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ABSTRACT

The design of the IP protocol makes it difficult to reliably identify
the originator of an IP packet. IP traceback techniques have been
developed to determine the source of large packet flows, but, to
date, no system has been presented to track individual packets in an
efficient, scalable fashion. We present SPIE, the Source Path Isola-
tion Engine, a hash-based technique for IP traceback that generates
audit trails for traffic within the network, and can trace the origin of
a single IP packet delivered by the network in the recent past.

1 Introduction

Attack and other malicious network traffic has serious financial and
national security consequences, and has led to the research and de-
velopment of many types of defense mechanisms. One such mech-
anism is a system for tracing packets back to their points of origin.
Such IP traceback systems are important first steps in making at-
tackers (or, at least, the systems they use) accountable. Yet, there
are a number of significant challenges in the construction of such a
tracing system including determining which packets to trace, main-
taining privacy, and minimizing cost, both in time spent tracking
packets and in storage used to keep information.

BBN Technologies has developed SPIE, the Source Path Isolation
Engine, a single-packet IP traceback system that provides the abil-
ity to identify the source of a particular IP packet given a copy of
the packet to be traced, its destination, and an approximate time of
receipt. Historically, tracing individual packets has required pro-
hibitive amounts of memory; one of SPIE’s key innovations is to
reduce the memory requirement (down to 0.5% of link bandwidth
per unit time) through the use of Bloom filters [2]. By storing only
packet digests, and not the packets themselves, SPIE also does not
increase a network’s vulnerability to eavesdropping. SPIE therefore
allows routers to efficiently determine if they forwarded a particu-
lar packet within a specified time interval while maintaining the
privacy of unrelated traffic. SPIE also traces packets across trans-
forms, where the packet is significantly changed within a router as
part of the forwarding process. Such transforms include fragmen-
tation, source routing, tunneling, and reflections like ICMP query
and error packets.

This work was sponsored by the Defense Advanced Research Projects
Agency (DARPA) under contract No. N660001-00-C-8038. Views and con-
clusions contained in this document are those of the authors and should not
be interpreted as representing official policies, either expressed or implied.

2 Current Traceback Systems

Currently proposed IP traceback systems employ one of three basic
methods: route inference based on traffic flows, end-host supported
packet auditing, and network supported packet logging. Each
method of traceback requires a different balance of implicit and
explicit support to enable traceback of packet transformations.

Route inference, effective only in tracing large packet flows, uses
controlled flooding of network links to measure flow variations and
infer a flow’s path [3]. Traceback is based on packet flow charac-
teristics rather than individual packet characteristics. The form of a
packet does not affect traceback, just the rate of packets.

Individual packet characteristics are important within traceback
systems that actively audit packets. Packet auditing based on end-
host support requires that intermediate routers on a packet’s path
notify the destination host that it forwarded the packet. The des-
tination host collects these notifications to construct the traversed
path. Trace information can be delivered to the end host within the
packet itself [13, 16] or within a separately routed packet [1].

In the third traceback method, the network rather than end hosts is
tasked with maintaining audit trails of network traffic. Such trace-
back systems log a representative amount of packet content at the
routers. This content can range from the entire packet [11] to a
32-bit digest [14, 15]. Extraction techniques are used to access the
packet logs and perform traceback.

3 Overview of SPIE

SPIE falls into the third traceback method. It is a log-based trace-
back system that uses auditing techniques at network routers to
support the traceback of individual IP packets. Traffic auditing
is accomplished by computing and storing 32-bit packet digests
rather than storing the packets themselves. Every packet traversing
a SPIE-enhanced router is recorded in a digest table; digest tables
are paged at a specified rate and are representative of the traffic for-
warded by the router during a particular time interval. A cache of
digest tables is maintained for recently forwarded traffic.

If a packet is determined to be offensive by some intrusion detec-
tion system (or judged interesting by some other metric), a query is
dispatched to SPIE which in turn queries routers for packet digests
of the relevant time periods. SPIE then builds a graph of the routers
visited by the packet.
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Figure 1: The fields of an IP packet. Fields in gray are masked
out before digesting, including the Type of Service, Time to Live
(TTL), IP checksum, and IP options fields.

