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Tracer dispersion is studied in a plane fracture geometry with a radial flow between closely 
spaced parallel walls with either two smooth surfaces or one smooth and one rough surface. An 
echo dispersion technique in which the fluid is first injected into the fracture during a time Tbv 
and then pumped back through a detector is used in the experiments and is complemented by 
Monte-Carlo-type numerical simulations, For the smooth wall case, the Taylor dispersion 
mechanism is dominant when longitudinal molecular diffusion is negligible: it is verified 
numerically and experimentally that its transition to irreversibility only depends on the ratio of 
Ti, to the transverse diffusion time 7, across the fracture thickness. In addition, the variation 

of AT2/(4Ti,,rm) with respect to Tiny/rm is the same as for a flow of parallel geometry 

(AT2 being the mean square deviation of the transit time). Longitudinal molecular diffusion 
increases the global dispersion like T,,/( PeQrm) at low P&let numbers PeQ and long times due 
to the longitudinal velocity gradient. When one of the walls is rough, one expects to have a 
geometrical dispersion locally proportional to the velocity. A corresponding linear variation of 

AT2/(4Ti,vT,) with respect to dm is observed experimentally. 

I. INTRODUCTION 

Transport of fluid or chemical species in fractured 
rocks is a topic of widespread interest because of its nu- 
merous practical applications in areas such as petroleum, 
nuclear, chemical, and environmental engineering or 
hydrogeology.’ From the point of view of the geometrical 
and velocity field structures, fractured media represent an 
excellent example of heterogeneous materials: effectively, 
they very often display a broad range of characteristic 
length scales and their transport properties are strongly 
dependent on the connectivity and the spatial distribution 
of the tlow channels. For instance, in a system of fractures 
with a very broad distribution of apertures, the effective 
flow paths may involve only a small fraction of all fractures 
building up a sublattice of continuous paths made of the 
largest fractures.2’3 For individual fractures, the roughness 
of the fracture walls may strongly influence the structure of 
the flow inside them and the relation between their mean 
aperture and the individual permeability of each fracture.4 

It is therefore very important to characterize these flow 
field heterogeneities both at the scale of an individual frac- 
ture and at that of a system of many fractures. The present 
paper concentrates on the first problem: It presents an ex- 
perimental study of single model fractures with a well- 
defined geometry and both smooth and rough walls in a 
radial flow field. 

Tracer dispersion has been chosen as our experimental 
tool since it is very sensitive to flow heterogeneities and 
spatial velocity variations. It corresponds to the spreading 
of an initially localized tracer concentration distribution 
carried along by a Aowing fluid through the medium of 
interest. Tracer dispersion is induced by the combined ef- 
fects of molecular diffusion, velocity gradients inside indi- 
vidual flow channels and velocity variations from one 
channel to another;5S6 its use in fractured media has already 
been suggested by other authors.7 

More specifically, we have used an echo dispersion 
measurementsY9 where tracer is first injected into the sys- 
tem during a controlled time Tin” and then pumped back 
through a detector [Fig. 1). This technique is better 
adapted to radial flow than transmission dispersion in 
which tracer moves all the way through the sample toward 
an outlet detector; it also can give complementary infor- 
mation. Transmission dispersion is very sensitive to mac- 

roscopic length and velocity variations on the tlow paths 
between the injection and detection points. On the con- 
trary, we shall see that echo dispersion is mostly sensitive 
to local structure parameters such as the fracture mean 
aperture or its roughness. In addition, echo dispersion al- 
lows one to study the influence of the time lapse Tin” be- 
tween the initial injection of tracer into the sample and the 
reversal of the flow; Tin” is proportional to the mean depth 
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PIG. 1. Principle of an echo dispersion experiment in the radial Hele- 
Shaw cell how geometry. An invading solution (dark shading) is injected 
locally during a time T,, to displace a solution of different tracer con- 
centration (light shading) initially saturating the cell. It is then pumped 
back through a detector measuring the variation c(t) of the tracer con- 
centration. (a) View from above; (b) side view. 

of penetration of the tracer into the sample. 
We have also chosen to study the case of radial flow 

field (Fig. 1) which is a good approximation to the flow 
that would be induced by a local injection of fluid per- 
formed for instance inside a well or a borehole. It is not 
possible to obtain simple analytical solutions for the 
advection-diffusion equation in radial flow for the general 
case in which all dispersion mechanisms need to be taken 
into account: This is due to the dependence of the disper- 
sion coefficient on velocity which varies with distance. 

We shall first present the Taylor dispersion 
mechanism”’ I1 which is always present in two-dimensional 
(2-D) planar flow geometries. We shall then consider qual- 
itatively how this basic mechanism is modified in a radial 
geometry in which the flow velocity decreases with dis- 
tance from the injection point. In particular, we shall show 
that molecular diffusion is dominant both at very short and 
very long times, while Taylor dispersion is more important 
in the intermediate range. Our hypothesis will be con- 
firmed by numerical simulations which establish the depen- 
dence of the boundary between the various dispersion re- 
gimes on the flow velocity and on the geometrical 
parameters of the fracture. Then, we shall compare these 
theoretical results to those of experiments performed on a 
model structure made of two parallel glass plates. Finally 
we shall analyze the influence of the roughness of the frac- 
ture walls by comparing experimental results obtained with 
a model fracture with rough walls to the previous ones. 
The geometry is then closer to that of fractures in a real 
rock. We shall show that, in this case, geometrical disper- 

sion associated with the flow field disorder may be domi- 
nant at low velocities as it is in many three-dimensional 
(3-D) porous media. 

