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ABSTRACT 

Referral, placement and retention decisions were analyzed using item re­

sponse theory in order to investigate several previously unaddressed ques­

tions. One question was whether classification decisions could be placed on 

the latent continuum of ability normally associated with conventional test 

items. A second set of questions pertained to the existence of differential 

item functioning (DIF) and testlet functioning (DTF) for the various classi­

fication decisions using ethnicity and gender as the grouping variables. Since 

referral and placement are dependent, two different types of testlets were 

formed; a referral and placement testlet and a referral, placement, and reten­

tion testlet. Test data and educational classification decisions were analyzed 

for 352 kindergarten children. The resulting "item" parameters were similar 

to those that might be expected from conventional test items. The a param­

eters where high and positive for both the individual classification decisions 

and for the testlets indicating adequate discrimination for the various deci­

sions as a function of ability and that the decisions are related to a single 

underlying variable. The location parameters for the three decisions were low 

on the ability continuum. The location parameter for placement was lower 

than the estimate for referral while the estimate for retention was close to 

the value obtained for placement. Both testlets were graded and had corre­

spondingly low location parameters. Item information was found to be high 

in the ability range where decisions are made for both individual decisions 

and testlets. No DIF was found for the Rasch models but was detected for 

referral for different ethnic groups using the two-parameter model. Using the 
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Rasch model ignored an important source of DIF contained in the discrim­

ination parameter. DTF was found for the referral and placement testlet 

when ethnicity was analyzed. Referral decisions for ethnicity were found to 

be functioning differently for Caucasians versus non-Caucasians. Teachers, in 

this sample, did not take ability into account when making referral decisions 

for this group. No DIF was found for placement indicating that evaluation 

teams did incorporate ability into the decision. Item response theory rep­

resents a powerful methodology that could be applied to a variety of new 

problem types. 



12 

Chapter 1 

INTRODUCTION 

A basic problem often associated with decision-making is how to classify 

individuals. The problem of classification arises when a decision-maker as­

sesses some individuals and subsequently wishes to assign these individuals 

to one or more categories based on some observations. The investigator can­

not match the individual with a category directly but must infer a category 

from these measurements. If the classification decisions are correct, then re­

spondents are assigned to the class which they are most likely to belong. It 

can be assumed that there are a finite number of classes or populations from 

which the respondent may have come. A respondent can be considered to 

be a random observation from this population or class. The success of any 

classification system can judged on the extent to which misclassification is 

minimized. The traditional approach to examining the classification prob­

lem has been to assess how Type I and Type II errors can be minimized and 

what proportion of the population make up each of the classes. While these 

are worthwhile questions, they will not be the focus of this dissertation. By 

using item response theory (IRT), several previously unaddressed questions 

regarding decision-making can be investigated. One question is to examine 

what "item" parameters result from analyzing classification decisions as if 

they were test items using IRT methodology. This allows the classification 
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decision to be empirically placed on the latent continuum and states the de­

cision in probabilistic terms as a function of ability. Secondly, the hypothesis 

of differential "item" functioning (DIF) for classification decisions can be in­

vestigated using IRT methodology. DIF in this context evaluates the validity 

of classification decisions after they have occurred. The type of classification 

problems addressed in this dissertation are special education referral and 

placement and retention in grade. , 
I " 

Classification decisions can be investigated in the same manner normally 

associated with test items or responses to rating scales using latent structure 

models such as IRT. Thissen (1993) suggests that researchers can redefine 

what constitutes an item in order to pursue new questions. Since classifica­

tion decisions are categorical and the underlying dimension can be conceptu­

alized as ability, it seems appropriate that they be examined in the manner 

usually associated with test items. The probability of a positive response 

(i.e., getting the item correct) or not being referred, placed, or retained are 

all a function of ability. Children who are high in basic skills (i.e., math and 

reading ability) are not likely to be referred or placed in special education 

or be retained (Bergan, Sladeczek, Schwarz, & Smith, 1989). Classification 

decisions can be modeled using the trace line of the two-parameter logistic 

model (Birnbaum, 1968). A trace line shows how the probability of a decision 

varies as a function of ability. The "item" statistics (i.e., the location and 

discrimination parameters) allow the classification decision to be reported on 

the same scale as ability. The a parameter, which is the slope of the trace 

line, tells whether the classification decision discriminates well between two 

groups. A high positive value for the a parameter indicates that a decision 
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discriminates well between placed and nonplaced groups, for instance. The 

location parameter (i.e., b parameter) is the point on the ability scale where 

a child has 50% chance of not being either referred, placed or retained. For 

classification decisions, the location parameter is expected to be low on the 

ability continuum. The location parameter for placement is hypothesized 

to be lower on the ability continuum than referral since it is assumed that 

children who were placed are lower on the ability continuum then children 

who were just referred. 

An important factor affecting the discriminating power of a test is the 

scatter of the responses around a particular level of the latent variable de­

noted by (). IRT provides an estimate of the dispersion of the total likelihood 

that can be used to evaluate the precision of the maximum likelihood esti­

mates around a given level of (). This measure of information at each interval 

on the latent continuum is called item information. Item information can be 

used to evaluate the effectiveness of a classification decision. Decisions are 

more adequately characterized by item information than reliability. Wainer 

(1985) suggests that the usual measures of reliability such as coefficient Q are 

often inappropriate since they characterize the entire test, rather than the 

area of the latent continuum where decisions are made. Item information can 

be used to ensure that information is maximized in the region of the deci­

sion. Since decisions regarding special education referral and placement and 

retention in grade occur low on the ability continuum, information should 

be maximal in this region. If item information is low in the region of the 

decision, this would indicate that classification is error prone. 

From a validity standpoint, one of the primary concerns with classification 
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decisions has been the perception that ethnic minorities are over represented 

in special education classes (Reschly, 1988; Shepard, 1989). The cause for this 

over representation is alleged to be "biased" tests, especially IQ tests. An­

goff (1993) suggests that researchers apply DIF technology to new contexts. 

Classification decisions represent one such new context. The h~pothesis of 

differential classification decisions for various subpopulations can be investi­

gated using differential item functioning methodology (Lord, 1980; Thissen, 

Steinberg, & Wainer, 1993; Kelderman & Macready, 1990). DIF refers to an 

unexpected difference in item performance between two groups of examinees 

that have been matched on the trait being measured by the test (Dorans & 

Holland, 1993). 

A DIF analysis begins with the specification of a reference group and a 

focal group. The reference group is the standard against which the focal 

group is compared (Holland & Thayer, 1988). The "studied item" is the 

focus of the DIF analysis. A DIF analysis using IRT can be simplified with 

the selection of a designated anchor that is iteratively purified (Thissen, 

Steinberg, & Wainer, 1993). This process consists of eliminating items from 

the anchor that demonstrate DIF until no DIF exists. Thissen et al. found 

that anchors consisting of one to four items work well. The designated anchor 

can then be used to test all the other items for DIF. 

The conditional probability of a correct response given a specified pro­

ficiency level of a respondent is given by the item trace line. The extent 

to which the item trace lines differ between the focal and reference groups 

can be construed as demonstrating DIF (Lord, 1980; Thissen, Steinberg, & 

Wainer, 1993). In statistical terms, the null hypothesis is one of no DIF. Us-
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ing Thissen and Steinberg's (1988) methodology, statistical fit is evaluated 

for the restricted model obtained by imposing equality constraints on the pa­

rameters for the studied item across both the reference and focal groups. This 

constrained model may be compared with an unconstrained model using the 

likelihood ratio statistic. The likelihood ratio statistic for the unconstrained 

model can be subtracted from the constrained model, which results in dif­

ference a chi-square. If the resulting difference chi-square is not significant, 

then the null hypothesis of no DIF is not rejected. In this dissertation, the 

hypothesis of DIF will be investigated for gender and ethnicity. These vari­

ables were chosen because they are widely recognized as critical variables in 

the study of DIF. DIF with respect to gender and ethnicity will be examined 

for referral and placement, and for retention. 

Referral and placement is a two-step process. First, a child is referred 

and then a decision is made as to placement. Since referral and placement is 

a two-step process, it might be advantageous to model it as a two-step proce­

dure. Secondly, referral and placement are highly dependent because a child 

must first be referred before he or she is placed. If a child is placed, then it 

is extremely likely that the child had already been referred. In addition, if a 

child is referred it is very likely that he or she will be placed. This violates the 

assumption of local "item" independence. Local independence suggests that 

the chance of "success" on one "item" should not be affected by the chance 

of "success" on another item. Fortunately, DIF technology can be extended 

to a more macro unit of test analysis known as testlets (Wainer & Kiley, 

1987; Rosenbaum, 1988; Thissen, Steinberg, & Mooney 1989; Wainer, Sireci, 

& Thissen, 1991) that allows the assumption of local independence to be 
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met. Thissen, Steinberg, and Mooney (1989) used the summed score of the 

items within the testlet as a sufficient statistic for scoring the test. Bock's 

(1972) nominal model was used to fit the testlets. Thissen et al. (1989) 

were able to show local independence among the testlets with little loss of 

information compared with each test item being scored independently. Since 

referral and placement decisions are not independent, it is more appropriate 

to analyze the referral and placement process using testlets. The categories 

comprising the testlet will be the summed score of no referral or placement, 

just referral, and placement and referral. Since these can be thought as being 

ordered, Samejima's (1969) graded response or Master's (1982) partial credit 

model could be used to fit the testlet. Referral, placement, and retention 

decisions also form a testlet. The four categories comprising this test let are 

the summed score of: no referral, placement or retention; just referral or re­

tention; referral and placement or referral and retention; referral, placement, 

and retention. Differential testlet functioning is tested and interpreted in 

the same manner as differential item functioning. The results from the item 

analysis can be compared to the test let analysis to determine the degree of 

agreement between the two procedures. 
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Chapter 2 

THEORETICAL BACKGROUND 

This chapter presents a brief overview of latent structure models in which 

latent class models are compared with models that assume a continuous 

latent variable such as IRT. It is hoped that such a comparison will facilitate 

understanding of latent structure modeling. The main body of this chapter 

includes a discussion of various IRT models and a section on estimation. The 

second section presents an overview of differential item functioning. 

