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Abstract. We investigated multiple-rate diffusion as a possible explanation for observed 
behavior in a suite of single-well injection-withdrawal (SWIW) tests conducted in a 
fractured dolomite. We first investigated the ability of a conventional double-porosity 
model and a multirate diffusion model to explain the data. This revealed that the 
multirate diffusion hypothesis/model is consistent with available data and is capable of 
matching all of the recovery curves. Second, we studied the sensitivity of the SWIW 
recovery curves to the distribution of diffusion rate coefficients and other parameters. We 
concluded that the SWIW test is very sensitive to the distribution of rate coefficients but is 
relatively insensitive to other flow and transport parameters such as advective porosity and 
dispersivity. Third, we examined the significance of the constant double-log late time 
slopes (-2.1 to -2.8), which are present in several data sets. The observed late time 
slopes are significantly different than would be predicted by either conventional double- 
porosity or single-porosity models and are believed to be a distinctive feature of multirate 
diffusion. Fourth, we found that the estimated distributions of diffusion rate coefficients 

are very broad, with the distributions spanning a range of up to 3.6 orders of magnitude. 
Fifth, when both heterogeneity and solute drift are present, late time behavior similar to 
multirate mass transfer can occur. Although it is clear that multirate diffusion occurs in 
the Culebra, the number of orders of magnitude of variability may be overestimated 
because of the combined effects of drift and heterogeneity. 

1. Introduction 

The first paper in this series [Meigs and Beauheim, this issue] 

describes the field setting, goals, design, implementation, and 

results of a suite of single-well injection-withdrawal (SWIW) 

and multiwell convergent-flow tracer experiments conducted 
in the Culebra Dolomite Member of the Rustler Formation at 

the Waste Isolation Pilot Plant (WIPP) site in southeastern 

New Mexico. The third paper in this series [McKenna et al., this 

issue] examines a subset of the data from the multiwell con- 

vergent-flow tracer tests that were conducted at the same lo- 

cations as the SWIW tests. McKenna et al. also compare re- 

sults obtained from the two different types of test and discusses 

long-term transport implications. Further information, includ- 

ing the complete data sets, is given by Meigs et al. [2000]. 

The effects of multiple rates of mass transfer (or "multirate" 

mass transfer) have been theoretically predicted in the past 

and have also been observed in a number of laboratory exper- 

iments; these effects have not, until now, been documented at 

the field scale. In this paper, we investigate the multirate dif- 

fusion hypothesis as it relates to the SWIW tests. The hypoth- 
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esis postulates that a distribution of apparent diffusion coeffi- 

cients and diffusion length scales is responsible for anomalous 

behavior (e.g., anomalously long tails and timescale-dependent 

rate coefficients) in many laboratory and field tracer experi- 

ments. As such, the goals of this investigation were to (1) 

investigate the hypothesis that multirate diffusion could be 

responsible for the observed recovery behavior in the Culebra 

SWIW tests; (2) develop a methodology for estimating the 

distribution of rate coefficients responsible for the observed 

behavior; (3) examine whether the hypothesis and resulting 

model are consistent with other hard and soft data; and (4) 

examine the significance of the late time slope of the observed 

SWIW recovery curves, a slope which is common to data col- 
lected from several well tests. 

As a model of mass transfer, multirate diffusion invokes 

diffusion between an advection-dominated ("mobile") zone 

and a diffusion-dominated rock matrix ("immobile zone") that 
is heterogeneous at the pore scale. The multirate diffusion 

model [Haggert), and Gorelick, 1995, 1998] is essentially a mod- 

ified double-porosity model [e.g., Neretnieks, 1980, 1993] (see 

also Figure 1 and section 3) consisting of advective porosity 

and diffusive porosity, with diffusion of mass from one to the 

other described by a range of rate coefficients. There is now a 
growing body of literature documenting the existence, observ- 

ability, and effects of multiple rates of mass transfer on solute 

transport in the subsurface. Multiple rates of diffusive or sorp- 

tive mass transfer are theoretically and intuitively reasonable 
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Table 1. Fixed Parameters Used in Simulations 

Test 

Parameter Hll-1 Hll-2 H19S2 H19Sl-1 Hi9S1-2 

Solute injection time, s 8.16 x 103 7.98 x 103 7.32 x 103 7.62 x 103 7.95 x 103 
Chaser injection time, s 1.54 x 104 7.44 x 103 1.46 x 104 1.58 x 104 7.83 x 103 
Pause length trest , S 6.36 X 104 6.36 X 104 6.38 X 104 6.22 X 104 6.22 X 104 
Injection rate Qinj, m3/s 1.22 x 10 -4 1.27 x 10 -4 1.16 x 10 -4 1.31 x 10 -4 1.26 x 10 -4 
Pumping rate Qout, m3/s 2.24 x 10 -4 2.24 x 10 -4 2.74 x 10 -4 2.37 x 10 -4 2.37 x 10 -4 
Well radius rw, m 0.065 0.065 0.113 0.113 0.113 
Thickness b, m 4.4 4.4 4.4 4.4 4.4 

Matrix porosity •d, 0.160 0.160 0.147 0.147 0.147 
dimensionless 

Grid radius, m 8.00 8.00 3.75 3.75 3.75 

[e.g., Ruthyen and Loughlin, 1971; Villermaux, 1981; Rao et al., 
1982; Cooney et al., 1983; Rasmuson, 1985; Wu and Gschwend, 

1988; Brusseau et al., 1989; Fong and Mulkey, 1990; Valocchi, 
1990; Lafolie and Hayot, 1993; Haggerry and Gorelick, 1995; 

Cunningham et al., 1997] and have been observed and modeled 
in a number of laboratory experiments [e.g., Ball and Roberts, 
1991; Connaughton et al., 1993; Pedit and Miller, 1994, 1995; 
Chen and Wagenet, 1995, 1997; Culver et al., 1997; Werth et al., 
1997; Haggerry and Gorelick, 1998; Lorden et al., 1998]. How- 
ever, to date, there has been no field study that documents the 
effects of multirate diffusion. 

2. Single-well injection-withdrawal tracer tests 
A suite of SWIW tracer tests was conducted in the Culebra 

Dolomite Member of the Rustler Formation at the Waste 

Isolation Pilot Plant (WIPP) site in southeastern New Mexico 
[Meigs and Beauheim, this issue; Meigs et al., 2000]. The Cul- 
ebra is a 7-m-thick, variably fractured dolomite with massive 

and vuggy layers and is a potential pathway to the accessible 
environment in the event of a radionuclide release from the 

WIPP. A total of three SWIW tests were performed at two 

multiple-well sites, designated as the H-11 and H-19 "hydro- 
pads." SWIW tests were performed only at the central well at 
both hydropads. Two tests involved the injection of two tracers 

each, and one test involved a single tracer, resulting in a total 
of five SWIW data sets. The SWIW tests consisted of the 

consecutive injection (approximately 2 hours each) of one or 
more slugs of conservative tracers into the Culebra dolomite, 

followed by the injection of a Culebra brine chaser (containing 
no tracer) and then followed by a resting period of approxi- 
mately 18 hours. The tracers were then removed from the 
formation by pumping at the same well until concentration was 
close to or below detection levels. The majority of tracer was 

removed within 48 hours of pumping, but quantifiable concen- 
trations of tracer continued to be removed for over 1000 hours 

(up to 50 days) at H-11 [Meigs and Beauheim, this issue, Figure 
7]. Mass fractions recovered over that time ranged from 0.94 to 
0.98. In this paper, we will refer to the five data sets as follows: 
(1) the first H-19 test (SWIW1) with tracer 1 as H19Sl-1; (2) 
the first H-19 test (SWIW1) with tracer 2 as H19S1-2; (3) the 
second H-19 test (SWIW2) with only one tracer added as 
H19S2; (4) the H-11 test (SWIW)with tracer 1 as Hll-1; and 
(5) the H-11 test (SWIW) with tracer 2 as Hll-2. A summary 
of key values is provided in Table 1, and details are given in 
Table 2 of Meigs and Beauheim [this issue]. 