II. QUALITATIVE ANALYSIS OF ECHO TRACER 
DISPERSION IN A RADIAL FLOW FIELD INSIDE 
A 2-D FRACTURE 

A. Gaussian tracer dispersion 

In homogeneous systems, the variation of the tracer 
concentration C satisfies the classical advection-diffusion 
equation? 

ac 
,+u$=o,, $+4 ($l+$). (1) 

where II is the constant mean tracer velocity, and Dl1 and 
DL characterize, respectively, longitudinal (X direction) 
and transverse (JJ and z) dispersion relative to the mean 
flow direction. Equation ( 1) describes a “Gaussian” or 
normal dispersion for one-dimensional (1-D) flow. It is 
only valid if the dispersion process is the combination of a 
large number of uncorrelated stepsi21i3 (a similar hypoth- 
esis is stated in the central limit theorem). This assumption 
is not valid when large size flow inhomogeneities are 
present. 

Generally, Dll is larger than the molecular diffusion 
coefficient D, . Both are of the same order of magnitude 
only at very low flow velocities. The relative magnitude of 
the convective and diffusive effects is characterized by 
means of the P&let number Pe= Ud/D, (d is the charac- 
teristic aperture of the flow channels). Molecular diffusion 
is dominant when Pe is typically lower than 10. 

6. Taylor dispersion mechanism 

The first dispersion mechanism we study is Taylor 
dispersion:” it is associated with the local velocity gradi- 
ents in the Poiseuille velocity profile between the center of 
the channel and the walls. Taylor dispersion is usually 
studied in capillary tubes, although it will also be present in 
the flow between two plane parallel walls representing the 
simplest type of fracture. In a tube with a circular section, 
the longitudinal Taylor dispersion coefficient Dll varies as 
the square of the mean velocity for high enough P&let 
number values:” 

(2) 

where R is the radius of the capillary and the last term in 
Eq. (2) corresponds to pure molecular diffusion. 

Let us consider qualitatively the physical mechanism 
leading to Eq. (2) .14 Let us induce at t=O an abrupt vari- 
ation of the tracer concentration C at x=0. If there were 
no transverse molecular diffusion, the concentration vari- 
ation would propagate as a sharp front at the local velocity 
u(r) given by the parabolic law: 

(3) 
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[where U(Y) is the velocity at a distance r from the tube 
axis and U the average velocity across the cross section]. 
The front would then be spread over a distance AX increas- 
ing linearly with time: 

Ax con”=2Ut. (4) 

Molecular diffusion, however, acts radially to homogenize 
the concentration over the cross section and so limits the 
development of the parabolic profile. Let us define the 
characteristic molecular diffusion time T, of the tracer par- 
ticles across the section of the tube as 7,=R2/D,. 
Around this time r,, there is a transition toward a diffu- 
sive spreading regime where the front thickness Ax in- 
creases as 

Axdiff a m. (5) 

At the transition time t=r, , one has hx,,,~ AXdif so that 
D,, a U2R2/D, in agreement with the high-velocity limit 
of the rigorous equation (2). 

In the plane fracture geometry which is of interest to 
us, similar results are obtained. For a parallel constant 
velocity flow field between two parallel flat plates with 
smooth surfaces, the dispersion coefficient at long times 
becomes’ ’ 

(6) 

where a is the distance between the plates. 

C. Echo Taylor dispersion in radial and parallel flows 

Let us see now how these results are modified in the 
echo process that has been used in our experiments. In this 
technique, one first allows the tracer to penetrate into the 
flow channel before reversing the flow at time f= Tin” and 
monitoring then the returning concentration variation in 
the injection plane x=0. In laminar flows, the local veloc- 
ity u,(r) at all points in the flow tube becomes --u,(r) 
when the global flow direction is reversed. Therefore, in the 
absence of molecular diffusion, the linear spreading AX,,,,, 
given by Eq. (4) would be reversed and all particles would 
return to the plane x=0 at time t=2Tinv. This reversibility 
is approached at small inversion times Th,grm when lon- 
gitudinal molecular diffusion is expected to be the domi- 
nant spreading mechanism. At long times Tinv$Tm, the 
tracer concentration will be more homogenized across the 
flow and the tracer particles will lose all the “memory” of 
their initial transverse position. Then, the effective disper- 
sion is expected to be identical to that obtained in a trans- 
mission experiment with the same total duration 2Tinv. 
This argument is applicable to both the parallel plane and 
the circular tube geometries. 

Let us now consider the influence on the tracer disper- 
sion of the velocity gradients present in the radial geometry 
used in the present paper. Fluid flows radially with a flow 
rate Q from an injection point 0 between two infinite plane 
walls separated by a distance a=2d. Let the Oz axis be 
perpendicular to the solid walls located at z= Ad. The 
radial velocity field is 

(74 

so that the mean velocity U(r) averaged over the spacing 
between the plates is 

U(r) = Q/45- Hr. (7b) 

Therefore, the velocity decreases with r and, at sufficiently 
large distances, the local P&let number Pe= U(r)2d/D, 
becomes low enough for molecular diffusion to be the dom- 
inant spreading factor. 

1. Echo Taylor dispersion for Peg I 

In this case, we assume that molecular diffusion paral- 

lel to the flow is always negligible compared to hydrody- 
namic Taylor-like dispersion. Let us compare the two ge- 
ometries of a uniform flow parallel to the direction x and of 
a radial flow. In the parallel flow, the distance x traveled by 
a tracer particle after the time Tin” is given by 

x+-oThv (I-$),, 

where the coordinate z(t) is a random variable represent- 
ing the molecular diffusion of the tracer particles between 
the two plates. At time Tin”, the velocity U becomes - U 
and the particle reaches again the plane x=0 after a time t 
such that 

Us,“” ( l-$)dt-Ul;inv (l-$),=0. 

