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Abstract

Fisher score and Laplacian score are two popular fea-
ture selection algorithms, both of which belong to the
general graph-based feature selection framework. In
this framework, a feature subset is selected based on
the corresponding score (subset-level score), which is
calculated in a trace ratio form. Since the number of
all possible feature subsets is very huge, it is often pro-
hibitively expensive in computational cost to search in
a brute force manner for the feature subset with the
maximum subset-level score. Instead of calculating the
scores of all the feature subsets, traditional methods cal-
culate the score for each feature, and then select the
leading features based on the rank of these feature-level
scores. However, selecting the feature subset based on
the feature-level score cannot guarantee the optimum of
the subset-level score. In this paper, we directly opti-
mize the subset-level score, and propose a novel algo-
rithm to efficiently find the global optimal feature subset
such that the subset-level score is maximized. Exten-
sive experiments demonstrate the effectiveness of our
proposed algorithm in comparison with the traditional
methods for feature selection.

Introduction
Many classification tasks often need to deal with high-
dimensional data. Data with a large number of features
will result in higher computational cost, and the irrelevant
and redundant features may also deteriorate the classifica-
tion performance. Feature selection is one of the most im-
portant approaches for dealing with high-dimensional data
(Guyon & Elisseeff 2003). According to the strategy of uti-
lizing class label information, feature selection algorithms
can be roughly divided into three categories, namely un-
supervised feature selection (Dy & Brodley 2004), semi-
supervised feature selection (Zhao & Liu 2007a), and su-
pervised feature selection (Robnik-Sikonja & Kononenko
2003). These feature selection algorithms can also be cat-
egorized into wrappers and filters (Kohavi & John 1997;
Das 2001). Wrappers are classifier-specific and the feature
subset is selected directly based on the performance of a
specific classifier. Filters are classifier-independent and the
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feature subset is selected based on a well-defined criterion.
Usually, wrappers could obtain better results than filters be-
cause wrappers are directly related to the algorithmic perfor-
mance of a specific classifier. However, wrappers are com-
putationally more expensive compared with filters and lack
of good generalization capability over classifiers.

Fisher score (Bishop 1995) and Laplacian score (He,
Cai, & Niyogi 2005) are two popular filter-type methods for
feature selection, and both belong to the general graph-based
feature selection framework. In this framework, the feature
subset is selected based on the score of the entire feature
subset, and the score is calculated in a trace ratio form.

The trace ratio form has been successfully used as a gen-
eral criterion for feature extraction previously (Nie, Xiang,
& Zhang 2007; Wanget al. 2007). However, when the trace
ratio criterion is applied for feature selection, since the num-
ber of possible subsets of features is very huge, it is often
prohibitively expensive in computational cost to search in
a brute force manner for the feature subset with the max-
imum subset-level score. Therefore, instead of calculating
the subset-level score for all the feature subsets, traditional
methods calculate the score of each feature (feature-level
score), and then select the leading features based on the rank
of these feature-level scores.

The selected subset of features based on the feature-level
score is suboptimal, and cannot guarantee the optimum of
the subset-level score. In this paper, we directly optimize
the subset-level score, and propose a novel iterative algo-
rithm to efficiently find the globally optimal feature subset
such that the subset-level score is maximized. Experimental
results on UCI datasets and two face datasets demonstrate
the effectiveness of the proposed algorithm in comparison
with the traditional methods for feature selection.

Feature Selection ⊂ Subspace Learning
Suppose the original high-dimensional datax ∈ R

d, that is,
the number of features (dimensions) of the data isd. The
task of subspace learning is to find the optimal projection
matrix W ∈ R

d×m (usuallym ≪ d) under an appropriate
criterion, and then thed-dimensional datax is transformed
to them-dimensional datay by

y = W
T
x, (1)

whereW is a column-full-rank projection matrix.
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When turning to feature selection, the task is simplified
to find the optimal feature subset such that an appropriate
criterion is optimized. Supposem features are selected, then
the datax with d-features is reduced to the datay with m
features. If we use the matrix form, the feature selection
procedure can be expressed as

y = W
T
x, (2)

whereW ∈ R
d×m is a selection matrix. Denote a column

vector bywi ∈ R
d that has the form

wi = [0, · · ·, 0
︸ ︷︷ ︸

i−1

, 1, 0, · · ·, 0
︸ ︷︷ ︸

d−i

]T . (3)

