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Abstract—In recent years, low-rank tensor completion (LRTC)
problems have received a significant amount of attention in
computer vision, data mining, and signal processing. The exist-
ing trace norm minimization algorithms for iteratively solving
LRTC problems involve multiple singular value decompositions
of very large matrices at each iteration. Therefore, they suf-
fer from high computational cost. In this paper, we propose a
novel trace norm regularized CANDECOMP/PARAFAC decom-
position (TNCP) method for simultaneous tensor decomposition
and completion. We first formulate a factor matrix rank min-
imization model by deducing the relation between the rank of
each factor matrix and the mode-n rank of a tensor. Then, we
introduce a tractable relaxation of our rank function, and then
achieve a convex combination problem of much smaller-scale
matrix trace norm minimization. Finally, we develop an efficient
algorithm based on alternating direction method of multipliers
to solve our problem. The promising experimental results on
synthetic and real-world data validate the effectiveness of our
TNCP method. Moreover, TNCP is significantly faster than the
state-of-the-art methods and scales to larger problems.

Index Terms—Alternating direction method of
multipliers (ADMM), CANDECOMP/PARAFAC (CP) decompo-
sition, low-rank, tensor completion, trace norm minimization.

I. INTRODUCTION

M
ULTIWAY data analysis and processing is an impor-

tant topic in signal processing [1], [2], computer
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vision [3]–[6], data mining [7], [8], machine learning [9]–[11],

numerical linear algebra [12], neuroscience [13], and so on.

As the generalization of vectors (i.e., first-order tensors)

and matrices (i.e., second-order tensors), higher-order ten-

sors with high dimensionality are becoming increasingly

ubiquitous with the rapid development of modern computer

technology [14]–[16], such as multichannel images and videos.

Compared with vectors and matrices, tensors provide a natu-

ral and compact representation for such multiway data, and

can be used to express more complicated intrinsic structures

in higher-order data [17].

The values of the observed tensors may be missing due to

the problems in the acquisition process, loss of information,

or costly experiments [18]. In this paper, we are particu-

larly interested in the low-rank tensor completion (LRTC)

problem, which is to find a tensor of the (nearly) lowest

rank from a subset of the entries of the tensor f (X ) = b,

where f (·) is the sampling operator, and X ∈ R
I1×···×IN

is an Nth-order tensor (N ≥ 3). The LRTC problem has

been successfully applied to a wide range of real-world prob-

lems, such as visual data [4], [5], EEG data [13], retail sales

data [19], and hyperspectral data analysis [20], [21], social

network analysis [8], and link prediction [22]. In the fields of

computer vision and image processing, the missing value esti-

mation problem is known as in-painting problems for images

or videos [23], [24]. Liu et al. [5] indicated that tensor com-

pletion utilizes all information along all dimensions, while

the matrix completion-based algorithms only consider the

constraints along two particular dimensions.

In recent years, sparse vector recovery and low-rank matrix

completion problems have been intensively studied [25]–[27].

Though the l0-norm and the rank minimization have been

proven to be strong global constraints and good measures of

sparsity [28], the optimization problem involving the l0-norm

or the rank minimization is NP-hard in general due to their

discrete nature. The l1-norm and the trace norm (also known

as the nuclear norm) are widely used to approximate the

l0-norm and the rank of a matrix, and the resulting problems

are convex optimization problems, respectively. In addition,

Candès and Recht [26] and Recht et al. [27] have provided

theoretical guarantees that the task of the rank minimiza-

tion problem can be accomplished by solving the trace norm

minimization under some reasonable conditions. In fact, the

l1-norm and the trace norm have been shown to be the tight-

est convex surrogates to the l0-norm and the rank function,

respectively [25], [29].
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As the generalization of sparse vector recovery and low-

rank matrix completion, the LRTC problem has drawn lots

of attention from researchers in the past several years [30].

Tensor decomposition is a type of classical higher-order

data analysis methods and gives a concise representation

of the underlying structure of the tensor, revealing that

the tensor data can be modeled as lying close to a low-

dimensional subspace [31]–[33]. Two most popular tensor

decomposition methods take the forms: the Tucker decom-

position [31] and the CANDECOMP/PARAFAC (CP) decom-

position [32]. To address incomplete tensors, their weighted

alternating least-squares methods [18], [34] have been suc-

cessfully applied to EEG data analysis and color image

in-painting. However, their performance is usually sensitive to

the given ranks due to their least-squares formulations without

regularization [35].

Recently, several works [4], [5], [20], [36]–[38] extended

the framework of trace norm regularization to the estima-

tion of partially observed low-rank tensor. Liu et al. [4] first

introduced an extension of trace norm to the LRTC problem.

In [5], they defined the trace norm of a tensor as a convex

combination of trace norms of its unfolded matrices. In other

words, the LRTC problem is converted into a convex combina-

tion of each mode unfolded matrix trace norm minimization.

However, the tensor trace norm minimization (TTNM) prob-

lem has to be solved iteratively and involves multiple singular

value decompositions (SVDs) of very large matrices at each

iteration. Therefore, those algorithms for TTNM suffer from

high computational cost O(NIN+1), where the assumed size of

an N-th order tensor is I × · · · × I.

In this paper, we focus on two issues for the LRTC problem

as in [39], i.e., the robustness of the given tensor rank and the

computational cost. We propose a novel trace norm regularized

CANDECOMP/PARAFAC decomposition (TNCP) method for

simultaneous tensor decomposition and completion. We verify,

with convincing experimental results on synthetic and real-

world data, both the efficiency and effectiveness of our TNCP

method. The main contributions of this paper are as follows.

1) We deduce the relation between the rank of each

factor matrix and the corresponding unfolding of a ten-

sor, and formulate a factor matrix rank minimization

model.

2) We introduce a tractable relaxation of the rank func-

tion into our factor matrix rank minimization model,

and then obtain a tractable convex combination prob-

lem of multiple (much-smaller) factor matrix trace norm

minimization.

3) We present an efficient algorithm based on the alternat-

ing direction method of multipliers (ADMM) to solve

the proposed problem.

The remainder of this paper is organized as follows. We

review preliminaries and related work in Sections II and III.

In Section IV, we present a novel trace norm regularized

CP decomposition model for LRTC, and develop an efficient

ADMM algorithm in Section V. Section VI gives the empir-

ical results, and Section VII concludes this paper and points

out some potential extensions for future work.

