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Abstract. Calibrating dynamical models on experimental data time se-
ries is a central task in computational systems biology. When numerical
values for model parameters can be found to fit the data, the model can
be used to make predictions, whereas the absence of any good fit may
suggest to revisit the structure of the model and gain new insights in
the biology of the system. Temporal logic provides a formal framework
to deal with imprecise data and specify a wide variety of dynamical
behaviors. It can be used to extract information from numerical traces
coming from either experimental data or model simulations, and to spec-
ify the expected behaviors for model calibration. The computation time
of the different methods depends on the number of points in the trace so
the question of trace simplification is important to improve their perfor-
mance. In this paper we study this problem and provide a series of trace
simplifications which are correct to perform for some common tempo-
ral logic formulae. We give some general soundness theorems, and apply
this approach to period and phase constraints on the circadian clock
and the cell cycle. In this application, temporal logic patterns are used
to compute the relevant characteristics of the experimental traces, and
to measure the adequacy of the model to its specification on simula-
tion traces. Speed-ups by several orders of magnitude are obtained by
trace simplification even when produced by smart numerical integration
methods.

1 Introduction

Calibrating dynamical models on experimental data time series is a central task
in computational systems biology. When numerical values for model parameters
can be found to fit the data, the model can be used to make predictions, whereas
the absence of any good fit may suggest to revisit the structure of the model
and gain new insights in the biology of the system, see for instance [23/[15].
Temporal logic provides a formal framework to deal with imprecise data
and specify a wide variety of dynamical behaviors. In the early days of systems
biology, propositional temporal logic was proposed by computer scientists to
formalize the Boolean properties of the behavior of biochemical reaction sys-
tems [I1I5] or gene regulatory networks [4I3]. Generalizing these techniques to



quantitative models can be done in two ways: either by discretizing the differ-
ent regimes of the dynamics in piece-wise linear or affine models [8I2], or by
relying on numerical simulations and taking a first-order version of temporal
logic with constraints on concentrations, as query language for the numerical
traces [IJI3I14]. Such language can be used not only to extract information from
numerical traces coming from either experimental data or model simulations,
but also to specify the expected behaviors as constraints for model calibration
and robustness measure [20/21)9].

The general idea of model-checking a single finite trace has been well known
for years, notably in the framework of Runtime Verification [I7]. It usually re-
lies on the classical bottom-up algorithm, which is bilinear [22]. This extends
even to quantitative model-checking like the continuous interpretation of Signal
Temporal Logic [10] since the combination of two booleans or two reals by min/-
max is cheap. However, when using the full power of First-Order Linear Time
Logic (FO-LTL) to compute validity domains, the dependency of the complex-
ity on the size of the trace is no longer linear but exponential in the number of
variables [13], reflecting the computational cost of combining complex domains.
The question of trace simplification [I4] is therefore important to improve the
performance of FO-LTL constraint solving, and with it of the corresponding
calibration methods.
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Fig.1. Traces of some elements of the coupled cell cycle (MPF and Weel in grey,
respectively solid and dashed lines) and circadian clock (PerCry, Bmall and RevErbs
in black, respectively solid, dashed and dotted lines) models with different parameter
sets.

In this paper we provide a series of trace simplifications which are correct to
perform for some common temporal logic formulae. We give some general sound-
ness theorems, and apply this approach to period and phase constraints on the
circadian clock and the cell cycle. The traces shown in Fig. [1} and detailed in
Sect. [6] contain each several thousands of time-points. Computing the domains
of the formula describing the period between each pair of successive peaks by
polyhedral methods [13] becomes quite computationally expensive. In this appli-



cation, temporal logic patterns are used to compute the relevant characteristics
of the experimental traces, and to measure the adequacy of the model to its
specification on simulation traces. Speed-ups by several orders of magnitude are
obtained by trace simplification, even when produced by smart numerical inte-
gration methods (e.g. Rosenbrock’s implicit method), making trace simplification
comparable with ad-hoc solvers.

2 Temporal Logic Patterns

The Linear Time Logic LTL is a temporal logic [6] which extends classical logic
with modal operators for qualifying when a formula is true in a series of timed
states. The temporal operators are X ("next”, for at the next time point), F
("finally”, for at some time point in the future), G (”globally”, for at all time
points in the future), U ("until”, for a first formula must be true until a second
one becomes true), and W (” weak until”, a dual operator of U). These operators
enjoy some simple duality properties, - X¢ = X—¢, “F¢ = G-¢, “G¢ = F-¢,
~(4 U ) = (~6 W =), ~(t) W ¢) = (=t U =), and we have Fo = true U ¢,
Go = ¢ W false.