Latent Structure Models 

Latent structure analysis is a method for analyzing multivariate categor­

ical or continuous data when one or more unobserved variables is said to 

account for the observed relationships among the variables. One objective 

of latent structure analysis is to give the most parsimonious explanation for 

the interrelationships that exist among the observed data. Latent structure 

analysis can be viewed as a data reduction method through model fitting. 

The number of latent variables T is usually much less than the number of 

manifest variables. Another objective is to locate individuals in the latent 

space on the basis of their observed score. A particular latent structure model 

is a specification of the nature of the latent space. The probability of positive 

response to any item is a function of the respondents' position in this latent 
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space. For every individual in the sample, there is an associated value of the 

latent variable. The variation in the latent variable reflects individual differ-

ences. Frequently, latent variables are conceptualized as being continuous. 

However, sometimes the latent variable can be thought of as being discrete 

and comprised of a finite number of classes. All members of the sample fall 

into one of the mutually exclusive classes and have the same value of the 

latent variable. The assumption basic to both these models and all other 

latent variable models is the axiom of local independence. 

Local Independence 

In IRT, the observed variables, Yj's, are discrete but the latent variable, 

X, is continuous while in latent class models both the manifest and latent 

variable are discrete. These two methods appear to be unrelated but both 

have a common reliance on the axiom of local independence or conditional 

independence. Local independence implies that the observed relationships 

among the manifest variables is accounted for by their common dependence 

on one or more latent variables. Local independence states 

(1) 

where () represents the latent variable and Xik denotes the response on item 

i for respondent k. If the data are Bernoulli random variables then f(xikl()) 

can be written as 

f(xikl()) = { Pk(()) for Xik = 1 
1 - Pk(()) for Xik = o. 

Then Equation (1) can be written as a two-component multinomial mix­

ture 
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Consider the case where 0 takes only t distinct values OJ, ... , Ot. Let t.pv 

be the probability that a randomly sampled respondent has value Ov of the 

latent variable. Using Equation (2) the marginal distribution of the random 

variables XiI, .•. , Xik is 

T 

f( XiI! .•• , Xik) = L PI (Ov )Xil [1 - PI (Ov )l-Xil] ... Pkv [( O)Xik (1 - Pk( Ov )I-Xik ]t.pv. (3) 
v=I 

This is equivalent to a latent class model (Andersen, 1988). Suppose that 

a cross-classification is observed with respect to four qualitative variables; A, 

B, C, and D. The basic assumption of latent class modeling is the conditional 

or local independence of variables A,B,C, and D given the existence of a 

latent variable 0 made of T latent classes. A significant X2 would indicate a 

association among the four variables. If two latent classes are hypothesized 

to exist and the likelihood statistic fits the data then the latent types explains 

the association among the variables. 

If the distribution of 0 is continuous and described by the density function 

t.p(O) then the marginal distribution is given by 

(4) 

Various models which have been proposed in the literature that arIse 

when different latent densities are chosen for t.p(O) and for the conditional 
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probability functions in (4). Lord (1952), Bock and Liberman (1970), Bock 

(1972), Christofferson (1975) followed by Muthen (1978), use the normal 

density. Birnbaum in Lord and Novick (1968) treated the unidimensional 

case using the logit for conditional probabilities and the normal density for 

the latent variable. Ability is frequently considered to be normal and serves as 

the underlying latent dimension for many IRT models. Bartholomew (1980) 

proposed the use of the logit for both functions. 

Item Response Theory 

IRT is an efficient method of ordering examinees along a latent continuum 

such as ability. The origins of item response theory can be traced back to 

Richardson (1936) and Lawley (1943). Richardson provided a method for ob­

taining item response parameter estimates while Lawley (1943) defined new 

procedures for parameter estimation. Lord (1952), considered by many to 

be the father of IRT, proposed the two-parameter normal ogive model in his 

doctoral dissertation. Rasch (1960) developed his own IRT model indepen­

dently which bears his name. Birnbaum (1968) substituted the logistic form 

for the normal ogive which made parameter estimation more tractable. Bock 

and Aitkin (1981) solved many of the parameter estimation problems us­

ing an alternative derivation of the EM-algorithm called marginal maximum 

likelihood. 

In order to fully specify the probabilities for an IRT model, a suitable 

latent density 'P(O) must be chosen. In the case, where 0 is a continuous 

variable, the probabilities 01 , ... , Ot for each of the latent classes are replaced 

by a latent density 'PUJ) which can be normal (Lord and Novick, 1968; Bock, 
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1972). This latent density describes the variation of 0 over the given pop­

ulation with mean JL and variance (7'2. Bartholomew (1980) discussed other 

choices for the latent density including the inverse Cauchy distribution and 

gave criteria for how to choose cp(O). He argues that the logistic density 

(5) 

should be preferred based mostly on ease of numerical computation. Muthen 

(1978), (1979), Christofferson (1975) Muthen and Christofferson (1981) gave 

models, where 0 is a multivariate latent variable, cp( 0) the multivariate normal 

density and the responses probabilities 7rf(O) are generalized probit functions. 

In many applications of IRT, it is assumed that only one latent variable is 

needed to account for the interdependcies among responses. These models 

are referred to as unidimensional models. Multidimensional models (Reckase, 

1985) have recently received much greater attention. 

Let Pijkl (0) be a response vector indicating the probability of observing 

an individual in cell (ijkl) given a value of the latent variable O. For the four 

dichotomous variables (i.e., items) A,B,C,D denoted as 

(6) 

where 7r
AiO is the probability that variable A is at level i given the value 

of the latent variable (), and 7rBjO is the probability that variable B is at 

level j given the value of latent variable (). Similar definitions can be given 

for the variables C and D. For a variable A, for example, there are two 
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conditional probabilities 7r
A }o and 7r

A20 for correct and incorrect responses 

but only one needs to be specified since 7r
A20 = 1 - 7r

A }o. The response 

probabili ties 7r A ;o, ... , 7rDIO are functions of () known as item characteristic 

curves. The respondent's probability of a positive response is assumed to be 

a monotonically increasing function of (). Item characteristic curves can be 

used to model referral, placement, and retention decisions. 

Integrating over the latent density, the marginal cell probabilities Pijkl are 

obtained as 

P o °kl - J "..A;O • • "..DIO 
'3' - " ... " • (7) 

Model construction consists of specifying a functional form for the con­

ditional probabilities and specifying a latent density. 

Some IRT models 

There are several functions commonly used for modeling the response 

probabilities. Most models use the logistic function, g(x) = In(x/l-x), and 

the probit function, g(x) = <J>-l(x). The simplest model using a logistic 

function is the well-known Rasch (1960) or one-parameter model for item i 

1 (8) 
1 +exp( O-b;) 

where hi refers to the location or difficulty parameter for item A. It repre­

sents the point on the latent scale where the respondent has a 50 percent 

probability of a positive response on item A. The response probabilities for 

the Rasch model for the two levels of responding can be written as 
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exp(O - bi) 

1 + exp(O - bd 

exp(O - bl) 

1 + exp(O - bl) 

For a Rasch model the probability of response vector ijkl for a respondent 

is 

Piikl(O) = exp(biz(i) + ... + blz(l) + to)/[(1 + e(O-bi) ... (1 + e(O-bd] (9) 

in which z(l) = 1, z(2) = 0 and t=z(i)+ ... +z(l). The score, t=z(i)+ ... +z(l), 

is a sufficient statistic for O. The number correct for an item is sufficient 

statistic for the item difficulty. The existence of sufficient statistics is one 

advantage of the Rasch model. Other advantages include the estimation 

of fewer parameters than other IRT models and the attainment of specific 

objectivity (Rasch, 1966). This property permits the separate estimation 

of the location and ability parameters. The Rasch model could be used to 

estimate where a classification decision is located on the latent continuum of 

ability. 
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There have been a number of extensions of the Rasch model to han-

dIe polytomous data (Andrich, 1978; Masters, 1982). Andrich modified the 

Rasch model in order to analyze rating scales. Masters (1982) developed a 

another variation on the Rasch model that he referred to as the partial credit 

model. Let W,X,y,z to be m = O, .. t ordered response categories to an item 

where the elementary relations 0 < 1; 1 < 2; 2 < 3 completely capture the 

intended relationships. The probabilities 71'w i o, ... , 71'z,o represent a response 

category at the ijkllevel for a given value of (). It is assumed that as () in­

creases that a response in the i category will decrease. The probability of a 

positive response is governed two parameters: the level of the latent variable 

and the transition parameter Om associated with the step between adjacent 

categories for a particular item. The transition parameters correspond to 

the intersections of adjacent probability curves. Only T-1 transitions are 

required to uniquely define the order. The probability of responding 1 rather 

than 0 on alternative w is 

71'w iO = exp(O-61 ) 

I+exp(O-61 }. 
(10) 

This procedure can be applied to each pair of adjacen.t response categories 

8-1 and 8. The odds of responding in category 1 rather than in category 0 

on an item or observation 8 

(11) 

The odds of responding in category 1 rather than in category 2 on an 

item or observation 8 is 
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(12) 

It follows that the odds can be written in this way for any pair of response 

categories. For example, the odds of responding in category y rather then 

category w for an item sis 

(13) 

With the usual constraint that response categories sum to one 

7rW2(} - 1/Cf> (14) 

7r
XlO exp(O - bd/Cf> 

7rYl () - exp(20 - bl - b2)/Cf> 

7rZl(} - exp(30 - bl - b2 - ba)/Cf> 

where Cf> is the sum of the numerators to ensure that the response probabili­

ties sum to one. These four expressions can be captured in a single expression 

which gives the probability of a person scoring in category t rather than cat­

egory t-J on an item as a function of the parameter 0 and item parameter 

bm 

'fr Wj (} 'frZj(} _ 
" , ... ," - x = 0, ... t - 1. (15) 

Thus for each item there are a series of t logistic curves that differ in terms of 

their transition parameters. The partial credit model could be used to model 
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the classification testlets if it was important to maintain specific objectivity. 

