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Traceable 2D finite-element simulation of the
whispering-gallery modes of axisymmetric
electromagnetic resonators

Mark Oxborrow

Abstract— This paper explains how a popular, commercially- with circular trajectories, as supported by axisymmetds-r
available software package for solving partial-differential- onators within the class depicted in Fig. 1, upon which
equations (PDEs), as based on the finite-element method (FEM)’various recent scientific innovations [9], [10], [11], [18fe

can be configured to calculate, efficiently, the frequencies and b d. M fth t ial soft K f
fields of the whispering-gallery (WG) modes of axisymmetric ased. Many of the current commercial soitware packages lor

dielectric resonators. The approach is traceable; it exploits
the PDE-solver's ability to accept the definition of solutions
to Maxwell's equations in so-called Wweak form'. Associated
expressions and methods for estimating a WG mode’s volume,
filling factor(s) and, in the case of closed(open) resonators, its
wall(radiation) loss, are provided. As no transverse approxima-
tion is imposed, the approach remains accurate even foquasi-
transverse-magnetic/electric modes of low, finite azimuthal mode
order. The approach’s generality and utility are demonstrated by
modeling several non-trivial structures: (i) two different optical
microcavities [one toroidal made of silica, the other an AlGaAs
microdisk]; (ii) a 3rd-order sapphire:air Bragg cavity; (iii) two
different cryogenic sapphire WG-mode resonators; both (ii) and
(iii) operate in the microwave X-band. By fitting one of (iii) to
a set of measured resonance frequencies, the dielectric constan
of sapphire at liquid-helium temperature have been estimated.

. INTRODUCTION Fig. 1. Generic axisymmetric resonator in cross-section (ahdwdilf-plane).

N ON-TRIVIAL electromagnetic structures can be modA dielectric volume (in 3D) or ‘domain’ (in 2D) is enclosed by afectric
A . -wall (E1) —or one subject to some different boundary condjtias per
eled through computer-aided design (CAD) tools i ubsubsection IlI-E.2. This domain comprises several subiten{®1, D2,

conjunction with programs for numerically solving Maxwell and D3), each containing a spatially uniform dielectricaticould be just
equations. Though alternatives abound [1], [2], [3], thitela free space). Some of these subdomains (D2 and D3) are bourtdedaity
oten use the fne-element method (FEM) 4] (5. Wit 2250 o (€5 E20m £ The resertr o optonly e
such a scheme, a problem frequently encountered when i@posing an electric or magnetic wall over this plane, oniaitthe upper
tempting to determine the values of electromagnetic parangelower half of the resonator need be simulated.
ters from experimental data is a lacktadceability. significant
dependencies between the data, the model's configuratiof@deling electromagnetic resonators suffer, howevem feo
settings, and the inferred values of parameters cannot ‘Bénd spot’ when it comes to calculating, efficiently (henc
adequately isolated, understood, or quantified. Tradeati#- accurately), such resonators’ whispering-gallery modée
mands that both the model’s definition and its solution remaPopular MAFIA/CST package [13] is a case in point: as Basu
amenable to complete, explicit description. And, furtherep et al [14] and no doubt others have experienced, it cannot
convenience requires that the representations adoptetiigor Pe configured to take advantage of a circular WG mode’s
purpose be concise —yet wholly unambiguous. known azimuthal dependencéz. exp(+iM¢), whereM (an
integer> 0) is the mode’s azimuthal mode order, apndhe

azimuthal coordinate. Though frequencies and field paitern

_ _ can be obtained (at least for WG modes of low azimuthal
Certain compact electromagnetic structures support ¢loggqqe order), the computationally advantageous reductfon o

whispering-gallery (WG) modes. Though elliptical [6] or Ve e problem from 3D to 2D that the resonator’s rotational
non-planar (‘crinkled’ [7] or ‘spooled [8]) WG morpholo- gymmetry affords is, consequently, preclublezhd the ability

gies exhibit advantageous features with respect to certgiimylate high-order WG modes with sufficient accuracy (for
applications, this paper considers only (closed) WG mOdﬁﬁatrological purposes) is, exasperatingly, lost.

Revised manuscript received October XX, 2006. This work wamparted
by the UK National Measurement System’s Quantum Metrologyfmme. 1About the best one can do is simulate a ‘wedge’ [over an azirhdtmaain
The author works at the National Physical Laboratory, Tegidin, UK. A¢ = w/(2M) wide] between radial electric and magnetic walls.

A. Whispering-gallery-mode resonators
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B. Brief, selected history of WG-mode simulation equations’ ‘curl’ operators. At least two research grouggeh
nevertheless developed in-house software tools for ciogl

he WG modes of axisymmetric dielectric resonators, that:
i) solve for all field components.€. no transverse approxi-
gbation is invoked), (ii) are 2D (and thus numerically effit)e
and (iii) effectively suppress spurious solutions (withdatri-

The method of ‘separating the variables’ provides anaytic
expressions for the WG modes of right-cylindrical unifor
dielectric cavities (or shells) [15], [16], [17]. By matciy
expressions across certain boundaries, approximate W@&-m

solutions for composite cylindrical cavities can be obtdin mental side-effects) [30], [21], [22], [32], [33]. The meth

[18], [19], [9], whose discrete/integer indices (related t . o .
; : e described in this paper sports these same three attritWits.
symmetries) provide a nomenclature [20] for classifying th gard to (jii), the approach adopted by Aubcet al was

lower-order WG modes of all similar structures. Extensior{g use different finite elementsi¢. a mixture of ‘Nedelec
of the basic mode-matching method encompassing spatiaefli:){d ‘Lagrange’ -both 2nd order)' for different components
non-uniform field polarizations have been developed [3]. ; o )
: o ; ._of the electric and magnetic fields; Oseguedaal [32], on
The accurate solution of arbitrarily shaped amsymmeltnctahe other hand, used a so-called ‘penalty term’ to suppress
dielectric resonators requires numerical methods. Aparhf ’

the finite-element method (FEM) itself, the most developeﬁpu”ous) divergence of the magnetic field. Stripping avsy

and (thus) immediately exploitable alternatives inclugiegn motlvatmg remarks, applications and |IIustr§tlons, tpa;per,
) . . In essence, translates the latter approach into exphieak-

here for reference —not considered in any greater detgjl): ) . ;

. i L ) ! rm’ expressions, that can be directly and openly ported to
the Ritz-Rayleigh variational or ‘moment’ methods [21]2]2 N ) .