In this paper we consider a first-order version of LTL, denoted by FO-
LTL(Ry;,), with variables and linear constraints over R, and quantifiers. The
grammar of FO-LTL(Ry;,,) formulae is defined as follows:
pi=c |~¢|d=1|oNd| VS| Tr | Voo |Xo|F| Go|oUs | sWo
where ¢ denotes linear constraints between molecular concentrations (written
with upper case letters) their first derivative (written dA/dt), free variables (writ-
ten with lower case letters), real numbers, and the state time variable, denoted
by Time; e.g., F(A < v) is an FO-LTL(R};;,) formula. To denote the value of
state variable A in the state s; we shall use a subscript notation such as A, .

Temporal logic formulae are classically interpreted in a Kripke structure,
i.e. a transition relation over a set of states such that each state has at least one
successor [6]. In this paper, we consider finite traces obtained either by biological
experiments, or by numerical integration. To give meaning to LTL formulae, a
finite trace (sg, ..., S,) is thus complemented in an infinite trace by adding a
loop on the last state, (sq, ..., Sn, Sn,...). The practical assumption behind this
classical convention for interpreting temporal logic on finite traces [22] is that the
time horizon considered is sufficiently long for properly evaluating the formulas of
interest. We also replace the computed value of % by 0 in the last state, in order
to maintain the coherence between the concentrations and their derivatives. In
this interpretation over finite traces, the formula G¢ is thus true in the last state
if ¢ is true in the last state. The semantics of formulae containing free variables
is given by the validity domains of the variables.

Definition 1. The validity domain Dy, . ,,.),¢ of the free variables of an FO-
LTL(Ry;,) formula ¢ on a finite trace T = (sq, ..., sn), is a vector of least do-
mains for the variables, noted Dy, .. s,),4, Satisfying the following equations:

_ T
= Drg =Dy,
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where G is the set complement operator over domains, and II, is the domain

projection operator out of x, restoring domain R for x, and the other operators
are defined by duality.

3 Trace Simplifications

The usual computation of the validity domains involves computing domains for
each subformula on each point of the trace s;. When dealing with temporal data
coming from numerical integration, especially of stiff systems, n can be very
high, which induces a high computational cost, O(n*), where k is the number
of variables. As mentionned in [T4], and justified in the following sections of
this paper, a practical solution to this issue involves simplifying the numerical
trace without changing the generic domain solving algorithm. In this section
we therefore define more precisely the formal framework for defining such trace
simplifications.

Definition 2 (Trace simplification). Let T be a finite trace (so,...,S,) and
¢ an FO-LTL(Ry,, ) formula with constraints over the states of T
T’ is a simplification of T for ¢ at ¢, written T' jfﬁ T if:

— T = (Sjys---58j,) for J = {jo,...,jr} a subset of the indices {0,...,n}
such that jo < ... < jg, i.c., T’ is a subtrace of T;
DZZ@ = DT vy where Ji 8 the smallest index in J such that j; > i, i.e. the

validity domams onT ati and T’ at j; are equal.

T' is a simplification of T for ¢, written T' <, T when it is a simplification of
T at S0, i.e., DT7¢ = DT’,d)

T’ is a strict simplification of T' for ¢, written T" < T if J C {0,...,n}.

T’ is an optimal simplification of T for ¢ if its cardinal is minimal in the
set of the simplifications of T' for ¢.

Property-driven reduction of the system under analysis is a technique that
has been addressed many times in the history of computer science. In the frame-
work of abstract interpretation [7], not only the states but also the transitions can
be abstracted in a new system for simplifying the analysis of some given proper-
ties. The definition above can be seen as a particular instance of this framework
where a subset of states on the trace is preserved without abstraction, and the
transitions are abstracted accordingly to this subset. This abstraction reflects
our motivation of computing exact validity domains for formula variables (no
state domain abstraction) more efficiently (transition abstraction).



4 Examples

Most of the equations for ’DSTL » in Definition |1} are local, in the sense that they
only need information about the state at s;. One obvious case of simplification
is when the unions or intersections involved in the domains for F, G and U can
be computed on a strict subset of the points, sometimes even a singleton. Since
it will come up often in the following examples, let us define a simple subtrace
containing all the local extrema and the initial point of the trace.