3. Multirate Diffusion: Mathematical Model 

In this section, we present the mathematical model used to 

describe advective-dispersive solute transport with multirate 

diffusion. The solutions to these equations are obtained in the 

Laplace domain and then numerically inverted using the de 

Hoog algorithm [de Hoog et al., 1982]; the solutions are per- 
formed sequentially for each of the injection, resting, and 

pumping periods. Details of the solution method are presented 

by Haggerry et al. [2000a] and Haggerry [2000]. 
The multirate diffusion model is a distributed model of 

diffusion representing a medium with pore-scale heterogeneity 

in diffusive mass transfer. As conceptualized in this paper, the 

multirate diffusion model is similar to that described by Cun- 

ningham et al. [1997] and by Haggerry and Gorelick [1998]. 
Figure 1 illustrates fractures and matrix (i.e., advective and 

diffusive porosity) in a small volume of rock, where the matrix 
is heterogeneous with respect to diffusion, at spatial scales 

much smaller than a representative elementary volume (REV). 
It is assumed that this sub-REV-scale heterogeneity is repli- 

cated in approximately the same fashion everywhere in the 
formation. 

The multirate diffusion model is a generalization of the 

conventional double-porosity model in that porosity is divided 

into two continua: advective porosity (where transport is dom- 
inated by advection and dispersion) and diffusive porosity 
(where transport is dominated by diffusion). However, in the 
multirate model the diffusion rate coefficient (ad --= Da/l 2, see 
below) is described by a distribution rather than a single value. 
The model assumes one-dimensional diffusion along a distri- 

bution of individual pathways within matrix blocks, each with a 
different diffusion rate coefficient. The distribution describes 

the volume fraction associated with each diffusion rate coeffi- 

cient. Although Figure 1 shows cubic matrix blocks in the 

model, the pathways and the blocks can be any shape, provided 

that each pathway is one-dimensional, homogeneous, and in- 

dependent of other pathways. With these criteria each diffusive 
pathway in the distribution can be modeled with a one- 

dimensional diffusion equation. Also, in addition to diffusion 
into the rock matrix, solute may diffuse into material that fills 

fractures and also into pockets of immobile water adjacent to 
advective porosity. 

Variability in the diffusion rate coefficient is due to a com- 

bination of factors, including variability in at least the follow- 

ing: (1) matrix block size; (2) tortuosity; (3) pore geometry; (4) 
restricted diffusion within pores (i.e., diffusion is slowed by 
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Figure 1. Conceptual model for multirate diffusion. Although the illustrated blocks are cubes, the blocks 
may be of any shape. The volume of rock shown in the diagram is less than the representative elementary 
volume. 

small cross-sectional area of the pore); (5) variably sized dead- 
end pores adjacent to advective porosity; and (6) interaction 
with pore walls, including sorption (though the tracers em- 
ployed in our experiments are believed to be nonsorbing). For 
further discussion on these sources of variability, see Pedit and 

Miller [1994], Haggert), and Gorelick [1995, 1998], and Pignatello 
and Xing [1996]. 

Variability in diffusion rate coefficients may also be a spu- 

rious consequence of heterogeneity in permeability. This will 
be the case whenever a mass transfer model is used to repre- 

sent tailing in recovery concentrations resulting from variabil- 

ity in advection times. For example, Li et al. [1994] showed that 
a first-order mass transfer model was able to simulate such 

advective tailing but that the rate coefficient was velocity- 

dependent. Similar error should be expected if tailing resulted 

from heterogeneity but was incorrectly modeled with a distri- 
bution of diffusion rate coefficients. 

The distribution of diffusion rate coefficients, D./l 2, may be 
defined in any appropriate manner but most commonly is de- 
fined as a statistical distribution. Culver et al. [1997], Cunning- 
ham et al. [1997], and others have used a gamma distribution, 
while Pedit and Miller [1994, 1995], Haggert), and Gorelick 
[1998], and others have employed a lognormal distribution. 
Because the diffusion rate coefficient is the product of several 

parameters (i.e., diffusion depth into the block, tortuosity, and 

constrictivity) that each have variability, a lognormal distribu- 
tion is a reasonable assumption. For further discussion of the 
reasoning behind this choice, see Haggert), and Gorelick [1998]. 

The mathematical models presented here make the follow- 

ing important simplifications: (1) The regional hydraulic gra- 
dient is negligible. (2) The formation is isotropic, confined, 
horizontal, homogeneous with respect to groundwater flow, 

and of constant thickness. The second set of assumptions 

above simply guarantees that flow is radially symmetric. Pro- 

vided that the first assumption is valid, then the issue of het- 

erogeneity is much less significant for a SWIW test than for 

other types of tests, because the tracer leaves the well and 

comes back to the well along the same path. Therefore, al- 
though the second assumption is certainly violated within the 

Culebra dolomite, the effects on a SWIW test are likely to be 

small [Altman et al., 2000]. In the case where both the first and 
second assumptions are violated, the estimated diffusion pa- 
rameters will contain error. This is discussed in section 5.2. 

The equations for solute transport into or out of a well, in 

the presence of a lognormal distribution of matrix diffusion 

processes, are given by 

(1) 

where 

[ln (old)- 2} /3tøt exp - 2o- , (2a) b(2 = 2x5 

OZ d = D ,fi 2, (2b) 

4'dRd 

/3to t '-- (•am a (2c) 
and where Da [L 2 T- 1 ] is the apparent diffusion coefficient in 
the matrix, which may be defined most simply as the product of 

the aqueous diffusion coefficient of the tracer, the restrictivity 

factor, and diffusive tortuosity, although this expression may be 

modified to incorporate processes such as immobile zone sorp- 
tion, and l [L ] is the length of the diffusion pathway within the 
matrix, which is nominally half the block width (though it may 
be less if the pore is not connected to other pores). See the 
notation list for definitions of all other parameters. Note that 

we do not consider transverse dispersion in (1) because the 
flow is assumed to be radially symmetric, and therefore trans- 

verse dispersion plays no role. 