II. NOTATION

Before reviewing related work, we first introduce basics of

tensor notion and terminology. Scalars are denoted by lower-

case letters such as i, j, k, and vectors by bold lower-case

letters such as a, b, c. Matrices are denoted by upper-case

letters, e.g., X, and their entries by lower-case letters, e.g., xij.

Moreover, ‖X‖∗ denotes the trace norm of the matrix X, i.e.,

the sum of its singular values. An Nth-order tensor is denoted

by a calligraphic letter, e.g., X ∈ R
I1×···×IN , and its entries

are denoted by xi1,...,iN . The order N of a tensor is the number

of dimensions, also known as ways or modes. Fibers are the

higher-order analog of matrix rows and columns. A fiber is

defined by fixing every index but one. The mode-n fibers are

all vectors xi1,...,in−1,in+1,...,iN that are obtained by fixing the

values of {i1, . . . , iN}\in.

The mode-n unfolding, also known as matricization, of an

Nth-order tensor X is denoted by X(n) ∈ R
In×�j �=nIj and a

rearrangement of the entries of X into the matrix X(n) such that

the mode-n fiber becomes the row index and all other (N − 1)

modes become column indices in lexicographical order. The

tensor element (i1, i2, . . . , iN) is mapped to the matrix element

(in, j), where

j = 1 +

N
∑

k=1,k �=n

(ik − 1)Jk with Jk =

k−1
∏

m=1,m�=n

Im.

The inner product of two same-sized tensors A, B ∈

R
I1×···×IN is the sum of the product of their entries

< A,B > :=
∑

i1,...,iN

ai1,...,iN bi1,...,iN .

The Frobenius norm of an Nth-order X ∈ R
I1×···×IN is

defined as

‖X‖F :=

√

∑I1

i1=1
· · ·

∑IN

iN=1
x2

i1,...,iN
.

Let A and B be two matrices of size m × n and p × q,

respectively. The Kronecker product of two matrices A and B,

denoted by A ⊗ B, is an mp × nq matrix given by

A ⊗ B :=
[

aijB
]

mp×nq
.

Let A = [a1 a2 · · · ar] and B = [b1 b2 · · · br] be two col-

umn matrices of size m × r and n × r, respectively. Then the

Khatri–Rao product of two matrices A and B is defined as the

column-wise Kronecker product and represented by ⊙

A ⊙ B := [a1 ⊗ b1 a2 ⊗ b2 · · · ar ⊗ br].

III. RELATED WORK

A. LRTC

For the LRTC problem, Liu et al. [4] and

Signoretto et al. [38] have proposed an extension of

low-rank matrix completion concept to tensor data. With an

exact analog to the definition of the matrix rank, the rank of

a tensor X , denoted as rank(X ), is defined as follows.

Definition 1: The rank of a tensor is the smallest number

of rank-one tensors, that generate the tensor as their sum, i.e.,
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the smallest R such that

X =

R
∑

i=1

a1
i ◦ a2

i ◦ · · · ◦ aN
i

where ◦ denotes the outer product of some vectors, that is

(a1
i ◦ a2

i ◦ · · · ◦ aN
i )i1,i2...,iN = [a1

i ]
i1

[a2
i ]

i2
· · · [aN

i ]
iN

.

This definition of the rank of a tensor is an extension of the

rank of a matrix, but with different properties. One difference

is that the rank of a tensor is difficult to handle, as there is no

straightforward way to determine the rank of a given tensor. In

fact, the problem is NP-hard [14], [40], [41]. Fortunately, the

n-rank of a tensor X , denoted as n-rank(X ), is easy to com-

pute, which consists of the matrix ranks of mode-n unfolding

of the tensor.

Definition 2: The n-rank of an Nth-order tensor

X ∈ R
I1×···×IN is the tuple of the ranks of the mode-n

unfoldings

n-rank(X ) =
(

rank(X(1)), rank(X(2)), . . . , rank(X(N))
)

.

According to Definition 2, the LRTC problem with incom-

plete observations is formulated as a multiobjective problem

as in [42]

min
X

n-rank(X ), s.t., X� = T� (1)

where the entries of T in the index set � are given while

the remaining elements are missing. In order to keep things

simple, the weighted sum of the ranks of the different unfolded

matrices is used to take the place of the n-rank of the involved

tensor.

Liu et al. [5] and Gandy et al. [20] have proposed to min-

imize the weighted sum of the rank of each unfolding as an

objective function

min
X

N
∑

n=1

αnrank(X(n)), s.t., X� = T� (2)

where αns are prespecified weights, and X(n) denotes

the unfolded matrix along the nth mode. In addition,

Gandy et al. [20] have presented an unweighted model, i.e.,

a special case of the model (2), where αn = 1, n = 1, . . . , N.

The nonconvex problem (2) can be solved by its convex

relaxation replacing the rank of the matrix with the trace norm

min
X

N
∑

n=1

αn‖X(n)‖∗, s.t., X� = T�. (3)

In the presence of noise, we obtain a corresponding uncon-

strained formulation

min
X

N
∑

n=1

αn‖X(n)‖∗ +
λ

2
‖P�(X ) − P�(T )‖2

F (4)

where P� keeps the entries in � and zeros out others, and

λ > 0 is a regularization parameter.

In fact, each mode-n unfolding X(n) shares the same entries

and cannot be optimized independently. Note that both dis-

cussed models (3) and (4) are difficult to solve due to the

interdependent matrix trace norm terms [5]. Hence, we need

Fig. 1. Illustration of an R-component CP model for a third-order tensor.

to perform variable splitting and introduce a separate variable

to each unfolding of the tensor X . Recently, Liu et al. [5]

proposed three efficient algorithms to solve the problem (3).

In addition, there are some similar tensor completion methods

in [20], [36], and [38]. However, all those algorithms have to

be solved iteratively and involve multiple SVDs of very large

matrices at each iteration. Besides, many additional variables

are introduced to split those interdependent terms in (3) and (4)

such that they can be solved independently. Thus, all those

algorithms suffer from high computational cost and are even

not applicable for large-scale problems.

More recently, it has been shown that the weighted sum

of trace norm model mentioned above can be substantially

suboptimal [42], [43]. To address this problem, Mu et al. [42]

proposed a more “square” convex model for recovering X as

follows:

min
X

‖X[ j]‖∗, s.t., X� = T� (5)

where X[ j] is defined as

X[ j] = reshape

⎛

⎝X(1),
∏

n≤ j

In,
∏

n> j

In

⎞

⎠

and j ∈ {1, 2, . . . , N} is chosen to make
∏

n≤ j In as close to
∏

n>j In as possible. If the order of the involved tensor is no

more than three, the model (5) is the same as the trace norm

minimization method on the corresponding mode unfolding,

hence its algorithm may not perform as well as those algo-

rithms for (3) and (4). However, for a tensor of order higher

than three, it has been shown in [42] that the model (5) can

exactly recover the tensor from far fewer observed entries than

those required by (3) and (4).