(8) 

The dispersion in the values oft reflects only the changes of 
the return times from one realization of the random vari- 
able z(t) to another. For a radial flow, the distance r of the 
particle from the injection point satisfies Eq. (7a): 

whence, by straightforward integration, 

~(t)+--$ s,““’ (l-q),. 

A comparison of this result with Eq. (8) leads to the im- 
portant conclusion that the tracer particle returns to the 
circle of radius ro, from where it started, at a time t given 
by exactly the same equation as for parallel flow. This 
result is not surprising since the transition from the parallel 
to the radial flow case is only a matter of change of vari- 
ables. Therefore the transit time distributions for echo ex- 
periments performed in these two flow geometries are iden- 
tical and controlled by the only parameters Tin”, d, and 
0,. More precisely, as remarked above qualitatively, it is 
the ratio of the inversion time Ti,, and the characteristic 
transverse diffusion time rm=d”/D, (across the channel 
half-width d) that determines the degree of reversibility of 
the dispersion (this point will be discussed in more detail 
below). 
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At times large compared to 7, the Taylor dispersion 
process will be completely irreversible. If the local P&let 
number is still large in radial flow, the width of the transit 
time distribution is the same as for a transmission disper- 
sion experiment with the same total duration F=2Tinv in 
parallel flow. The effective dispersion coefficient is there- 
fore given by Eq. (6) where the D,, term is neglected:15 

U2 At2 v’2(2d)2 

D” =-T-F=- ZOO,, 
(94 

or 

2 2d2 

-= 105D, ’ 4Tb, (9b) 

where A$ is the mean square deviation of the transit time 
of the tracer particles. At lower inversion times Tin” (but 
still when PeSl ), Eq. (9) will be replaced, according to 
the previous discussion by the following relation: 

Ii? Tinv 2 

4Tinvrm =g7,iE’ ( 1 
(10) 

where the function g(x) tends toward 1 at large x and 
describes the approach of the dispersion process to irre- 
versibility. 

2. Transition to irreversibility for echo Taylor 
dispersion (Peg 1, Tiny < r,,J 

Let us now consider qualitatively the variation of- 
with Tin, where g( Tinv/rm) is lower than 1. Let US assume 
that the local P&let number U(r)d/D, is always ~1. We 
shall use the simple case of a parallel Poiseuille flow of 
velocity u(z) between two parallel planes since we have 
shown that the transition to irreversibility is the same as in 
the radial case. Consider a particle initially at x=0 and 
z=zo when t=O. The particle is convected parallel to Ox at 
the local velocity u[z( t)] and makes in addition a sideways 
random Brownian motion Sz(t) with a variance %?(?> 
- D,,J. 4t short times tQr,, the mean lateral distance 

dm ~1 d S t ex ore is much smaller than the distance d be- 
tween the planes. One can therefore assume that the vari- 
ations of the longitudinal velocity experienced by the par- 
ticles correspond to a constant local shear rate 
y(zo) = (&/a~) (zo). These longitudinal velocity varia- 
tions result in a deviation Sx ( z. , t) with respect to the mean 
displacement xo(zo,t) =u(zo>t: 

t 
MzoJ) -y(zo) 

J‘ 
6z( t’)dt’. (11) 

0 

Thus the order of magnitude of the mean square deviation 
of the longitudinal displacement of the particles with re- 
spect to the mean value xo(zo,t) will be 

6x2(w) -~(zo)sz2(zo,t)t2-~2(zo)D,t3. (12) 

This deviation 6x2(zo,t) corresponds to irreversible disper- 
sion. This is the only mechanism present in echo experi- 
ments when Tin” c T,~ since the spreading associated with 
the dependence of u(zo) on z. is reversible and does not 
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FIG. 2. Poiseuille flow velocity u(z) between two parallel flat plates with 
a shear rate y=&(z)/& at the walls for Tin” <T, . AZ = ,&i repre- 
sents the order of magnitude of the distance of the wall over which tracer 
spreads through molecular diffusion during the time t. 

contribute to echo dispersion. Now, the displacement 
Sx(z,,r) is related to the deviation St(z,) in the transit 
times along a path by 6x(t) =u(zo)St(zo>. So, 

(13) 

The global echo dispersion results from an average over all 
particles launched at various zo. We therefore average 
6k(zo) by integrating over all the possible values of zo. The 
dominant contribution clearly comes from the low-velocity 
part of the flow (Fig. 2). There is a problem near the walls 
where the integral diverges: we shall take the range of 

integration to stop within the distance & of the walls 
where the particles can diffuse during the transit time t. If 
we assume that particles are released from x=0 at t=O 
with a uniform distribution of z values between -d and 
+d, one obtains 

A?=@@))-& 

Substituting expression 

s d-J&-,? - 
S&z) dz. 