. 2 . . any partial-differential equation (PDE) solver (most ridya
[23], (ii) the finite difference time domain method (FDTD})|[1 COMSOL/FEMLAB [27]) capable of accepting such
[24], and (iii) the boundary-integral [2] or boundary-elent P pting '
methods (BEM, including FEM-based hybridizations thereof
[25]). Zienkiewicz and Taylor [4], particularly their tabl3.2,
indicate various commonalities between them (and FEM). A. Weak forms

The application of the finite-element method to the solvingcope: The resonators treated below comprise volumes of
of Maxwell's equations has a history [26], and is now agielectric space bounded by either electric or magnetidswal
industry [13], [27], [28]; ref. [4] supplies FEM's theoretl (or both) —see again Fig. 1; the restriction to axisymmetric
underpinnings. Though the method can solve for all three edsonators is only invoked at the start of subsection Il-Be T
a WG mode’s field components, the statement of Maxwellig@sonator’s dielectric space comprises voids. free space)
(coupled partial-differential) equations in componentiiccan and pieces of (sufficiently low-loss) dielectric materiéb
be onerous, if not excluded outright by the equation-sglvindefault) enclosing surfaces will generally be metalliofre-
software’s lack of configurability. With circular whispag- sponding to electric walls. When modeling resonators whose
gallery modes, the configurational effort can be signifigantforms exhibit reflection symmetries, where the magnetic and
reduced by invoking a so-called ‘transverse’ approxinmtioelectric fields of their solutions transform either symriwety
wherein only a single (scalar) partial-differential edoatis or antisymmetrically through each mirror plane, perfecgma
solved (in 2D). Here, either the magnetic or electric field isetic and electric walls can be alternatively imposed ovesé
assumed to lie everywhere parallel to the resonator’s dxisglanes to solve for different ‘sectors’ of solutions.
rotational symmetry (see figure B.1 of ref. [29]). This appro  The electromagnetic fields within the dielectric volumes of
imation is, however, uncontrolleddVarious FEM-simulations the resonator obey Maxwell's equations [34], [17], as they a
based upon it have been reported in several recent wogsplied to continuous, macroscopic media [35]. Assumimg th
[14], [11], [12]* This paper demonstrates that, through onlsesonator's constituent dielectric elements have neségior
a modicum of extra configurational effort (and, with respeeit least the same) magnetic susceptibility, the magnetit fie
to ref. [11], using exactly the same FEM software platformytrengthH will be continuous across interfaceédhis property
the transverse approximation and its associated doubtbe&amakes it advantageous to solve fdr (or, equivalently, the
wholly obviated. magnetic flux densityB = pH —with a constant global

A problem that besets the direct application of FEM to thenagnetic permeability:), as opposed to the electric field
solving of Maxwell's equations is the generation of (manygtrengthE (or displacementD). Upon substituting one of
spurious solutions [30], [31], associated with the localgm Maxwell’s curl equations into the another, the problem cau
invariance, or ‘null space’ [31], that is a feature of theo that of solving the (modified) vector Helmholtz equation

Vx(e!'VxH)—aV(V-H)+c29*H/0t> =0 (1)

II. METHOD OF SOLUTION

2lt is remarked parenthetically here that FDTD may be regarded a
variant of FEM employing local, discontinuous shape funidt is perhaps . . -
also worth acknowledging that, for resonators comprisirgj p few, large .SUbJeCt to approprlate boulndar¥ conditions (read On).' H?re
domains of uniform dielectric, the boundary-integral methathased on IS the speed of light and=" the inverse relative permittivity
Green functions), which —in a nutshell- exploit such umifily to reduce tensor; one assumes that the resonator’s dielectric elsraen

the problem’s dimensionality by one, will generally be more catafionally . 1 . ..
efficient than EEM. linear, such thaé~" is a (tensorial) constant.e. independent

3t is noted paranthetically that basic mode matching [9] aisokes the Of field strength. Provided no magnetic monopoles lurk iesid
same transverse approximation and is thus equally uncaedroll

4Srinivasanet al [12] state to be ‘using a full-vectorial model’, though 5The method described in this paper could be to extended tor&anators
whether and to what extent it improves upon the transverseogippation as containing dielectrics with different magnetic suscefities by setting up
defined in ref. [29] they do not explain. (within the PDE-solver ke. COMSOL) ‘coupling variables’ at interfaces.
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the resonator, Maxwell's equations demand tHalbe free of ei‘jl are the components of the inverse relative permittivity

divergencej.e. V-H = 0. The middle, so-called ‘penalty’ term tensor. The three terms appearing in the integrand comespo
on the left-hand side of equation 1 acts to suppress spurialisectly to the three weak-form terms required to define an
solutions, for which (in generalyV - H # 0; it has exactly appropriate model within a partial-differential-equatisolver.
the same form as that used by Oseguetiaal [32].6 The Assuming that the physical dimensions and electromagnetic
constanta: controls the penalty term’s weight with respecproperties of the resonator’s components are temporally in
to its Maxwellian neighborsp = 1 was taken for every variant (or at least ‘quasi-static’), solutions or ‘modéake
simulation presented in sections IV and V. the formH(r;¢) = H(r)exp(—i2n ft), wherer is the vector