B. Tensor Decompositions for Completion

Next, we will introduce two tensor decomposition models

for LRTC problems. Acar et al. [18] presented a weighted

least squares model with missing data

min
Un

‖W ∗ (T − U1 ◦ U2 · · · ◦ UN)‖2
F (6)

where ∗ denotes the Hadamard (elementwise) product, and

Un ∈ R
In×R is referred to as the factor matrix which is the

combination of the vectors from the rank-one components

(e.g., U1 = [a1, a2, . . . , aR], as shown in Fig. 1), and R is a

positive integer. Moreover, W is a nonnegative weight tensor

with the same size as T

wi1,i2...,iN =

{

1 if ti1,i2...,iN is known

0 otherwise.
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In this sense, the approximation generally requires signifi-

cantly less storage O(R�In) than the original tensor. Hence,

we are particularly interested in extending the CP decomposi-

tion for LRTC problems.

In [34], the weighted Tucker decomposition model is for-

mulated as follows:

min
C,Un

‖W ∗ (T − C ×1 U1 ×2 · · · ×N UN)‖2
F (7)

where Un ∈ R
In×Rn , C ∈ R

R1×···×RN is a core tensor with the

given ranks (R1, . . . , RN), and ×n denotes the n-mode product

(please see [14]).

Recently, some extensions of both decomposition methods

and corresponding algorithms are developed for tensor estima-

tion problems. An alternating proximal gradient method [44] is

proposed for nonnegative tensor factorization and completion.

However, for those methods, a suitable rank value needs to be

given, and it has been shown that both the Tucker and the CP

models are usually sensitive to the given ranks due to their

least-squares formulations, and they have poor performance

while real-world data have a high rank [5], [35].

IV. FACTOR MATRIX TRACE NORM

MINIMIZATION MODEL

The major bottleneck of the existing LRTC algorithms for

solving the problems (3) and (4) is the high computational cost

of multiple SVDs of very large matrices in each iteration. To

address this difficulty, we propose a novel model that mini-

mizes the weighted sum of the ranks of factor matrices of the

CP decomposition instead of the n-rank of the involved tensor.

A. Rank of Factor Matrices

Let X ∈ R
I1×···×IN be an Nth-order low-rank tensor with

tensor rank r, then the CP form of X is rewritten as follows:

X = U1 ◦ U2 · · · ◦ UN =

r
∑

i=1

u
(i)
1 ◦ u

(i)
2 · · · ◦ u

(i)
N (8)

where Un = [u
(1)
n u

(2)
n · · · u

(r)
n ] ∈ R

In×r denotes the factor

matrix of X for n = 1, . . . , N.

Theorem 1: Let X(n) be the mode-n unfolding of the

tensor X of rank r, and Un be the factor matrix for all

n ∈ {1, . . . , N}. Then

rank(X(n)) ≤ rank(Un), ∀n = 1, . . . , N. (9)

Proof: Since X = U1 ◦ U2 · · · ◦ UN , we have

X(n) = Un (UN ⊙ · · · Un+1 ⊙ Un−1 ⊙ · · · U1)
T

∀n = 1, . . . , N.

Thus

rank(X(n)) = rank
(

Un (UN ⊙ · · · Un+1 ⊙ Un−1 ⊙ · · · U1)
T
)

≤ rank(Un), ∀n = 1, . . . , N.

From the above theorem, it is clear that the factor matrices

Un ∈ R
In×r, n = 1, . . . , N, have a much smaller size than

the mode-n unfolding X(n) ∈ R
In×�j �=nIj , while the rank of

each factor matrix is an upper bound on the rank of its corre-

sponding unfolding of the tensor. In the following section, we

propose a new model that uses the rank of the factor matrices

Un, i.e., rank(Un), instead of the mode-n rank of the tensor,

i.e., rank(X(n)).

B. Our Model

Suppose the unknown tensor X ∈ R
I1×···×IN is low rank,

our rank minimization model based on the CP decomposition

for LRTC can be expressed as follows:

min
X , Un

N
∑

n=1

αnrank(Un)

s.t., X� = T�, X = U1 ◦ U2 · · · ◦ UN (10)

where Un ∈ R
In×R for n = 1, . . . , N, and R denotes a upper

bound of the tensor rank and is a positive integer. Moreover,

the factor matrix rank minimization is a relaxation form of the

mode-n rank minimization of the involved tensor. In addition,

Bro and Kiers [45] have provided some tensor rank estimation

strategies to compute a good value r for the rank of the tensor.

Thus, we only set a relatively large integer R such that R ≥ r.

Due to the discrete nature of the rank, the model (10) can

be relaxed by replacing the rank function with the trace norm

as follows:

min
X , Un

N
∑

n=1

αn‖Un‖∗

s.t., X� = T�, X = U1 ◦ U2 · · · ◦ UN . (11)

Furthermore, the relaxation version of (11) is formulated as

follows:

min
X , Un

N
∑

n=1

αn‖Un‖∗ +
λ

2
‖X − U1 ◦ U2 · · · ◦ UN‖2

F

s.t., X� = T�. (12)

The model (12) is called the TNCP method for simultaneous

tensor decomposition and completion. We only need to per-

form SVDs on some much smaller scale factor matrices, and

thus our TNCP method is very efficient. Meanwhile, TNCP is

much more robust to the given tensor rank R, which will be

confirmed by our experimental results in Section VI.

V. OPTIMIZATION ALGORITHM

Recently, it has been shown in [28], [46], and [47] that the

ADMM is very efficient for some convex or nonconvex pro-

gramming problems for various applications. We also refer

to [5], [20], [48], [49], and [50] for some recently exploited

applications of ADMM. In this paper, we also propose an

ADMM algorithm for solving the proposed model (12).