Master (1988) suggests that an additional advantage to the partial credit 

model is that the transition parameters are defined locally allowing for a 

more convenient interpretation when it comes to studying the operational 

definition of variables. 

In the Rasch model, the slope parameters for the items were equal. The 

Rasch model can be extended by allowing the response probabilities to de­

pend on a third parameter a called item discrimination which is proportional 

to the slope when e = b. The a parameter reflects the rate of change in 

a positive response as a function of e. The resulting two-parameter logistic 

model (Birnbaum, 1968) for item sis 

(16) 

The two-parameter model could be used to model classification decisions 

to determine how the location and discrimination parameters vary as a func­

tion of ability. 

Lord (1952) proposed a two-parameter model known as the normal ogive 

(17) 

in which q, is the cumulative distribution function for the normal standard 

distribution. A scale factor of 1.7 can be added to the logistic form to achieve 

the normal metric. Guessing by an examinee can be modeled by the lower 
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asymptote which represents the probability that low ability examinees will 

answer the item correctly. It does not appear in the logit but forms an 

additive and multiplicative factor. The addition of guessing to the two­

parameter model results in the three parameter model. 

Samejima (1969) used the two-parameter models to handle the case where 

item responses are contained in two or more ordered response categories. A 

two-parameter logistic is produced for each possible response alternative to 

represent the probability of an individual selecting that category or higher. 

The operating characteristic of the graded response model can be defined as 

the probability of a response for a given level of {} in or above category y for 

categories W,X,y,z, as 

1 1 
(18) 

1 + exp[l + -a(O - by-d] 1 + exp [1 + -a(O - by)] 

(19) 

This model is sometimes referred to as a difference model since the proba­

bility of choosing the yth ordered category is the difference in the probabilities 

of the category characteristics associated with the yth and yth - 1 categories. 

The b parameter is defined as the point on the latent continuum where the 

probability is 50% that a response is in category yor higher. The a param­

eters are generally assumed to be equal for responses m = 0, ... t. The shape 

of the item characteristic curve ICC will generally be non-monotonic except 

when m = 0 or when m = t. 
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Estimation in IRT 

There are many methods of estimating the parameters in IRT such as 

conditional maximum likelihood, joint maximum likelihood, and marginal 

maximum likelihood (MML). The estimates arrived at by conditional max­

imum likelihood are not consistent (Andersen, 1972) since the bias fails to 

disappear when the sample size increases. 

One solution to this problem is to condition the ability parameters out 

of the likelihood equation by replacing them with their minimally sufficient 

statistics. The likelihood equation is then estimated conditional upon the 

sufficient statistics. Since sufficient statistics exist for the Rasch model, this 

conditional approach can be used. Consistent estimates will not be obtained 

for other models because sufficient statistics do not exist. Joint maximum 

likelihood suffers from estimates of ability that can be biased which can in 

turn lead to biased estimates of the item parameters. Secondly, for models 

without sufficient statistics, the number of nuisance (ability) parameters that 

have to be estimated increases with sample size. These nuisance parameters 

cannot be eliminated by conditioning them out. One proposed solution was 

to specify a fixed number of ability points. This is difficult to justify on 

the grounds that item estimates may become biased when the numbers of 

items is small and the failure of a finite number of points in representing the 

distribution of ability in the population. Lord (1986) suggests that marginal 

maximum likelihood is an improvement over joint maximum likelihood be­

cause item parameters and ability parameters do not have to simultaneously 

estimated. Bock and Liberman (1970) made a fundamental advance by in­

tegrating over the parameter (latent) distribution and estimating the struc-



30 

tural parameters (items) in the marginal distribution which became known 

as marginal maximum likelihood (MML). Bock and Aitkin (1981) improved 

on Bock and Liberman by applying an alternative derivation of the EM­

algorithm. The EM-algorithm of Demspter, Laird, and Rubin (1977) is a 

two-step process consisting of a expectation step (E step) and maximization 

step (M step) that allows the computation of maximum likelihood estimates 

from incomplete data. The EM-algorithm is an iterative procedure ideally 

suited to estimation in latent structure models. During the E-phase of each 

iteration the incomplete data are completed by estimating them on the ba­

sis of the observed data and the provisory parameter estimates obtained in 

the previous iteration. During the M-phase of each iteration the unknown 

parameters are estimated again on the basis of the complete data arrived at 

in the E-phase. These last two steps are repeated until the maximum likeli­

hood estimates converge to some specified criterion or the maximum number 

of iteration steps allowed is exceeded. Thissen (1982) demonstrated the use 

of MML for the Rasch model. 

Bock and Liberman (1970) took a very different approach to the prob­

lem of incidental parameters than previous estimation procedures. Bock and 

Liberman proposed an alternative procedure in which ability estimates are 

removed in order to estimate item parameters unconditionally by integrat­

ing them out of the likelihood function. The basic element in this approach 

is to estimate the structural (i.e., item) parameters by ML in the marginal 

distribution obtained by integrating over the distribution of the incidental 

(ability) parameters. The resulting likelihood function is referred to as the 

marginal likelihood function. Because there are 2n possible patterns for a 



31 

vector of item responses, the Bock and Liberman approach is practical only 

for a few items, say n < 12. Despite this limitation, the initial conceptual­

ization allowed a reformulation to be made by Bock and Aitkin (1981) that 

made computation feasible for a wide variety of problems. 

The Bock and Aitkin Approach 

Bock and Aitkin (1981) reformulated the Bock and Liberman approach 

in a manner that can be derived as extension of the missing information 

principle of the EM algorithm (Dempster, Laird, & Rubin 1977). Since 

no sufficient statistics exist for 0, each individual observation 0i is replaced 

by its conditional expectation given the observed response vector, Xi, for a 

respondent i. The conditional distribution of () given that X = Xi from Bayes' 

theorem is 

g(()lxo) = P(x=xi)l9)g(9) . 
, P(X-Xi) (20) 

Using the local independence assumption for item j, the probability of a 

response pattern Xi conditional on () 

n 

P(x = xil()) = L[«pj(OdJx
i
j [l - «Pj(()iW-xiJ • 

j 

(21) 

The unconditional probability for a randomly selected individual from a 

population with a continuous ability distribution g( 0) is 

P(X = Xi) = I: P{x = xil())g(())d(). (22) 
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The conditional expectation of () given x = Xi using relations (21) and 

(22) is 

. _ J~oo Og(O) n;[4>j(O)]Zij [l_4>j(O)]l-ZiJ dO 

E( ()Ix,) - J~oo g(O) n;[4>j(OWij [l_4>j(O)]l-ZiJ dO (23) 

Since intergrals are difficult to evaluate, methods such as numerical quadra-

ture have been developed for approximating them to any desired degree of 

accuracy. A continuous distribution with finite number of moments can be 

approximated by a discrete distribution, such as a histogram, over a finite 

number of points. Using a quadrature approximation, the problem of finding 

the sum of the area underneath a density function is simplified by the prob­

lem of finding the sum of the areas of a finite number of rectangles which 

approximate the area under the curve. The midpoint of each histogram on 

the ability scale, Xdk = 1,2, ... , q), is called a node. Each node has an asso­

ciated weight A(Xk) which indicates the height of the density function in the 

neighborhood of Xk and the width of the histogram. Tables of Xk and the 

corresponding weights A(Xk ) for approximating the Gaussian distribution 

are given by Stroud & Sechrest (1966). Using Gauss-Hermite quadrature the 

probability in Equation (22) can be approximated by the sum 

q 

L P(x = xiIXk)A(Xk). (24) 

k 

Equation (23) can now be rewritten approximating the intergrals using q 

points indexed by k with the i-th respondent to the l-th score pattern 

(25) 



33 

where PI = L:k LI(Xk)A(Xk) and LI(Xk) is the conditional probability of 

XI given that () = Xk. 

Equation (25) results in a weighted mean of the X k • Since there are s 

score patterns there are s values of E((}lxI). The number of responses at XI 

is rl. For the j-th item, the number correct is Xlj. A probit model is then 

fitted to s points using E((}lxI) as the expected ability variable, with Xljrl as 

the number correct out of rl for this level of ability. The expected frequency 

of correct responses to the j-th item and at a given level of () is 

rjk = E; T,x'jL,(Xk)A(Xk) 

P, 

and the expected number of respondents at that level is 

in which the sum of Nk is N. 

E: T,L,(Xk)A(Xk) 

P, 

(26) 

(27) 

The EM algorithm is a numerical procedure that consists of two steps per 

item per cycle. The process begins with the expectation (E)-step, in which 

the provisional estimates of the item parameters are obtained by computing 

L1(Xk), k = 1,2, ... q, and P for response patterns I, (1 = 1,2, ... ,s). These two 

values are accumulated to compute for each item the "expected" number of 

examinees Nk at each quadrature point and the number of these 1·jk correctly 

responding to an item. The second stage is the maximization (M)-step, 

in which the improved estimates of the item parameters are obtained by 

performing a probit MLE on Nk and rjk where Xk is the independent variable 
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weighing the corresponding term by A(Xk). The algorithm cycles until so 

convergence criteria are met or the maximum number of iterations specified 

is exceeded. For the Rasch model, the marginal likelihood equation is for the 

difficulty parameter is 

q q 

L rjkA(Xk) - L Njk<I>j(Xk)A(Xk) = 0 (28) 

k k 

where <I> is the one parameter logistic. 