-d-t \IDmf 

( 13) we obtain 

(14) 

Z-f s d- ,I-=7 
D,t3 @ dz 

0 u (z> * 

Near the important top boundary u(z) z=y(d-z), so 

2-i D,t3 
s 

d-m 1 

0 (d_2)2 dz* 

(15) 

(16) 

Integrating expression ( 16) for t= 2Tinv we obtain for 

&hd: 
- - 

A$ \lD, Ty2 
GM a tnv * 

Finally, substituting r,=a”/D, one has 

(17) 

(18) 

We see from (18) that the mean square time deviation 
-7 
At-/(T~,,T~) does not vary with the velocity but only de- 
pends on the ratio Tinv/rm, as assumed in Eq. ( 10). Note 
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that the final result of Eq. ( 18) depends on the way in 
which the tracer is injected. Instead of spreading the initial 
tracer concentration uniformly in the range [-a’, +d], let 
us assume that the injection is modulated proportional to 
the local velocity. In this case, the above analysis yields a 
variation Of at”/( Tinvrm) proportional to 

( Tiny/Tm) 2 In ( TinJTm) instead of ( Tinv/Tm) 3’2. 
The estimates in this section for Pesl and T,, < r, 

have ignored longitudinal molecular dispersion. At very 
short injection times, the longitudinal molecular dispersion 

distance ,/z may theoretically exceed the advection 
UT,,, . This happens when Tinv/rm < 1/Pe2. It is not POS- 

sible practically to perform experiments in this regime so 
that we will not analyze it further. 

3. Radial echo Taylor dispersion at long times when 
Pedl 

The above result is only valid when the flow velocity is 
large enough so that locally Pe%l. At very long injection 
times in the radial geometry, the velocity can decrease suf- 
ficiently as the tracer moves away from the injection point 
so that the local P&let number becomes less than unity. 
Equation (6) is still valid as long as t%rm but now, the 
molecular diffusivity is retained: 

4d2U2(r) 
~[W91= 2100 +&, 

m 
(199 

where LJ( r) is the mean velocity given by Bq. (7b). Now, 
Dll /U2 does depend on the velocity U and, therefore, on 
the distance r from the injection point and Eq. (9a) must 
be replaced by the differential equation: 

U= d(s) 
Dll W9=y-p (204 

so that for an echo experiment with an inversion time Tin” : 

ii-?= 
s 

2Tinv 2 DT. u(r) I 
0 U2(r) dt. (2Ob) 

Equations (20a) and (20b) imply that, in order to com- 
pute the resultant dispersion from zones corresponding to 
different velocities, one has to sum the contributions of 

each zone to A? and not those to Ax2. The contribution to 

A? from a given zone is indeed unchanged as the velocity 
--T 

varies, while that to Ax- decreases as fluid particles crowd 
together as they slow down. Let us now use Eq. (7b) to 
estimate the mean time t(r) to reach a radius r away from 
the injection point (r=ro). One has ?=Qt(r)/2?rd if 
ro<r. Let us now combine this latter expression with Eqs. 
( 19), (20b), and (7b), obtaining by integration: 

ht2(2Ti,,) =~ Tim + 
16?rdD,T;, 

m Q * 
(21) 

Here A?(2Ti,,) is the mean square width of the transit 
time distribution of tracer particles during an echo exper- 
iment. Replacing d2/ D, by r, , and defining a global Pe- 
clet number by Pe,=2rU(r)/D,=Q/2?rdDm which is 
constant with the distance r, one obtains 

Z(2Ti,,) 2 Ti,, 

4Ti,,r, =E+Pep7,. 
(229 

The first term in Eq. (22) corresponds to Taylor dispersion 
and implies that the Taylor regime is reached ( Tinv>rm). 
The second term is the longitudinal molecular diffusion 
contribution to tracer spreading: it becomes important for 
low PeQ numbers and for large values of either Thv or the 
penetration distance. 

III. NUMERICAL SIMULATION OF TRACER 
DISPERSION IN A RADIAL FLOW BETWEEN FLAT 
PARALLEL WALLS 

A. Monte Carlo simulations of Taylor dispersion in a 
radial geometry 

In Monte Carlo simulations, tracer particles are as- 
sumed to move independently of each other. One follows 
the radial and vertical displacements of a large number of 
particles moving in the Hele-Shaw cell. The motion of 
each particle is the combination of the effects of molecular 
diffusion (represented by a Brownian motion) and convec- 
tion by the radial flow field (modulated by the parabolic 
Poiseuille velocity protile between the plates). Because of 
the radial symmetry, one can ignore the motion in the 
angular direction. The random Brownian motion is simu- 
lated by changing the radial and the vertical positions sep- 
arately at each time step by 

4-x rand, (23) 

where D, is the molecular diffusion coefficient, At is the 
time-step, and rand is a random number chosen uniformly 
on the interval [- &I]. (Particular care has to been taken 
to use a random number generator that produces good 
independent random numbers, as required here for each 
particle for each time step and for each direction.) The 

amplitude dm of the random steps has been chosen so 
that the variance of any coordinate after n independent 
steps is 

[x(tj-~(O)]~=n6D,Ati=2D,t, (24) 

where the factor l/3 represents the variance of a random 
number chosen uniformly on [ - 1, 11. 

The radial flow is incorporated with a radial displace- 
ment at each time step: 

(25) 

where Q is the volume flux and d is the channel half-width. 
More sophisticated time-stepping procedures are pointless 
because the random part of the motion produces a velocity 
which is highly discontinuous and all the sophisticated 
procedures require highly continuous derivatives. Equation 
(25) corresponds to the Hele-Shaw approximation16 for 
the velocity field between the plates. It will be valid except 
very near the injection point because of the large ratio 
between the typical values of r and the half-width d. 

Zero flux boundary conditions at the top and bottom of 
the channel are implemented by reflecting conditions. Thus 
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if a random step takes z to a value larger than d, then z is 
replaced by its mirror image in the boundary, i.e., d- (z 
-d). Similarly z is replaced by -d+ (-2-d) if z drops 
below -d. This method is the best way to keep z uniformly 
distributed in [ -d,d]. 

The initial condition consists in releasing all the parti- 
cles at f = 0 from a given initial radius r. at a height z. 
which is chosen uniformly in the interval [-d,dj. This 
represents an idealization of the experiment (another ap- 
proach would be to modulate the random height z. accord- 
ing to the local flux of fluid as mentioned in Sec. II C). 