3.1 Packet Digesting

Three somewhat disparate requirements were considered in deter-
mining the optimal digest input.

1. Unique packet representation: To decrease digest collisions,
the digest input must uniquely represent every packet. Two
different packets should not produce identical digest input.

2. Identical digest input: The digest input of a packet must be
identical at all hops along the forwarding path to produce a
trail of identical digests for traceback.

3. Limited digest input size: It is desirable to limit the size of
the digest input both for performance and reasons concerning
transforms.

In their work on trajectory sampling, Duffield and Grossglauser
encountered similar requirements while sampling a subset of for-
warded packets in an attempt to measure traffic flows [4]. SPIE uses
the same approach of masking variant packet content and selecting
an appropriate-length prefix of the packet to input to the digesting
function. The choice of invariant fields and prefix length is slightly
different, however.

Figure 1 shows an IP packet and the fields included by the SPIE di-
gesting function. SPIE computes digests over the invariant portion
of the IP header and the first 8 bytes of the payload. The mutable
header fields (i.e., TTL and checksum) are masked prior to digest-
ing, as well as the TOS field that may be frequently modified by
packet marking protocols. Also masked are the IP options because
options often cause routers to rewrite the option field at various in-
tervals. To ensure that a packet appears identical at all steps along
its route, SPIE masks or compensates for these fields when com-
puting the packet digests. Packet transformation may occasionally
modify the fields used in the digest function, so SPIE must handle
these situations.

Study was required to determine that the first 8 bytes of payload,
along with the header as masked in figure 1, are sufficient to differ-
entiate almost all non-identical packets. Figure 2 presents the rate
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Figure 2: The fraction of packets that collide as a function of pre-
fix length. The WAN trace represents 985,150 packets (with 5,801
duplicates removed) collected on July 20, 2000 at the University of
Florida OC-3 gateway [7]. The LAN trace consists of one million
packets (317 duplicates removed) observed on an Ethernet segment
at the MIT Lab for Computer Science.

of packet collisions for an increasing prefix length for two repre-
sentative traces: a WAN trace from an OC-3 gateway router, and a
LAN trace from an active 100Mb Ethernet segment. (Results were
similar for traces across a number of sites.) Two unique packets
which are identical up to the specified prefix length are termed a
collision. A 28-byte prefix results in a collision rate of approxi-
mately 0.00092% in the wide area and 0.139% on the LAN.

Unlike the study reported by Duffield and Grossglauser [4, fig. 4],
results reported in figure 2 represent only unique packets; exact du-
plicates were removed from the packet trace. Close inspection of
packets in the wide area with identical prefixes indicates that pack-
ets with matching prefix lengths of 22 and 23 bytes are ICMP Time
Exceeded error packets with the IP identification field set to zero.
Similarly, packets with matching prefixes between 24 and 31 bytes
in length are TCP packets with IP identifications also set to zero
which are first differentiated by the TCP sequence number or ac-
knowledgment fields.

The markedly higher collision rate in the local area is due to the
lack of address and traffic diversity. This result does not signifi-
cantly impact SPIE’s performance, however. LANs are likely to
exist at only two points in an attack graph: immediately surround-
ing the victim and the attacker(s). False positives on the victim’s
local network can be easily eliminated from the attack graph—they
likely share the same gateway router. False positives at the source
are unlikely if the attacker is using spoofed source addresses, as
this provides the missing diversity in attack traffic, and remain in
the immediate vicinity of the true attacker by definition. Hence, for
the purposes of SPIE, IP packets are effectively distinguished by
the invariant portion of the first 28 bytes of the packet.

3.2 SPIE Architecture

The SPIE system has two parts, a data generation agent (DGA) that
is inside or near each router (or a selected set of key routers), and a
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Figure 3: The SPIE network infrastructure, consisting of Data Gen-
eration Agents (DGAs), SPIE Collection and Reduction Agents
(SCARs), and a special purpose SCAR called the SPIE Traceback
Manager (STM).

hierarchical set of SPIE Collection and Reduction (SCAR) agents
that ask these DGAs if they have seen the packet in question. The
DGA produces the packet digests and stores the digests in the bit-
mapped digest tables. The digest tables are stored locally at the
DGA for an appropriate period of time, depending on how far back
into history a query may need to go. Figure 3 shows the major
architectural components of the SPIE system.