Definition 3 (Extrema Subtrace). Let T = (so, ..., Sn) be a trace, TS is the
subtrace of T' defined as follows:

Te ={s; € T | (dz/dt);—1 > 0 A (dz/dt); <0}
@] {Si eT | (dx/dt)i_l <O0A (dx/dt)l > O} U {80}
We shall write T* = J, T

In the following examples, we will use the formulae given in [I4] plus a few
other ones, and for each, we will compute the corresponding domain and examine
possible trace simplifications.

Ezample 1 (Minimal Amplitude).
Formula: ¢ =3v |F(A<v)AF(A>v+a)

Validity Domain Let s,,;n4 and sp,q:4 be some points of the trace where A
is respectively minimum and maximum.

T T
Dr,y = 11o(Dyy pa<v) N Dy, iasvta))

= Ha((U DZ;,A<U) N ( DZ;,A>v+a)) (*)
i=0 1=0
= Ha(,ngmA,A<v N DZmazA7A>W+a) (*)

Trace Simplification From the computation of the domain, equations marked
with a (x), one can see that both unions are actually equal to a single domain,
only dependent on the state but not on 7". Therefore any choice of S;mina, Smaza
leads to an optimal trace simplification Ty where J = {minA, maxA}.

Note that because of the semantic link between A and %&’ T'§ contains SyinA
and S;,az4 and therefore will result in the same unions in the computation of
the domain, hence T'§ is a simplification of T" for ¢.

Ezample 2 (Threshold).

Formula: ¢ = F(Time >20A\ A <v)



Validity Domain Let T be a trace (sg,...,S,) and Ts9 its subtrace on the
points J = {0 < i < n | Times, > 20}. As before, we chose some Spina.,,, &
point where A is minimum on T%4g.

n

_nT _ T
Drg = DSO,F(Time>20/\A<v) = U Dsi,Time>20/\A<v

=0
n
T T
= U (Dsi,Time>20 N Dsi,A<v) (*)
1=0
= U D£7A<v = nginA>207A<U )

icJ

Trace Simplification As shown by the marked equations, the single point
{SminA~,,} is enough to compute the big union of the domain, it defines an
optimal trace simplification of T for ¢.

Notice that T'§ is not a simplification unless it does contain a local minimum
such that T%me > 20: if that is not the case, e.g. always increasing trace, Smina- .0
will be the first state after Time = 20, which is not a local extremum.

Ezample 3 (Crossing).
Formula: ¢ = F(A > BAX(A < BA Time =1t))

n
- . T T T
Validity Domain Dry = U(Ds,;,Asi>Bsi N (Dsyyy.a.,<B., VD, Time=t))
i=0

— U {Times,,,}

iG{O,..‘,n}HASi>Bsi/\Asi+1 <Bs; 4

The computation above simply discards from the union the trace points where
the intersection is empty because one of the two first members is empty.

Trace Simplification Once again, for any trace T' = (so,. .., S,), the validity
domain is a big union that can be restricted to the points of J = {i,i + 1 €
{0,...,n}] | A5, > By, N A, < Bs,,, }, which defines a simplification Ty of T
for ¢. As in Example [2] T is not a simplification of T" for ¢ since it obviously
misses the points at which Time has to be computed.

Ezample 4 (Peak).

Formula: ¢ = F(%! > 0AX(%4 <0A Time = 1))

Validity Domain The reasoning is the same as for Example [3]



n

DT7¢ = DZ:),¢ = U(DT dA >0 N (DT TAS N D97+1 Time= t))

Sit1,
1=0

T
= U Dsl+1,sze t
i€{0,...,n}|(FH)s; >0 (G ) s; 1, <O

— U {Time,,,,}

€40, (G ) ey >0A () sy 41 <O

Trace Simplification As above, for any trace T = (sq,...,8,), J = {i,i+1¢€
{0,...,n}] %S >0A ‘fi‘?s < 0} defines a simplification T’y of T for ¢.

Note that T is also a blmpliﬁcation of T' for ¢ since it contains all ¢ + 1 at
which A, is used and a predecessor with the right sign of the derivative, either
so or a nadir preceding the peak. Note also that |T| < |T’s| + 2 since there can
be one nadir more than there are peaks, plus the origin sg.

Ezample 5 (Period).