The boundary condition at the injection radius is a 
little uncertain in the real laboratory experiment. We have 

chosen a reflecting boundary condition during the injection 
and an absorbing boundary condition during the with- 
drawal part of the echo experiment. Thus during the injec- 
tion should a random displacement move r to be less than 
ro, then r is replaced by ro+ ( ro- r). Should a particle 
move to r less than r. during withdrawal, then it is said to 
have returned and is not moved again. Note that, as the 
random displacement is always larger than the convective 
displacement, about half of the particles are reflected on 
the first time step for small enough steps. 

At regular time intervals in the computation, the mean 
and the variance of the radial positions are computed and 
recorded. As the particles return to the starting radius r,, 
the mean and the variance of the return times are com- 
puted. Sometimes, there can be a long wait for the last 
particle to return. An early idea of only using the middle 
80% of the particles, i.e., throwing away information about 
the first 10% to arrive and not waiting for the last 10% to 
arrive, was abandoned when it became clear that these 
extreme 20% were very influential on the values of the first 
and second moment. 

The program solves a nondimensionalized problem. 
Distances are scaled on the channel half-width d, so that 
the channel depth coordinate satisfies - 1 <z( 1. Time is 
scaled with the time r,=d2/D, to diffuse across the chan- 
nel half-width. Thus the nondimensional velocity involves 
the P&let number based on the radius Peg=Q/47rdD, 
with 

3 PeQ 
u(r,z) =F [ 1 -am] (26) 

Typically lo4 particles are required to give results accurate 
to nearly two significant figures. A few runs were made 
with lo5 particles. A typical nondimensional time step was 
At= 10m4. This gives quite large random displacements of 
0.024. For very short injection times and for very high 
P&let numbers, shorter time steps like At= low5 were 
used. Typical P&let numbers PeQ were of the order of 
1000. Nearly all the calculations had the initial radius 
equal to the channel half-width (ro= 1 in nondimensional 
form). 

For historical reasons the program time stepped the 
particles all along together instead of moving just one at a 
time until it had returned: It is indeed easier to compute 
the spatial distribution (which may be of interest) if all the 
particle positions are known simultaneously. This method 

0.04 

+ 
+ 

x “, 
+ 

rnhm : .3m o 

itm 0 
0 

0 

FIG. 3. Variation of the normalized second moment of the transit time 

distribution s/(4T,nv~m) as a function of the normalized inversion time 
T&T,,, (in logarithmic scale) obtained from numerical simulations for 
several P&let number values Peg= Q/2vd= ( + )530.5, ( X ) 1061, (0) 
2122, (D) 5305, and (0) 10610. 

is, however, slightly slower to execute (because of the in- 
direct addressing on the vectors) and requires more RAM 
memory (in excess of the 64 K available under DOS Turbo 
Pascal). Computation times on a SUN4 were of the order 
of 10 min. 

B. Numerical results 

The values of Pe, corresponding to the experimental 
flow rates that have been used are Pe,=530.5, 1061, 2122, 
5305, and 10 610. The inversion times at a given velocity 
were chosen so that the range of penetration depths re- 
mained the same as in the experiments. 

We have analyzed the echo dispersion at short inver- 
sion times (Fig. 3) where 0.157, < Tin” < 57, and long 
inversion times (Fig. 4) with Tin” up to 107,. In all cases 
we have studied the variations of the mean square devia- 

‘1 
0 5 x1o-3 10 T,,, 

PeQ%n 

FIG. 4. Variation of the normalized second moment of the transit time 
distribution g/(4Tinvrm) as a function of the normalized inversion time 
Tin.,/PeQrm obtained from numerical simulations at various P&let num- 
ber values Peo=( +)530.5, (X) 1061, (Cl) 2122, (B) 5305, and (0) 
10 610. The continuous straight line corresponds to the theoretical vari- 
ation from Eq. (22). 
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tion A? of the transit time normalized by the product of 
the inversion and the characteristic molecular diffusion 
times. 

1. Short time behavior 

Figure 3 shows the variation of the normalized second 
moment of the transit time distribution as a function of 
Tinv/~m. For inversion times between 0.3~~ and 1.57, we - 
see that the variation of A?/4TinvT, leads to a unique 
curve which is independent of the P&let number (except 
for Pe=530.5). This result is in good agreement with Eq. 

(10). 
Beyond Tinva 1.57,) the curves spread out as the Pk- 

clet number decreases. This is associated with the longitu- 
dinal molecular diffusion through the term in l/Pe, [Eq. 
(22)] which becomes very important at low P&let num- 
bers (see Pep=530.5). 

On the other hand, we see that Z/4TinvT, diminishes 
when Ti”v/rm decreases. This corresponds to the variation - 
of At2/Tinv with Tf:,? predicted by Eq. (17) when the tran- 

sit time 2Tinv is too short to allow the tracer to diffuse 
across the full width of the channel. 

2. Long time behavior 

At the long injection times T&l’e~~,> 1, longitudinal 
molecular diffusion becomes significant. In order to check 
Eq. (22), we have plotted in Fig. 4 the variation of 

Z/( 4Ti,,T,) as a function of Ti,,/( Pe,r,). We used the 
same P&let numbers and extended the inversion times to 
lOr,,,. As the inversion time becomes greater than T,, we 
see that the normalized spread in the return times depends 
on Tiny/( Pe,T,). We have superimposed on Fig. 4 the 
theoretical variation from Eq. (22). At short inversion 
times, the curves corresponding to different P&let numbers 
are separate and they join the asymptotic theoretical curve 
at different values of Tinv/(PeQTm). This reflects the fact 

that, from Eq. (lo), the variation of ht2/(4TinvTm) at 
short times is a universal function of Tinv/Tm and not of 
TiJ(Pepr,). When Pep decreases, the values of 
TiJ(PepT,) at which the asymptotic linear variation of 
Eq. (22) is reached therefore become larger. 