Reference [17] (particular section 1.3 thereof) suppliesai spatial positiont the time, andf the mode’s resonance
primer on the electromagnetic boundary conditions statééquency. The last, ‘temporal’ term in equation 6’s intayt
here. The magnetic flux density at any point on a (perfeathn thereupon be re-expressed-gg/f)2H(r)* - H(r), where
electric wall satisfied8 - n = 0, wheren denotes the wall's ¢ = 27 /c; this re-expression reveals the integrand’'s complete
surface normal vector. Providing the magnetic susceftibil dual symmetry betweeR ™ andH.
of the dielectric medium bounded by the electric wall is not
anisotropic, this condition is equivalent to

B. Axisymmetric resonators

H-n=0. (2)
o ) The analysis is now restricted to axisymmetric resonators,
The electric field strength at the electric wall obeys where a system of cylindrical coordinates (see top right Big
Exn=0; (3) aligned with respect to the resonator's axis of rotatioyaf-s

) ) ~_metry, has component&, ¢, z} = {‘rad(ial)’, ‘azi(muthal)’,
these two equations ensure that the magnetic(electria) fieyi(al) }. The aim is to calculate the resonance frequencies
strength is oriented tangential(normal) to the electridl.waang field patterns of the resonator’s circular WG modes, whose
As is pointed out in reference [32], equation 3 is a so—callqghase varies as efip/ ¢), with M = {0,1,2, ...} the mode’s
‘natural’ (or, synonymously, a ‘naturally satisfied’) balary 5zimuthal mode ordérViewed as a three-component vector
condition within the finite-element method —see ref. [4].  fie|d over (for the moment) a three-dimensional space, the

The boundary conditions corresponding to a perfect magme-independent part of the magnetic field strength nowsak
netic wall (dual to the those for an electric wall) are the form

on=0 @ H() = €19 { H7(r,2) 0 Ho(r2), Ho(r2) ) (1)
and
Hxn=0; (5) Where an ‘' & /(—1)) has been inserted into the field’s az-

imuthal component to allow, in subsequent solutions, atdh

these two gqugtions ensure thqt the electriq displar&)—mponem amplitude%H’”,H‘ﬁ,HZ} to be each expressible
ment(magnetic field strength) is oriented tangential(r@dym 55 5 real amplitude multiplied by a common complex phase

to the magnetic wall. Again, the latter equation is natyralkacior, The relative permittivity tensor of an axisymmetri

satisfied. . . ~dielectric material is diagonal with entries (running dotie
One now invokes Galerkin’'s method of weighted re5|dua[§agona|)€diag_ — {e1,€1,¢,}, wheree(c.) is the material’s

[4]; ref. [31] provides an analogous treatment when solvingative permittivity in the axial direction (in the trarenge or

for the electric field strengthH). Both sides of equation 1 ‘perpendicular’ plane —as spanned by its radial and azieduth
are multiplied (scalar-product contraction) by the Compledirections).

conjugate of a ‘test’ magnetic field strendth, then integrated One now substitutes equation 7 into equation 6's integrand;

over the resonator's dielectric volume. Upon expanding ﬂf@xtbooks provide the required explicit expressions fog th

permittivity-modified “curl of a curl’ operator (o extra@ \qcior gifferential operators in cylindrical coordinatfs],
similarly modified Laplacian operator), then integrating b[17]_ A radial factor, r, is included here from the volume
parts (spatially), then disposing of surface terms throtf8h oqrars measure: dv= 27 drdé dz (the common factor
electric- or magnetic-wall boundary conditions statedvabo of 27 is dropped from all expressions below.) The first,
one arrives (equivalent to equation (2) of reference [32]) a ‘Laplacian’ weak term is given by

/V[(v x H") E (V x H) - (V x H*)é (VxH)= (é +B+rC)/(eLey), (8)
a(V-H) (V- -H)+c2H" - 0°H/ot*]dV =0, (6) where

where ‘fv’ denotes a volume integral over the resonator and

(VxH)z(VxH) =37 [VxH e, [VxH];, where A= {e[HH? - M(H°H" + H°H") + M*H"H")]

. . . +eMPH?H?}, (9)
8Though COMSOL can implement mixed (‘Nedelec’ plus ‘Lagrandjeie

elements [21], it was found that equation 1's penalty ternth(uis weighting
factor somewhere in the range01 < « < 10) could, in conjunction with “The method does not requird/ to be large; even modes that are
2nd-order Lagrange finite elements (applied to all three comapts ofH), themselves axisymmetric, corresponding/tb = 0, such as the one shown
always satisfactorily suppress the spurious modes. in Fig. 6(b), can be calculated.
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B=e, [H*(H® — MH") + H*(H® — MH")] and
— ) M(H*H + H*HY), (10) H? =0. (23)
Note that the transformatiofn,, — —n,,n, — n,}, connects
C={e HH? equations 17 and 22, and equations 20 with 21. The above

weak-form expressions and boundary conditioviz, equa-
tions 8 through 23 are the key results of this paper: once
Notation: H? denotes the partial derivative df¢ (the az- inserted into a PDE-solver, the WG modes of axisymmetric
imuthal component of the magnetic field strength) with respedielectric resonators can be readily calculated.
to r (the radial component of displacemengtc. Here, the
individual factors and terms have been ordered and grouped [1l. POSTPROCESSING OF SOLUTIONS
so as to display the dual symmetry. Similarly, the weak ggnal Haying determined, for each mode, its frequency and all
term is given by three components of its magnetic field strenigtas a function

~ D of position, other relevant fields and parameters can begeteri

a(V-H)(V-H)= O‘{T +E+rF} (12) " from this information.

+e[(H7 — HD)(H; — HI) + HZHZ] ). (11)

where
A. Other fields (related through Maxwell’'s equations)

Straightaway, the magnetic flux densBy= pH. As no real
(‘non-displacement’) current flows within a dielectri§] x
E=(H'+ H?)(H" — MH?) H(t) = D(t)/dt, thusD = —i(27f)~'V x H(t). And, E =

+ (gr _ Mﬁ¢)(H;‘ + H?), (14) e 'D, wheree~! is the (diagonal) inverse permittivity tensor,
as already discussed in connection with equation 6 above.