Consider a packet traversing a router. The DGA performs a set of
independent hashes on the IP and TCP/UDP headers of the packet,
producing a set of different hash values. Each of the hash values are
used as indices into a bit array, and a “1” is set in each index’s posi-
tion in the digest table bit array. This is the Bloom Filter mentioned
above. Multiple hashes are used to reduce the possibility that two
different packets map to the same place in the bit array.

Note that this method will never produce a false negative: If a
packet was seen by the router, each of the bits will be set in the
digest table, and thus the query will find the bits set. The opposite
is not true, however—a DGA may answer “yes” even if it did not
see the packet if the bits are set as a result of hashing other pack-
ets. This is called a false positive, and the design of the SPIE DGA
is carefully tuned to reduce the occurrence of a false positive to a
manageable probability.

The rest of the SPIE system is concerned with the query mech-
anism, attack graph generation, and system security. Since the
system is hierarchical, with the network logically broken into re-
gions, the traceback mechanism is scalable to networks of any size.
Queries are required to be authenticated, and each SPIE component
checks that each entity making a query is authorized to perform the
particular query. Queries and their replies are also required to be
encrypted. More subtly, since the packet logs are kept as digest
tables, there is no way to learn the contents of any specific packet
from the digest data.

3.3 Packet Transforms

IP packets are modified during the forwarding process, the two
most common modifications being the decrementing of the TTL
field and the recalculating of the checksum. However, packets may
encounter many more dramatic modifications as they traverse the
network—modifications that transform the packet from one form
to another.

IP packet transformation is the modification of a packet as the re-
sult of network layer protocol processing, router error, or malicious
intent. SPIE handles only packet transformations whose change of
packet state allows for or enhances network data delivery. Such
transformations satisfy hardware needs, network management and
protocol requirements, and source route requests.

A packet may undergo any number of transformations during net-
work traversal. The transformation of a previously transformed
packet is referred to as transform composition. Transform com-
position not only occurs across multiple routers along a forwarding
path, but within a single router as well. For instance, routers may
encapsulate a packet and then find need to perform fragmentation
due to the increased packet length. A packet received by an end
host, therefore, may be the result of a combination of transforma-
tions.

Attackers engineer IP packet transformations for two reasons, to
overwhelm available resources for denying service or taking advan-
tage of protocol implementation vulnerabilities, or to hide within
a convolution of changing packet shapes. Distributed reflector at-
tacks [8] are good examples of the first type. The attacker spoofs
the source address in an ICMP request packet, or some packet that
will cause an ICMP error packet to be generated. The resulting
ICMP packet is returned to the spoofed source address—the tar-
get of the attack—instead of the real sender of the original packet.
When this attack is magnified by thousands of (unknowingly) con-
spiring computers sending packets that trigger ICMP responses at
the same time, the resulting explosion of transformed packets over-
whelms the target and denies service.

The second reason for exploiting transforms—to hide—relies on
the notion that a packet that changes its shape often, perhaps going
through tunnels and being source routed, can confuse a traceback
system that expects attack packets to remain largely intact. IP trace-
back, ingress filtering [5], and other address verification techniques
help to mitigate attacks that rely on spoofed addresses, so attackers
are having to explore more complicated ways of hiding the source
of the attacks.

SPIE supports basic transformations required of RFC 1812-
compliant routers, as well as other notable forms of packet trans-
formation.

Source Route

SPIE digesting omits all IP options. Therefore, SPIE is not required
to explicitly support transformation of the option fields. The source
route options, however, result in the modification of the destination
address field within the IP header in addition to the option field,
which does require SPIE support.

SPIE’s digesting process is based on the final destination; the digest
input for a source routed packet always includes the final destina-
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tion within the destination field of the IP header, regardless of its
true position within the packet. The same method for digesting is
used during the traceback of source routed packets.

Fragmentation

To avoid the need to store packet payload, SPIE supports inversion
of the first packet fragment only. An attacker cannot control which
fragments are received by a victim, assuming that fragmentation
occurs within the network itself, so the victim will eventually re-
ceive a first fragment to use in traceback. Non-first fragments may
be traced to the point of fragmentation which, for fragment-based
attacks [6], is the attacker.