The likelihood ratio chi-square statistic used to evaluate the fit of a par­

ticular model is 

G2 = 2 (tr{I0ge~) 
t NP{ 

(29) 

with s - 2n degrees of freedom ignoring pattern counts with r{ = o. If 2n 

is large relative to N, the pattern counts will be sparse and estimation will 

become unstable. 

Assuming the item parameters have been estimated, they are considered 

as known and the respondent's () values can be estimated as a separate process 

either by maximum a posteriori (MAP) or Bayesian expected a posteriori 

(EAP) estimation. 

Information 

An estimate of the dispersion of the total likelihood when normally dis­

tributed may be used to specify the precision with which the MLE(()) esti­

mates (). As a byproduct of ML estimation, the estimated standard error is 

equal to the negative inverse of the expected value of the second derivatives 
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of the loglikelihood (Fisher, 1925). Since the precision of the estimates vary 

with the width of the total likelihood, the standard error of estimation given 

by 

(30) 

which is inversely related to the amount of information provided by a test 

at a given level of O. Information in this context is equivalent to Fisherian 

information (Fisher, 1925). Information by this definition is approximately 

equal to l/(S.E.)2 and reflects how much is known at about a parameter at 

that level of O. Item information for the two-parameter logistic is 

J(O) = 
P'(8)2 

(31) 
P( 8)[1-P( 8)) 

in which P'(O)2 is the first derivative of P(O) with respect to O. Test infor­

mation is simply the sum of the individual item information functions. It is 

desirable to have high information in the area of the decision. If information 

is low in the area of the decision then the decision-making process is probably 

error prone. 

Differential Item Functioning 

A psychometric difference in how an item functions for two matched 

groups is referred to as differential item functioning (DIF) (Dorans & Hol­

land, 1993). Shepard (1982) defined DIF as psychometric differences that 

misrepresent the competence of one group. DIF then can be viewed as a 

source of invalidity. Lord (1980) provided the earliest IRT definition of DIF. 
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If each item in a test had exactly the same item response function in every 

group, then people of the same ability or skill would have exactly the same chance 

of getting the item right, regardless of their group membership. Such a test would 
be completely unbiased. If on the other hand, an item has a different item response 

function for one group than for another it is clear the item is biased. (p. 212) 

The more neutral term" differential item functioning" is preferred to the 

older term "item bias" since the older term does not always accurately reflect 

the circumstances. Bias is a social judgement while DIF is defined statisti­

cally. Dorans and Holland (1993) suggest it is important to distinguish be­

tween DIF and impact. Impact refers to a difference in performance between 

two groups that can be explained by stable consistent differences in ability 

across groups. Dorans and Holland give the examples of Asian-Americans 

scoring higher on the SAT-mathematics than other groups or high school 

seniors scoring higher than juniors. DIF, however, refers to an unexpected 

difference in performance between two groups who have been matched on the 

trait being measured on the test. 

In a DIF analysis, the performance of the focal group is of primary interest 

when compared to the reference group. The notion that for given a level of 

ability members of the focal group are compared to the reference group is 

basic to most DIF procedures. There are many methods with which to test 

the hypothesis of DIF. Chief among these procedures are chi-squared based 

methods such as the Mantel-Haenszel (MH) procedure (Holland & Thayer, 

1988), the standardization approach (Dorans & Kulick, 1986), methods based 

on latent class analysis (Kelderman & Macready, 1990) and IRT (Lord, 1980; 

Thissen, Steinberg, & Wainer, 1988). What follows is a brief overview of these 

methods of DIF detection. 
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Mantel and Haenszel (1959) introduced a measure based on chi-square in 

order to study matched groups. The Mantel-Haenszel (MH) chi-square tests 

the null hypothesis of 

Ho: PRJ _ PFj 

qRj qFj 
(32) 

in which j = 1, ... K, and 

PRJ = proportion correct in reference group 

qRj = proportion incorrect in reference group 

PFj = proportion correct in focal group 

qFj = proportion incorrect in focal group 

j = the ph matcheu set. 

The alternative hypothesis, known as the constant odds ratio hypothesis, 

is stated as 

HI : PRJ = elFj 

qRJ qFJ 

(33) 

where the parameter Q is the odds ratio under HI. The odds ratio in the J( 

2 x 2 tables is 

(34) 

The Mantel-Haenszel chi-square statistic is based on 



where 

and 

Ej(Aj - Ei E(Aj ))2 

E j Var(A j ) 

Var(A j ) = nRjnFjmljmOJ 

TJ(TJ-d 
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(35) 

(36) 

Aj = the number of respondents in the reference group who answered cor­

rectly 

nRj = number of respondents in reference group 

nFj = number of respondents in focal group 

mlj = marginal for proportion correct 

mOj = marginal for proportion incorrect. 

Tj = total number of reference and focal group members in the ph matched 

set. 

Under Ho, Mantel-Haenszel has an approximate chi-square distribution 

with a single degree of freedom. When Q' is equal to one, the the alternative 

hypothesis reduces to the null hypothesis of no DIF. One problem with the 

MH statistic is that it only supplies information about the intercepts of the 

response functions (Bock, 1993). It gives no information that might indicate 

that the slopes are different. Its main advantage lies in not being iterative 
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and can be computed quickly in order to screen a large number of items for 

DIF. 

The standardization procedure is another method for DIF detection. An 

item exhibits DIF, according to the standardization procedure, when the 

expected performance on an item differs for matched groups (Dorans & Hol­

land, 1993). The standardization procedure compares the nonparametric 

item test regression for the focal and reference groups. Visual analysis is an 

important component of this approach. Let Ej(IIM) define the item test 

regression for the focal group and similarly let Er(IIA1) be the item test 

regression for the reference group where I is the item score variable and M 

is the matching variable. The definition of DIF using the standardization 

approach is Ej(IIM) i= Er(IIM). An alternative definition of DIF is 

(37) 

where Ejm and Erm are item test regression for the focal and reference groups 

for a score level m. The Dm are the fundamental measures of DIF according 

to the standardization approach. A numerical index called the standardized 

p-difference is used to indicate DIF that can range from -1 to + 1. Positive 

values of this index indicate that the item favors the focal group whereas 

negative values favor the reference group. Values less than -.05 and +.05 

are considered negligible. Bock (1993) suggests that for a test containing 

a large number items, the standardization procedure and the IRT approach 

are essentially equivalent since the observed regression of the item score on 

test score is essentially an item response function. IRT procedures are much 



40 

more demanding since MML estimation is used and all item regressions are 

described with the same family of response functions. 

Latent-class modeling has also been applied to the question of differential 

item functioning when the latent variable is conceived as being categorical 

(Kelderman & Macready, 1990). Kelderman and Macready (1990) consid­

ered a variety of models for the detecting DIF and suggested that this class 

of models is especially appropriate when the latent variable exists in two 

mutually exclusive and exhaustive states such as master or nonmaster. They 

assumed that two types of error responses occur; omission errors and intru­

sion errors. Omission errors occur when masters miss items while intrusion 

errors occur when nonmasters respond correctly to items. They suggest that 

an item exhibits DIF in mastery modeling if the omission and intrusion rates 

differ across groups with respect to the grouping variable. DIF detection in 

the case of latent class models, like IRT models of DIF, requires the compari­

son of likelihood statistics between unconstrained models and those imposing 

parameter constraints. 

Two basic methods exist within IRT for assessing DIF. One method de­

vised by Lord (1980) consists of testing the significance of the difference 

between item parameters for the focal and reference groups that is often 

referred to as Lord's chi-square. He proposed the test statistic 

(38) 

where 
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(39) 

As a byproduct of MML estimation, the second-derivative approximations 

of the standard errors of the item parameters can be obtained. The test 

statistic given in Equation (38) can be referred to the standard normal table 

or squared and referred to the chi-square distribution with one degree of 

freedom. Lord also proposed a simultaneous test that aR = ap and bR = 

bp that is based on the Mahalanobis distance (D2) between the parameter 

vectors for two groups (Thissen, Steinberg, & Wainer, 1988). Mahalanobis 

distance for this case is 

(40) 

where ~ is the covariance matrix of parameters and v is a vector of param­

eters. D2 is distributed as a chi-square with two degrees of freedom for the 

null hypothesis. Thissen, Steinberg, and Wainer (1988) suggest that with the 

advent of MML estimation procedures that allow simultaneous estimation of 

item parameters for two or more groups, Lord's procedures are no longer 

really necessary. 

Thissen, Steinberg, and Gerrad (1986) proposed the same tests as Lord 

but using likelihood ratio chi-squares using the Neyman-Pearson lemma. 

Neyman and Pearson (1928) were able to demonstrate that minus twice the 

logarithm of a likelihood ratio is asymptotically distributed as X2 with the 

degrees of freedom equal to the difference between the number of free coef­

ficients in the models represented in the numerator and denominator of the 
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ratio. The difference X2 used to compare two models is also distributed as 

a X2 with degrees of freedom equal to the difference in degrees of freedom 

between the two models. Either the chi-square or likelihood-ratio statis­

tic can be used to evaluate model fit for IRT-DIF analyses. However, the 

likelihood-ratio statistic has an additional desirable property in that it can 

be partitioned and used to compare the fit of two models. 

Thissen, Steinberg, and Wainer (1988) give the following procedure for 

testing the hypothesis that bR = bF : 

1. The model is fit simultaneously for both groups without any parameter 

constraints (i.e., bR =/: bF). 