Following [5], some auxiliary variables with much smaller

sizes, Mn ∈ R
In×R, n = 1, . . . , N, are introduced into our

model (12), and then the problem (12) is reformulated into

the following equivalent form:

min
X , Un, Mn

N
∑

n=1

αn‖Mn‖∗ +
λ

2
‖X − U1 ◦ · · · ◦ UN‖2

F

s.t., X� = T�, Mn = Un, n = 1, . . . , N. (13)
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A. Solving Scheme

The partial augmented Lagrangian function of (13) is

Lµ (U1, . . . , UN, M1, . . . , MN,X , Y1, . . . , YN)

=

N
∑

n=1

αn‖Mn‖∗ +
λ

2
‖X − U1 ◦ U2 · · · ◦ UN‖2

F

+

N
∑

n=1

(

〈Yn, Mn − Un〉 +
µ

2
‖Mn − Un‖

2
F

)

(14)

where Yn ∈ R
In×R is the matrix of Lagrange multipliers

for n = 1, . . . , N, and µ > 0 is a penalty parameter. We

present an ADMM iterative scheme to successively minimize

Lµ over ({U1, . . . , UN}, {M1, . . . , MN},X ) and then update

{Y1, . . . , YN} as follows:

min
{U1,...,UN }

Lµk

(

U1 . . . UN, Mk
1 . . . Mk

N,X k, Yk
1 . . . Yk

N

)

(15)

min
{M1,...,MN }

Lµk

(

Uk+1
1 . . . Uk+1

N , M1 . . . MN,X k, Yk
1 . . . Yk

N

)

(16)

min
X

Lµk

(

Uk+1
1 . . . Uk+1

N , Mk+1
1 . . . Mk+1

N ,X , Yk
1 . . . Yk

N

)

s.t., X� = T� (17)

Yk+1
n = Yk

n + µk
(

Mk+1
n − Uk+1

n

)

, n = 1, . . . , N. (18)

Updating {Uk+1
1 , . . . , Uk+1

N }: To update the variables

(U1, . . . , UN), the optimization problem (15) is rewritten as

follows:

min
Un

λ

2

∥

∥

∥
X k − U1 ◦ · · · ◦ UN

∥

∥

∥

2

F

+

N
∑

n=1

µk

2

∥

∥

∥
Un − Mk

n − Yk
n

/

µk
∥

∥

∥

2

F
. (19)

To update Un, n = 1, . . . , N, with fixing the other vari-

ables, then the problem (19) becomes a smooth optimization

problem. Let Bn = (Uk
N ⊙· · · Uk

n+1 ⊙ Uk+1
n−1 ⊙· · · Uk+1

1 )T , then

the resulting subproblem with respect to Un is formulated as

follows:

min
Un

λ

2

∥

∥

∥
UnBn − Xk

(n)

∥

∥

∥

2

F
+

µk

2

∥

∥

∥
Un − Mk

n − Yk
n

/

µk
∥

∥

∥

2

F
. (20)

Thus, Un is efficiently updated by solving the optimization

problem (20)

Uk+1
n =

(

λXk
(n)B

T
n + µkMk

n + Yk
n

) (

λBnBT
n + µkI

)−1
. (21)

Updating {Mk+1
1 , . . . , Mk+1

N }: To update the variables

Mn (n = 1, . . . , N) with fixing other variables, the optimiza-

tion problem (16) is reformulated concretely as follows:

min
Mn

αn‖Mn‖∗ +
µk

2

∥

∥

∥
Mn − Uk+1

n + Yk
n

/

µk
∥

∥

∥

2

F
. (22)

Following [51], a closed-form solution to the problem (22)

can be obtained easily as follows:

Mk+1
n = SVTαn/µk

(

Uk+1
n − Yk

n

/

µk
)

(23)

where SVTδ(A) = Udiag({(σ − δ)+})VT is a singu-

lar value thresholding (SVT) operator, the SVD of A is

given by A = Udiag({σi}1≤i≤r)V
T , t+ = max(0, t), and

max(·, ·) should be understood element-wise. The computa-

tional complexity of the SVT operator on Uk+1
n − Yk

n/µk is

O(InR2). Thus, our TNCP method has a significantly lower

complexity O(
∑

n InR2) for the soft-thresholding operation

than the other TTNM algorithms, which require to per-

form SVDs on the much larger unfolding X(n) with size of

In ×
∏

j �=n Ij (n = 1, . . . , N) in each iteration, and then have a

much higher computational complexity of O(
∑

n I2
n ×

∏

j �=n Ij).

Updating X k+1: To update the variable X , we have the

following subproblem:

min
X

∥

∥

∥
X − Uk+1

1 ◦ · · · ◦ Uk+1
N

∥

∥

∥

2

F
, s.t., X� = T�. (24)

By introducing Lagrangian multiplier Q ∈ R
I1×I2...×IN for

the constraint X� = T�, we write the Lagrangian function

of (24) as follows:

F(X ,Q) =

∥

∥

∥
X − Uk+1

1 ◦ · · · ◦ Uk+1
N

∥

∥

∥

2

F
+ 〈Q, X� − T�〉.

Letting ∇(X ,Q)F = 0, we have the

Karush–Kuhn–Tucker (KKT) conditions

2(X − Uk+1
1 ◦ · · · ◦ Uk+1

N ) + Q� = 0

X� − T� = 0.

By deriving simply the KKT conditions, we have

X k+1 = P�(T ) + P�C

(

Uk+1
1 ◦ · · · ◦ Uk+1

N

)

(25)

where �C is the complement of �, i.e., the set of indexes of

the unobserved entries.

Based on the above analysis, we develop an ADMM

algorithm for the tensor decomposition and completion

problem (12), as outlined in Algorithm 1.1 This algorithm

can also be accelerated by adaptively changing µ. An effi-

cient strategy [28], [52] is to let µ = µ0 (the initialization

in Algorithm 1) and increase µk iteratively by µk+1 = ρµk,

where ρ ∈ (1.0, 1.1] in general and µ0 is a small constant.

Moreover, the stability and efficiency of our TNCP algorithm

are verified by experiments in Section VI.

B. Convergence Analysis

Nonetheless, the proposed model (12) is nonconvex. In

the following, we will present the convergence analysis of

Algorithm 1 for solving the problem (12).

Theorem 2: Let ({Mk
1, . . . , Mk

N}, {Uk
1, . . . , Uk

N}, X k) be a

sequence generated by Algorithm 1, then we have the fol-

lowing conclusions.
1) {Mk

1, . . . , Mk
N}, {Uk

1, . . . , Uk
N} and X k are Cauchy

sequences.

2) If limk→∞ µk(Mk
n − Mk−1

n ) = 0, n = 1, . . . , N,

({Uk
1, . . . , Uk

N}, X k) converges to a KKT point of the

problem (12).

1rand denotes a MATLAB function that generates a matrix of uniformly
distributed random numbers between 0 and 1.
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Algorithm 1 Solving the TNCP Model (12) Via ADMM

Input: P�(T ), R and λ.