D = H"H" — M(H?H" + H°H") + M*H?H?, (13)

F = (H' + H?)(H" + H?). (15)

And the temporal weak-form (‘dweak’) term is given by ~ B. Mode volume
e o ) Lot L Ed b fre oy Accepting various caveats (most fundamentally, the proble
H -0°H/0%t =c " r (H"Hj;+H"H,+H"Hf) of mode-volume divergence —see footnote 10) as addressed by
=—&f2r(H"H" + H’H® + H*H?), (16) Kippenberg [29], the volume of a mode is defined as [12]
S Jo—s. clEPPdV
mode — —= ; 24
Vinod max|e|E|[?] (24)
Iss:remax[...], denotes the maximum value of its functional
argument, and/ [ [, _ ...dV denotes integration over and
around the mode’s ‘bright spot’ —where its electromagnetic
C. Axisymmetric boundary conditions field energy is concentrated.
An axisymmetric boundary’s unit normal in cylindrical
components can be expressed{as,0,n.} —note vanishing C. Filling factor
azimuthal component. The electric-wall boundary condgio
in cylindrical components, are as followd:- n = 0 gives

where H;, denotes the double partial derivative df”
w.r.t. time, etc. Note that none of the terms on the right-

hand sides of equations 8 through 16 depend on the azimutvr\m
coordinateg; the problem has been reduced from 3D to 2D

The resonator’s electric filling factor, for a given dieléct
component (labeleddiel.’), a given mode, and a given field
H'n, + H*n, =0, (17) direction, (dir." € {radial, azimuthal, axial}), is defined as

andE x n = 0 gives both Fdin [ J S, €pol. 1B 2AV (25)
e E|2dV ’
HI — Hi =0 (18) JJ Tl
where| [ [, ...dV denotes integration over the component’s
volume andpol. = {L, ||} for dir. = {radial or azimuthal,
eL(H® — H"M + H?r)n, — e)(H*M — H?r)n, = 0. (19) axial}. The numerators and denominators of equations 24

) ) o _ and 25 can be readily evaluated using the PDE-solver's post-
When the dielectric permittivity of the medium bounded byygcessing features.

the electric wall is isotropic, the last condition reduces t

(H® — H"M + H®r)n, — (H*M — H?r)n, =0. (20) D. Wall loss (closed resonators)

Real resonators suffer losses that render @ of their
modes finite. The energy stored in a mode’s electromag-
netic field isU = (1/2) [ [ [ p|/H[*dV. For axisymmetric
(H*M — H¢r)n. + (H® — H"M + H¢r)n. =0, (21) resonators, the 3D volume integrdl [ [dV reduces to a
2D integral [ [(2nr)drdz over the resonator's medial half-
plane. The surface current induced in the resonator’s simgjo
H*n,.—H™n, =0 (22) electric wall is (see ref. [17], page 205, for example) =

and

The magnetic-wall boundary conditions, in cylindrical com
ponents, are as follow® - n = 0 gives

andH x n = 0 gives both
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nxH; the averaged-over-a-cycle power dissipated in the wallighere z, is the impedance of free space. A bound on the
Pioss = (1/2) [ [ Rs|H¢|*dS, whereH, is the tangen/tial (with mode’s radiative)-factor can thus be expressed as

respect to the wall) component bf, R, = (7 fu/o)'/? is the

wall's surface resistivity (see refs. [17],( [34]ér, ihe wall’'s @raa. > (87f/e)A, (28)
(bulk) electrically conductivity, and f the mode’s frequency. approaching equality when the WG mode’s bright spot lies
For axisymmetric resonators, the 2D surface intedrdldS (in effect) at an antinode of the mode’s standing wavétere
reduces to a 1D integrgl(27r)dl around the periphery of the is exactly that given by equation 27, with = H{'***?, only
resonator's medial (r-z) half-plane. The quality factaefided now the enclosing electric wall is in the radiation zone.

as 27 f U/ P, due to the wall loss can thus be expressed as2) Overestimator of loss via outward-going free-space im-
pedance matching:A complementary bound can be con-

Qwall = M A= (4rfp 0)1/2 A, (26) structed by replacing the above closed resonator’s etewtil
R with one, of the same form, that attempts to match, impedance

where A, which has the dimensions of a length, is defined 44se, the open resonator’s radiation —and thus absorb it.
For transverse, locally plane-wave radiation in the raolat

A= J [ JIH[?dV zone (in free space) sufficiently far from the resonator, the
~ [ [|H¢2dS required impedance-matching boundary condition on thé wal
t . . .
[ [I(HT)? + (H®)? + (H?)?|r drdz is zon x H = E — n(E - n),}° wheren is the wall's inward-

: - (27) pointing normal. Upon differentiating with respect to tirmed
JUH? + | Ho i — HY [P dl using Maxwell’s displacement-current equation, this ¢tboa

Again, both integrals (numerator and denominator), hencan, for a given mode, be generalized to

Qwan itself, can be readily evaluated through the PDE-solver’s

post-processing features. c08(fmi){V x H = n[(V x H) - n}

+ Sin(ﬁmix) i CfmodeN X H =0, (29)

E. Radiation loss (open resonators) where fm_ode is _th_e mode’s freql,!encyj = 27/c as_befor(_a,
- . . . andf,.i, is a ‘mixing angle’*! for impedance matching (with
Prehmmary' remarlfs.th open Whlspgrlng-galley-mode respect to an outward-going radiatiom. — /4. Unless
resonators _(elther microwave [38] or optical [10], [12Pet Omix — N7/2 for integer N, the i — v/—1 in equation 29
otherwise highly localized WG mode spreads throughout fregzo oy the hermitian-ness of the matrix that the PDE-solver
space’ energy flows away from the mode's bright spot (wher% required to eigensolve, leading to decaying modes with

the electric- and magnetic-field amplitudes are greatest) @omplex eigenfrequencieg,oq., and corresponding quality

radiation. The tangential electric and magnetic fields on aW ctors equal [12] toR[fumodel /23| fmode], Where R]...] and
closed surface surrounding the bright spot constitute, iy S o ot

o ) S o ...] denote real and imaginary parts. Without fine tuning,
Field Equivalence Principle’ [39], [40] (as a formalizati of o gnciosing wall's shape will not everywhere lie exactly
Huygen’s picture), a secondary source of this radiation.