ThenW in Equation (2) can be written as

W = [wI(1),wI(2), ...,wI(m)], (4)

where the vectorI is a permutation of{1, 2, ..., d}.
From this point of view, feature selection can be seen as a

special subspace learning task, where the projection matrix
is constrained to be selection matrix. However, feature se-
lection has its advantages over subspace learning: 1) owing
to the special structure ofW, feature selection algorithm is
often faster than the corresponding subspace learning algo-
rithm; 2) the result of feature selection is explainable; and 3)
after performing feature selection, we only need to produce
a small subset of features for further data processing.

A General Graph-based Feature Selection
Framework Under Trace Ratio Criterion

Let the data matrix beX = [x1,x2, ...,xn] ∈ R
d×n, where

each dataxi hasd features denoted by{F1, F2, ..., Fd}. A
feature subset{FI(1), FI(2), ..., FI(m)} is denoted asΦ(I),
whereI is a permutation of{1, 2, ..., d}. Similarly, we set
WI = [wI(1),wI(2), ...,wI(m)], wherewi is defined as the
same as in Equation (3). Suppose the feature subsetΦ(I) is
selected, then the datax is transformed toy by y = W

T
I x.

A graph is a natural and effective way to encode the re-
lationship among data, and has been applied in many ma-
chine learning tasks, such as clustering (Shi & Malik 2000),
manifold learning (Belkin & Niyogi 2003), semi-supervised
learning (Zhu, Ghahramani, & Lafferty 2003), and subspace
learning (Heet al. 2005).

For the task of feature selection, we construct two
weighted undirected graphsGw andGb on given data. Graph
Gw reflects the within-class or local affinity relationship, and
graphGb reflects the between-class or global affinity rela-
tionship. GraphsGw andGb are characterized by the weight
matricesAw andAb, respectively.

In general, to reflect the within-class or local affinity rela-
tionship in data,(Aw)ij is a relatively larger value if data
xi and xj belong to the same class or are close to each
other, and a relatively smaller value otherwise. Therefore,
we should select the feature subset such that

∑

ij ‖yi −

yj‖
2(Aw)ij is as small as possible.

Similarly, to reflect the between-class or global affinity
relationship in data,(Ab)ij is a relatively larger value if

dataxi and xj belong to the different classes or are dis-
tant from each other, and is a relatively smaller value oth-
erwise. Therefore, we should select the feature subset such
that

∑

ij ‖yi − yj‖
2(Ab)ij is as large as possible.

To achieve the above two objectives, an appropriate crite-
rion could be

J (WI) =

∑

ij ‖yi − yj‖
2(Ab)ij

∑

ij ‖yi − yj‖
2(Aw)ij

, (5)

namely,

J (WI) =
tr(WT

I XLbX
T
WI)

tr(WT
I XLwX

T
WI)

, (6)

whereLw andLb are the Laplacian matrices (Chung 1997).
They are defined asLw = Dw −Aw, whereDw is a diago-
nal matrix with(Dw)ii =

∑

j(Aw)ij , andLw = Db −Ab,
whereDb is a diagonal matrix with(Db)ii =

∑

j(Ab)ij .
For the sake of simplicity, we denote hereafter the matri-

cesB = XLbX
T ∈ R

d×d andE = XLwX
T ∈ R

d×d .
Then the criterion in (6) is rewritten as

J (WI) =
tr(WT

I BWI)

tr(WT
I EWI)

. (7)

Obviously, bothB andE are positive semidefinite.
Base on the criterion (5), the score of a feature subset

Φ(I) is calculated as

score(Φ(I)) =
tr(WT

I BWI)

tr(WT
I EWI)

. (8)

The task of feature selection is to seek the feature subset
with the maximum score by solving the following optimiza-
tion problem:

Φ(I) = arg max
Φ(I)

tr(WT
I BWI)

tr(WT
I EWI)

. (9)

It is important to note that the criterion (5) provides a gen-
eral graph framework for feature selection. Different ways
of constructing the weight matricesAw andAb will lead to
different unsupervised, semi-supervised or supervised fea-
ture selection algorithm. Fisher score (Bishop 1995) and
Laplacian score (He, Cai, & Niyogi 2005) are two repre-
sentative instances.