For later reference we note that 1/3 olj • is the mean resi- 
dence time of a solute molecule in a micropore of length l or 

a matrix block of width 2l, where the molecule moves only by 

diffusion within the micropore. We will therefore later refer to 
aa • as the diffusion timescale. Solute concentration in a 
fracture will be in approximate equilibrium with that in a 

matrix block ofwidth 2l after a time of a•- •. Conversely, solute 
concentration in a fracture will be little changed by matrix 
diffusion if it remains in contact with the same matrix block for 

times much less than aj •. 
The time derivative of the spatially averaged solute concen- 

tration in the matrix is given by 

add(ad) 1 fO l 012d(Old) dz 0 < old < oo (3a) Ot l Ot ' ' 
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where all variables are defined in the notation list. Note that l 

is a variable part of aa and therefore is implicitly dependent 
upon aa. The concentration at a point within the portion of the 
matrix associated with a particular diffusion rate coefficient is 

given by the solution of the diffusion equation for a one- 
dimensional diffusion pathway: 

ac•(a•) o2c•(a•) 
-- . O• = Da O z2 , 0 < aa < o• (3b) 

The boundary conditions for diffusive mass transfer are that 
the concentration at the edge of the matrix is equal to the 
concentration in the mobile zone and that the concentration 

gradient at the internal end of the pore or at the center of the 

matrix is equal to zero: 

ca(aa, z = l) = Ca, 0 < aa < •, (3c) 

OCa 

Oz (aa, z = O) = O, 0 < aa < •. (3d) 

To solve these equations, we use the approach outlined by 
Haggerry and Gorelick [1995, 1998], where we substitute a series 

of first-order equations for the equations in (3a) and (3b) [see 
also Haggerry, 2000]. The substitution is done in such a way that 
the resulting solution for Ca is mathematically identical to that 

which would be obtained by solving (1)-(3d) directly. The 
solutions are obtained in the Laplace domain and then numer- 

ically inverted to the time domain [Haggerry, 2000]. The code 
STAMMT-R [Haggerry et al., 2000a] was used to solve these 

equations. 
To model the experiments for diffusion into a sphere [e.g., 

Rao et al., 1980; van Genuchten et al., 1985; Ball and Roberts, 

1991], we also employ (1). However, (2a) and (3a)-(3c) are 
replaced by the following four equations: 

b(Otd)-- •tot•(ot•), (4) 

oœ•(a•) 3 fo • Oc• 0 t l -• z2 * -- = -•- dz, aa = c• a, (5) 

Oc a _ Da O ( z2 0C al Ot - z 20z O z ] ' (6a) 

a slab is 5 times the mean residence time in a sphere of the 
same half thickness. Therefore the multirate model for one- 

dimensional pathways with •r a = 0 is approximately the same 
as the single-rate model provided that •a (multirate) = exp 
(Da/5l 2) (sphere). 

3.1. Radially Divergent Flow (Injection Period) 

For each of the three parts of a SWIW test (the injection, 
resting, and pumping periods), the pore water velocities, initial 
conditions, and boundary conditions differ. Let us first con- 
sider the injection period. 

The pore water velocity in (1) during the injection period is 
given by 

Qinj 

v = 2'rcrc•ab' (7) 

where variables are defined in the notation list and b [L ] is the 

formation thickness. The boundary conditions for use with (1) 
for conditions of radially divergent flow (injection) are 

OCa 

C a -- Ot L -•-'- Cinj, r = rw, (8a) 

OC a 

Or = O, r ---> c•. (8b) 

Equation (8a) is the flux boundary at the well accounting for 
dispersion, and (8b) is the boundary condition at infinity dur- 
ing injection. Initial conditions for radially divergent flow are 

that concentrations in both the advective and diffusive poros- 
ities (i.e., matrix and fracture porosities) are initially zero. 

The equations described in this section must be solved over 
all space at the end of the injection period. We solved these 
equations on a one-dimensional grid (since it is assumed that 
concentrations change only radially away from the well). The 
grid used 25 equally spaced nodes and was terminated at a 
distance where mobile concentrations fell below 10 -4 of in- 

jected concentration. With this number of nodes placed to the 

edge of the concentration field, results were insensitive to grid 

spacing. An independent mass balance calculation, involving 
an analytical solution for the mass, ensured all injected mass 
was accounted for. 

ca = Ca, Z = l, (6b) 

OC d 
• = 0 z = 0, (6c) OZ ' 

respectively, where all variables are defined in the notation list. 

Equations (4)-(6c) describe diffusion in and out of a spherical 
matrix block, where the matrix is assumed to be homogeneous 
and the boundary concentrations are assumed to be the same 

everywhere at the surface of the sphere. Consequently, the 
diffusion equation (6a) is in spherical coordinates but is inde- 
pendent of any angle. It should be noted that the most signif- 
icant feature of spherical diffusion is that there is a single value 
of Da/l 2 and not that diffusion is assumed to be into a spherical 
matrix block. 

The choice of spherical geometry for the single-rate model is 
not important. It has been shown by several authors that there 

is no significant difference between diffusion into spheres and 
cylinders, layers, or cubes, other than that the mean residence 

time differs for a fixed value of l [e.g., Villermaux, 1981; Rao et 
al., 1982; Goltz and Roberts, 1987]. The mean residence time in 

3.2. No Flow (Resting Period) 

After the injection period the well is turned off. During the 
resting period the pore water velocity in the formation is as- 
sumed to be zero. This is justified because velocities near a well 

very rapidly come to steady state after a change in pumping 
rate, even though heads may continue to change for some time. 

Harvey et al. [1994] discuss a method for checking this assump- 
tion. The storativity of the Culebra is 4.9 x 10 -s at H-19 and 
4.5 x 10 -5 at H-11. The transmissivity of the Culebra is 6.8 x 
10 -6 m 2 s -1 at H-19 and 4.7 x 10 -5 m 2 s -1 at H-11 [Beauheim 
and Ruskauff, 1998]. Using Harvey et al.'s [1994] work, veloci- 
ties decline to 5% of their pumping values at 2-m distance after 
only 2.3 min at H-19 and after only 0.31 min at H-11. Velocities 
decline much faster closer to the well, so these are conservative 

estimates of time needed to reach a resting (i.e., no movement) 
condition. Therefore (1) may be simplified 

OCa fO © 0•'d(aa) d,a = O, (9) Ot + b(aa) Ot 
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and all other equations remain the same. Since (9) is an ordi- 
nary differential equation in time, no boundary conditions are 
required. Initial conditions for the resting period are taken as 
the concentrations at the end of the injection period. Concen- 
trations are solved at the end of the resting period, spatially 
along the grid discussed in section 3.1. 

3.3. Radially Convergent Flow (Pumping Period) 

The pore water velocity in (1) during the pumping period is 
given by 

Q out 

v = - 2rrr•bab' (10) 

We also assume that the velocity in (10) is constant because 
velocities quickly come to steady state in a radial system (see 
reasoning in section 3.2). The boundary conditions for use with 
(1) for conditions of radially convergent flow (pumping) are 

OC a 

Or = O, r = rw, (11a) 

Ca=O, r '--->ø• . (11b) 

Initial conditions for radially convergent flow are that concen- 

trations (both advective and diffusive) at every point on the 
grid (see the end of section 3.1) are initially identical to those 
at the end of the resting period. Note that (11a) is a necessary 
boundary condition for outflow. Strictly speaking, however, the 
boundary condition requires that all the flow paths have the 

same velocity through the well surface [Krefi and Zuber, 1986], 
a condition which is impossible to construct even in the labo- 
ratory. The consequences of this limitation, inherent in all 

models requiring this boundary condition, are that model dis- 

persion at the well may have less dispersion at early times than 
the true breakthrough curve. However, since our estimations 

depend primarily on the late time behavior of the recovery 
curve, this issue should not affect our results. 