To summarize, the numerical simulations presented 
here allow us to determine quantitatively the boundaries 
between different dispersion regimes depending on values 
of Tinv/~.m and Ti,,/( PeQr,J. The Taylor mechanism be- 
comes established only when Tinv/~m > 1. Longitudinal 
molecular diffusion is important if Tinv/7m > Ped400. 

IV. EXPERIMENTAL MEASUREMENTS OF TRACER 
DISPERSION IN A RADIAL FLOW FIELD WITH 
A SMOOTH FRACTURE 

A. Experimental setup 

One model fracture, the “smooth fracture,” consists of 
the gap between two square parallel 30 cm glass plates. In 
the other model, we replace the lower glass plate by a 
rough zinc one. The rough surface is made by a photoen- 
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fluid ‘I - injection point 

glass plate 1 

graving process in which a computer generated pattern is 
etched with acid in a zinc plate. We used a mean spacing 
between plates 2d = 0.1 cm in both cases. 

The fluid is injected at the center of the model by a 

syringe pump with a constant flow rate Q and flows radi- 
ally inside the cell (Fig. 5). 

The assembly is immersed in a Plexiglas box partly 
filled with a sodium nitrate-water solution ( 1.5 g/l). This 
salt is used as the tracer. A low volume conductivity cell 
detector and a double syringe pump are connected to the 
injection point through a four-way valve. This allows one 
to inject or pump back either of two sodium nitrate solu- 
tions of different salt concentrations ( 1 or 1.5 g/l). 

At the initial time (t=O), one induces an abrupt 
change in the concentration at the inlet by switching from 
the initial high salt concentration solution. The low con- 
centration solution is then injected into the sample during 
a predefined time. The fluid flow is reversed and the vari- 
ation in time of the tracer concentration C(t) is deter- 
mined from measurements of conductivity. We then calcu- 
late the tracer transit time distribution. 

6. Quantitative analysis of the tracer dispersion 

The experimental curves are fitted to solutions of the 
advection-diffusion equation ( 1) from which one can ob- - 
tain the first and second moments r and Ar? of the distri- 
bution of the tracer transit times. This determination is 

more precise than a direct computation of F and A? from 
the rough data since it is less prone to the influence of noise 
and signal drifts, particularly at long times. Good fits of the 
experimental data by the Gaussian solutions were generally 
obtained. The experiments and data processing were per- 
formed for a large range of injection times and flow rates in 
both the rough and the smooth fractures. 

We have first checked that the mean transit time 7 
verified T = 2 Tin” : this relation might be broken by some 
trapping effects or by unwanted fluid leaks or flow-rate 
variations. Figure 6 shows the variation of T with Tin” for 
the smooth fracture (flow rate Q=3.2m L/mn). We ob- 
serve that the slope is very close to 2 as expected (a linear 
regression on the curve of Fig. 3 gives a slope value of 
2.04). Also, the fitted straight line goes very nearly to zero, 
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FIG. 6. Variation of the mean residence time as function of the injection 
time in a smooth fracture for a thickness n=O.l cm and a flow rate 
Q=3.2mL/mn. 

implying that there is a very small dead volume in the 
measurement system (which would introduce an additive 
term). We also compared the signal amplitude before and 
after the flow reversal which might also indicate irrevers- 
ible trapping effects. 

C. Tracer dispersion characteristics for fractures 
with smooth walls in radial flow 

In the case of a fracture with smooth walls, we expect 

that ht2 will have the same dependence on F and Q as 
discussed qualitatively and numerically earlier. In particu- 
lar, while the P&let number remains large, it should follow 
Eq. ( 10) and, more precisely, Eq. (9) for t> r,. 

Let us consider first the predictions of Eq. (9) for the _ 
variation of A? with ?; at times long enough for the irre- 
versible Taylor dispersion regime to be established. We 

have plotted in Fig. 7 the variation of s as a function of 
the mean transit time F ( =2Ti,,). Data points corre- 
sponding to two flow rates differing by a factor of 2 super- 
impose. We observe that both variations become linear for 
Ti,,,loO set and that the slope of the curve does not 

0 2.50 500 T 750 6) 1000 

FIG. 7. Variation of the mean square deviation of the transit time 2 as 
a function of the mean transit time F for a smooth fracture with a half- 
mean aperture d=O.OS cm. Flow-rate values: (E) Q=3.2mL/mn 
(PeQ=5305) and (El) Q=6.4mL/mn (Pep= 10 610). 

FIG. 8. Experimental variation of the mean square deviation of the tran- 
sit time normalized as a function of the normalized injection time for a 
smooth fracture with a half-mean aperture d=0.05 cm (in logarithmic 
scale). 

depend on the flow rate, as predicted by Eq. (9). A linear 

regression gives a slope dz/d?; = 10 sec. Using Eq. (9) 
and the value D,= 1.5 X 10m5 cm2 set- ’ for the molecular 
diffusion coefficient we obtain the effective value 
d,Ez0.056 cm for the half-interval d between the plates. 
This is in reasonable agreement with the thickness 2d 
= (0.1 =+=O.Ol) cm measured directly. 