In Fisher score, the weight matricesAw andAb are de-
fined by

(Aw)ij =

{ 1
nc(i)

, if c(i) = c(j);

0, if c(i) 6= c(j).
(10)

(Ab)ij =

{ 1
n
− 1

nc(i)
, if c(i) = c(j);

1
n
, if c(i) 6= c(j).

(11)

wherec(i) denotes the class label of data pointxi, andni

denotes the number of data in classi.
In Laplacian score, the weight matrices are defined by1

(Aw)ij =

{

e−
‖xi−xj‖2

t , xi and xj are neighbors;
0, otherwise.

(12)
1In order to be consistent with Fisher score, the Laplacian score

here is the reciprocal of the one in (He, Cai, & Niyogi 2005).
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Ab =
1

1
T
Dw1

Dw11
T
Dw. (13)

Fisher score is a supervised method and makes use of the
label information for constructing the weight matricesAw

andAb, while Laplacian score is an unsupervised method
and no label information is applied for constructing the two
weight matrices.

Traditional Solution: Feature-Level Score
The number of possible subsets of features increases greatly
with respect to the number of featuresd, and hence the com-
putational cost is very high to search in a brute force manner
for the optimal subset of features based on the score defined
in (8). Instead of directly calculating the score of a subset
of features, traditional methods calculate the score of each
feature, and then select the leading features based on the
rank of the scores (Bishop 1995; He, Cai, & Niyogi 2005;
Zhao & Liu 2007b).

Under the criterion (5), the score of thei-th feature is

score1(Fi) =
w

T
i Bwi

w
T
i Ewi

. (14)

The traditional algorithm for feature selection is summa-
rized in Table 1. It is obvious that the selected subset of fea-
tures based from the algorithm in Table 1 cannot guarantee
the global optimum of the subset-level score in (8).

Table 1: Algorithm for feature selection based on the
feature-level score.

Input:

The selected feature numberm, the matrices

B ∈ R
d×d andE ∈ R

d×d.

Output:

The selected feature subset

Φ(I∗) = {FI∗(1), FI∗(2), ..., FI∗(m)}.

Algorithm:

1. Calculate the score of each featureFi defined in

Equation (14).

2. Rank the features according to the scores in

descending order.

3. Select the leadingm features to formΦ(I∗).

Globally Optimal Solution: Subset-Level Score
In this section, we propose a novel iterative algorithm to
efficiently find the optimal subset of features of which the
subset-level score is maximized.

Suppose the subset-level score in (8) reaches the global
maximumλ∗ if WI = WI∗ , that is to say,

tr(WT
I∗BWI∗)

tr(WT
I∗EWI∗)

= λ∗, (15)

and
tr(WT

I BWI)

tr(WT
I EWI)

≤ λ∗, ∀ Φ(I). (16)

From Equation (16), we can derive that

tr(WT
I BWI)

tr(WT
I
EWI)

≤ λ∗, ∀ Φ(I)

⇒ tr(WT
I (B − λ∗

E)WI) ≤ 0, ∀ Φ(I)

⇒ max
Φ(I)

tr(WT
I (B − λ∗

E)WI) ≤ 0. (17)

Note thattr(WT
I∗(B − λ∗

E)WI∗) = 0, and from Equa-
tion (17), we have

max
Φ(I)

tr(WT
I (B − λ∗

E)WI) = 0. (18)

Let the function

f(λ) = max
Φ(I)

tr(WT
I (B − λE)WI), (19)

then we havef(λ∗) = 0.
Note thatB andE are positive semidefinite, We will see

from Equation (24) thatf(λ) is a monotonically decreasing
function. Therefore, finding the global optimalλ∗ can be
converted to finding the root of equationf(λ) = 0.