4. Modeling of SWIW Tests 

In this section we present two models of the SWIW tests. 
First, we present results from our effort to model the experi- 
ments using conventional (i.e., single rate) diffusion into a 
spherical matrix block and transport assuming radial flow. Sec- 
ond, we show the multirate diffusion model of the experimen- 
tal results. We also present results from a sensitivity analysis 
with the multirate diffusion model, including confidence 

bounds on the parameter estimates. 
Parameters used by the models were defined in one of two 

ways: (1) Values were fixed based on knowledge of the tracer 
tests and the Culebra geology. (2) Values were estimated by 
fitting the models to the data [Meigs and Beauhelm, this issue]. 
All parameters that could be fixed are shown in Table 1. Al- 

though all tests except H19S2 were injected over the full thick- 
ness of the Culebra (Table 2), we used a model thickness of 
4.4 m, representative of the lower Culebra. Since the lower 
Culebra has much higher permeability than the upper Culebra 
[Meigs and Beauheim, this issue], this is appropriate. In any 
case, dimensional analysis indicates that thickness and advec- 

tive porosity are strongly correlated. As such, an error in the 
assumed thickness will lead to a different estimate of advective 

porosity. 
Estimation of parameters was done using a nonlinear least 
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Figure 2. Best fits of conventional double-porosity models to 
the Hll-1 and H19S2 data. Parameters are given in Table 2. 

squares algorithm [e.g., Marquardt, 1963]. For each data set 
and model of that data we found the set of parameters that 
minimized the sum of squared errors on the logarithm of 

concentrations. Logs of concentrations were used because we 
are trying to understand diffusive mass transfer, which most 
strongly influences small concentrations at late time (this in- 
fluence can be seen in plots of the Jacobian, Figure 5, discussed 
in section 5.1). We estimated the natural logs of those param- 
eters that are strictly positive-valued. For purposes of compar- 
ison we used the root-mean-square error (RMSE), defined for 
natural logs of concentration and corrected for the number of 
parameters estimated [e.g., Bard, 1974, p. 178]. A first-order 
approximation to the estimated parameter covariance matrix 

(V1,) is given by [e.g., Bard, 1974; Draper and Smith, 1981] 

Vp: o'2(jrj) -•, (12) 

where rr is the replicate variance defining the uncertainty in 
concentration (assumed to be uniform and equal to the 
RMSE) and J is the Jacobian, which is the matrix of sensitiv- 
ities of the model output to the parameter estimates. In the 

analyses that follow, O'p is the standard deviation of the esti- 
mated parameter, which is the square root of the respective 

diagonal from V1,. 

4.1. Conventional Double-Porosity and Radial Transport 

Figure 2 shows the best obtainable fit of the conventional 
double-porosity model to the H19S2 and Hl l-1 recovery 
curves. Recall that the conventional double-porosity model 
includes advection (in this case, in radial coordinates), longi- 
tudinal dispersion, and diffusion into a single size class of 
spherical blocks. Modeling of the other recovery curves is not 
shown for conventional double porosity because the two at- 

tempts with H19S2 and Hll-1 clearly demonstrate that a con- 
ventional double-porosity model is inadequate. The parame- 
ters estimated from these fits and the RMSEs are given in 
Table 2. 

We used only early time data (first 50 hours) in the inversion 
procedure, roughly corresponding to the advection/dispersion- 
dominated part of the recovery curve. This was necessary be- 
cause it was found that the conventional double-porosity 
model could not possibly match the late time data (see Figure 
2). When matching the late time data was attempted, other 
estimated parameters in the model were made physically un- 



1134 HAGGERTY ET AL.: TRACER TESTS IN A FRACTURED DOLOMITE, 2 

Table 2. Single-Rate Double-Porosity Estimation Results a 

Log [Mean (ad)] Advective Porosity Dispersivity 
Test /,c a 4)a, dimensionless ate, m RMSE 

H19S2 - 16.2 0.0540 0.159 1.27 

Hll-1 - 18.8 0.00714 0.458 0.527 

aNote that aa = Da/l 2. 

reasonable (e.g., advective porosity close to 100% or disper- 
sivity larger than several meters, close to the spatial scale of the 

experiment), and the estimation algorithm would fail. In doz- 
ens of scoping runs with a conventional double-porosity model, 
no set of parameters was able to reproduce the late time slope 
of the data. For conventional double-porosity models the slope 
is -1.5 for times after the advectively dominated early part of 
the test and before the diffusion timescale of approximately 
12/Da [Tsang, 1995; Haderrnann and Heer, 1996]. At times 
greater than the diffusion timescale, the double-log slope pre- 
dicted for a conventional double-porosity model quickly goes 

to infinity (in other words, the matrix is quickly emptied of 
solute once the diffusion timescale is reached). Also note that 
the geometry of the matrix block, assumed to be spherical, is 
not important. As discussed in section 3, the geometry only 
influences the mean residence time in the matrix and not the 

shape of the tail of the recovery curve. For these reasons we 

also decided not to produce confidence bounds on the param- 
eter estimates shown in Table 2. 

4.2. Multirate Diffusion and Radial Transport 

Figures 3a-3e show the multirate diffusion model results 

(assuming a lognormal distribution of rate coefficients) of the 
five SWIW recovery curves. Recall that the multirate diffusion 

model includes advection (in this case, in radial coordinates), 
longitudinal dispersion, and diffusion into matrix with a distri- 
bution of diffusion rate coefficients. 

From Figures 3a-3e we note two points. First, the data from 
all five SWIW data sets are fit very well by the multirate 

diffusion model. The RMSE values (Table 3) range from 0.150 
to 0.424, which are 4-8 times smaller than the conventional 

double-porosity model for the same respective SWIW data 
sets. This improvement over the conventional double-porosity 
model is achieved with one additional estimated parameter. 
Second, the models fit the observed recovery curves over the 

entire range of data, including both early and late concentra- 
tions. 