G~ = -2(loglikelihood) 

is computed for the MML estimates of the item parameters. 

2. The same model is fitted except this time bR = bF and 

G~ = -2(loglikelihood) 

is computed. 

3. The likelihood ratio test is then computed for the significance of the 

difference between bR and bF as 

G2(1) = G~ - G~. 

This will result in one degree of freedom difference between the models. If 

the difference between the two models is within the limits of chance variation 

(X2 < 3.85 , 1 dJ. ), then the null hypothesis of no DIF is not rejected. 

A straightforward extension of this procedure applies when more than one 
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parameter is constrained to be equal across groups such as testlet DIF. The 

IRT likelihood ratio approach represents a powerful method for investigating 

the hypothesis of DIF. 
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Chapter 3 

Method and Results 

Method 

Sample Characteristics 

This study used data from an investigation that followed Head Start chil­

dren into kindergarten (see Bergan, Sladeczek, Schwarz & Smith, 1989). The 

study was conducted in six different sites: Arizona, California, New Mexico, 

Iowa, Louisiana, and Mississippi and was comprised of seven school districts 

and 21 schools. Seven of the schools were rural while the other 14 schools 

were urban. Rural areas were considered to have less than 2500 inhabitants. 

The teachers in the study had an average of 11.4 years of teaching experience 

with an average of 17.6 years of education. 

A brief questionnaire was administered to the entire sample (see Bergan 

et al., 1989) to determine their socioeconomic status (SES). Fifty-three per­

cent of these families responded. Stevens and Featherman's (1981) MESI2 

revision of the Duncan Socioeconomic Index was computed for the respond­

ing families. The mean for the sample was 27.65. The mean computed for the 

subsample (n=74) used in this dissertation was 25.70. These results indicate 

that the children came from primarily economically disadvantaged homes. 
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The sample consisted of 352 kindergarten children who had complete test 

and referral data. The mean age for the sample was 67.32 months. The 

mean age for males (n=186) was 67.97 and was 66.48 months for females 

(n=166). The sample was composed of the following ethnic groups: (23 %) 

African American; (45 %) Caucasian; (19 %) Hispanic; (1 %) Asian Amer­

ican; (12 %) Native American. Twenty percent of the sample were referred 

for special education services. Thirteen percent of the entire sample (n=46) 

were subsequently placed in special education. Sixteen percent (n=55) of the 

children were retained. For this data-set, no information was available re­

garding the criteria used to make referral, placement and retention decisions 

by the various school districts. Table 1 shows the cells counts and percents 

for the groupings variables of gender and ethnicity for referral, placement 

and retention decisions. As might be expected, differences in classification 

decisions appear to be smaller between the sexes than for ethnicity. DIF for 

gender would be more unexpected than DIF for ethnicity. The greatest pro­

portional difference is between Caucasian (20.3 %) and non-Caucasian (31.5 

%) for referral decisions. If DIF exists it probably lies within this comparison. 

Instruments 

The dichotomous item responses from various testlets were obtained from 

a math and reading scale developed for kindergarten age children called the 

Measurement and Planning System Level K (MAPS-K). Scale construction 

was guided by a technique developed by Bergan, Stone & Feld (1985). All 

testlets selected consisted of three items. These are testlets since the items 

comprising them come from the same domain (i.e., counting objects) and the 

items comprising them are locally dependent. The testlets from the math 
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Table 1. 

Cell counts and percents using gender and ethnicity for referral. placement. and 

retention decisions 

Grouping 

variable 

Referral 

No 

Yes 

Percent 

referred 

Placement 

No 

Yes 

Percent 

placed 

Retention 

No 

Yes 

Percent 

retained 

Males 

(n=186) 

145 

41 

28.2 

158 

28 

17.7 

154 

32 

20.7 

Gender 

Females 

(n=166) 

134 

32 

23.8 

145 

21 

14.4 

143 

23 

16.0 

Ethnicity 

Caucasian 

(n=160) 

133 

27 

20.3 

139 

21 

15.1 

133 

27 

20.3 

Non­

Caucasian 

(n=192) 

146 

46 

31.5 

164 

28 

17.0 

164 

28 

17.0 
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scale included identifying geometric shapes, numeral recognition, and count­

mg. The testlets used from the reading scale included letter identification 

and causal reasoning in stories. Easy items were selected for the testlets 

in order to maximize information on the low end of the ability continuum. 

The discrimination parameters, standard errors and location parameters are 

listed in Table 2 for the items comprising the testlets. These 15 items were 

estimated together as one set for the entire sample. 

A child information form was developed for the study (Bergan, et al., 

1989). Teachers were asked to indicate on this form whether a child had 

been referred, placed, or retained in grade. 

Procedure 

Since the IRT model used in these analyzes is assumed to be unidimen­

sional, a factor analysis was carried out to determine whether the classifi­

cation decisions form a factor. A weighted least squares estimator as im­

plemented in PRELIS2 (Joreskog & Sorbum, 1993) was used to obtain the 

asymptotic covariance matrix of covariances and correlations. This approach 

is used when some or all of the variables are censored or categorical. The 

correlations are shown in Table 3. The correlation between referral and re­

tention is .646 while the correlation between placement and retention is .547. 

The polychoric correlation between referral and placement is .998. The mag­

nitude of the coefficient is higher than expected based on the different n sizes 

for referral and placement given in Table 1. The polychoric correlation is not 

a correlation between a pair of scores rather it is an estimate of what r would 

be if each of two categorical variables were in fact continuous and normally 
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Table 2. 

IRT item Qarameters for the testlet anchors m=352} using the two-Qarameter model 

Knowledge area a-parameter SE b-parameter SE 

Identifring geometric shaQes 

1. Identifying a square object. 0.58 .30 -4.46 .93 

2. Identifying a triangle. 0.57 .21 -2.54 .83 

3. Identifying a square shaped object. 0.98 .23 -1.59 .32 

Numeral recognition 

1. Recognizing numerals from 1 to 5. 1.14 .29 -1.93 .35 

2. Recognizing numerals from 6 to 10. 1.86 .27 -0.46 .10 

3. Recognizing numerals 11 to 15. 2.03 .29 -0.25 .09 

Letter recognition 

1. Identifying uppercase letters. 1.21 .31 -2.14 .41 

2. Identifying lowercase letters. 0.86 .23 -2.02 .45 

3. Matching two identical letters. 2.50 .42 -0.98 .10 

Counting 

1. Counting to 5 .30 .16 -1.96 .09 

2. Counting to 10. 1.69 .28 -.92 .13 

3. Counting to 5 from a number> 1. 1.19 .20 -.12 .14 

Causal reasoning in stories 

1. Recalling the cause of an event in a story. 0.57 .28 -4.52 2.13 

2. Recalling the cause of a character's feelings. 0.70 .19 -2.18 .59 

3. Identifying the cause of a character's 0.21 .14 1.37 .12 

feelings. 



Table 3. 

Correlation matrix for the classification decisions 

Referral 

Placement 

Retention 

Referral 

1.000 

.998 

.646 

Placement 

1.000 

.547 

49 

Retention 

1.000 
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distributed. In other words, it is the correlation between two latent variables 

TJ and €, which are assumed to have a bivariate normal distribution, that un­

derlie two observed variables x and y. This latent correlation is based on the 

multinomial distribution of the cell frequencies in the contingency table and 

can be estimated using maximum likelihood (Olsson, 1979). The polychoric 

estimates will always be somewhat higher than r and is a biased estimate of 

the true correlation. Brown and Benedetti (1977) showed that this bias is 

negligible if no expected cell frequencies are less than five. However, for re­

ferral and placement the cell consisting of no referral and placement is always 

empty. This means that the correlation between referral and placement is 

a biased estimate. Since this relationship exists between referral and place­

ment, their analysis together necessitates the formation of a testlet (Yen, 

1993). 

The referral and placement testlet constructed is the summed score of 

either no referral or placement, just referral and no placement, or both refer­

ral and placement. The three test items comprising the test let "Identifying 

Letters" were used in the factor analysis since they were used as the des­

ignated anchor in the DIF analyses. The correlation matrix for the letter 

items, the referral and placement testlet and retention can be seen in Table 

4. Notice that the magnitude of the correlation between retention and the 

referral and placement testlet is very similar to the correlations in Table 3 

between retention and either referral or placement. The referral and place­

ment testlet, retention and the individual items from the letter testlet were 

loaded on one factor using LISREL8 (Joreskog & Sorbum, 1993). This tests 

the hypothesis whether classification decisions can be placed on the latent 



Table 4. 

Correlation matrix for the letter testlet. referral and placement testlet and retention 

Letter 1 

Letter 1 1 

Letter 2 0.6 

Letter 3 0.33 

Referral-placement 0.1 
lesllet 

Retention 0.31 

Letter 2 Letter 3 

1 

0.38 1 

0.45 0.12 

0.12 0.31 

Referral-placement 
lesllet 

1 

0.62 

Retention 

1 

51 
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metric of ability. 

A chi-square of 5.74 (p = .22) with 4 degrees of freedom resulted. This 

indicates that a one factor model fits the data well and that classification 

decisions and test items can both be measured on the latent ability metric. 

The computer program MULTILOG 6.0 (Thissen, 1991) was used to 

estimate the parameters for the anchors items, the classification decisions, 

estimate item information, and test the hypothesis of DIF for each of the 

testlets. MU~TILOG 6.0 is an extremely flexible program that handles 

both dichotomous and polytomous item types, mixed models, multi-group 

analyses and allows for "LISREL" type constraints on the parameters. The 

ability to have multiple groups and constraints across groups allows the hy­

pothesis of DIF to be investigated. 