Here, we define another score of thei-th feature as

score2(Fi) = w
T
i (B − λE)wi. (20)

Note thatf(λ) can be rewritten as

f(λ) = max
Φ(I)

m∑

i=1

w
T
I(i)(B − λE)wI(i). (21)

Thusf(λ) equals to the sum of the firstm largest scores.
Suppose for aφ(In), λn is calculated by

λn =
tr(WT

In
BWIn

)

tr(WT
In

EWIn
)
. (22)

Denotef(λn) by

f(λn) = tr(WT
In+1

(B − λnE)WIn+1
), (23)

whereWIn+1
can be efficiently calculated according to the

rank of scores defined in Equation (20).
Note that in Equation (19),WI is not fixed w.r.tλ, so

f(λ) is piecewise linear. The slope off(λ) at pointλn is

f ′(λn) = −tr(WT
In+1

EWIn+1
) ≤ 0. (24)

We use a linear functiong(λ) to approximate the piecewise
linear functionf(λ) at pointλn such that

g(λ) = f ′(λn)(λ − λn) + f(λn)

= tr(WT
In+1

(B − λE)WIn+1
). (25)

Let g(λn+1) = 0, we have

λn+1 =
tr(WT

In+1
BWIn+1

)

tr(WT
In+1

EWIn+1
)
. (26)

Sinceg(λ) approximatesf(λ), λn+1 in (26) is an approx-
imation to the root of equationf(λ) = 0. Updateλn by
λn+1, we can obtain an iterative procedure to find the root
of equationf(λ) = 0 and thus the optimal solution in (9).
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λ

f(λ)

0 λ2 λ3 λ∗λ1

Figure 1:Since the functionf(λ) is piecewise linear, the al-
gorithm can iteratively find the root of equationf(λ) = 0 in
a few steps. Supposeλ1 is an initial value in the algorithm,
then the updated value isλ2 in the first step andλ3 in the
second step. Finally, the optimal valueλ∗ is achieved in the
third step.

Theorem 1 The λ in the iterative procedure increases
monotonically.

Proof.

λn =
tr(WT

In
BWIn

)

tr(WT
In

EWIn
)
≤ max

Φ(I)

tr(WT
I BWI)

tr(WT
I EWI)

= λ∗.

(27)
Sincef(λ) is monotonically decreasing, we knowf(λn) ≥
0. According to Equation (23), we have

tr(WT
In+1

BWIn+1
)

tr(WT
In+1

EWIn+1
)
≥ λn. (28)

That is,λn+1 ≥ λn. Therefore, theλ in the iterative proce-
dure increases monotonically. �

Note thatf(λ) is piecewise linear, only a few steps are
needed to achieve the optimum. We illustrate the iterative
procedure in Figure 1 and summarize the algorithm in Table
2. Supposer is the number of zero diagonal elements ofE,
the algorithm in Table 2 can be performed ifm > r, while
in Table 1,r should be 0. One interesting property of the
objective function for feature selection is stated as below:
Theorem 2 The optimal subset-level score in (8) is mono-
tonically decreased with respect to the selected feature num-
berm. That is to say, ifm1 < m2, then

max
Φ(I)

m1∑

i=1

w
T
I(i)BwI(i)

m1∑

i=1

w
T
I(i)EwI(i)

≥ max
Φ(I)

m2∑

i=1

w
T
I(i)BwI(i)

m2∑

i=1

w
T
I(i)EwI(i)

(29)

The proof is provided in appendix. From Theorem 2 we
know, when the selected feature numberm increases, the
optimal subset-level score in (8) will be decreased. We will
verify this property in the experiments.

Experiments
In this section, we empirically compare the performance of
the subset-level score with the feature-level score, when the
trace ratio criterion is used for feature selection.

Table 2:Algorithm for feature selection based on the subset-
level score.

Input:

The selected feature numberm, the matrices

B ∈ R
d×d andE ∈ R

d×d.

Output:

The selected feature subset

Φ(I∗) = {FI∗(1), FI∗(2), ..., FI∗(m)}.

Algorithm:

1. InitializeΦ(I), and letλ =
tr(WT

I BWI)

tr(WT
I
EWI)

.

2. Calculate the score of each featureFi defined in

Equation (20).

3. Rank the features according to the scores in

descending order.

4. Select the leadingm features to updateΦ(I), and

let λ =
tr(WT

I BWI)

tr(WT
I
EWI)

.

5. Iteratively perform step 2-4 until convergence.

Two typical trace ratio based feature selection algorithms
are performed in the experiments: Fisher score and Lapla-
cian score. In the Fisher score, we denote the tradi-
tional method (feature-level score) by F-FS, and our method
(subset-level score) by S-FS. In the Laplacian score, we de-
note the traditional method (feature-level score) by F-LS,
and our method (subset-level score) by S-LS.