Output: Y0
n = M0

n = 0, U0
n = rand(In, R), n = 1, . . . , N,

µ0 = 10−6, µmax = 1010, ρ = 1.10, and tol = 10−5.

1: while not converged do

2: for n = 1 : N do

3: Update Uk+1
n by (21);

4: Update Mk+1
n by (23);

5: end for

6: Update X k+1 by (25);

7: for n = 1 : N do

8: Update Yk+1
n by Yk+1

n = Yk
n + µk(Mk+1

n − Uk+1
n );

9: end for

10: Update µk+1 by µk+1 = min(ρµk, µmax);

11: Check the convergence condition,

max{‖Mk+1
n − Uk+1

n ‖F, n = 1, . . . , N} < tol;

12: end while

Output: X and Un, n = 1, . . . , N.

The proof sketch of Theorem 2 is similar to that in [28].

We first prove the boundedness of multipliers and some vari-

ables of Algorithm 1, and then we analyze the convergence

of Algorithm 1. To prove the boundedness, we first give the

following lemmas.

Lemma 1 [28], [29]: Let X be a real Hilbert space endowed

with an inner product 〈·〉 and a corresponding norm ‖ · ‖ such

as the trace norm, and y ∈ ∂‖x‖, where ∂‖ · ‖ denotes the

subgradient. Then ‖y‖∗ = 1 if x �= 0, and ‖y‖∗ ≤ 1 if x = 0,

where ‖ · ‖∗ is the dual norm of ‖ · ‖. For example, the dual

norm of the trace norm is the spectral norm, ‖ · ‖2, i.e., the

largest singular value.

Lemma 2: Let Yk+1
n = Yk

n + µk(Mk+1
n − Uk+1

n ), then the

sequences {Mk
n}, {Yk

n} and {Uk
n}, n = 1, . . . , N, produced by

Algorithm 1 are bounded.

Proof: Let M k = (Mk
1, . . . , Mk

N), U k = (Uk
1, . . . , Uk

N) and

Y k = (Yk
1, . . . , Yk

N). By the optimality condition of (19) for

any n ∈ {1, . . . , N}, we have

0 ∈ ∂MnLµk

(

U
k+1,M k+1,X k,Y k

)

i.e., Yk
n + µk(Mk+1

n − Uk+1
n ) ∈ αn∂‖Mk+1

n ‖∗, and Yk+1
n ∈

αn∂‖Mk+1
n ‖∗. By Lemma 1, we have ‖Yk+1

n ‖2 ≤ αn. Hence,

the sequence {Yk
n} is bounded for all n ∈ {1, . . . , N}.

By the iteration procedure, we have

Lµk

(

M
k+1,X k+1,U k+1,Y k

)

≤ Lµk

(

M
k,X k,U k,Y k

)

= Lµk−1

(

M
k,X k,U k,Y k−1

)

+ βk

N
∑

n=1

∥

∥

∥
Yk

n − Yk−1
n

∥

∥

∥

2

F

where βk = (µk−1 + µk)/2(µk−1)2 and µk = ρµk−1.

Furthermore, we have

∞
∑

k=1

µk−1 + µk

2
(

µk−1
)2

=
ρ(ρ + 1)

2µ0(ρ − 1)
< ∞.

Hence, {Lµk−1(M k,X k,U k,Y k−1)} is upper-bounded due

to the boundedness of {Yk
n} for n = 1, . . . , N.

N
∑

n=1

αn

∥

∥

∥

∥

Mk
n

∥

∥

∥

∥

∗ +
λ

2

∥

∥

∥

∥

X k − Uk
1 ◦ Uk

2 · · · ◦ Uk
N

∥

∥

∥

∥

2

F

= Lµk−1

(

M
k,X k,U k,Y k−1

)

−
1

2

N
∑

n=1

∥

∥Yk
n

∥

∥

2

F
−

∥

∥Yk−1
n

∥

∥

2

F

µk−1

is upper-bounded. Thus, {Mk
n}, n = 1, . . . , N, are bounded.

By Uk
n = Mk

n − (Yk
n − Yk−1

n )/µk−1, and {Mk
n}, {Yk

n},

n = 1, . . . , N, are bounded, then {Uk
n}, n = 1, . . . , N, are also

bounded.

We prove Theorem 2 as follows.

Proof: 1) By (Mk+1
n − Uk+1

n ) = (µk)−1(Yk+1
n − Yk

n), the

boundedness of {Yk
n} and limk→∞ µk = ∞, we have

lim
k→∞

∥

∥

∥
Mk+1

n − Uk+1
n

∥

∥

∥

F
= 0, for n = 1, . . . , N. (26)

Thus, ({Mk
1, . . . , Mk

N}, {Uk
1, . . . , Uk

N}) approaches to a fea-

sible solution.

Furthermore, we prove that the sequences {Uk
n},

n = 1, . . . , N, are all Cauchy sequences.

By Yk
n = Yk−1

n +µk−1(Mk
n − Uk

n) and µk = ρµk−1, then the

optimality condition of (20) with respect to Uk+1
n is rewritten

as follows:

λ

(

Uk+1
n Bn − Xk

(n)

)

BT
n + µk

(

Uk+1
n − Mk

n −
Yk

n

µk

)

= λ

(

Uk+1
n Bn − Xk

(n)

)

BT
n + µk

(

Uk+1
n − Uk

n

)

+ µk

(

Uk
n − Mk

n −
Yk−1

n

µk−1
+

Yk−1
n

µk−1
−

Yk
n

µk

)

= µk
(

Uk+1
n − Uk

n

)

+ λ

(

Uk+1
n Bn − Xk

(n)

)

BT
n

+ ρYk−1
n − (ρ + 1)Yk

n = 0. (27)

By (27), we have

Uk+1
n − Uk

n

=
(ρ + 1)Yk

n − ρYk−1
n − λ

(

Uk+1
n Bn − Xk

(n)

)

BT
n

µk
. (28)

By the boundedness of {Uk
n} in Lemma 2, thus Bn is

bounded. Furthermore, we have ‖Uk+1
n − Uk

n‖F = O((µk)−1)

and
∑∞

k=1(µ
k−1)−1 = ρ/(µ0(ρ − 1)) < ∞. Hence, {Uk

n}

is a Cauchy sequence, and it has a limit point, U∞
n , for all

n ∈ {1, . . . , N}.

Similarly, {Mk
n}, n = 1, . . . , N, and {X k} are also Cauchy

sequences.