The parameters estimated from these fits, their 95% confi- 

dence intervals (i.e., 2trp), and the associated RMSEs are 
given in Table 3. Since the natural logarithms of positive- 
valued parameters were estimated, the confidence intervals are 
on the logs of the estimates for all parameters except/xa. From 
Table 3 we note four points. First, the parameters indicate that 
the estimated distribution of/xa (diffusion rate coefficient) is 
very broad, spanning several orders of magnitude. Second, the 
distribution of aa appears to be different at H-11 than at H-19. 
This is discussed below in more detail. Third,/x a and tra have 

relatively small confidence intervals, while qb a and a L generally 
have very large confidence intervals. In particular, we note that 

the confidence interval on the estimate of advective porosity 

suggests that this parameter is essentially unestimable in a 
SWIW test. Conversely, tr a appears to be particularly well 

measured by this type of test. However, the terms "large" and 
"small" are somewhat subjective, and a more detailed analysis 

is given in section 5. Fourth, parameters estimated from tests 

at the same well (with the exception of tra for the H19S1-2 
recovery curve) have values that are statistically the same (i.e., 

their confidence intervals greatly overlap). 
Figure 4 shows the estimated cumulative distribution func- 

tions (CDFs) of the diffusion rate coefficient for the five mod- 
els. The graph shows the cumulative matrix volume associated 

with a diffusion rate coefficient smaller than a given value. The 

variance of the estimated distribution is large for all tests but is 

somewhat larger, in general, for the H-19 tests than for the 

H-11 test. The estimated CDFs display 95% of the distribution 

spanning a range of 4.4-11.7 orders of magnitude. We also 

note that the CDFs from the H-11 and H-19 tests appear to be 

self-consistent, with the exception of CDF for H19S1-2, which 

has a different estimated (r a than the other two at H-19 (dis- 

cussed in section 5.3). 
Figure 4 contains a shaded region, indicating the portion of 

the CDF of diffusion rate coefficients that could be assayed 

(i.e., "observed") by the tracer tests. Upper and lower limits 
were calculated by considering the diffusion timescale (see 

discussion following (2c) for definition) for different parts of 
the CDF. For example, a matrix block or one-dimensional 

micropore that is characterized by aa of 2.3 x 10 -9 s -• would 
require approximately 4.3 x 108 s (1.20 x 105 hours) for solute 
to diffuse into it. Therefore we recognize that such a micropore 

could not measurably affect a tracer test at timescales 100 

times smaller (of the order of 1200 hours, the time of the last 

data point in Hll-1). This reasoning is consistent with argu- 
ments based on Damkohler numbers (proportional to the ad- 

vection timescale divided by the diffusion timescale) [e.g., Bahr 
and Rubin, 1987]. Therefore we draw an approximate lower 

limit of the shaded zone at 2.3 x 10 -9 s -•. Thus the portion of 
the CDF with values of aa smaller than the shaded region 

corresponds to that part of the diffusive porosity that could not 

be assayed by the SWIW tests. A longer-duration test would be 

needed to "observe" that portion of the matrix. Note that this 

diffusion rate coefficient corresponds to a diffusion pathway 

length I of 0.187 m (calculated for a tortuosity of 0.11 and a 

diffusivity of 7.3 x 10 -lø m 2 s -l, which is appropriate for 
2,4-DCBA, used in Hll-1, H19Sl-1, and H19S2). 

On the other end of the timescale spectrum, diffusive mass 

transfer that is very fast will be obscured by advective pro- 
cesses. Since we do not know the ratio of advective to diffusive 

porosity, it is impossible to distinguish between pores domi- 

nated by advection and small micropores into which diffusion 

occurs quickly. In other words, the influence of rapid diffusion 

on the recovery curve is indistinguishable from the effect of 

advective porosity on the recovery curve. Therefore the fastest 

observable diffusion processes will occur at a minimum of 

approximately 1% of transport time through the system. For 

our system this initial recovery time also includes the injection 

and resting time (a total of about 24 hours), which corresponds 
to aa of 1.2 x 10 -3 S -1. The fastest observable diffusion 
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Figure 4. Cumulative distribution functions (CDFs) esti- 
mated from each of the SWIW data. CDFs shown here corre- 

spond to the models shown in Figure 3 and the parameters 
given in Table 3. 

process is probably slower than this, but this provides an ap- 
proximate upper bound. Note that this diffusion rate coeffi- 
cient corresponds to a diffusion pathway length l of 0.259 mm 
(calculated for a tortuosity of 0.11 and a diffusivity of 7.3 x 
l0 -]o m 2 s-I). 

The fringes of the estimated CDFs, lying outside the bounds 

in Figure 4, are highly nonunique and are not supported by 
data. They appear on the CDF only because we have chosen, 
a priori, a lognormal distribution. We have the largest degree 
of confidence about the part of the CDF near the center of the 
shaded region, with decreasing confidence toward the edges. 
For a detailed discussion of the confidence intervals on a dis- 

tribution of rate coefficients, see Hollenbeck et al. [1999]. 

As discussed above, the estimated CDFs suggest that 95 % of 

the distribution is spread over 4.4-11.7 orders of magnitude. 
However, not all of this distribution is supported by data. If the 
unsupported portions of the CDFs are ignored, the distribu- 

tions are spread over 3.6-5.7 orders of magnitude. This spread 
should be considered a minimum, as a longer-duration exper- 

iment would likely support a wider spread. 

5. Discussion 

5.1. Model Sensitivity to Estimated Parameters 

In this section we discuss the sensitivity of the multirate 

diffusion model to the estimated parameters. The Jacobian 
(sensitivity matrix of dependent variable to model parameter) 
can be normalized to allow comparison of parameter sensitiv- 
ities through time and from one parameter to another [Harvey 
et al., 1996]: 

Pj OCi 
Jij = , (13) 

cr Opj 

where variables are defined in the notation list. The Jacobian 

is a useful instrument for investigating the sensitivity of the 

model to the estimated parameters as a function of time [e.g., 
Wagner and Harvey, 1997] and gives insight into the correlation 

between estimated parameters. A large value (either positive 

or negative) in the Jacobian indicates that the model, at a 

particular time, is sensitive to a given parameter; a small value 
would indicate that the model is insensitive to the parameter. 
The parameter covariance matrix from (12)was also used to 
examine cross correlation. 

Plots of the columns of the Jacobians for Hll-1 and H19S2 

are given in Figures 5a and 5b, respectively; each is represen- 
tative of the sensitivity matrices computed for other SWIW 
tests at their respective locations. In both plots it is clear that 
the nature of all sensitivities changes significantly between the 

advection/dispersion- and mass transfer-dominated parts of 
the simulations, a transition which occurs at roughly 40 hours 

(1.44 x l0 s s) at the H-11 well and at roughly 30 hours (1.08 x 
l0 s s) at H-19. 

For Hll-1 the sensitivity of the model to the mass transfer 

parameters is much larger than to the flow parameters and 
increases over time. The sensitivities to dispersivity and advec- 
tive porosity are small and essentially constant for times 
greater than 40 hours, suggesting strong correlation. Conse- 

quently, neither parameter can be estimated with any confi- 
dence. In contrast, the sensitivities of the mean and standard 

deviation of the distribution of log diffusion rate coefficients 

are larger and increase through time. Thus the mass transfer 

parameters can be estimated with a reasonable degree of con- 

fidence, provided that good data are available at late time. 
These conclusions are supported both by the covariances and 
by the confidence intervals of the estimated parameters (see 
Table 3). 

The sensitivity matrix for H19S2 exhibits greater complexity 
than Hll-1. First,/•a shows a fairly high degree of correlation 
with (ha, but the sensitivities are somewhat larger for (ha than 
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Figure 5. Normalized sensitivity for estimated parameters of 
multirate diffusion model at (a) Hll-1 and (b) H19S2. 
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in H11-1. This is explained as follows. The largest values in the 
distribution of diffusion rate coefficients represent near- 
instantaneous mass transfer. Hence the corresponding diffu- 

sive porosity effectively acts as part of the advective porosity 
(i.e., they are indistinguishable). The fraction of the distribu- 
tion of diffusion rate coefficients that are large is determined in 

part by/xa (larger/x a means that the geometric mean of a a is 
larger and diffusive mass transfer is faster). Therefore/xa de- 
termines the fraction of the diffusive porosity that is indistin- 

guishable from advective porosity. Consequently, /xa and (ka 

can be strongly correlated if tza is relatively large (as is the case 

in H19S2). Nonetheless,/xa can still be estimated with reason- 
able confidence, though with less confidence than in Hl l-1. 