Formula: G =3(t1,t2) |[p=ta —t1 ANt; <t
dA dA
F X(— < Time = t1
A (dt >0A (dt < 0A Time =t1))
dA dA
F X(— < T3 =12
A (dt >0A (dt 0 A Time = t2))
dA dA
/\_|3t3|t1<t3<t2/\F( >0/\X(—<0/\T@me—t3))

dt dt
¢ encodes the fact that ¢; and t5 are peaks, with no peak in between.

Trace Simplification One can notice that the domain is formed of the same
kind of union as in Example [4] repeated three times, and under top-level projec-
tions/intersections/complementations. Now, remark that a simplification for the
formula of Example [f] will, by definition, allow to compute correctly the domains
for all three F' formulae, and therefore is a simplification for the compound ¢.
This is a special case of Theorem [1| detailed in the next section.

It follows that T); of Example [4| and 79 are simplifications of T for ¢.

Equivalent Formula:
dA dA

¢—3(t1,t2)|p—t2—t1/\F(d >0/\X(%<O/\sze—t1
dA dA
U(—
S 0T >0

A ((% > O)U(% < 0ATime = t)))))



Validity Domain Note first that the validity domain of the subformula ) =
94 > 0N (22 > 0)U(% < 0ATime = ts)) is computed at each time point s;
like this:

n Jj—1
T T T
Dsuw ,Dsl,‘fi‘? >0 N LJ(ID&7 b <O/\T1me to N (ﬂ (Dsk,%>0))
Jj=t k=1
Since D aa g is either empty or equal to the whole space when % is re-

Sisqr

spectively negative or strictly positive, it holds that DT . 18 empty if 4 dt . < 0,
otherwise:

n j—1
T _ T -
Ds“w - U(DGJ, 4 <OATime=to ((1(,D3k7 i >0))

Jj=i k=1
n j—1

= U(DZ;,%SOHIDS Time=t, (ﬂ(Di’%bo))
J=i k=i

- U D:Z;,Time:tg

GE{t .} (L2 )g SOAVEE{i,....j —1},(44 )5, >0

— U {Times, }

JE{t ... m}| (%2 )é <OAVEE{i,....j—1},(42)s, >0

A

This union is in fact restricted to the first point s; after s;where %1 is no longer

strictly positive.
With the same reasoning, the validity domain for the whole formula becomes:

Drgy = U {Times, , — Times,, }
(i,5)eP

where P is the set of pairs of successive peaks:

dA dA dA dA
= — ) < — s, <
= () 100 > OA (s SOA (D), > 0N (), <0
, ., dA dA
/\_‘Elz<k<.] |(dt )Sk, >O/\(dt )Sk+1 SO}

T4 is a simplification of T" for ¢ since it contains all the peaks of the trace.

5 General Simplification Results

Example [5] shows that if one can simplify subformulae, one might obtain a sim-
plification for the whole formula. Indeed, with some hypotheses, the patterns
described in the previous section can actually be composed.

The first theorem simply notices that if the highest-level temporal subformu-
lae have a simplification, it also holds for the compound formula.



Theorem 1. Let T be a trace containing a state s;, ¢ and 1 two formulae and
T such that T jé) T and T' j;} T. Then T’ ji T for i equal to

ONY or ¢V or —¢ or Jxd or Vxo
Proof. We have DI , = DZ;@ and the same for 1, therefore DY ;. =DI /N
Dz;w = Dz;;#) N Dg;;w = Dg;;’qmw and the same for the other operators. O

Note that it is not true that if 77 is a simplification for ¢ and T" a simplifi-
cation for ), then the union of the points in 77 and T" defines a simplification
for ¢ V ¢: indeed, adding points to a simplification can invalidate it, for instance
if the formula contains X. Now, remark that if a subtrace contains extreme
domains, it is a simplification for F and G:

Theorem 2. Let T = (sg,...,8,) be a trace, ¢ a formula and T' = T; a sub-
strace of T such that:

Vje ST =, T and Y0 <i<mn,3je€J Di,qa C DLZ;@ (resp. DST,;,¢ ) Dzj@)
then: T' =gy T (resp. T' Zgo¢ T)

Proof. We have, V0O < i < n, DsTm; C Dj;’;lyd) it follows that |J;_, DsTi,¢ C
U e D5Tj7 o The other inclusion is immediate since J is a subset of the indices
{0,...,n} and we have simplification for ¢ at those indices. The result for G is
obtained similarly. a