2) The KKT conditions of (12) are

0 ∈ αn∂
∥

∥U∗
n

∥

∥

∗
+ λ

(

U∗
nB∗

n − X∗
(n)

)

(

B∗
n

)T
, ∀n ∈ {1, . . . , N}

X ∗
� = T�, X ∗

�C =
(

U∗
1 ◦ . . . ◦ U∗

N

)

�C

where B∗
n = (U∗

N ⊙ . . . U∗
n+1 ⊙ U∗

n−1 . . . ⊙ U∗
1)T.
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TABLE I
COMPLEXITIES PER ITERATION OF MAJOR COMPUTATIONS IN

TENSOR COMPLETION ALGORITHMS

According to Algorithm 1, the first-order optimal condition

of (20) at the (k + 1)th iteration is

0 = λ

(

Uk+1
n Bn − Xk

(n)

)

BT
n + µk

(

Uk+1
n − Mk

n − Yk
n/µk

)

.

(29)

The first-order optimal condition of the problem (22) is

0 ∈ αn∂

∥

∥

∥
Mk+1

n

∥

∥

∥

∗
+ µk

(

Uk+1
n − Mk+1

n − Yk
n/µk

)

. (30)

Since {Mk
n}, {Uk

n}, n = 1, . . . , N, and {X k} are all Cauchy

sequences, M∞
n , U∞

n , n = 1, . . . , N, and X∞ are their limit

points, respectively. By the result 1), we have M∞
n = U∞

n for

n = 1, . . . , N. By (29) and (30), we have

0 ∈ αn∂
∥

∥U∞
n

∥

∥

∗
+ λ

(

U∞
n B∞

n − X∞
(n)

)

, n = 1, . . . , N. (31)

By (25), we have X∞
� = T� and X∞

�C = (U∞
1 ◦ . . . ◦

U∞
N )�C . Hence, the sequence ({Uk

1, . . . , Uk
N},X k) generated

by Algorithm 1 converges the KKT point of (12).

C. Complexity Analysis

We analyze the time complexity of our TNCP method

as follows. For the LRTC problem (12), the main run-

ning time of Algorithm 1 is consumed by performing SVD

for the SVT operator and some multiplications. The time

complexity of performing SVD is O(R2
∑

n In). Moreover,

the time complexities of computing Bn and Un in (21),

and X in (25) are O(R
∑N−1

i=1 �N
j=N−i( j �=n)

Ij + R�N
j=1Ij) and

O(R�N
j=1Ij). Thus, the total time complexity of Algorithm 1

is O(T(N + 1)R�N
j=1Ij), where T is the number of iterations.

Moreover, Table I summarizes complexities of major computa-

tions in the two related tensor decomposition algorithms and

the three TTNM algorithms. From Table I, we can see that

although WCP [18] and WTucker [34] have time complexity

similar to our TNCP method, they are much slower in practice

than our TNCP method due to their Polak–Ribiere nonlin-

ear conjugate gradient algorithm with a time-consuming line

search [53]. From the space complexity view, since the decom-

position rank R is in general smaller than In, n = 1, . . . , N,

the storage O(R�nIn) of our TNCP decomposition form can

be significantly smaller than that of the original tensor.

D. Connections to Existing Approaches

Our TNCP model (12) can be reformulated as follows:

min
Un

1

λ

N
∑

n=1

αn ‖Un‖∗ +
1

2
‖W ∗ (T − U1 ◦ U2 · · · ◦ UN)‖2

F.

(32)

Thus, our model (12) is also a trace norm regularized least

squares problem. When letting λ → ∞, the model (32)

degenerates to the weighted CP (WCP) model (6) in [18].

In other words, the weighted least squares model (6) is a spe-

cial case of our TNCP method. Moreover, Allen et al. [54]

proposed a sparse CP least squares method with l1-norm penal-

ties on each of factor matrix for structured tensor data. In

this sense, our TNCP method is also a fast higher-order ten-

sor decomposition method in the presence of missing data

and gives a concise representation of the latent structure of

incomplete tensors. When letting W = 1, the model (32)

degenerates to a trace norm regularized CP decomposition

problem. Hence, the traditional CP decomposition method

can be seen as a special case of TNCP by setting λ → ∞

and W = 1.

VI. EXPERIMENTS

In this section, we evaluate the effectiveness and efficiency

of our TNCP method for LRTC problems on both synthetic

and real-world tensor data, including link prediction, nat-

ural images, brain MRI images, and hyperspectral images

in-painting. Except for large-scale link prediction, all the other

experiments were performed with MATLAB 7.11 on an Intel

Core 2 Duo (3.0 GHz) PC running Windows 7 with 2-GB

main memory.

A. Synthetic Data

In this part, we generated a low-n-rank tensor

T ∈ R
I1×···×IN , which we used as ground truth data. The tensor

data follows the Tucker model, i.e., T = C×1U1×2 · · ·×N UN ,

where the entries of the core tensor C ∈ R
r×r···×r are from

a uniform distribution in the range [0, 1], and the entries

of Un ∈ R
In×r are random samples drawn from a uniform

distribution in the range [−0.5, 0.5]. With this construction,

the n-rank of T equals (r, r, . . . , r) almost surely. The order

of the tensors varies from three to five, and r is set to 5.

Furthermore, we randomly sample a few entries from T and

recover the whole tensor with various sampling rates (SRs)

by our TNCP method and four state-of-the-art algorithms

including weighted Tucker (WTucker)2 [34], WCP [18],

Latent3 [33], and FaLRTC4 [5].

We set tol = 10−5 and maxiter = 1000 for all these algo-

rithms. In the implementation of our TNCP method, we set

the regularization parameter λ = 10. For TNCP and FaLRTC,

the weight αn is set to 1/N for all n ∈ {1, . . . , N}, and the

smoothing parameters of FaLRTC are set to µn = 5αn/In. The

other parameters of FaLRTC are set to their default values. For

TNCP, WTucker, and WCP, the tensor rank is set to R = 10.

The relative square error (RSE) of the recovered tensor X is

given by RSE:= ‖X − T ‖F/‖T ‖F .

The average results (RSE and time cost) of ten indepen-

dent runs are shown in Table II, where the order of tensor

data varies from four to five, and SR is set to 20%, 50%, or

2http://www.lair.irb.hr/ikopriva/marko-filipovi.html
3http://ttic.uchicago.edu/~ryotat/softwares/tensor/
4http://pages.cs.wisc.edu/~ji-liu/
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TABLE II
RSE AND TIME COST (SECONDS) COMPARISON ON SYNTHETIC DATA

(a) (b)

Fig. 2. Convergence behaviors of WCP, FaLRTC, and TNCP on the synthetic
tensor data of size 80 × 80 × 80. (a) Log-value of the relative change with
20% SR. (b) Log-value of the residual.