The math and reading test lets were used to construct the designated 

anchor. The designated anchor should be free of any DIF and can consist of 

one to four items. DIF was examined by using gender and ethnicity as the two 

grouping types. Males were used as the reference group for the gender DIF 

analysis. Caucasians were used as the reference group for the DIF analysis 

for ethnicity while the focal group was all other ethnicities. The relatively 

small sample size precluded any other investigations of DIF for ethnicity. 

For all DIF analyses, models were run that compared the loglikelihoods 

to determine if the standard deviations for the focal and reference groups 

differed, significantly. One model allowed the standard deviation for the 

reference group to be free while the standard deviation was constrained to be 
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one for the focal group. This was compared to a model with both standard 

deviations constrained to be one which is the MULTILOG default. This 

results in a difference chi-square with one degree of freedom. None of the 

standard deviations were found to be significantly different. Hence, none of 

the DIF analyses were run with the standard deviations free to vary. 

Pattern counts were obtained for the various grouping levels in order to 

obtain a likelihood ratio statistic that could be referenced to the chi-square 

distribution in order to compare model fit determined by subtracting the 

number of parameters estimated plus one for sample size from the number 

of pattern counts greater than zero (Thissen, Steinberg, & Wainer, 1988). 

Most of the analyses took just a few minutes on a 486 personal computer. 

The number of EM cycles was set high enough to ensure convergence. Most 

of the runs converged in less than 200 cycles. However, some of the DIF runs 

using the referral, placement and retention testlet required 400 cycles. 



54 

Results 

Parameter Estimation 

Parameters from a two-parameter model for the various classification de­

cisions are listed in Table 5 calibrated using all five testlets. The discrimina­

tion parameter is relatively high and is almost the same for all three decisions 

types. This indicates that the decisions are strongly related to a single under­

lying variable. As expected, the location parameter for all three decisions is 

relatively low on the ability continuum. Notice that the location parameter 

for placement is lower than the value for referral. Therefore, children who are 

placed are generally lower on the ability continuum than children who were --
just referred. The value of the location parameter for retention is similar to 

the value for placement. Decisions regarding placement and retention occur 

at approximately at the same place on the ability continuum. 

Table 6 shows the parameter estimates for the referral and placement 

testlet calibrated using all five testlets. The a parameter is relatively high 

while the location parameters occur relatively low on the latent continuum. 

The first location parameter, bI, is the point of the ability continuum where 

the decision has a 50 % chance of being in the referred category or higher. 

The value of -1.85 indicates that this occurs relatively low on the ability 

continuum. The b2 parameter of -1.39 is the point on the ability continuum 

where the decision has a 50 % chance of being in the no referral or placement 

category. This value is a little bit more negative than the value for referral 
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Table 5. 

IRT item parameters for the classification decisions using the two-parameter model 

Parameters 

Referral 

Placement 

Retention 

Table 6. 

a-parameter 

1.73 

1.56 

1.60 

.30 

.34 

.28 

b-parameter 

-1.18 

-1.64 

-1.51 

IRT item parameters for the referral and placement testlet using the 

graded response model 

Parameters Estimates 

1.25 

-1.85 

-1.39 

.27 

.32 

.24 

0.15 

0.23 

0.2 
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given by the two-parameter model. Table 7 shows the parameter esti­

mates for the referral, placement and retention testlet calibrated using all 

five testlets. Similar sorts of interpretations can be given to the parameters 

of this testlet. The value of -2.72 for the location parameter bi is the point on 

the ability continuum where the decision has a 50 % chance of being either 

in the referral and placement category or the referral and retention category 

or higher. The bi parameter occurs very low on the ability continuum. The 

transition to just referral or retention occurs at -1.63 and the transition to 

no referral, placement or retention occurs at -1.01. 

Item Information 

Item information for the three types of classification decisions using the 

two-parameter model and the two different testlets using the graded response 

model is given in Table 8 for various levels of o. The decisions and testlets 

were calibrated using all five test lets using the entire sample in three separate 

runs. An examination of the table revels that item information is high for 

low values of 0 as necessitated by the location parameters. Item information 

is highest in the -2.0 to -1.0 range. The item information is lower for the 

testIets when compared to the individual items. The item information given 

for the individual decisions overstates information due to the lack of local 

independence among the referral and retention (Yen, 1993). Therefore the 

information give by the testlets more accurately reflects information than the 

individual decisions. 



Table 7. 

IRT item parameters for the referral. placement. and retention testlet using the 

graded response model 

Parameters Estimates 

a 1.22 

-2.72 

-1.63 

-1.01 

.22 

.43 

.25 

0.18 
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Table 8. 

Item information for classification decisions using the two-parameter model and 

for two testlets using the graded response model 

Theta level 

Referral 

Placement 

Retention 

Referral & 

Placement 

-2.0 -1.5 

0.47 0.69 

0.56 0.60 

0.55 0.64 

0.42 0.43 

Referral, 0.46 0.45 
Placement, 

& Retention 

-1.0 

0.73 

0.48 

0.55 

0.39 

0.42 

-0.5 0.0 

0.54 0.31 

0.30 0.16 

0.36 0.19 

0.3 0.2 

0.35 0.26 

0.5 

0.15 

0.08 

0.10 

0.12 

0.18 

1.0 

0.07 

0.04 

0.04 

0.07 

0.11 

1.5 

0.03 

0.02 

0.02 

0.04 

.06 

58 



59 

Differential Item and Testlet Functioning 

The first step in the DIF analysis was to find a designated anchor. A 

Rasch model was used that constrained the difficulty parameters to be equal 

across groups for an item. To ease the burden of finding an anchor, all 

the items' difficulty parameters were constrained simultaneously to be equal 

across the focal and reference groups for each of the testlets. The result of 

these runs were compared to models that allowed the difficulty parameters to 

vary. This resulted in three degrees of freedom difference between the models. 

Tables 9 and 10 show the DIF analysis for the testlets: Identifying Geometric 

Shapes; Numeral Recognition; Counting; Causal Reasoning in Stories; and 

Letter Identification for both types of grouping variables. A difference chi­

square was computed for each model comparison. The hypothesis of no DIF 

was not rejected for any of the testlets in Tables 9 or 10. The chi-squares for 

both the "Identifying Numerals" and "Counting" testlets show that they do 

not fit the data when a Rasch model is used due to unequal slopes. All these 

testlets could be used for the subsequent DIF analyzes as the designated 

anchor. However, Identifying Letters was selected as the designated anchor 

since it showed the least DIF and did not produce sparse cell counts, as 

mentioned previously. DIF was also investigated for the letter testlet using 

the two-parameter model for the grouping variables gender and ethnicity. No 

DIF was detected for either of these comparisons. 

Both the Rasch and two-parameter DIF models used all three of the letter 

items (Le., Letter 1, Letter 2, and Letter 3). The total number of possible 



Table 9. 

DIF analysis for gender using five testlets and the Rasch model 

Testlet 

Identifying geometric 

shapes 

Identifying numerals 

Counting 

Causal reasoning in 

stories 

Identifying letters 

Model type 

free 

free 

free 

free 

free 

Note:* indicates p < .05 

10 

7 

10 

7 

10 

7 

10 

7 

10 

7 

7.6 

5.7 

19.2* 

19.0* 

14.6 

13.1 

15.6 

14.9 

10.2 

9.9 

1. 9, df=3 >.50 

.2,df-=3 >.975 

1.5,df=3 >.50 

.7,df=3 >.75 

.3 >.90 
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Table 10. 

DIP analysis for ethnicity using five testlets and the Rasch model 

Testlet 

Identifying geometric 
shapes 

Identifying numerals 

Counting 

Causal reasoning in 

stories 

Identifying letters 

Model type 

free 

free 

free 

free 

free 

Note: * indicates p < .05 

10 

7 

10 

7 

10 

7 

10 

7 

10 

7 

4.8 

2.9 

25.3* 

24.8* 

20.3* 

19.1 * 

14.3 

13.1 

13.7 

13.1 

1.9,df=3 >.50 

0.5,df=3 >.90 

l.2,df=3 >.75 

1.2,df=3 >.75 

0.6,df=3 >.75 
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cell counts was 32, 24 for the reference group and 24 for the focal group. 

However, most of these runs had 30 or 28 cells greater than zero. For the 

referral and placement testlet, just Letter 2 and Letter 3 were used as anchors. 

If the whole letter testlet had been used, this would have resulted in too 

many empty cells due to the relatively small sample size. In addition, Letter 

2 and Letter 3 were selected since they differed in difficulty, allowing for 

fewer empty cells. This resulted in total of 24 possible cells, 2·2·3 for the 

reference and 2·2·3 for the focal group. This resulted in 22 patterns greater 

than zero for the ethnicity DIF runs and 24 patterns greater than zero for 

the gender DIF runs. Letter 2 and Letter 3 were also selected as the anchor 

for the referral, placement and retention testlet. This resulted in 32 possible 

cell counts, 2· 2 . 4 for the reference and 2 . 2 ·4 for the focal group. Both the 

gender and ethnicity DIF runs had full cell counts of 32 for this testlet. The 

degrees of freedom are calculated by subtracting the number of estimated 

parameters and the group totals from the total number of cell counts greater 

than zero. 

Table 11 shows the DIF analysis for referral decisions using a Rasch model 

using the identifying letters testlet as the anchor. Model MI constrained the 

location parameters for referral and the anchor items to be equal across males 

and females. M2 allowed the location parameters to be free across males and 

females for the referral decision while still constraining the location parame­

ters for the anchor items. A difference chi-square was computed to test the 

hypothesis of DIF. Failure to reject MI means that the null hypothesis of no 

DIF is not rejected. A difference chi2 was performed to test this hypothesis 

by subtracting the degrees of freedom and chi-square of M2 from Ml. 



Table 11. 