Consider now the case of formulae without free variables, their domain is
either empty or full, which can be taken advantage of:

Corollary 1. LetT = (sq,...,Sn) be a trace, ¢ a formula, ¢ a constraint without
free variables and J. be the subset of indices defined by J. ={0<i<n|s; Ec}
IfVZ e J, TJC jzb T then TJC jF(c/\d)) T and TJC jg(ﬁcvd)) T

Proof. Let us prove the result for F, then Thm. [I] can give it for G. We will
simply apply the above theorem to ¢ A ¢. The first hypothesis of Thm. [2] is
satisfied by T’ since T, j; T = Tj, Ki/\¢ T. For the second hypothesis, it is

enough to notice that if ¢ € J, then DsT,L-,c/\qa =Dl .n DSTi’(z, =0. O

Note that in general F¢A is not easy to simplify. On the contrary Dy g(gvy) =
Dr.r(¢)vF(y) Which can benefit from Theorem

In many cases it is worth noticing that 7§ satisfies the hypothesis of Thm. |Z|
for any formula F(42 > 0AX(%2 <0A¢)).

Proposition 1. Let ¢ = F(% > 0AX(% <0Ac¢)) be a formula, T§ =4T

Proof. We will apply Thm. First note that for any extremum j in 75 we
have T'g <4 T, Indeed, s is in 7' but will not be used to compute D., on the
other hand it ensures that even the first extremum does have a predecessor of
the correct sign for the derivative. Now, notice that DST“ » Will be empty at each
point not a predecessor of a state of 7'9. At those points the domain on T is the
same as that at the preceding extremum (or s for the first) on 7. This enforces
the inclusion needed for the second hypothesis of Thm. [2] ad



Taken together, these results prove all the simplifications of the previous
examples except the second formula of Example [5] which is a deeply nested
formula with U that relies on the semantics of the Time variable.

6 Evaluation on Oscillation Constraints between the Cell
Cycle and Circadian Clock

Cellular rhythms represent an interesting field of research for systems biology,
where models should satisfy qualitative properties like oscillations, synchroniza-
tion among elements, and stability, as well as quantitative properties on the
lengths of the oscillations and phases. FO-LTL(Ry;;,) formulae are particularly
adequate to constraint biological oscillators models after these considerations.

We illustrate the use of FO-LTL(R};;,) constraints on a coupled model of the
cell cycle and the circadian clock, which are two such biological oscillators also
inter-regulated through clock-controlled cell cycle components. This gives rise to
complex behaviors as suggested in a detailed study by Nagoshi et al. [12].

We use a reference model of the mammalian circadian clock [I6] and a model
of a generic cell cycle oscillator focusing on the G2/M transition [19]. A molecular
link between the two systems is introduced with the regulation of the cell cycle
kinase Weel by the clock gene bmall [18].

Figure [1) shows two examples of traces obtained with different sets of pa-
rameters values, simulated over a time horizon of 200 hours. They give different
dynamical behaviors with correct oscillations of the components on the first one,
and damped oscillations on the other. By applying specifications expressed with
the temporal logic formalism on these traces, we investigate the behavior of the
system, or evaluate how far each set of parameter values is from reproducing
desired properties in a calibrating process.

The chosen FO-LTL(Ry;,,) formulae express constraints on the periods of
each module, phases between the components, as well as stability constraints.
Each formula accept T}, as a simplification of 7', where M is the set of molecules
appearing in the formula. They correspond to patterns associated to dedicated
solvers defined in [I4] and listed below with the corresponding properties. De-
tailed formulae are given in Appendix[B]with justifications for the simplifications.

— Constraints on the amplitude: MinAmpl(A,min). This constraints the molecule
A to an amplitude of at least min.

— Constraints on the period: DistanceSuccPeaks(A,d) specifies that there should
be two successive peaks of the molecule A distant by d. The results for the
evaluation on the first trace, computed either with the FO-LTL(Ry;,,) for-
mula and the generic solver or with the ad hoc pattern and dedicated solver
are the same and shown in Appendix[A] This gives an example of information
extraction from a trace with a FO-LTL(Ry;;,) formula.

— Constraints on the phases: DistancePeaks(A,B,d). Here d take as values the
possible distances between a peak of A and the following peak of B.