Two sets of datasets are used in the experiments, the first
one are taken from the UCI Machine Learning Repository
(Asuncion & Newman 2007), and the second one are taken
from the real-world face image databases, including AT&T
(Samaria & Harter 1994) and UMIST (Graham & Allinson
1998). A brief description of these datasets is summarized
in Table 3.

The performances of the algorithms are measured by the
classification accuracy rate with selected features on test-
ing data. The classification is based on the conventional1-
nearest neighbor classifier with Euclidean distance metric.
In each experiment, we randomly select several samples per
class for training and the remaining samples for testing. The
average accuracy rates versus selected feature number are
recorded over 20 random splits.

In most cases, our method converges in only three to five
steps. As more than 95% computation time is spent on the
calculation of the diagonal elements of the matricesB and
E, our method nearly does not increase the computation
complexity in comparison with the traditional method.

Results on UCI Datasets
Six datasets from the UCI machine learning repository are
used in this experiment. In each dataset, the training number
per class is 30.

The results of accuracy rate versus selected feature num-

674



5 10 15
45

50

55

60

Feature number

A
cc

ur
ac

y 
ra

te
 (

%
)

 

 

F−FS
S−FS
F−LS
S−LS

(a) vehicle

5 10 15 20 25

76

78

80

82

84

86

Feature number

A
cc

ur
ac

y 
ra

te
 (

%
)

 

 

F−FS
S−FS
F−LS
S−LS

(b) ionosphere

2 4 6 8 10

60

65

70

75

Feature number

A
cc

ur
ac

y 
ra

te
 (

%
)

 

 

F−FS
S−FS
F−LS
S−LS

(c) heart

5 10 15

55

60

65

70

Feature number

A
cc

ur
ac

y 
ra

te
 (

%
)

 

 

F−FS
S−FS
F−LS
S−LS

(d) german

2 4 6 8 10 12

55

60

65

70

Feature number

A
cc

ur
ac

y 
ra

te
 (

%
)

 

 

F−FS
S−FS
F−LS
S−LS

(e) crx

2 4 6 8 10

60

65

70

75

Feature number

A
cc

ur
ac

y 
ra

te
 (

%
)

 

 

F−FS
S−FS
F−LS
S−LS

(f) australian

Figure 2: Accuracy rate vs. dimension.

Table 3: A brief description of the datasets in the experi-
ments, including the class number, total data number, train-
ing sample number and data dimension.

class total num. train. num. dimension
vehicle 4 846 120 18
ionosphere 2 351 60 34
heart 2 270 60 13
german 2 1000 60 20
crx 2 690 60 15
australian 2 690 60 14
AT&T 40 400 200 644
UMIST 20 575 100 644

ber are shown in Figure 2. In most cases, our method (S-FS
or S-LS) obtains a better result than the corresponding tra-
ditional method (F-FS or F-LS). We also notice that in a
few cases, our method does not outperform the correspond-
ing traditional method. The reason is that, although a larger
subset-level score is expected to perform better, this score is
not directly related to the accuracy rate, which is the usual
case in filter-type methods for feature selection. Therefore,
although our method theoretically guarantees to find the fea-
ture subset with the optimal subset-level score, it is not al-
ways guaranteed to obtain the optimal accuracy rate. But
generally the consistency between the subset score and the
accuracy rate can be expected if the objective function is
well defined.

Results on Face Datasets
In this experiment, we used two face datasets, including
AT&T dataset and UMIST dataset. In each dataset, the train-
ing sample number per class is 5.

The AT&T face database includes 40 distinct individuals
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(b) UMIST

Figure 3: Accuracy rate vs. dimension.

and each individual has 10 different images. The UMIST
repository is a multiview database, consisting of 575 images
of 20 people, each covering a wide range of poses from pro-
file to frontal views. Images are down-sampled to the size of
28 × 23.

The results of accuracy rate versus selected feature num-
ber are shown in Figure 3. From the figure we can see, our
method (S-FS or S-LS) obtains a better result than the corre-
sponding traditional method (F-FS or F-LS) in most cases.