DIF analysis for referral decisions using the Rasch model 

Grouping 

variable 

Gender 

Model type 

Model: MI b4=b8 

Model: M2 free 

Ethnicity 

Model: M3 b4=b8 

Model: M4 free 

Note: * indicates p < .05 

25 

24 

25 

24 

33.2 

32.3 

43.8* 

42.1* 

63 

.9, df=I >.25 

1.7, df=I >.10 
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Table 11 shows that a chi-square of .9 results with one degree of freedom 

and a p value of greater than .25. Since M1 was not rejected in favor of M2, 

the hypothesis of no DIF was not rejected. A similar result was achieved for 

referral for the grouping variable ethnicity. However, in this case neither of 

these models fit the data. The difference chi-square that resulted when M3 

and M4 are compared failed to reject the hypothesis of no DIF. A Mantel­

Haenszel chi-square was also computed to test this hypothesis. The resulting 

chi-square was 2.26 with one degree of freedom indicating that no DIF ex­

ists according to the Mantel-Haenszel statistic. The Mantel-Haenszel is in 

agreement with the Rasch model. Recall that Table 1 showed the greatest 

proportional difference is between Caucasian and non-Caucasian for referral 

decisions. If DIF exists it probably lies within this comparison. However, 

neither the Rasch model nor the Mantel-Haenszel models detected any DIF. 

Similar results were found for placement and referral decisions shown 

in Tables 12 and 13. The hypothesis of no DIF was not rejected when the 

Rasch model was used. None of the Rasch models fit for placement decisions. 

Therefore, the difference chi-squares are at best approximate. Notice that 

the constrained and unconstrained models fit the same for models M7 and 

MS. 

A different picture emerges when a two-parameter model was used to 

analyze DIF. Tables 14, 15 and 16 show the results of the DIF analysis for 

classification decisions using the two-parameter model for the decisions. A 

two-parameter model was also used for the anchor. Both the location and 

discrimination parameters were constrained across groups. Constraining the 



Table 12. 

DIP analysis for placement decisions using the Rasch model 

Grouping 

variable 

Model type df 

Gender 

Model: M5 b4=bs 

Model: M6 free 

Ethnicity 

Model: M7 b4=bs 

Model: M8 free 

Note: * denotes p < .05 

21 

20 

21 

20 

35.5* 

34.9* 

34.8* 

34.8* 

.6, df=I 

0, df=I 

65 

>.25 

>.995 



Table 13. 

DIF analysis for retention decisions using the Rasch model 

Grouping 

variable 

Model type df 

Gender 

Model: M9 

Model: MIO free 

Ethnicity 

Model: MIl b4=bs 

Model: Ml2 free 

23 

22 

23 

22 

31.2 

30.8 

29.4 

28.6 

.4, df=l 

.8, df=l 

66 

>.50 

>.25 



Table 14. 

DIF analysis for referral decisions using the two-parameter model 

Grouping 

variable 

Gender 

Model: Tl 

Model: T2 

Ethnicity 

Model: T3 

Model: T4 

Model type 

a4=a8, b4=b8 

free 

free 

22 

20 

22 

20 

17.5 

16.2 

27.7 

20.1 

1.3, df=2 

7.6, df=2 

67 

>.50 

<.025 



Table 15. 

DIP analysis for placement decisions using the two-parameter model 

Grouping 

variable 

Gender 

Model: T5 

Model: T6 

Ethnicity 

Model: T7 

Model: T8 

Model type 

free 

a4=a8, b4=b8 

free 

18 

16 

18 

16 

19.1 

16.7 

17.1 

16.4 

2.4, df=2 

.7, df=2 

68 

>.25 

>.50 



Table 16. 

DIP analysis for retention decisions using the two-parameter model 

Grouping 

variable 

Gender 

Model: T9 

Model: TIO 

Ethnicity 

Model: TIl 

Model: T12 

Model type 

free 

a4=aS, b4=bs 

free 

20 

18 

20 

18 

21.2 

21.1 

18.8 

18.1 

.1, df=2 

.7, df=2 

69 

>.95 

>.50 
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a parameters and b parameters to be equal across groups for the decision 

results in two degrees of freedom difference between the models. The null 

hypothesis of no DIF was not rejected for gender for referral decisions shown 

in Table 14. However, the null hypothesis was rejected for ethnicity when 

referral decisions were analyzed. Table 14 shows that model T3 was rejected 

in favor of the alternative hypothesis of DIF given by model T4. The differ­

ence chi-square was 7.6 with two degrees of freedom and a p-value less than 

.025. The null hypothesis was not rejected for either placement or retention 

decisions shown in Tables 15 and 16. All the models fit the data unlike the 

Rasch .;1iDdels given previously. 

Table 17 shows the parameter estimates for model T4. As can be seen 

in Table 17, the a parameter is quite different for the reference and focal 

groups. The a parameter is much lower for the focal group indicating a lack 

of discrimination for referral decisions for ethnicities other than Caucasian. 

The b parameters are also very different for the two groups. The b parameter 

is very low for the focal group and has a very large standard error associ­

ated with it. This indicates that referral decisions for ethnicities other than 

Caucasian are more error prone. This result did not emerge when DIF was 

analyzed using the Rasch model or the Mantel-Haenszel statistic. Figure 1 

shows the trace lines for model T4 for the reference and focal groups. The 

trace lines overlap indicating nonuniform DIF. 

Differential testlet functioning (DTF) was analyzed with the graded re­

sponse model using the referral and placement testlet and the referral, place­

ment, and retention testlet. Table 18 shows the results of the DTF analysis 



Table 17. 

Parameter estimates for model (T4) showing DIF for referral decisions 

Parameters a-parameter SE b-parameter 

Reference group 1.58 0.44 -1.43 

Focal group 0.50 0.23 -2.53 

0.29 

1.18 

71 
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Figure 1. Trace linesfor model (1'4) showing DIF for referral decisions. 
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Table 18. 

DIF analysis for the referral and placement testlet using the graded response model 

Grouping 

variable 

Model type df 

Gender 

Model: Gl a4b41b42= 15 

aSbSlbs2 

Model: G2 free 12 

Ethnicity 

Model: G3 a4b41b42= 15 

aSbSlbs2 

Model: G4 free 12 

Model: G5 a4=a8 13 

Note: * indicates p < .05 

7.3 1.7, df=3 >.50 

5.6 

32.6* 7.9, df=3 <.05 

24.7* 

28.1* 3.4, df=l >.05 
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when the referral-placement process was analyzed using the graded response 

model. The referral process was modeled, as mentioned previously, by scor­

ing the decisions as no referral or placement, referral but no placement, both 

referral and placement. This results in three graded categories. Constrain­

ing the discrimination parameter and the location parameters to be equal 

across groups results in three degrees of freedom. As can be seen in Table 

17, the difference chi-square for Gl versus G2 is 1.7 with three degrees of 

freedom and a p value greater than .50. The hypothesis of no DTF was not 

rejected. This was not the case for ethnicity. The difference X2 was 7.9 (df 

=3) with a p value less than .05. The hypothesis of no DTF was rejected 

when the restricted model, G3, was compared with the unrestricted model, 

G4. Since the difference chi-square was so close to the rejection region of 7.S 

for three degrees of freedom, DTF cannot reside in both the location and 

discrimination parameters. Model G5 was used to test this hypothesis by 

restricting the a parameters to be equal across groups while leaving the b 

parameters unconstrained. This results in one degree of freedom difference 

between the models. The null hypothesis of no DTF for the discrimination 

parameters was not rejected. Therefore, the DTF must be in the location 

parameters for this comparison. The graded models for ethnicity did not fit 

the data. Ethnicity for the referral and placement testlet was the only case 

when a testlet did not fit the data. Clearly, DTF for ethnicity is functioning 

in a manner unlike the other testlets. These models did not fit the data. As 

a result, the difference chi-square is approximate since the likelihood ratio 

statistic operates under the assumption that the more restricted model is 

valid. 
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Table 19 shows similar sorts of DTF models where referral, placement 

and retention were modeled as a polytomous item. The categories were: no 

referral, placement or retention; referral but no placement or referral; referral 

and placement but on retention; and referral, placement, and retention. This 

results in a testlet with four categories. For the gender and ethnic grouping 

variables the hypothesis of no DIF was not rejected. 

Table 20 shows the parameter estimates for G4. The a parameters are 

highly similar to those obtained in model T4. The a parameter is exactly 

the same for the focal group for both models T4 and G4. Once again the 

a parameter is relatively low for the focal group. The difference in the bI 

parameters is also substantial. As was seen in model T4 the standard error 

associated with the bI parameter for the focal group is very high. The bI 

parameter is the point on the ability continuum where the decision has a 50 

% chance of being in the just referred category or above. This is comparable 

to the results given by model T4. The parameters for b2 also differ although 

not as substantially. Figure 2 shows the trace lines for model G4. The trace 

lines for the second and third score categories for the reference and focal 

groups overlap indicating nonuniform DTF. The conclusion is that DIF and 

DTF exists for referral decisions for the focal group when ethnicity is the 

grouping variable. 



Table 19. 

DIF analysis for the referral. placement, and retention testlet using the graded 

response model 

Grouping 

variable 

Gender 

Model type 

Model: G6 a4b41b42b43= 

aSbSl bS2bs3 

Model: G7 free 

Ethnicity 

Model: G8 a4b41b42b43= 

aSbSl bS2bs3 

Model: G9 free 

22 18.4 1.5df=4 >.75 

18 16.9 

22 13.0 2.8,df=4 >.50 

18 10.2 

76 



Table 20. 