— Stability constraints on the oscillations: the specification MazDiffDistance-
Peaks(A,d) ensures that two successive peak-to-peak distances are not too
different, with a maximum difference of d, so that the oscillations of the
molecule have a relative regularity over time. A second stability constraint,
MazDiffDistancePeaks(A,d), constraints the differences between the peak
amplitudes, and is thus useful to filter out damped oscillations. The evalua-
tion of MazDiffAmplPeaks(PerCry,d) on the trace gives [d > 8.48801e — 05]
as the validity domain for the first trace and [d > 1.90466] for the second
trace. Thus the evaluation of the constraint extracts the maximum difference
in amplitudes between two successive peaks, and this result can be used as
a penalty for the set of parameter values that result in damped oscillations.

We apply these constraints to the traces presented above, before and after
performing the generic trace simplification where the trace T is replaced by the
trace Ty, that is Tp,, ¢, for all constrains in Table |1} except for Distance-
Peaks(MPF,PerCry) where the simplified trace is T§;pp percpy-

The initial traces are obtained with two different integration methods:

— In Biocham the default simulation method is the Rosenbrock’s numerical
integration method. This implicit method with variable step-size avoids gen-
erating too many points and does an impressively good job in producing rel-
atively sparse traces. With this method the first trace counts 971 point, 18
of which are kept in the simplified trace T, ¢, and 34 in T p o p.. oy - The
second trace T' counts 1047 points, Tp,, ., counts 35 points and Ty pp pey-ciry
counts 58 points. Since the initial traces have reasonable sizes the computing
times for the simplifications are short: between 8 and 16ms.

— However in some cases, the Rosenbrock method is less adequate than other
non-adaptive methods. For example, this is the case when the model in-
volves events, since the approximation done for numerical integration with
big steps, may not be valid for determining when an event becomes true.
Therefore we also consider the fourth order Runge-Kutta method with a
fixed step size. With this method, the trace optimisation is all the more
beneficial since the traces originally count more points: 20002 points here
for a time horizon of 200 hours. However the same trace simplifications take

longer: around 160ms for T'%,,.c,.,, and 250ms for TF/ pp perciry-

The execution times are compared in Table [[] where each constraint is identi-
fied by the equivalent pattern. We compare the evaluation of the constraints on a
trace with a high number of points (fixed Runge-Kutta method) or a reduced size
(adaptive Rosenbrock method), and either complete or simplified. Furthermore
the generic solver is compared to the dedicated solvers defined in [I4].

Table[] clearly shows that trace simplification provides a faster evaluation for
all constraints on all traces, with a speed-up up to 100 fold for the more complex
ones. The dedicated solvers benefit as well from this speed-up, however it has to
be noted that applying the dedicated solver on the full trace is faster than the
time needed for the trace simplification in this example. Although the simplifi-
cation can be done just once on a trace that can be then evaluated repeatedly



Table 1. Computing time (in ms) for the validity domain of different formula patterns.
Comparison between the first and second parameter sets, with variable or fixed step-size
over 200h, before (Bef.) and after (Aft.) simplification.

First trace Second trace

variable fixed variable fixed
Formula Solver Bef. Aft. Bef. Aft. Bef. Aft. Bef. Aft.
generic 12 0 260 12 0 204 0
Reached(PerCry) dedicated] 0 0 16 4 0 16 0
. generic 132 0 2728 132 4 2516 4
MinAmpl(PerCry) dedicated| 0 0 16 4 0 16 0
generic 64 0 72 4 1316 4
LocalMax(PerCry) dedicated| 0 0 36 4 0 44 4

generic 512 12 9584
dedicated 4 4 40
generic 532 12 10980
dedicated 4 0 40

—

708 80 12373 104
32 28 80 48
1188 36 23101 156
4 0 28 4

DistancePeaks(PerCry)

—
(99
(=]
[o5)
=
00 N[00 N 00 x| O OO =

DistanceSuccPeaks(PerCry)

. . generic (1700 32 34818 32|3056 96 60776 108
MaxDiffDistancePeaks(PerCry) dedicated 0 0 36 0 4 0 52 20
generic 456 16 9332 16| 496 32 9365 32

DistancePeaks(MPF,PerCry)

dedicated 4 4 68 12 4 0 76 20

for different patterns, the number of evaluations would have to be unlikely high
for any real benefit. In contrast, the time gain obtained with the combined use
of the trace simplification and the generic solver is clear. This suggests that the
trace simplification is a good strategy when the desired constraint is not covered
by the patterns with dedicated solvers, provided that the FO-LTL(Ry;;,) formula
accepts a good trace simplification accordingly with the theorems presented in

Sect. [3

7 Conclusion

We have shown that trace simplifications can result in speed-ups by several
orders of magnitude for the evaluation of temporal logic constraints. In particular
we have given some general conditions on the syntax of the formulae under
which it is correct to keep in the trace only the time points corresponding to
the local extrema of the molecules, or the crossing points between molecular
concentrations.