: ) 3 X orthogonal to the direction of propagation of the WG mode’s
1) Underestimator of loss via retro-reflectiorConsider a |,4iation: thus. even foé. .. — /4, the radiation will not

closed, equivalent of the open resonator, with an enclosigg completely absorbed at the wall. A bound on the mode’s
electric wall in the WG-mode’s radiation zone. The Wa||'$adiativeQ-factor can thus be expressed as

form is chosen such that —as far as possible— the open

resonator’s radiation propagates (as a predominantigyease Qrad. < R[fmode) /23] fmodel; (30)

and locally plane wave) in a direction that is locally normadpproaching equality on perfect absorption (no reflec)ions

to the wall. The electric wall then reflects the otherwiserope

resonator’s radiation back onto itself —so creatingtanding IV. EXAMPLE APPLICATIONS

wave i.e. a loss-less mode. Through an argument reminiscentThe source codes and configuration scripts used to imple-

of Schelkunoff's induction theorem [39], [41], the tangaht ment the simulations presented in this and the next sect®n a
magnetic field of this modeH?°**d, at any point just inside freely available from the author.

the closed resonator’s electric wall, can be related todhtte

corresponding open resonator’s radiatiét’", at the same A. ‘Sloping-shoulders’ cryogenic sapphire microwave res-
point, throughH{**" > 2H{'°**!. The radiation loss can beonator [UWA]

evaluated by integrating the cycle-averaged Poyntingovect

. . 0 This axisymmetric resonator [42] comprises a piece of
over the electric wallj.e. Paa. = (1/2) [ [ 20/H{P"2dS, Y [42] P P

monocrystalline sapphire mounted (co-axially) within direy

8]t is here pointed out that, at liquid-helium temperaturés bulk and 10Note that the direction (polarization) & or H in the wall's plane is
surface resistances of metals can depend greatly on thes lef/¢inagnetic) not constrained; the two fields need only be orthogonal whtirtrelative
impurities within them [36], and the text-bogk~1/2 dependence of surface amplitudes in the ratio of the impedance of free spage
resistance on frequency is often violated [37]. 1The two terms on the left-hand side of equation 29 can be viesged

9As understood by Kippenberg [29], this observation impligattthe implementing electric- (cf. equation 3) and magnetic-wall @juation 5)
support of equation 24'§ [ fb _,, --dV integral (spanning the WG mode’s boundary conditions, respectively. The (composite) bogndandition can be
bright spot) must be somehow limited, spatially, or otherwisymptotically) continuously adjusted between these two cases by varymgniking angle
rolled off, lest the integral diverge. [The so-called ‘gtiaation volume’ 6.,;x. [Parenthetically:,,;x = —m/4 corresponds to impedance matching
associated with the radiation extends to infinity.] inward-coming (as opposed to an outward-going) radiation.]
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TABLE |
ELECTRIC FILLING FACTORS FOR THEWGE;4 0,0 MODE OF UWA'S
SLOPING-SHOULDERS RESONATOR

Féir | radial azimuthal axial
sapphire| 0.80922 0.16494 7.016 x 103

vacuum | 0.01061 8.0533 x 10~3  1.6543 x 10~

S

single, given azimuthal mode ordéd, at [with respect to
Fig. 2(b)] full mesh density, on a standard, 2004-vintage pe
sonal computer (2.4 GHz, Intel Xeo CPU), without altering th
PDE-solver’s default eigensolver settings. With the azhal
mode order set al/ = 14, the model resonator's WGE; o
mode was found to lie at 11.925 GHz, to be compared with
11.932 GHz found experimentally [9].
Wall loss: This mode’s characteristic lengthwas determined
to be2.6 x 10%. Based on ref. [37], one estimates the surface
resistance of copper at liquid-helium temperature to7be
10~3 Q per square at 11.9 GHz, leading to a wall-l@3sof
c d: 3.5 x 10! for the WGE 4,0 mode.

Filling factor: Using equation 25, the electric filling factors for
Fig. 2. UWAS sloping-shoulder cryogenic sapphire resonafa) medial the \WGE, , , mode were evaluated. These factors, presented
cross-section through its geometry; the grey(white) shadiorresponds to . = . .
sapphire(vacuum): Sand $ indicate the sapphire piece’s upper and lowe TABLE | above, are in good agreement with those labeled
‘shoulders’. (b) mesh of the resonator's model structure geed by the ‘FE’ in Table IV of ref. [9], that were obtained via a wholly

FEM-based PDE-solver; for clarity, only every other meshing is drawn ; ; ;
lie. (b) displays the half-mesh; within (c) and (d). the (loghmic) grey 'nacPendent FEM simulation of the same resonator.

scale reflects the absolute value of the vectorial magr¢tand electricE
f@eld:s, resp_ectively; white arrows indicate the magnitude @dinection of each B. Toroidal silica optical resonator [Caltech]
field’s medial component.
1d

drical metal can —see Fig. 2(a); the crystal's optical () ‘c
axis lies parallel to the resonator’'s geometric axis. Tieeg@s
sloping shoulders (Sand S ibid.) makes accurate simulation
via mode-matching less straightforward. The resonatorisf 1
as encoded into the PDE-solver, is taken from figure 3 of
ref. [9]*2, with the piece’s outer diameter, the length of its
outer axial sidewall, the axial extent of each sloping stieul
and the radius of each of its two spindles equal to, at liquid-
helium temperaturei.g. including cryogenic shrinkages —see
section V) 49.97, 19.986, 4.996, and 19.988 mm, respegtivel
The sapphire crystal’s cryogenic permittivities were take
be {eL, ¢} = {9.2725,11.3486}, as given in ref. [20]. Since
the sapphire piece and the metal can do not exactly share a
common transverse (‘equatorial’) mirror plane, the spegdi
up of the simulation through the placement of a magnetic or
electric wall over such a plane (thus halving the 2D region to
be analyzed) is precluded. b:

Fig. 2(b) dlsplays t,he FEM-baS.ed PDE-SOIV,erS meShmg Elfg 3. (a) Geometry (medial cross-section) and dimensions ofodel
the model resonator's structure; in COMSOL's vernacdlar igigal silica microcavity resonator —after ref. [11]; therus' principal
the mesh comprises 7296 base-mesh elements and 88%&veterD = 16 um and its minor diameted = 3 um; the central vertical
degrees of freedom ('DOF). It took typically 75 seconds, tgssngsg[‘ceol'grd'gjﬁ;iéhgIgfs(;”titgf(ToggrSitﬁrfn?Sng&%%Fgéo?nézle}zg?yr?gltgy-
obtain the resonator’s lowest (in frequency) 16 modes, foroger the dashed box appearing in (a) for this resonators_TF,—os

whispering-gallery mode; white arrows indicate the eledigld’s magnitude
and direction in the medial plane.

121t is remarked here that the drawn shape of the sapphire pieiigure 3
of ref. [9] is not wholly consistent with its given dimensiont outer axial
sidewall is too long and the slope of its shoulders too slight The resonator modeled here, based on ref. [11], comprises

13The size/complexity of a finite-element mesh is quantified, WiGOM- a silica toroid Supported above a substrate by an integral
SOL Multiphysics, by (i) the number of elements that go to corepits ’

so-called ‘base mesh’ and (ii) its total number of degrees eédom (DOF) int.erilor ‘web’; its geomgtry is shown in Fig. 3(a). The talsi
—as associated with its so-called ‘extended mesh'. principal and minor diameters aréD,d} = {16,3} um,
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respectively. The silica dielectric is presumed to be whollFig. 4(a), duplicates the structure defined in figure 1(a) of
isotropic {.e., no significant residual stress) with a relativéSrinivasaret al[12]; the disk’s constituent dielectric (alternate
permittivity of e5;;. = 2.090, corresponding to a refractivelayers of GaAs and GaAlAs) is approximated as a spatially
index of ng. = /e = 1.4457 at the resonator’'s op- uniform, isotropic dielectric, with a refractive index edu
erating wavelength (around 852 nm) and temperature. Tteen = 3.36. The FEM-modeled domain comprised 4928
FEM model's pseudo-random triangular mesh covered an @4adrilateral base-mesh elements, with DB0003. Adopt-
by-8 pm square [shown in dashed outlined on the right ahg the same authors’ notation, the resonator's,JiE,=11

Fig. 3(a)], with an enhanced meshing density over the silieghispering-gallery mode, as shown in Fig. 4(b), was found
circle and its immediately surrounding free-space; inlfotaat 2.372517 x 10'* Hz, equating toA = 1263.6 nm; for
the mesh comprised 5990 (base-mesh) elements, with BOFcomparison, Srinivasaet al found an equivalent mode at
36279. Temporarily adopting Spillanet al's terminology, the 1265.41 nm [as depicted in their figure 1(b)]. It is pointed
resonator's fundamental TE-polarized 93rd-azimuthatieao out here that the white electric-field arrows in Fig. 4(b)dan
order mode (where ‘TE’ here implies that the polarization aflso, though to a lesser extent, in Fig. 3(b)] ar perfectly

the mode’s electric field is predominantly aligned with theertical —as the transverse approximation taken in reta®n
toroid’s principal axis Aot transverse to it) was found to have[9], [11], [29] would assume them to be; tlggasiness of the

a frequency 018.532667 x 10'* Hz, corresponding to a free-true mode’s transverse-electric polarization is thus ke
space wavelength of = 848.629 nm (thus close to 852 nm)Mode volumeUsing equation 24, but with the mode excited
Using equation 24, this mode’s volume was evaluated to bBe a standing-wave (doubling the numerator while quadrgpli
34.587 um?; if, instead, the definition stated in equation 3he denominator), the mode volume is determined to be
of ref. [11] is used, the volume becomes 72.288° —i.e.a 0.1484 x um3 ~ 2.79(\/n)3, still in good agreement with
factor of n%, greater. These two values straddle the volunfarinivasanet als ~2.8(\/n)3.

of ~55 um?, for the same dimensions of silica toroid andRadiation lossThe TE,—1 ,,—11 mode’s radiation loss was es-
(TE) mode-polarization, as inferred by eye from figure 4 dfmated by implementing both the upper- and lower-bounding
ref. [11]. estimators described in subsection IlI-E. Here, the mistod
and its mode were modeled over an approximate sphere,
equating to a half-disk in 2D (medial plane). The half-
] disk’s diameter was 12um and different electromagnetic
The mode volume can be reduced by going to smallghngitions were imposed on its semicircular boundary—see

resonators, which, unless the optical wavelength is COMME&H)g. 514 With an electric-wall conditionife. equations 2 and
surately reduced, impliewer azimuthal mode orders. The

C. Conical microdisk optical resonator [Caltech]

b:

Fig. 5. Radiation associated with the same JTk ,,—11, A = 1263.6 nm]

whispering-gallery mode as presented in Fig. 4 (all three nugpsthe same
absolute false-color scale): (a) standing-wave (equalvand- and inward-
going) radiation with the outer semicircular boundary set asagnetic wall;

(b) the same but now with the boundary set as an electric v&lsqmewhat
traveling (more outward- than inward-going) radiation witile boundary’s
impedance set to that of an outward-going plane-wave in fraees(and with
the normal magnetic field constrained to vanish). That (c)8até&on field is

somewhat dimmer than (b)’s is consistent with the two diffeestimates of
the resonator’s radiativ€) corresponding to (b) and (c) [see text].

a. C.

b:

Fig. 4. (a) Geometry (medial cross-section) and (half-)mesloihmodel

GaAlAs microdisk resonator —after ref. [12]; the disk's meddiameter isD . .