Parameter estimates for model (G4) showing DTF for the referral and placement 

testIet 

Parameters a 

Reference group 1.39 

Focal group 0.58 

0.43 

0.25 

-1.84 

-3.30 

0.44 

1.34 

-1.57 

-2.19 

0.37 

0.90 
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Figure 2. Trace lines for model (G4) showing DTF for the referral and 

placement tesllet. 
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Chapter 4 

Discussion 

This dissertation sought to answer a number of questions regarding clas­

sification decisions using item response theory that had not been asked previ­

ously. One question was whether classification decisions could be empirically 

placed on the latent continuum of ability usually associated with test items. 

The resulting "item" parameters were similar to those that might be ex­

pected from conventional test items. When the a parameters were estimated 

for the entire sample, they were found to be uniformly high for both the in­

dividual classification decisions and for the testlets. This indicates that the 

decisions are strongly related to a single underlying variable. This conclusion 

is consistent with the results of the confirmatory factor analysis indicating 

an acceptable fit for the letter testlet, the referral-placement testlet and re­

tention decisions. Obtaining high a parameters also indicates that there is 

adequate discrimination for the various classifications as a function of abil­

ity. A high positive value for the a parameter indicates that the classification 

decisions discriminate well between children who were either referred or not 

referred, placed or not placed, and retained or not retained. The estimates 

obtained for the location parameters for the various classification decisions 

were all relatively low on the ability continuum, as expected. The location 

parameter for placement was lower on the ability continuum than for referral. 

This is reasonable since it is assumed that children who were subsequently 
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placed in special education are lower on the ability continuum than children 

who were just referred. The value for retention was close to the value for 

placement. It is suspected that for a sample with a smaller percentage of 

referred, placed, and retained children, the b parameters would have been 

much lower on the ability continuum than the ones obtained here. 

Analyzing referral and retention decisions is more problematic than for 

most item types due to their complete dependency. If a child is placed 

then the child must have been previously referred. If a two-by-two cross­

tabulation is created consisting of placed and not placed and referred and 

not referred then one of the cells is always empty. This empty cell is the 

not-referred/placed cell. The referral by placement table forms a perfect 

Guttman scale of 00, 10 and 11 since the 01 cell cannot occur. This ne­

cessitates the creation of a testlet. Two testlets were created; a referral and 

placement testlet and a referral, placement, and retention testlet. Since these 

are polytomous variables, the graded response model was used to analyze 

them. Both testlets were found be graded. The first location parameter for 

the score category of both referral and placement testlet was lower than any 

of the location parameters for the individual decisions. Similarly, the first 

location parameter for the score category of referral, placemeLl', and retention 

was much lower on the ability continuum than just referral and placement 

or referral and retention for the referral, placement, and retention testlet. 

Testlet formation is not only useful for analyzing classification decisions 

such as referral, placement, or retention in grade but also could be employed 

in the analysis for other types of decisions. Many decision-making processes 
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might conceivably consist of four or five decisions that are all dependent. For 

example, in a clinical situation we might have a test which is used to make 

a decision, then a treatment is administered, then another decision is made 

based on the outcome of the treatment and so on. This decision process 

might be best analyzed using a testlet given that many decisions could be 

dependent upon previous ones. If the decision process was not ordered, then 

Bock' (1972) nominal response model could be used to "score" the testlet. 

Obtaining item information for classification decisions was another focus 

of this dissertation. Item information was slightly higher for the individual 

decisions as opposed to the values for the testlets. Likewise, the marginal 

reliability for the three decisions scored individually was .74 while marginal 

information was .69 for the referral and placement testlet and was .70 for the 

referral, placement, and referral testlet. 1 Little information is lost when de­

cisions are scored as a testlet as opposed to being scored individually. Given 

these results, it appears that the best course might be to score the decisions 

individually since the standard errors are lower and consequently item infor­

mation is higher. However, as Thissen, Steinberg, and Mooney (1989) have 

pointed out for other cases, the information computed for the three decisions 

is under the assumption that the three decisions are independent of each 

other. This is not the case since referral and placement are completely de-

1 Since error varies as a function of ability, it cannot be summarized by single a indi­

cator of reliability (Shermis, M. 1992). However, a marginal reliability coefficient can be 

calculated by averaging the marginal error variance, U e across the distribution of ability 

where U e = J ueg(O)d(O). The marginal reliability coefficient is given as 

p= 

where u~ is the variance of the estimates. 

2 -a,-t-
a, 
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pendent. Therefore, the information computed when the decisions are scored 

individually is not completely correct. Information is over stated for the case 

of the individual classification decisions. Therefore, the information from the 

testlets is at least as valid, if not more so, than when the decisions are scored 

individually. This suggests that testlet formation is a very useful tool when 

"items" are not independent. 

To date, item response theory has been, as the name suggests, concerned 

with the processes underlying an examinee's response to a test item and 

hence individual differences. Item response theory methodology has matured 

to the extent, like many other statistical models, that it should be applied 

to a broader class of problems than just test items. One purpose of this 

dissertation was to redefine what constitutes a test item in order to explore 

new questions. Analyzing classification decisions such as referral, placement 

and retention constituted one such question. As alluded to previously, item 

response methodology might also be extended to the analysis of other classi­

fication decisions. For example, IRT methodology could be used to analyze 

selection or placement decisions. Thissen (1993) suggests that items do not 

necessarily have to be questions and gives one example where he employed the 

graded response model to analyze number of mental health admissions and 

age at first admission as predictors of violence in adult male mental health 

admissions (Klassen & O'Connor, 1987). Many such potential applications 

could be conjectured that allow for new questions to be addressed. 

A second question pertained to the existence of DIF and DTF for classifi­

cation decisions using gender and ethnicity as grouping variables and whether 



83 

DIF would emerge at a more "macro" level of analysis. The possibility of DIF 

was suspected based on the proportional differences in referral for the eth­

nicity grouping variable. A Mantel-Haenszel (MH) chi-square was computed 

to investigate this hypothesis. It failed to reveal any DIF, as did any of the 

Rasch models. The trouble with the MH statistic, as Bock (1993) suggests, is 

that it only shows the difference in the intercepts of the response functions in 

the focal and reference groups. It provides no information whether the func­

tions have different slopes. As a result, it does not reveal what portion of 

the ability distribution is affected by DIF. The same types of criticism could 

be attributed to the Rasch model. A different picture did emerge when the 

individual decisions were analyzed for DIF using the two-parameter model. 

There was a substantial difference in the a parameters for the two groups 

for ethnicity when referral was analyzed. The a parameter for the reference 

was three times larger for the reference group when compared to the focal 

group. The location parameters for the two groups were also substantially 

different with a large standard error for the focal group. None of the other 

comparisons revealed any DIF. Using the two-parameter model as well as the 

graded models, with such a small sample size (N=352) that is split between 

two groups, could have lead to a lack of power. The parameter estimates had 

to be very different before the null hypothesis was rejected. 

The differential testlet functioning (DTF) model comparisons were sim­

ilar, in part, to those obtained from the two-parameter model. The models 

fit for the gender comparison and there was no DTF. The referral and place­

ment test let showed DTF for ethnicity. Adding placement to referral tended 

to reduce the DTF since there was no DIF for placement. However, the re-
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suIts differed in that DTF resided in the location parameters as opposed to 

the discrimination parameters. However, none of the graded models fit for 

when ethnicity was the grouping variable. 

No DTF emerged for the referral, placement, and retention testlet. Adding 

retention to the referral and placement testlet appears to eliminate the DTF 

shown by the referral and placement testlet. Since there was very little 

difference between the groups for retention decisions, adding it to referral 

and placement was enough to eliminate the DTF shown by the referral and 

placement testlet. Obviously, the "items" used to construct a testlet will 

determine if DTF is present. 

However, much greater weight should be given to modeling referral and 

placement since this is an important process occurring in schools. Referral 

decisions for ethnicity (Caucasian verses non-Caucasian) differ as function of 

ability. Teachers in this limited sample tended to make referral decisions that 

did not take ability into account for this comparison. Bergan et al. (1989) 

showed that a child's ability determined whether he or she would be referred, 

placed or retained. Children with high math and reading scores were unlikely 

to be referred, placed or retained. and were less likely to need these services. 

Fortunately, there was no DIF with regard to placement. Apparently, the 

interdisciplinary evaluation team used to make the placement decision does 

take ability into account when making the decision. Assessment data col­

lected by the school psychologist is being taken into account in determining 

whether a child is placed. 
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Clearly, referral functions dissimilarly in different ethnic groups. If only 

the MH statistic or the Rasch model been used, no DIF would have been 

detected. Therefore, DIF emerged at a more "macro" level of analysis with 

the two-parameter model and the referral-placement testlet using the graded 

response model. Failure to check for differences with regard to the slope 

parameter disregards an important source of DIF and DTF for classification 

decisions. 

DIF (or DTF) is performed to ensure that test scores for various groups 

are comparable. This is important since tests perform a variety of important 

societal functions such as assignment of patients to therapeutic treatments, 

vocational guidance, certification, and the promotion of individuals. If a test 

could be shown to be free of DIF, it could then be assumed to lead to eq­

uitable treatment. What this dissertation has done is to take DIF a step 

further and analyze the decision themselves. Messick (1989) suggests that 

the social consequences stemming from a test are an important component to 

validity. Analyzing classification decisions stemming from a test for DIF sup­

plies support for this important validity component. Van del' Linden (1991) 

states that test use has it origins in the necessity for selection and placement 

decisions in education, the army, and public administration. He gives the 

example of Binet's pioneering test development used for the assignment of 

retarded children to special education. Although testing practice has roots 

in decision making, it has evolved mainly as a theory of measurements (i.e., 

ability estimation). Cronbach's and GIeser's (1965) Psychological Tests and 

Personnel Decisions is the only modern treatise attempting to provide test­

based decision making with a sound theoretical basis. If tests are used to 
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make decisions, then we should gather information as to the validity of those 

decisions. Item response theory can help provide this important validity 

information regarding decision making. 
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