Second, in H19S2 the sensitivities exhibit a higher degree of 
scatter and numerical error. The scatter and oscillations in the 

sensitivity plot are due to numerical error at very low concen- 

trations and do not have physical significance. Sensitivities are 
calculated numerically as derivatives, which are very sensitive 
to small numerical errors. 

5.2. Model Sensitivity to Heterogeneity and Tracer Drift 

We have shown in sections 4.2 and 5.1 that, in the absence of 

either heterogeneity or drift, the late time behavior of the 

SWlW test is very sensitive to matrix diffusion. In this section 

we turn our attention to the sensitivity of the multirate diffu- 

sion model to heterogeneity in permeability and tracer drift 
due to a regional hydraulic gradient. 

Without heterogeneity, drift does not significantly affect the 
late-time behavior of the SWlW. Similarly, without drift, het- 

erogeneity does not significantly affect the late time behavior 
of the SWlW [Lessoff and Konikow, 1997; Altman et al., 2000]. 
However, under some conditions the combination of drift and 

heterogeneity can influence the late-time concentrations and 

therefore bias the estimate of diffusion parameters. In partic- 
ular, Lessoff arid Konikow [1997] showed that when a tracer 
moves away from the well in a channel of high permeability, 
then drifts into a lower permeability zone, and then is pulled 
back to the well through that low permeability zone, significant 
tailing in the recovery curve can result. This tailing may result 

in incorrect estimates of diffusion parameters. 
To investigate the effects of combined heterogeneity and 

drift on our estimated parameters, Altman et al. [2000] used a 

particle tracking algorithm to simulate 100 SWIW tests in 
different heterogeneous transmissivity fields, with parameters 
similar to those used at the H-11 hydropad. The transmissivity 

(T) fields were generated using sequential Gaussian simula- 
tion; they had a mean T of 5.1 x 10 -5 m 2 s -], a In (T) variance 
of 3.10, and a correlation length of 15.0 m. The largest reason- 

able regional hydraulic gradient (0.011) was used. We selected 
the calculated recovery curve with the most gradual mass re- 

covery rate (i.e., the simulation with a tail that looked most like 

diffusion). We then simulated the same SWIW test using an 
advection-dispersion model (SWIFT II [Reeves et al., 1986], 
which is capable of simulating diffusion for a SWIW test, 
whereas the particle tracking code is not) with a longitudinal 
dispersivity of 0.25 m and a transverse dispersivity of 0.025 m. 
This breakthrough curve is shown in Figure 6 as a dotted line 

with the legend caption "Model with drift and heterogeneity." 

To investigate the influence of heterogeneity on the multi- 

rate model, we performed parameter estimation on this break- 
through curve assuming that a lognormal distribution of diffu- 

sion rate coefficients was responsible for the late time 
behavior. The resulting curve fit is shown in Figure 6 as a solid 
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Figure 6. Best fit of multirate diffusion model to SWIW 
model incorporating both heterogeneity and drift. 

line with the legend caption "Model with diffusion." The re- 

sulting multirate fit yielded tz a = -14.1, o- a = 3.96, aL = 
9.05 X 10 -2 m, qb a --6.21 • 10 -3, and RMSE = 0.879. 

Although the multirate model erroneously attributes the late 

time behavior from the heterogeneous field to diffusion, the 

resulting model is a very poor representation of the break- 
through curve. As such, it would be inappropriate to attribute 
such breakthrough curve behavior to multirate diffusion. First, 

the RMSE is much larger than any of the values obtained from 

fits to real data (see Table 3). The increased error is primarily 
due to the "bumpy" nature of the late time simulated concen- 
trations from the heterogeneous field. Second, the heteroge- 

neous field results in a breakthrough curve at very late time 

(i.e., after 500 hours) that is much steeper than the multirate 
breakthrough curve. Whereas conventional advective- 

dispersive behavior results in exponential late time behavior 

(i.e., steepening breakthrough curves on a log-log plot), mul- 
tirate diffusion typically results in approximately power law 
behavior at late time (i.e., straight breakthrough curves on a 

log-log plot). Third, it must be remembered that this transmis- 
sivity field was chosen by hand from 100 random cases as the 
one that most closely yielded diffusion-like behavior at late 
time. 

While it would be inappropriate to attribute late time be- 
havior in Figure 6 to diffusion, the investigation shows that the 

late time behavior can be influenced by a combination of het- 

erogeneity and drift. In particular, the combination of hetero- 
geneity and drift may result in overestimation of the variability 
in the diffusion rate coefficient. 

5.3. Discussion of Estimated Parameters and Comparison 
With Other Data 

In this section we will discuss the estimated parameters and 
their confidence intervals and compare these values to data 

external to the SWIW tests. The values of rba and c• L (see 
Table 3) cannot confidently be estimated by the SWIW test: 
Both parameters have extremely large confidence intervals. In 
the case of rba the confidence intervals span all possible values 
of advective porosity. Dispersivity has slightly smaller confi- 
dence intervals, but the confidence intervals still span all pos- 

sible values. Surprisingly, however, all estimated values of both 
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qb a and az• are in reasonable agreement with independent 
information. The estimated values of aL, for example, lie 
within the bounds of field-scale dispersivities observed in other 
types of tests at similar scales [Gelhar et al., 1992]. The advec- 
tive porosities we estimate are within the range expected for 
fractured rock and lie at the upper end of the range observed 
from multiwell tests in the Culebra [McKenna et al., this issue]. 

Advective porosity and dispersivity are not estimable by a 
SWlW test because the flow field is reversed in the middle of 

the experiment. Large and small values of these two parame- 
ters result in very similar early time breakthroughs, and the late 

time breakthrough is almost completely insensitive to the pa- 
rameters. In contrast, diffusion is not affected by the reversal 

of the flow field. Additionally, the late time breakthrough is 
very sensitive to diffusive mass transfer. Consequently, the 

parameters describing the distribution of diffusion rate coeffi- 
cients, txa and er a (discussed below), are quite estimable in a 
SWIW test. 

The parameters txa and era are estimated with smaller con- 
fidence intervals relative to their range of reasonable values. 

Because diffusion rate coefficients can vary over an extremely 

wide range, 95% confidence intervals on txa of about _+1-2 

indicate a reasonable degree of confidence for this parameter. 
The value of In (era) appears to be well estimated by the 
SWIW test also (with the exception of H19S1-2, which is a 
much shorter data set). Other than H19S1-2, the confidence 
intervals on In (era) range from _+0.24 to _+0.30. 