= 2.12 um and its thickness (axial height)= 255 nm; its conical external 3 Of, €quivalently, 17 and18, 20}) imposed on the half-
sidewall subtends an angi= 26° to the disk’s (vertical) axis; for clarity, disk’s entire boundary [as per Fig. 5(b)], the right-hand of

only every other line of the true (full) mesh is drawn. The medetiomain equation 28 was evaluated. And. with tBex n = 0 condi-
in the medial half-plane is a rectangle stretching from 002L5 um in ) ’

the radial direction and from -0.5 to +0,6m in the axial direction. (b) tiON (viz. equation 3) on the boundary’s semicircle replaced
False-color surface plot of the (logarithmic) electricdiéhtensity |[E|> for by the outward-going-plane-wave(-in-free-space) impeda

the resonator’s Tk-1,,,—=11 mode atA = 1263.6 nm; again, white arrows ; iti ; i ; - ;
indicate the electric field's magnitude and direction in thediakplane. matching condition\(iz. equation 29 Wittt = m/4), while

) ) . _ 1tis acknowledged that, in reality, the microdisk’s subtnaould occupy
model ‘microdisk’ resonator analyzed here, as depicted arconsiderable part of half-disk’s lower quadrant.
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the H - n = 0 condition (equation 2) is maintained, the rightassuming an (isotropic) loss tangent @b x 1075 as per
hand side of equation 30 was evaluated for the radiatioepatt F&T, corresponds to a dielectric-logg factor of 1.334 mil-
displayed in Fig. 5(c). For a pseudo-random triangulati@sim lion. Through equations 26 and 27, and assuming a surface
comprising 4104 elements, with DOE 24927, the PDE resistance of 0.026) per square as per F&T, the wall-loss
solver took, on the author’s office computer, 6.55 and 13.@% factor was determined to be 29.736 million, leading to
seconds, corresponding to Figs. 5(b) and (c), respectively a compositeQ (for dielectric and wall losses operating in
calculate 10 eigenmodes aroutd73 x 10'* Hz, of which the tandem) of 1.278 million. These thrég values are consistent
TE,—1,m=11 mode was one. Together, the resultant estimatéth F&T’s stated (compositegp of ‘1.3 million, and limited

on the TE—: =11 mode’s radiative-loss quality factor isentirely by dielectric losses’.

(1.31 < Qraq. < 3.82)x107, to be compared with the estimate
of 9.8 x 10% (at 1265 nm) reported in table 1 of ref. [12].

D. Distributed-Bragg-reflector microwave resonator

The method’s ability to simulate axisymmetric resonators
of arbitrary cross-sectional complexity is demonstratedeh
by simulating the 10-GHz Tg& mode of a distributed-Bragg-
reflector (DBR) resonator as analyzed by Flory and Taber
(F&T) [43] through mode matching. The resonator’s model

a: b: .

Fig. 6. (a) Geometry (medial cross-section) of a 3rd-ordetritiged-
Bragg-reflector resonator within a cylindrical metallic cémence electric Fig. 7.  (a) Close-up of NPL's cryo-sapphire resonator, witle main
interior walls —represented by a solid black rectangle)pasref. [43], the body of its outer copper can removed. The resonator’s chathfdEBMEX
can’s interior diameter is 10.98 cm and its interior heighf®53 cm; the sapphire ring has an outer diameter 6.0 mm and an axial height of
horizontal and vertical grey (or pink —in color reprodualicstripes denote ~25.1 mm. The ring’s integral interior ‘web’, 3mm thick, lies pHel to,
cylindrical plates and barrels of sapphire; white rectasglorrespond to right and is centered (axially) on, the ring’s equatorial planed & supported
cylinders/annuli of free-space; the vertical arrow intiisathe resonator’s axis through a central copper post. Optical refraction at thg'sirouter surface
of rotational symmetry, with which the sapphire crystal’sxisais aligned; falsely exaggerates its internal diameter. Above the rirgtao loop probes
a magnetic wall is imposed over the resonator's equatorialepzf mirror for coupling electromagnetically to the resonator’s ogeratl whispering-
symmetry (dashed horizontal line; cf. M1 in Fig. 1). (b) Fatsder plot of the gallery mode. (b) geometry of the resonator in medial crossese@ink/grey
(logarithmic) electric-field intensityE|? over the top-right medial quadrant indicates sapphire, white free space; bounding thesedtiilelomains, and
of the rotationally invariant ¥/ = 0) TEp; mode; note how the mode is shown as solid black lines, are copper surfaces belongitigetresonator’s can
strongly localized within the resonator’s central cylindé free-space and web-supporting post [the dashed vertical line (longht)iruns along the
resonator’s cylindrical axisr(= 0)]. (c) false-color map (logarithmic scale)
t ted th h li it itt of [H|? for the resonator's 11th-azimuthal-mode-order fundamentasiy
geome ry was generate ' rough an auxi |<_a1ry SCrpt WIt§f nsyerse-magnetic (N4 in ref. [7]'s notation) whispering-gallery mode at
in MATLAB. Its corresponding mesh comprised 5476 base&:146177 GHz (simulated), as detailed on the 6th row of TABLEThe
mesh elements, with 66603 degrees of freedom (DOF) withite arrows indicate the magnitude and direction of this reddectric
L . ' field strength E) in the medial plane.
8 edge vertices for eack \/4 layer of sapphire. Based on leld srength £) in the medial plane
ref. [44]'s quartic fitting polynomials, the sapphire ciai&
dielectric permittivities (at a temperatuf® = 300 K) were
set toe; = 9.394 (consistent with ref. [43]) and; = 11.593.
The TE); mode shown in Fig. 6(b) was found to lie at
10.00183 GHz, in good agreement with F&T's ‘precisely
10.00 GHz'. Using equation 25, the mode’s electric filling The method is here applied to determine the two dielectric
factor for the resonator's sapphire parts was 0.1270, whigtonstants of monocrystalline sapphire (HEMEX grade [45])
at 4.2 K from a set of experimental data, listed in the four

