notice that IL(t2i) " IL(Ti) # OL(t1i) = IL(Tj) # OL(t1j).
Since IL(t2j) " IL(Tj) # OL(t1j) and OV(t1i) = OV(t1j), we
have that IL(t2i) = IL(t2j) and IV(t2i) = IV(t2j). Thus, t2 is
reusable, that is, OL(t2i) = OL(t2j) and OV(t2i) = OV(t2j).

In general, we can prove that tk+1 is reusable provided
that ti is reusable for any i=1..k. Notice that IL(tk+1

i) "
IL(Ti) # OL(tki) # OL(tk–1

i) # ... # OL(t1i) = IL(Tj) #
OL(tkj) # OL(tk–1

j) # ... # OL(t1j). Thus, IL(tk+1
i) =

IL(tk+1
j) and IV(tk+1

i) = IV(tk+1
j), which means that tk+1 is

reusable.
Theorem 4 (generalization of theorem 2). Let T be a

trace composed of the sequence of traces <t1, t2, ..., tn>. If tk
is reusable for every k ![1,n], then T is not necessarily reus-
able.

Proof. If t1i, t2i, ..., tni are reusable, then each of them
have their inputs equal to those of some previous execution.
That is, IV(t1i) = IV(t1j1), IV(t2i) = IV(t2j2) , ..., IV(tni) =
IV(tnjn), but j1, j2, ..., jn may be different. Therefore, IV(Ti)
" IV(t1i) # IV(t2i) # ... # IV(tni) = IV(t1j1) # IV(t2j2) # ...
IV(tnjn), but IV(Ti) may be different from IV(Tj) for every
j < i, and thus, Ti may be non-reusable.