In order to determine whether Eq. (10) is valid at 
short times, we have plotted in Fig. 8 the variation of 

A?/(4Ti,,r,) as a function of Ti,,/r,. The characteristic 
diffusion time is T,=d2/D,-167 set (for d=0.05 mm). 
Figure 8 shows that, for Tinv/~~ < 3, all experimental 
points are, within experimental error, located on the same 
curve independent of the flow rate (in the range 
500 < PeQ < 10 000). Note, however, that, as expected, 
data points for low P&let numbers are, on the average, 
slightly above those corresponding to higher values of Pep. 

These results prove that the ratio A?/(4Ti,vTm) is almost 
independent of the P&let number, in good agreement with 
the hypothesis that molecular diffusion perpendicular to 
the plates is the dominant mechanism to induce irrevers- 
ibility. 

For Tinv/~~ < 1, the ratio ht’/(4Ti,,Tm) decreases as 
the injection time is reduced as predicted from Eq. ( 18). 

Figure 8 shows that Z/(4Ti,,Tm) follows a “universal” 
law as predicted by Eq. (9) at short injection times where 
the Taylor regime is not yet established. 

For 1 < Tinv/~~ < 3 and at the higher P&let numbers 

ht2/(4Ti,,T,) is about constant and equal to 0.025, i.e., 
30% larger than the theoretical value 2/105. This ratio 

Af/(4Ti,vrm) decreases close to the theoretical value if 
one uses the value d=0.056 found above for the thickness 
(giving ~~a210 set). 

For 3 < Tinv/rm < 7, we observe a marked increase of 

the ratio Ak?/(4Ti,,Tm), particularly at the lowest flow rate 
corresponding to PeQ=530.5 (Q=0.3m L/mn). This vari- 
ation is in qualitative agreement with the numerical simu- 
lations shown in Fig. 3. The increase seems to reflect the 
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influence of the additional contribution Ti,J(Peerm) to 

A2/(4Ti,,rm) which appears in Eq. (22) due to longitu- 
dinal molecular diffusion. This confirms that the “univer- 
sal” behavior for pure Taylor dispersion disappears at low 
P&let numbers and long times. 

In conclusion, our experimental results in the smooth 

radial model confirm that the ratio ht2/(4Ti,,rm) depends 
only on the ratio Tinv/~~ as long as the local velocity is 
high enough for longitudinal molecular diffusion to be ne- 
glected. In this case, the dependence on TJT~ is the same 
as for a constant velocity parallel flow. At low velocities 
and long times, the effect of molecular diffusion becomes 
significant because velocity decreases at large distances. 

This leads to an increase of Z/(4Ti,yTm) equal to 

Tti,/PeQrm. 

V. EXPERIMENTAL MEASUREMENTS OF TRACER 
DISPERSION IN A RADIAL FLOW IN A ROUGH 
FRACTURE 

A. Effect of roughness on Taylor dispersion between 
parallel planes 

Let us now consider a fracture with rough walls. The 
roughness introduces a spatial disorder in the velocity field 
in the directions parallel to the fracture surface. In 3-D 
porous media, it has been shown that such disorder con- 
tributes to the dispersion coefficient a term proportional to 
the flow velocity.6”7 This dispersion mechanism due to ve- 
locity variations from one pore channel to another is called 
geometrical dispersion. It is dominant in 3-D porous media 
at medium and high P&let number, Pe> 10. Then, Dll 
varies linearly with the mean velocity 

Dlj = l,u, (27) 

where ID is called dispersion length or dispersivity. For 
homogeneous packings of nonporous grains, ID is the order 
of the grain size and is constant with the velocity. For 
heterogeneous materials such as natural rocks or sintered 
samples, ID can be much larger than the grain size. In 
geometrical dispersion, tracer particles make a random 
walk controlled by the spatial disorder of the pore space. 
At the same time, they are carried through the medium at 
the average flow velocity. The dispersion length ID is the 
length of the steps of the random walk. The dispersion Dll 
is the integral of the correlation of the velocity fluctuations 
along the path of a tracer particle 

t Dll = (s o b]I (0) -VI [q ct> - Uldt) a 

In Eq. (281, q represent the velocity component of a 
tracer particle along the mean velocity U. The integral is 
taken along the path of the particle and the angle brackets 
represent an ensemble average over all possible 
trajectories.‘8’1g 

In planar 2-D fractures with rough walls, Taylor and 
geometric dispersion processes are active simultaneously, 
particularly at high flow velocities20*21 whereas in 3-D ma- 
terials, only geometrical dispersion is significant at high 
velocities. This key feature is due to the fact that in 2-D 

systems tracer particles can only move away from low- 
velocity zones close to the upper and lower solid surfaces 
through molecular diffusion. Even with rough walls, the 
flow lines follow the contour of the continuous solid 
boundaries. Therefore, the effect of the parabolic velocity 
profile across the aperture of the fracture will be felt by the 
tracer particles until they have explored the interval be- 
tween plates through molecular diffusion. 

The geometrical and Taylor dispersion effects thus add 
up since the influence of the geometrical disorder will not 
be decreased by the transverse molecular diffusion. In the 
case of a constant velocity flow and at long times compared 
to r,, the dispersion coefficient should be given by 

(29) 

where aeK=2deE is an effective thickness taking into ac- 
count the effect of the roughness: for smooth plates, aeff will 
be equal to the actual spacing 2d. 

For comparison, in 3-D porous media, tracer particles 
that are close to the solid walls of an individual grain will 
generally leave the grain close to a stagnation point and 
will then find themselves in a high-velocity zone in the 
middle of a flow channel. Taylor diffusion will only be 
significant at velocities (i.e., at P&let numbers) low 
enough so that one can diffuse significantly across the flow 
channels during the transit time along one individual chan- 
nel (with a length of the order of the grain size). 