ICMP

Fortunately for SPIE, ICMP error packets include the IP header and
at least the first eight payload bytes of the originating packet [9].
Thus, SPIE need not record any ancillary data. Ancillary data must
be stored, though, to identify the router as the one that generated the
error. To invert an ICMP error packet, the original packet is simply
extracted from the payload.

IP-in-IP Tunneling

SPIE must handle separately the encapsulation and decapsulation
transformations of IP-in-IP tunneling. At the encapsulating router,
a record is stored to identify the router as the source of the tunnel,
but no ancillary data requires storage. An encapsulated packet is
inverted by extracting from the payload the original IP packet.

Inversion at the decapsulating router consists of prepending the en-
capsulating IP header to the packet presented for traceback. There-
fore, sufficient data must be recorded at the point of decapsulation
to reproduce the encapsulating IP header.

Network Address Translation

All address and port data required for inversion of packets that un-
dergo NAT processing is already maintained by the NAT translation
table residing at the router. To ease memory usage, SPIE takes ad-
vantage of the NAT table, recording as ancillary data a reference to
the appropriate translation entry of the NAT table. The address and
port mappings within the translation entry are used during inver-
sion. Although fairly static, precautions must be taken in the case
of a modified NAT mapping.

IPsec

A packet that successfully passes IPsec decapsulation is, with high
probability, the exact packet sent by the trusted network at the other
end of the tunnel. IPsec explicitly prevents insertion of fake IPsec
packets: Packets that are modified or replayed within an IPsec tun-
nel will not pass IPsec decapsulation. Consequently, IPsec tun-
nels are essentially additional links between routers in the network
topology graph. This fact means that IPsec transforms can be han-
dled by simply noting that the packet was transformed into or out of
an IPsec encapsulation, but no additional data for inversion need be
kept. The traceback process then treats the other end of the IPsec
tunnel as if it were the router’s neighbor, and continues the trace
from there, in addition to what the physical topology reports as the
router’s neighbors.

4 SPIE Tap Box

The current router-based SPIE is predicated on the deployment of
SPIE-enhanced routers in place of existing routers in the network
infrastructure. We understood from the beginning that this deploy-
ment path was impractical, but chose a router-based platform as the
prototype because it simplified the engineering problems and al-
lowed us to focus on the research of inventing this novel method for
single packet tracing. In order to be commercially viable, a SPIE
system must be incrementally deployable in the existing network
infrastructure without retrofit or “forklift” upgrade. This reality has
led to the concept of a SPIE Tap Box.

A SPIE Tap Box is a small, special purpose device that implements
the full functionality of the SPIE DGA component but without the
benefit of access to the router’s forwarding engine and internal data
structures. Rather, the Tap Box must rely only on the information it
can glean by passively tapping the lines into and out of the router.

This approach raises interesting challenges. When SPIE is de-
ployed as a Tap Box rather than inside a router, there are choices
about where the Tap Box can be placed with respect to the router.
Once possibility is to place it next to the router, so each Tap Box
records information for its nearby router. Another approach is to
assign a Tap Box to each link, one between each pair of routers on
point-to-point links, and one for each broadcast network. This is
called the “link as vertex” approach because each Tap Box (vertex)
would sit on a network link. Neither approach changes the funda-
mental SPIE algorithms, however, so the choice is a matter of en-
gineering considerations. Analysis of the models, however, quickly
revealed that the link-as-vertex approach exploded the memory re-
quirements, so we have designed and implemented the Tap Box as
an adjunct device.

5 Conclusion & Future Work

Developing a traceback system that can trace a single packet has
long been viewed as impractical due to the tremendous storage re-
quirements of saving packet data and the increased eavesdropping
risks the packet logs posed. We believe that SPIE’s key contribu-
tion is to demonstrate that single packet tracing is feasible. SPIE
has low storage requirements and does not aid in eavesdropping.
Furthermore, SPIE is a complete, practical system. It deals with the
complex problem of transformations and can be implemented in
high-speed routers (often a problem for proposed tracing schemes).