Comparison on Subset-level Scores

We have proved in the previous section that our method can
find the feature subset such that the subset-level score calcu-
lated by Equation (8) is maximized. In contrast, traditional
methods, which are based on the feature-level score calcu-
lated by Equation (14), cannot guarantee that the subset-
level score of the selected feature subset reaches the global
maximum. Figure 4 shows the subset-level scores of the se-
lected feature subset by traditional methods and our method
in the UMIST dataset. We can observe that the subset-level
scores of the feature subset found by traditional methods
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Figure 4: Comparison between the subset-level scores of the
feature subset selected by traditional method(F-FS, F-LS)
and our method(S-FS, S-LS) .

are consistently lower than those of our method. We can
also observe that the optimal subset-level score found by our
method monotonically decreases with respect to the selected
feature number, which is consistent with Theorem 2.

Conclusion
In this paper, we proposed a novel algorithm to solve the
general graph-based feature selection problem. Unlike tra-
ditional methods which treat each feature individually and
hence are suboptimal, our proposed algorithm directly op-
timizes the score of the entire selected feature subset. The
theoretical analysis guarantees the algorithmic convergency
and global optimum of the solution. Our proposed algorithm
is general, and can be used to extend any graph-based sub-
space learning algorithm to its feature selection version. In
addition, we are planning to further study the technique ap-
plied in this paper for solving the kernel selection problem
encountered by traditional kernel based subspace learning.

Appendix
In order to prove Theorem 2, we first prove the following
two lemmas.

Lemma 1 If∀i, ai ≥ 0, bi > 0 and a1

b1
≥ a2

b2
≥ · · · ≥ ak

bk
,

then a1

b1
≥ a1+a2+···+ak

b1+b2+···+bk
≥ ak

bk
.

Proof. Let a1

b1
= p. So∀ i, ai ≥ 0, bi > 0, we haveai ≤

pbi. Thereforea1+a2+···+ak

b1+b2+···+bk
≤ p(b1+b2+···+bk)

b1+b2+···+bk
= a1

b1
.

Let ak

bk
= q. So∀ i, ai ≥ 0, bi > 0, we haveai ≥ qbi.

Thereforea1+a2+···+ak

b1+b2+···+bk
≥ q(b1+b2+···+bk)

b1+b2+···+bk
= ak

bk
. �

Lemma 2 If ∀ i, ai ≥ 0, bi > 0, m1 < m2 and a1

b1
≥

a2

b2
≥ · · · ≥

am1

bm1
≥

am1+1

bm1+1
≥ · · · ≥

am2

bm2
, then we have

a1+a2+···+am1

b1+b2+···+bm1
≥

a1+a2+···+am2

b1+b2+···+bm2
.

Proof. According to Lemma 1, we know
a1+a2+···+am1

b1+b2+···+bm1
≥

am1

bm1
≥

am1+1

bm1+1
≥

am1+1+am1+2+···+am2

bm1+1+bm1+2+···+bm2
. Thus we have

a1+a2+···+am1

b1+b2+···+bm1
≥

am1+1+am1+2+···+am2

bm1+1+bm1+2+···+bm2
. According to

Lemma 1 again, we have
a1+a2+···+am1

b1+b2+···+bm1
≥

a1+a2+···+am2

b1+b2+···+bm2
.

Proof of Theorem 2. Without loss of generality, sup-

pose wT
1 Bw1

wT
1 Ew1

≥
wT

2 Bw2

wT
2 Ew2

≥ · · · ≥
wT

m2
Bwm2

wT
m2

Ewm2
and

m2∑

i=1

wT
i Bwi

m2∑

i=1

wT
i
Ewi

= max
Φ(I)

m2∑

i=1

wT
I(i)BwI(i)

m2∑

i=1

wT
I(i)

EwI(i)

. Note thatm1 < m2,

therefore, according to Lemma 2, we have

max
Φ(I)

m1∑

i=1
wT

I(i)BwI(i)

m1∑

i=1

wT
I(i)

EwI(i)

≥

m1∑

i=1
wT

i Bwi

m1∑

i=1

wT
i
Ewi

≥

m2∑

i=1
wT

i Bwi

m2∑

i=1

wT
i
Ewi

=

max
Φ(I)

m2∑

i=1
wT

I(i)BwI(i)

m2∑

i=1

wT
I(i)

EwI(i)
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