In the case of the radial flow geometry and if Tinv>Tm, 
Eq. (29) will retain locally the same variation with the 

local flow velocity U[r(t)] = f Jm t-“2 [after re- 
placing r(t) by its value from Eq. (7b)]. 

The mean square deviation of the tracer transit time 
can be estimated by integrating Eq. (20b) with D from 
expression (29). Thus we have 

E+8c~m(%). (30) 

The iirst term comes from Taylor dispersion, the second 
term from geometrical dispersion, and the last term from 
molecular diffusion. 

B. Experimental results 

The rough model fracture consists of the same exper- 
imental setup as in Sec. IV with the lower glass plate re- 
placed by a rough surface. We used a mean spacing be- 
tween plates of a=2d=O. 1 cm and we have used the same 
range of injection flow rates Q as in the smooth fracture 
(from 0.3m L/mn to 6m L/mn). For each constant flow 
rate we performed several echo dispersion experiments at 
different injection times (for instance, at Q=0.3mL/mn, 
60 set< Thv<2700 set) . 

In order to estimate the magnitude of the geometrical 
dispersion included in Eq. (30), we have plotted in Fig. 9 

the ratio ht2/4Ti,V as a function of ,/dTiny/e. We observe 
that, provided T > r, , all the experimental data follow the 
same linear variation independent of the injection flow 
rate. 
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FIG. 9. Variation of ~/4Tinv as a function of 4-Q for a fracture 
with a rough wall. Mean spacing between plates is taken 0.1 cm (d=0.05 
cm). The corresponding injections flow rates are (0) 6mL/mn, (0) 
3.2mL/mn, (M) 1.2mL/mn, (0) 0.6mL/mn, and (A) 0.3mWmn. The 
straight line corresponds to a linear regression taken over data points 
satisfying ri”, > 7,. 

The small time variation of G/4Ti, depends only on 
the ratio Tinv/Tm so that this part of the data does not 
superimpose on Fig. 9. The universal linear variation is 
reached at larger and larger values of dTi,,/Q as Q de- 
creases. A linear regression using the mean width 2d=O.l 
cm measured by mass conservation gives 

ii? dTinv 
4Tinv (s) =2.99+4.64x 1O-2 e. J- (31) 

Identifying this expression with Eq. (30) we obtain the 
transverse molecular diffusion time through: 
27,/105=2.99 set whence r,= 157 sec. From this value, 
we compute an effective half-mean aperture for molecular 
diffusion def=0.048 cm, in good agreement with that mea- 
sured by mass conservation. 

The second coefficient 3 &lx = 4.64 x 10e2 cm, al- 

lows us to estimate the value of the characteristic disper- 
sion length, Ze~~0.01 cm. This is to be compared to the 
typical size of the roughness elements of the zinc plates 
which is of the order of 0.1 cm. In some sense, the rough- 
ened plate is only 10% efficient at producing geometric 
dispersion: A major objective of future experiments will be 
to characterize quantitatively the rough surface geometry. 

Vi. CONCLUSION 

In the present paper we have demonstrated experimen- 
tally and through numerical simulation that echo tracer 
dispersion allows one to obtain quantitative information 
about the local structure of plane fractures with a radial 
flow field, e.g., the thickness and the roughness. 

In fractures with smooth walls, the mean square devi- 

ation of the transit time ht2 has the same variation with the 
mean residence time T= 2Tti, in radial and parallel flow 
fields ( Th, is the time after which the flow direction is 
reversed). This occurs provided the flow is large enough 
for longitudinal molecular diffusion to be negligible 
throughout the flow [local P&let number U(r)d/D,$+l]. 

In this case, the ratio As/( Ti,,rm) reaches a constant 
value at long times Tin” > 7, (7, is the characteristic dif- 
fusion time over the half-interval d between plates). At 

short injection times Tin” < r, , the ratio ht2/( Ti,,T,) is a 
function of Tinv/Tm independent of geometry and the ve- 
locity (if it is large enough); the echo dispersion is less 
than the asymptotic limit because Taylor dispersion is not 
fully established with Tin” too small to allow the tracer 
concentration to homogenize across the flow section. In 

this short time range, ht2/( Tinvrm) varies as (T&T,)~‘~ 
or ( Tiny/Tm)2 log( Ti,,) depending on the type of tracer 
injection (constant concentration or constant flux). 

At low flow rates and long transit times, it is no longer 
possible to neglect the longitudinal molecular diffusion 

which contributes to G/( Tinv7,) an additional term: 
4Ti,,/( PeQrm), where Pe,= Q/( 2rdD,) is the P&let 
number using the radial distance as the characteristic 
length scale (Q is the injected volume flow rate). This 
contribution proportional to the injection time is associated 
with the decrease of the flow velocity with the distance 
from the injection point and will not be observed in parallel 
constant velocity flows. 

When one of the fracture walls is rough, the disorder 
associated with the roughness may induce some geometri- 
cal dispersion. The corresponding additional dispersion 

term is proportional to 4-Q and appears clearly in 
the experimental results. 

Several aspects need, however, to be clarified for a 
good understanding of the process. A first question is the 
quantitative relation between the geometrical dispersion 
and the structure of the roughness elements. Another is the 
influence of defects in the symmetry of the flow field, be- 
cause actual flow fields will neither be radial nor parallel. 
One interesting feature of echo tracer dispersion is the fact 
that macroscopic differences in the length and the velocity 
of different flow paths have a reduced influence, because 
particles injected along one path retrace that path during 
the withdrawal phase. However, transverse molecular dif- 
fusion or geometrical dispersion may allow the particles to 
move from one macroscopic tlow path to another. 
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