The mean and standard deviation of diffusion rate coeffi- 

cients were both generally larger for H-19 recovery curves than 

for H-11 recovery curves. This corresponds well to our current 
understanding of the hydrogeology at the two hydropads. On 

the basis of advective porosities inferred from multiwell con- 
vergent-flow tracer tests [McKenna et al., this issue], transmis- 
sivities determined for many wells at the WIPP site [Beauhelm 
and Ruskauff, 1998; Holt, 1997], and examination of drill core 
[Holt, 1997], it is believed that advective transport in the Cul- 
ebra dolomite at the H-11 hydropad tends to be channeled 
along well-connected fractures that form comparatively direct 

flow paths. At the H-19 hydropad, advective porosity consists 
not only of fracture porosity but also interparticle porosity and 
vugs connected by microfractures, and flow thus follows a more 

circuitous route [Meigs et al., 2000]. Mass that is advectively 
transported near the H-11 hydropad experiences: (1) exposure 
to a smaller surface area of matrix, resulting in less matrix 

diffusion during a given timescale or space scale of experiment 
and thus slower diffusion rates, and (2) incomplete exposure to 
the range of porosity types, resulting in a narrower spread to 
the distribution of diffusion rate coefficients. 

The distributions of a a estimated from the SWIW tests 

appear consistent from test to test and data set to data set, with 
the exception of H19S1-2. The H-11 data set and the other two 
H-19 data sets yielded very similar values of t•a and era for tests 

conducted at the same well. The estimated values of txa and era 

for H19S1-2 are larger and smaller, respectively, than for 
H19S2 and H19Sl-1. The confidence interval on era for 

H19S1-2 is large enough, however, that the value of era is very 
uncertain. 

The larger uncertainty and different estimates of txa and era 
at H19S1-2 may be due to two factors. First, the H19S1-2 data 
set is the shortest, with several hundred hours less data than 

the other H-19 data sets. The tracer sampled a smaller range of 
mass transfer timescales and is therefore insensitive to the 

slowest rates of mass transfer. This resulted in a larger esti- 

mated mean diffusion rate coefficient and a lower estimated 

standard deviation. The influence of the timescale of the ex- 

periment on the estimated parameters was confirmed by per- 
forming a parameter estimation on a H19Sl-1 data set trun- 

cated to the length of the H19S1-2 data. The resulting 
estimates for txa and era from this scoping run were interme- 
diate between those from the H19Sl-1 and H19S1-2 runs. 

Second, the Culebra is heterogeneous. Of the three SWIWs 
at H-19 the H19S1-2 injection was conducted over the smallest 

volume of the Culebra [Meigs and Beauheim, this issue]. As a 
result, H19S1-2 experienced the smallest amount of heteroge- 

neity and therefore may be expected to have a smaller esti- 
mated era. 

The CDFs of diffusion rate coefficients (aa = D,•/12) esti- 
mated from all recovery curves have a large standard deviation 

(2.56-6.87). As discussed in section 1, variability in the diffu- 
sion rate coefficient stems from multiple sources. For a non- 
sorbing solute these may be mathematically grouped into vari- 
ability in the apparent diffusivity D• and the length of the 
diffusion pathway may be squared l 2 [also see Haggetty and 
Gorelick, 1998], where the variability in the apparent diffusivity 
is itself a function of tortuosity and restrictivity. Work by Tid- 
well et al. [2000] and by Fleming [1998] suggests that the log of 

D• in the Culebra may have a standard deviation up to ap- 
proximately 1.0. Ifln (D•) has a standard deviation of 1.0, then 
a standard deviation in In (Da/l 2) of 5 (for example) would be 
explained by a minimum standard deviation in In (l) of 2. This 
would require that 95% of the diffusion path lengths are 
spread over about 3.5 orders of magnitude in size. Though this 
is probably approaching a maximum feasible limit on variabil- 
ity in l, it is not unreasonable. It also must be remembered that 
some of the width of the estimated distribution is likely due to 

diffusion into immobile pockets of water and to two potential 
sources of error: (1) assumption of a lognormal distribution 
and (2) effects of combined heterogeneity and drift attributed 
to diffusion. 

The portions of the CDFs that are supported by recovery 
data span at least 3.6 orders of magnitude (i.e., accounting for 
problems with the assumption of the lognormal distribution, 
see section 4.2 and above). The significance of this for long- 
term solute transport in the Culebra is as follows. Diffusive 

mass transfer results in the apparent solute transport velocity 
(i.e., defined as the time derivative of the first spatial moment) 
decreasing as a function of time [e.g., Quinodoz and Valocchi, 
1993]. A distribution of diffusion rate coefficients means that 

the decrease in velocity occurs over a longer period of time 
than if there were a single diffusion rate coefficient. A spread 
in the diffusion rate coefficients of at least 3.6 orders of mag- 
nitude means that the tracer velocity will decrease over at least 

4-6 orders of magnitude in time. 

5.4. Late-Time Slope of the Data 

The SWIW data shown in Figure 3 have late time slopes that 
are nearly constant after 200 hours (i.e., the recovery curves 
exhibit power law behavior). Plots of the derivatives of these 
log-transformed data reveal that both H-11 data sets have a 

constant late time slope of approximately -2.1. The late time 
slopes for H19Sl-1 and H19S2 are both approximately -2.2, 
while the late time slope for H19S1-2 is approximately -2.8. 
For all five SWIW data sets these slopes are remarkably dif- 
ferent from those predicted for a conventional double-porosity 
model. For a conventional double-porosity model the slope is 
- 1.5 for times after the advectively dominated early part of the 
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Figure 7. Sensitivity analysis for tra (standard deviation of In 
(aa)) in multirate diffusion model. The curve for ira = 0 is 
equivalent to the conventional double-porosity model. Prior to 
2 x 105 s, the curves for ira = 0 and rra = 2 are approximately 
the same. 

test and before the diffusion timescale of approximately 12/Da 
[Hadermann and Heer, 1996]. At times greater than the diffu- 
sion timescale, the slope predicted for a conventional double- 

porosity model quickly goes to infinity. 

Figure 7 shows the effect of varying ira from 0 (conventional 
double porosity) to the estimated value of 3.57 for Hll-1. For 
the conventional double-porosity model we see that the slope 

of the graph is -1.5 from -100 to 500 hours (3.6 x 105 s to 
1.8 X 10 6 S). However, after 500 hours the slope steepens 
considerably and would ultimately go to -• as all mass is 

removed from the single-rate immobile zone. For the multirate 

diffusion models the late-time slopes are nearly constant, with 

values of -1.9 for tra = 2.00 and -2.1 for tra = 3.5. 

In all of the SWIW data sets the late time slope is both 

constant and steeper than -1.5. We ran the multirate model 

for a range of parameters (many are not shown) and found that 
the late time slopes are always approximately constant and 
steeper than - 1.5 for ira greater than 0. In addition, data from 

other types of tests (e.g., multiwell convergent-flow tests and 
one-dimensional column experiments with a pulse or square- 

wave injection) also show straight line recovery curves at late 
times with slopes greater than -1.5, and scoping runs per- 

formed on these data have required nonzero values for ira in 

order to adequately match the entire length of the recovery 
curve. Therefore we suggest that a nearly constant late time 

slope steeper than -1.5 for a pulse injection (either Dirac or 
short square wave) tracer test is diagnostic of multirate mass 
transfer, provided that the late time behavior is due to mass 

transfer. These late time behaviors are examined in detail by 

Haggert 3, et al. [2000b]. It is important to note, however, that 
other effects (not believed to have influenced the SWIW tests 
we examined [see Meigs et al., 2000] may produce slopes similar 
to multirate diffusion; these include significant tracer drift, the 

injection well or port not being cleared of solute, or nonlinear 

sorption. 