15The complex arithmetic associated with the impedance-matdivogd- right-most columns of TABLE II. and Corresponding to the
ary condition meant that the PDE solver’s eigen-solutiork tapproximately ’

twice as long to run with this condition imposed —as comparelite electric- resonator whose '””afds are shown in Fig. 7(a). Allow_":mce
or magnetic-wall boundary conditions that do not involve clerprithmetic. was made for the shrinkages of the resonator’s constituent

V. DETERMINATION OF THE PERMITTIVITIES OF
CRYOGENIC SAPPHIRE
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TABLE Il 12
NPL'S CRYOGENIC SAPPHIRE RESONATORSIMULATED AND 0—=Q —
46—g O—H—~ *—0—
EXPERIMENTAL WG MODES COMPARED = 114 8 o O",/o/'g,.,sz A A
Simulated Simul. Simul. Mode Experi- Exper. Exper. Exper. % 104 /8 ——5— E. — ,
minus perp. para. 1B  mental widt® turn-  Kram® = Té?’fﬁ':
experim.  filing filling freq. over  split. 2 §§ - s -
frequency factor factor temp. Qﬁ) 94 —8 T — -
[MHz] [GHZ Hz] K] [Hz] S . g/.v - o -simulated |
-0.451 0.860 0.090 2 6.954664 285 780 o 29O, 4 -
0.945 0930 0028 S2 7.696176 825 <42 158 g 8w o ® -identified ]
0.881 0.453 0517 S$4 8.430800 o 7 7 -— M
-1.538 0.951 0.014 S2 8.449908 445 < 4.2 418 74 o o ---- -qTE |
-0.412 0.674 0.299 N2 9.037458 4.8 <
-2.208 0.071 0917 N} 9.148385 9 5.0 57 é é 1'0 1'2 1'4
-1.916 0.960 0.009 $2 9.204722 155 <4.2 88
0.498 0.251 0.733 S} 9.267650 12 5.2 180 Azimuthal mode order
1.055 0.287 0.685 N4 9.421207 80 5.0
-0.177 0.437 0543 S3 9.800335 84 4.8 1850 Fig. 8. Plot used to aid the identification of experimentahveimulated WG
0.358 0.223 0.763 S1 9.901866 10 5.0 160 modes. Solid horizontal lines (16 in total) indicate the eeritequencies of
-2.269 0.965 0.007 S3 9.957880 24 <4.2 the former. Solid circles indicate the identification of a siated mode with an
1.32 0.730 0.246 S4 10.27242 153 5.0 experimental one (the difference in their frequencies spwads to much less
0.19 0.200 0.787 S3 10.53863 9.5 4.9 24 than a circle’s radius in all cases); hollow circles indicsimulated modes that
0.00 0.181 0.808 S} 11.17728 245 4.9 42 were not identified with any experimentally measured one. Quassverse-
4.13 0.972 0.006 S3 11.44918 10 5.2 magnetic (q-TM) and quasi-transverse-electric (g-TE) WG reaifehe same

family are joined by (blue-)dashed and (red-)dotted linepeetively; a few

athe nomenclature of ref. [7] is used for this column. of the lowest-lying mode families are labeled using standatation [7].

bfull width half maximum (-3 dB).

the difference in frequency between the orthogonal paitarfiding-wave
resonances (akin to a ‘Kramers doublet’ in atomic physicg)@ated with the
WG mode; the experimental parameters stated in other columnsspord
to the strongest resonance (great&st at line center) of the pair.

The nominal error assigned to each reflects uncertaintidgsein

identifications of certain experimental resonances, ewcly |

almost equally close (in both frequency and other attrigute

two or more different simulated WG modes. Errors resulting

from a finite meshing density [33], or those from the finite

dimensional/geometric tolerances to which the resormtor’
) shape was known, were estimated to be small in comparison.

materials from room to liquid-helium temperattfeand the
values of sapphire’s two dielectric constants @nde|) were
initially set equal to those specified in ref. [20]. Fig. 7¢b
geometry was meshed with quadrilaterals over the medi&l hal
plane, with 8944 elements in its base mesh, and with BOF

108555. For_a given azimuthal mode ordM, calculating the The author thanks Anthony Laporte and Dominique Cros
lowest 16 eigenmodes took around 3 minutes on the authogsy v | imoges, France, for an independent (and corrob-

office PC (as previously specified). With Fig. 8 as a guidgy4ting) 2D-FEM simulation of the resonator considered in

each of th? 16 experimental resonances was identified Qttion V, and Jonathan Breeze at Imperial College, London,
particular simulated WG mode, as specified in the 4th columyy, g, 4qesting the DBR resonator analyzed in subsection IV-
of TABLE Il, lying near to it in frequency; these identificatis o350 thanks three NPL colleagues: Giuseppe Marra, for
were influenced by requiring that the measured attributg§e of the experimental data presented in Table II, Conway
(e.g. the FWHM linewidths) of the experimental resonances,anam for his estimated values for the cryo-shrinkages of

belonging —as per their identifications— to the same ‘family,ohire and Louise Wright, for a detailed review of an early
of WG modes €.9.S1, or N2) varied smoothly with/. Filling manuscript.

factors were then calculated to quantify the differentramge

in the frequency of each identified mode with respect to
and ¢. The two dielectric constants were then adjusted to
minimize the x? variance of the residual (simulated-minus-[1]
measured) frequency differences. The resultant bestifiesa
to which the simulated data occupying the three left-mo
columns in TABLE Il correspond, were:
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