80%. From the results, we can see that our TNCP method usu-

ally yields much more accurate solutions using less time, and

often outperforms the other algorithms in terms of RSE and

efficiency. Notice that because latent converges too slowly, we

do not consider it in the following experiments.

We also study the convergence behaviors of WCP, FaLRTC,

and our TNCP method on the synthetic data of size 80×80×80

with the given tensor rank R = 10, as shown in Fig. 2, where

the ordinate is the log-value of the relative change of X k gen-

erated by WCP, FaLRTC, and TNCP, or the log-value of the

residual of max{‖Mk+1
n − Uk+1

n ‖F, n = 1, . . . , N} generated

by TNCP with different SRs: 20%, 40%, or 60%, and the

abscissa denotes the number of iteration. We can observe that

the relative change of our TNCP method drops much more

quickly, and converges much faster than WCP and FaLRTC.

To further evaluate the robustness of our TNCP method

with respect to the given tensor rank R, we conduct some

experiments on the rank-(10, 10, 10) synthetic data of size

100×100×100, and illustrate the recovery results of FaLRTC,

WTucker, WCP, and TNCP with 30% SR, where the rank

parameter R for the latter three is chosen from {5, 10, . . . , 80}.

The average RSE results and time cost of ten independent runs

are shown in Fig. 3, from which we can see that as the number

of the given tensor rank increases, our TNCP method performs

much better than WTucker, WCP, and FaLRTC in terms of

RSE. This also confirms that our model with trace norm regu-

larization can provide a better estimation of a low-rank tensor.

Moreover, our TNCP method is much faster than the other

methods.

Fig. 3. RSE and time cost (seconds) of WTucker, WCP, FaLRTC, and our
TNCP method versus the given tensor ranks.

B. Large-Scale Network Data

In this part, we examine our TNCP method on a real-world

network data set, the YouTube data set5 [55]. YouTube is

currently the most popular video sharing web site, which

allows users to interact with each other in various forms

such as contacts, subscriptions, sharing favorite videos, etc.

In total, this data set contains 848 003 users, with 15 088

users sharing all of the information types, and includes

five-dimensions of interactions: contact network, co-contact

network, co-subscription network, co-subscribed network, and

favorite network. Additional information about the data can be

found in [55]. We run these experiments on a machine with

6-core Intel Xeon 2.4 GHz CPU and 64 GB memory.

We address the link prediction problem as the LRTC

problem. For our TNCP method, we set the regularization

parameter λ = 10. The tolerance value of TNCP, WTucker,

WCP, Hard6 [11] and FaLRTC is fixed at tol = 10−5.

For TNCP and FaLRTC, αn are set to [1, 1, 10−3], and the

smoothing parameters of the latter are set to µn = 5αn/In,

n = 1, 2, 3. For Hard, we let τ = 104 and λ1 = λ2 = λ3 = 1.

For TNCP and WCP, the tensor rank is set to R = 40, and

R1 = R2 = 40 and R3 = 5 for WTucker.

We use the 15 088 users who share all of the information

types and have five-dimensions of interactions in our experi-

ments. So the data size is 15 088 × 15 088 × 5. We first report

the average running time (seconds) over ten independent runs

in Fig. 4, when we vary the number of users. Our TNCP algo-

rithm runs significantly faster than FaLRTC, WTucker, WCP,

5http://leitang.net/heterogeneous_network.html
6https://sites.google.com/site/marcosignoretto/codes
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Fig. 4. Comparison of computational time (seconds) on the YouTube data
set. For each dataset, we use 20% for training. Note that the other four
methods including WTucker, WCP, Hard, and FaLRTC could not run sizes
{8000, 15 088} due to runtime exceptions.

(a) (b)

Fig. 5. Average ROC curves showing the performance of link predic-
tion methods with 10% and 20% training data, respectively. (a) 10% train.
(b) 20% train.

and Hard. The running time of TNCP increases only slightly

when the number of users increases. This shows that our TNCP

method has very good scalability and can address large-scale

problems. In contrast, the running time of WTucker, WCP,

FaLRTC, and Hard increases dramatically. They could not

yield experimental results within 48 h when the number of

users is 8000 or 15 088.

As the other methods cannot finish running when the prob-

lem size is large, we choose 4117 users who have more than

ten interactions to form a data set of size 4117 × 4117 × 5.

We randomly select 10% or 20% entries as the training set,

and the remainder as the testing data. We report the average

prediction accuracy [the score area under the receiver oper-

ating characteristic curve (AUC)] over ten independent runs

in Fig. 5. We can see that two trace norm regularized ten-

sor completion algorithms, TNCP and FaLRTC, outperform

WTucker, and WCP in terms of the prediction accuracy. Our

TNCP method can achieve very similar performance compared

with FaLRTC in terms of AUC.

C. Natural Images

In this section, we apply our TNCP method to in-painting of

RGB colored images, each of which is represented as a third-

order tensor. Our TNCP method is used to estimate missing

data in natural color images used in [5], whose size is 493 ×

517 × 3. The tolerance value of TNCP, WTucker, WCP, Hard

and FaLRTC is fixed at tol = 10−5, while the parameter of

FPCA7 [56] (one state-of-the-art low-rank matrix completion

algorithm) is 10−4. For TNCP and FaLRTC, the weights are

set to α1 = α2 = 1 and α3 = 10−3. Besides, for Hard we let

τ = 104 and λ1 = λ2 = λ3 = 1.

7http://www1.se.cuhk.edu.hk/~sqma/FPCA.html

Fig. 6. Comparison of the recovered results of WTucker, WCP, FPCA,
Hard, FaLRTC, and TNCP. (a) Original image. (b) 10% randomly sampled
image. (c) WTucker, RSE: 0.1872, Time: 830.41 s. (d) WCP, RSE: 0.1546,
Time: 1536.19 s. (e) FPCA, RSE: 0.1526, Time: 649.31 s. (f) Hard,
RSE: 0.1286, Time: 2362.37 s. (g) FaLRTC with µ = 5, RSE: 0.1223,
Time: 2079.58 s. (h) TNCP with λ = 10 and R = 40, RSE: 0.1278,
Time: 210.91 s.