On an application concerning the modeling of the coupling between the circa-
dian clock and the cell cycle, we have shown that temporal logic patterns provide
an elegant way to extract information on the periods and phases from numerical
traces, and to use these formulae as constraints for parameter search. On simu-
lation traces, the speedup obtained in computation time was by several orders of
magnitude, even on relatively sparse simulation traces obtained by Rosenbrock’s
implicit method for numerical integration.

The trace simplifications described in this paper are implemented in Biocham
release 3.6.
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A Example of computation with both the generic solver
and a dedicated one

domains (t2-tl=d & F(d([CRY_nucl-PER_nucl])/dt>0 & X(Time=tl & d([CRY_nucl-PER_nucl
1) /dt=<0 & (d([CRY_nucl-PER_nucl])/dt=<0) U (d([CRY_nucl-PER_nucl])/dt>0 & ((
d ([CRY_nucl-PER_nucl])/dt>0) U (d([CRY_nucl-PER_nucl])/dt=<0 & Time=t2)))))).

Domain computed in 532 ms

d = 24.6095, tl = 15.2848, t2 = 39.8944

| d = 24.7193, tl = 39.8944, t2 = 64.6137
| d =25.1225, t1 = 64.6137, t2 = 89.7362
| d =24.7623, t1 = 89.7362, t2 = 114.499
| d = 24.7984, tl1 = 114.499, t2 = 139.297
| d =24.8047, t1 = 139.297, t2 = 164.102
| d =24.7704, t1 = 164.102, t2 = 188.872

domains (distanceSuccPeaks ([CRY_nucl-PER_nucl], [d])) .
Domain computed in 4 ms
d = 24.6095

Q00000




B Oscillation constraints

Constraints on the amplitude As shown in Ex. [l| the following formula,
accepting T'§ as a simplification of T', ensures that a molecule A has an amplitude
of at least min: ¢ = Jv | F(A <v) AF(A > v+ min).

It is equivalent to the pattern MinAmpl(A,min) described in [14] and asso-
ciated to a specific solver which computes the amplitude of A directly from the
trace.

Constraints on the period This formula extracts the distances between suc-
cessive peaks:

A A
¢ = H(tl,tg) ‘ d =ty —tl/\F(% > OAX(C;T <O0ATime =1t

dA dA
< il

AEE <ou(td >0
dA dA
il < ; —

A (( 7 > 0)U( o < 0ATime =t3))))))

This formula accepts TG as a simplification of 7', as shown in Ex. E| and with
Thm. It is equivalent to the pattern DistanceSuccPeaks(A,d). The specific
solver associated to this pattern computes the list of peaks of A directly from
the trace and exhibits the possible distances between two successive peaks. Com-
puting the validity domain of this formula enables to extract each peak-to-peak
distance from the trace, giving an estimation of the period of the oscillations.

Constraints on the phases

dA dA

6= 3t t2) [ 12— 11 = d AF(Z2 > 0AX(S2 < 04 Time = 1))
dB dB

F(— > X(— Time = t2

A (dt_O/\ (dt<0/\ ime = t2))

corresponds to DistancePeaks([A,B],d). TS U T§ is a simplification of T' for ¢.

Stability constraints The following formula constraints two successive peak-
to-peak distances to be similar by setting a maximum for the difference between



the two distances.

b=t tots) |2 —tl =dIAt3—12=d2Ad2—dl <dAdl—d2<d

/\F(% >0/\X(% < 0ATime =t

A (% < O)U(% >0

A ((% > O)U(% < OATime =ty

A (% < O)U(% >0

A > 0% <0 A Time = 1)

This formula accepts T'§ as a simplification of T" and the equivalent pattern is
MazxDiffDistancePeaks(A,d). A similar formula, useful to filter out damped os-
cillations, constraints the differences between the peak amplitudes, and is equiv-
alent to the pattern MazDiffAmplPeaks(A,d).
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