The most pressing challenges for SPIE are increasing the window of
time in which a packet may be successfully traced and reducing the
amount of information that must be stored for transformation han-
dling. One possible way to extend the length of time queries can be
conducted without linearly increasing the memory requirements is
by relaxing the set of packets that can be traced. In particular, SPIE
can support traceback of large packet flows for longer periods of
time in a fashion similar to probabilistic marking schemes—rather
than discard packet digests as they expire, discard them probabilis-
tically as they age. For large packet flows, odds are quite high some
constituent packet will remain traceable for longer periods of time.

For a more in-depth description of SPIE in general, includ-
ing packet digesting and the query subsystem, please re-
fer to [12, 14, 15]. Also please see the SPIE website,
http://www.ir.bbn.com/SPIE.

4

Proceedings of the DARPA Information Survivability Conference and Exposition (DISCEX’03) 
0-7695-1897-4/03 $17.00 © 2003 IEEE 



References
[1] BELLOVIN, S. M., LEECH, M., AND TAYLOR, T. ICMP traceback

messages. Internet Draft, IETF, Oct. 2001. draft-ietf-itrace-
01.txt (work in progress).

[2] BLOOM, B. H. Space/time trade-offs in hash coding with allowable
errors. Communications of ACM 13, 7 (July 1970), 422–426.

[3] BURCH, H., AND CHESWICK, B. Tracing anonymous packets to their
approximate source. In Proc. USENIX LISA ’00 (Dec. 2000).

[4] DUFFIELD, N. G., AND GROSSGLAUSER, M. Trajectory sampling
for direct traffic observation. In Proc. ACM SIGCOMM ’00 (Aug.
2000), pp. 271–282.

[5] FERGUSON, P., AND SENIE, D. Network ingress filtering: Defeating
denial of service attacks which employ IP source address spoofing.
RFC 2267, IETF, Jan. 1998.

[6] MICROSOFT CORPORATION. Stop 0A in tcpip.sys when receiving
out of band (OOB) data. http://support.microsoft.com/
support/kb/articles/Q143/4/78.asp.

[7] NATIONAL LABORATORY FOR APPLIED NETWORK RESEARCH

(NLANR). Network traffic packet header traces. http://pma.
nlanr.net/Traces/Traces.

[8] PAXSON, V. An analysis of using reflectors for distributed denial-of-
service attacks. ACM Comp. Comm. Review 31, 3 (2001).

[9] POSTEL, J. Internet Control Message Protocol. RFC 792, IETF, Sept.
1981.

[10] POSTEL, J. Internet Protocol. RFC 791, IETF, Sept. 1981.

[11] SAGER, G. Security fun with OCxmon and cflowd. Internet 2
Working Group Meeting, Nov. 1998. http://www.caida.org/
projects/NGI/content/security/1198.

[12] SANCHEZ, L. A., MILLIKEN, W. C., SNOEREN, A. C., TCHAK-
OUNTIO, F., JONES, C. E., KENT, S. T., PARTRIDGE, C., AND

STRAYER, W. T. Hardware support for a hash-based IP traceback. In
Proc. Second DARPA Information Survivability Conference and Ex-
position (June 2001), vol. 2, pp. 146–152.

[13] SAVAGE, S., WETHERALL, D., KARLIN, A., AND ANDERSON, T.
Network support for IP traceback. ACM/IEEE Trans. on Networking
9, 3 (June 2001), 226–239.

[14] SNOEREN, A. C., PARTRIDGE, C., SANCHEZ, L. A., JONES, C. E.,
TCHAKOUNTIO, F., KENT, S. T., AND STRAYER, W. T. Hash-based
IP traceback. In Proc. ACM SIGCOMM ’01 (Aug. 2001), pp. 3–14.

[15] SNOEREN, A. C., PARTRIDGE, C., SANCHEZ, L. A., JONES, C. E.,
TCHAKOUNTIO, F., SCHWARTZ, B., KENT, S. T., AND STRAYER,
W. T. Single-packet IP traceback. ACM/IEEE Trans. on Networking.
to appear in December 2002 issue.

[16] SONG, D. X., AND PERRIG, A. Advanced and authenticated marking
schemes for IP traceback. In Proc. IEEE Infocom ’01 (Apr. 2001).

5

Proceedings of the DARPA Information Survivability Conference and Exposition (DISCEX’03) 
0-7695-1897-4/03 $17.00 © 2003 IEEE 