5.5. Conventional Double-Porosity Versus 
Multirate Diffusion 

A growing body of literature has concluded that multirate 

diffusion is a significant phenomenon. The majority of this 
literature has shown that the estimated distributions of rate 

coefficients have surprisingly large variances, even in relatively 

homogeneous media. It is not straightforward to compare the 

various models directly because of different mathematical for- 

mulations, but Pedit and Miller [1995], Culver et al. [1997], 
Werth et al., [1997], Haggert 3, and Gorelick [1998], and Lorden et 
al. [1998] all found variability in mass transfer rate coefficients 
that span many orders of magnitude. Our study, based on field 

experiments, adds to this list. Estimated variability in the dif- 
fusion rate coefficient spans at least 5 orders of magnitude (see 
Figure 4). In our study we find that it is not possible to fit all 
parts of the field data using a conventional, single-rate double- 

porosity model (assuming diffusion into spherical blocks). It is 
possible to fit the earliest data, but these data are dominated by 
advection rather than mass transfer. 

6. Conclusions 

1. A double-porosity model incorporating distributed dif- 

fusion, such as the multirate diffusion model presented here, 

may be necessary to represent the recovery curves in the 
SWIW tests in the Culebra dolomite. A conventional, single- 

rate double-porosity model, assuming spherical diffusion, is 
not able to reproduce the observed late time slope of the data. 

This is a serious shortfall of the conventional double-porosity 

model, because the late time data are dominated by diffusive 

mass transfer. The portion of the recovery curve matched well 

by the conventional double-porosity model is dominated by 

advection and dispersion. 

2. Parameter estimation and sensitivity analyses indicate 

that the SWIW tests in the Culebra dolomite are generally 

insensitive to advective porosity and dispersivity. This is due to 
the reversing flow field, in which the tracer goes out from the 

well and returns to the well along approximately the same flow 

path. However, the SWIW tests appear to be particularly sen- 

sitive to matrix diffusion, and from these tests it is possible to 
estimate a distribution of diffusion rate coefficients with a 

reasonable degree of reliability, although care must be taken to 

address the effects of data length and quality and the non- 

uniqueness of the estimated lognormal distribution of diffusion 
rates outside the assay range of a given tracer test. 

3. The late time data are particularly sensitive to the dis- 
tribution of diffusion rate coefficients. In fact, the sensitivity to 

the distribution generally grows through time. Therefore accu- 
rate estimation of the distribution relies on accurate concen- 

tration data in the tail of the test, where the effects of matrix 

diffusion dominate the effects of advection and dispersion. It is 

unlikely that distributions of rate coefficients can be estimated 

from SWIW recovery curves that either do not contain the tail 

concentrations or have very low accuracy tails. 

4. The late time slope of the recovery curves obtained from 
SWIW tests in the Culebra dolomite have constant double-log 

slopes between approximately -2.1 and -2.8. Late time slopes 

obtained from conventional double-porosity models, however, 

are -1.5 before the diffusion timescale 12/Da [Hadermann and 
Heer, 1996] and quickly go from -1.5 to a slope approaching 
infinity after the diffusion timescale. Therefore, provided that 

diffusion is the explanation for the late time behavior, a con- 

stant late time slope steeper than -1.5 is diagnostic of a dis- 
tribution of diffusion rate coefficients. More detail on such 

power law behavior is presented by Haggert3, et al. [2000b]. 
5. The estimated distribution of diffusion rate coefficients 

is very broad for the Culebra dolomite (note caution below, 
however). The estimated CDFs, which assume a lognormal 
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distribution of rate coefficients, have a standard deviation in In 

(ad) from 2.56 to 6.87. The portions of these CDFs that are 

supported by data are spread over at least 3.6 orders of mag- 

nitude. Consequently, if these distributions were accurate for 

the entire formation, it would take approximately this many 

orders of magnitude in time to experience all of the mass 
transfer variability in the formation. Therefore the advection 

velocity of a solute in the Culebra would continue to slow over 

at least 3.7-5.7 orders of magnitude in time and possibly much 

longer. Any experiments or modeling conducted within these 
time frames would need to account for a distribution of mass 

transfer rate coefficients in order to accurately predict advec- 

tive velocities on another timescale. Implications of such mul- 

tirate diffusion for transport at larger scales is discussed by 

McKenna et al. [this issue]. 

6. Solute drift and heterogeneity in permeability are indi- 

vidually insufficient to create the late time behavior observed 

in the SWIW recovery curves. However, when both heteroge- 

neity and drift are present, late time behavior similar to mul- 

tirate mass transfer can occur. Although it is clear that multi- 
rate diffusion occurs in the Culebra, the number of orders of 

magnitude of variability may be overestimated because of the 

combined effects of drift and heterogeneity. 

Notation 

b formation thickness [L]. 

b(ad) probability density function of diffusion rate 

coefficients (see (2a)) [r]. 
c,• solute concentration in the advective porosity [M 

L-3]. 
c• solute concentration at a point within the portion 

of the matrix associated with a particular diffusion 

rate coefficient [M L-3]. 
C•(a•) average solute concentration in the portion of the 

matrix associated with a particular diffusion rate 

coefficient [M L-3]. 
Ci ith component of the vector of normalized 

concentrations through time [dimensionless]. 

½inj is the injected concentration (which may be a 
function of time) [M L-3]. 

Da apparent diffusivity in the matrix [L 2 T- •]. 
J Jacobian sensitivity matrix. 

Jq sensitivity of the modeled concentration at the ith 
time to the jth parameter. 

l length of the diffusion pathway within the matrix. 
Note that this becomes the radius if the matrix 

block is a sphere [L]. 

Pi jth component of the vector of estimated 
parameters. 

Qinj injection rate [L3 T- •]. 
Qout pumping rate [L3 T- •]. 

r radial coordinate (positive away from well) [L]. 
r,• well radius [L]. 

R,• retardation factor in the advective porosity 

[dimensionless]. 

R d retardation factor in the diffusive porosity 

[dimensionless]. 

t time [r]. 

v pore water velocity [L T- •]. 

Vp estimated parameter covariance matrix. 
z coordinate along the diffusion pathway [L]. 

ad diffusion rate coefficient (identically equivalent to 
D,•/l 2, see (2b)), which is continuously distributed 
in the multirate model [T-•]. 

az. the longitudinal dispersivity [L]. 
/3to t total capacity coefficient of the formation, which is 

the ratio of mass in the matrix to mass in the 

fractures at equilibrium [dimensionless]. 
8(a,•) Dirac delta (a* represents a single value of ad d 

instead of a distribution) [T]. 
/Xd natural log of the geometric mean of the diffusion 

rate coefficients, In [ T- •]. 
o- replicate variance defining the uncertainty in 

concentration. 

tr d standard deviation of the log-transformed 

diffusion rate coefficients, In [T- •]. 
trp standard deviation of the estimated parameter. 
tka advective porosity [dimensionless]. 

tkd diffusive porosity (equivalent to the matrix or 
"immobile zone" porosity) [dimensionless]. 
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