Fig. 7. Comparison of the recovered results of WTucker, WCP, FPCA,
Hard, FaLRTC, and TNCP. (a) Original image. (b) Deterministically masked
image. (c) WTucker, RSE: 0.1314, Time: 763.56 s. (d) WCP, RSE: 0.1452,
Time: 1644.87 s. (e) FPCA, RSE: 0.1102, Time: 988.05 s. (f) Hard,
RSE: 0.0774, Time: 1005.40 s. (g) FaLRTC with µ = 5, RSE: 0.0750,
Time: 1875.23 s. (h) TNCP with λ = 10 and R = 40, RSE: 0.0789,
Time: 194.67 s.

We present the recovery results of our TNCP method,

WTucker, WCP, Hard, FaLRTC, and FPCA in two cases of

10% randomly sampled images and deterministically masked

images, as shown in Figs. 6 and 7, respectively, from which

we can see that the three LRTC approaches including TNCP,

Hard, and FaLRTC are significantly better than FPCA in terms

of RSE, where FPCA performs three matrix completion tasks

on three channels: red, green, and blue, respectively. This fur-

ther confirms that those LRTC methods can utilize much more

information contained in higher-order data than matrix com-

pletion methods can, as stated in [5]. Moreover, the four trace

norm regularized methods including FPCA, Hard, FaLRTC

and TNCP consistently outperform the two weighted ten-

sor decomposition methods including WTucker and WCP. In

addition, our TNCP method can achieve almost similar perfor-

mance with Hard and FaLRTC both in visually quality and in

terms of RSE. More importantly, our TNCP method is much

faster than the other methods, and is nearly ten times faster



2446 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 45, NO. 11, NOVEMBER 2015

Fig. 8. Comparison of the recovery results of FaLRTC and TNCP on one
slice of the brain MRI data. (a) Original image. (b) 20% randomly sampled
image. (c) FaLRTC. (d) TNCP.

TABLE III
RSE AND TIME COST (SECONDS) COMPARISON

ON THE BRAIN MRI DATA

than FaLRTC, and at least five and three times faster than

Hard and FPCA, respectively.

D. MRI Images

In this part, we compare our TNCP method with FaLRTC

and a nonnegative CP completion (NCP) method [44] on

the brain MRI image data used in [5], whose size is

181 × 217 × 181. Since its ranks unfolded along three modes

are 164, 198, and 165, respectively, then they can decrease

to 35, 42, and 36 if removing small singular values less than

1 percent of its Frobenius norm. Thus, the generated data is

approximately a low-rank tensor. The tolerance value of TNCP,

NCP, and FaLRTC is fixed at tol = 10−5. For TNCP and

FaLRTC, αn are set to αn = 1/3, n = 1, 2, 3. The regular-

ized parameter of TNCP is set to 10. In addition, we set the

tensor rank R = 50 for TNCP and NCP.

Fig. 8 shows the recovery results on the brain MRI data set

with 20% SR, and we only show one of the slices exemplar-

ily. In addition, Table III shows the recovery accuracy (RSE)

and running time (seconds) of NCP, FaLRTC, and TNCP with

different SRs: 20%, 50%, and 80%, respectively. From these

results, we can see that our TNCP method is much faster than

FaLRTC with the almost similar recovery accuracy and visu-

ally quality. Moreover, TNCP significantly outperforms NCP

in terms of both recovery accuracy and efficiency.

Fig. 9. Hyperspectral data recovery results of our TNCP method with 30%
SR: only three selected slices are shown. Left: original images. Middle: 30%
sampling images. Right: recovered results of TNCP.

Fig. 10. Recovery results of TNCP against its parameters on the urban
hyperspectral data. Left: RSE versus the given ranks. Right: RSE versus the
regularization parameter λ.

E. Hyperspectral Images

Finally, we apply our TNCP method on the urban hyper-

spectral image data, which is a 150×150×210 hyperspectral

cube from the Army Geospatial Center of the U.S. Army

Corps of Engineers.8 The tolerance value of TNCP, NCP, and

FaLRTC is fixed at tol = 10−5. For TNCP and FaLRTC, αn

is set to 1/3 for all n ∈ {1, 2, 3}. The regularized parame-

ter of TNCP is set to 10. In addition, we set the tensor rank

R = 60 for TNCP and NCP. The recovery results for three of

the bands are shown in Fig. 9. Moreover, we report the recov-

ery accuracy (RSE) and running time (seconds) of these three

methods with different SRs: 20%, 40%, and 60%, as listed

in Table IV, from which we can see that our TNCP method

consistently outperforms NCP in terms of both RSE and effi-

ciency. Furthermore, our TNCP method significantly performs

better than FaLRTC in terms of RSE, and is nearly five times

faster than FaLRTC. We also evaluate the robustness of our

TNCP method with respect to its parameters: the given tensor

ranks and the regularization parameter λ, as shown in Fig. 10,

8http://www.agc.army.mil/hypercube/



LIU et al.: TNCP WITH MISSING DATA 2447

TABLE IV
RSE AND TIME COST (SECONDS) COMPARISON ON THE

URBAN HYPERSPECTRAL DATA

from which we can see that our TNCP method is very robust

against its parameter variations.

VII. CONCLUSION

In this paper, we proposed a trace norm regularized CP

decomposition method for simultaneous tensor completion and

decomposition. We first used a factor matrix rank minimiza-

tion to replace the rank minimization of each unfolding of

involved tensors. Then, we relaxed the weighted sum of each

factor matrix rank into a tractable convex surrogate, and then

obtained a much smaller-scale factor matrix trace norm opti-

mization problem. Finally, we developed an efficient ADMM

algorithm to solve the proposed problem. Our convincing

experimental results on synthetic data and real-world data veri-

fied both the efficiency and effectiveness of our TNCP method.

Our TNCP method can address large-scale tensor com-

pletion and decomposition problems, and is much robust to

the given tensor rank. In the future, our TNCP method can

also be extended to the nonnegative CP tensor decomposition

problem [57] as follows:

min
Un

N
∑

n=1

αn‖Un‖∗ +
λ

2
‖T − U1 ◦ U2 · · · ◦ UN‖2

F

s.t., Un ≥ 0, n = 1, . . . , N. (33)

Moreover, we are interested in exploring ways to regularize

our model with auxiliary information as in [58] and [59], such

as graph Laplacian of relationships among data and position

information contained in images. We will also apply our model

to address a variety of robust tensor recovery problems, i.e.,

higher-order robust PCA [30] and robust tensor completion.
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